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The heavy-fluxonium circuit is a promising building block for superconducting quantum processors due
to its long relaxation and dephasing time at the flux-frustration point. However, the suppressed charge
matrix elements and low transition frequency make it challenging to perform fast single-qubit gates using
standard protocols. We report on new protocols for reset, fast coherent control, and readout that allow high-
quality operation of the qubit with a 14 MHz transition frequency, an order of magnitude lower in energy
than the ambient thermal energy scale. We utilize higher levels of the fluxonium to read out the qubit state
and to initialize the qubit with 97% fidelity corresponding to cooling it to 190 μK. Instead of using standard
microwave pulses, we control the qubit only with fast-flux pulses, generating control fields much larger
than the qubit frequency. We develop a universal set of gates based on nonadiabatic Landau-Zener
transitions that act in 20–60 ns, less than the single-qubit Larmor period. We measure qubit coherence of
T1; T2e ∼ 300 μs for a fluxonium in a 2D architecture and realize single-qubit gates with an average gate
fidelity of 99.8% as characterized by randomized benchmarking.
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I. INTRODUCTION

Superconducting circuits are among the fastest-developing
candidates for quantum computers due to steady improve-
ments in coherence times, gate fidelities, and processor size
over the past two decades [1,2]. These developments have
ushered the noisy intermediate-scale quantum era [3] and
demonstrations of quantum advantage over classical comput-
ing [4]. Despite these significant improvements, decoherence
still remains the central challenge for superconducting
circuits. While the effects of environmental noise can be
reduced by improving material properties [5–7], here, we
develop an alternative approach in which we drastically
reduce the noise spectral density by lowering the qubit

frequency from gigahertz to megahertz. Despite the slow-
down of all the relevant timescales, we still perform single-
qubit gates at speeds that are comparable to the state of the art
in conventional qubits. We develop ultrafast gates based on
nonadiabatic Landau-Zener transitions [8–12] which act in
less than a single Larmor period.
We achieve this result by using a heavy-fluxonium

circuit [13,14], whose rich level structure features a low
qubit frequency (approximately 14MHz) and excited levels
that are several gigahertz away. The large frequency
separation enables us to apply flux drives with amplitudes
much larger than the qubit frequency, without any leakage
outside of the computational subspace. The gap to the
excited levels also exceeds the frequency scale set by the
ambient temperature, allowing them to be used for initial-
ization and readout of the qubit state. We develop a
completely new set of protocols for operating the heavy
fluxonium, demonstrating state-of-the-art performance that
makes it the first serious competitor to the transmon qubit
[15], with the potential for further improvements.
The transmon, which underlies most modern super-

conducting quantum processors, is a weakly anharmonic
oscillator with large dipole matrix elements. This circuit
trades off increased sensitivity to decay and a reduced
anharmonicity α for decreased sensitivity to charge-noise-
induced dephasing. Despite the maximal susceptibility to

*Corresponding author.
David.Schuster@uchicago.edu

†Present address: IBM T. J. Watson Research Center,
Yorktown Heights, New York 10598, USA.

‡Present address: Department of Applied Physics, Yale
University, New Haven, Connecticut 06511, USA.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 11, 011010 (2021)

2160-3308=21=11(1)=011010(13) 011010-1 Published by the American Physical Society

https://orcid.org/0000-0002-7390-9210
https://orcid.org/0000-0001-9442-862X
https://orcid.org/0000-0002-0413-698X
https://orcid.org/0000-0001-5754-930X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.11.011010&domain=pdf&date_stamp=2021-01-15
https://doi.org/10.1103/PhysRevX.11.011010
https://doi.org/10.1103/PhysRevX.11.011010
https://doi.org/10.1103/PhysRevX.11.011010
https://doi.org/10.1103/PhysRevX.11.011010
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


relaxation, state-of-the-art transmons have depolarization
(T1) times around 100 μs [7,16,17], corresponding to
quality factors Q of a few million. The gate speeds are,
however, limited by the small anharmonicity, typically
approximately 5% of the qubit frequency ωq, resulting
in a theoretical upper bound for the gate infidelity of
approximately ωq=ðQαÞ ∼ 10−5 and state-of-the-art values
of≲1–2 × 10−4 [4] achieved with the derivative removal by
adiabatic gate or other shaped pulses. This value suggests
that gate infidelities can approach 1=Q by increasing the
anharmonicity in comparison to qubit frequency and
performing gate operations within a few Larmor periods.
The flux qubit [18–21], another member of the super-

conducting circuit family, already has the desired level
structure with a relative anharmonicity α=ωq ≫ 1. The
extreme sensitivity to flux noise of these qubits is mitigated
by shunting the Josephson junction with a large super-
inductor, resulting in the development of the fluxonium
[22–25]. Further improvements in energy relaxation times
were obtained by the realization of a heavy fluxonium
[13,14], which additionally reduces the decay matrix
elements using a large shunting capacitor. These variants
of the fluxonium are reported to have longer coherence
times than transmons in 3D architectures [26]. Even though
the heavy fluxonium has the desired level structure and
large coherence times, fast manipulation of the metastable
qubit states remains a challenge due to the suppressed
charge matrix elements. While Raman transitions can be
used for coherent operations [13,27], these protocols are
still relatively slow and require high drive powers while
exposing the qubit to the higher loss rates of excited
fluxonium levels involved during the gate. The requirement
of fast coherent control, thus, encourages one to explore
new schemes for implementing gates.
In this work, we realize a heavy-fluxonium circuit in a

2D architecture with coherence times T1; T2e ∼ 300 μs
exceeding those of standard transmons. The long coherence
is achieved by accessing a new regime of low qubit
frequency, which has the effect of slowing down all
decoherence processes. Our circuit has a gap of only
14 MHz, an order of magnitude lower than the temperature
of the surrounding bath. Therefore, we develop and realize
a reset protocol that utilizes the readout resonator and
higher circuit levels to initialize the qubit with 97% fidelity,
effectively cooling the qubit down to 190 μK. Despite a
frequency that is 300 times smaller, we develop an ultra-
fast-flux gate protocol that performs single-qubit gates at
similar speeds to that of typical transmons.

II. THE HEAVY-FLUXONIUM CIRCUIT

The circuit consists of a small-area Josephson junction
(JJ), with inductance LJ shunted by a large inductance
(LJA), and a large capacitor (Cq), as shown in Fig. 1(a).
The shunting inductance is realized by an array of 300

large-area JJs, each having a Josephson energy EJA and
charging energy ECA. We make EJA=ECA ≫ 1 to ensure
that the charge dispersion for each array junctions is small,
and the array can be regarded as a linear inductor. The
corresponding effective circuit is shown in Fig. 1(b),
resulting in a Hamiltonian of the form

Hf ¼ −4EC
d2

dφ2
− EJ cos

�
φ − 2π

Φext

Φ0

�
þ 1

2
ELφ

2; ð1Þ

where EC ¼ e2=ð2CqÞ is the charging energy, EJ ¼
Φ2

0=ð4π2LJÞ the Josephson energy of the small junction,
and EL ¼ Φ2

0=ð4π2LJAÞ the inductive energy of the JJ
array. Φext denotes the flux threading the loop formed by
the small junction and the superinductance, and Φ0 is the
quantum of flux. The corresponding values for the reported
device are EC=h ¼ 0.479 GHz, EL=h ¼ 0.132 GHz, and
EJ=h ¼ 3.395 GHz, where h is Planck’s constant. The
level structure of the fluxonium at the flux-frustration point
(Φext ¼ Φ0=2) is shown in Fig. 1(c). There are two types of
transitions of interest: the intrawell plasmons (jgi ↔ jhi
and jei ↔ jfi) and interwell fluxons (jgi ↔ jei and
jfi ↔ jhi). Since the wave functions of jgi and jfi are
both even in phase space, and jei and jhi are both odd, the
single-photon transitions jgi ↔ jfi and jei ↔ jhi are
forbidden at the flux-frustration point due to the parity
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FIG. 1. Device, circuit, and energy-level diagram. (a) Left:
False-colored optical microscope image of the fluxonium coupled
to a readout resonator (blue) along with flux (red) and input-
output (yellow) lines. Middle: Scanning electron micrograph of
the large junction array (purple) and the small Josephson junction
(orange). Right: Enlarged view of the small junction. (b) Circuit
diagram for the heavy-fluxonium qubit. (c) Energy-level diagram
of the heavy fluxonium at the flux-frustration point (Φext ¼
Φ0=2). The gray line represents the potential well. The first six
energy eigenstates are depicted by the colored lines; dashed lines
show the wave functions for the first four levels with correspond-
ing color. The fluxonlike transition jgi ↔ jei is marked with a
solid arrow, while plasmonlike transitions jgi↔ jhi and jei↔ jfi
are marked with dashed arrows.
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selection rule. The qubit is comprised of the lowest two
energy levels jgi and jei, with the qubit transition being
fluxonlike, with a frequency of 14 MHz.

III. QUBIT INITIALIZATION AND READOUT

Because of its low transition frequency, the qubit starts in
a nearly evenly mixed state in thermal equilibrium. We first
initialize the qubit in a pure state (jgi or jei) using the reset
protocol shown in Fig. 2(a), similar to Refs. [28,29]. In this
protocol, we simultaneously drive both the jg0i → jh0i and
jh0i → je1i transitions for 15 μs. The high resonator
frequency (5.7 GHz), in comparison to the physical
temperature, and the low resonator quality factor Q ¼
600 result in the rapid loss of a photon from je1i,
effectively removing the entropy from the qubit. In con-
junction with the large matrix element between jh0i and
je1i, this loss steers the system into a steady state with
approximately 97% of the population settling in je0i in
15 μs (see the Appendix E). We subsequently perform an
additional π pulse on the jgi − jei transition to initialize the
system in the ground state (jg0i). The reset is characterized
by performing a Rabi rotation between the jei ↔ jfi
levels, as shown in Fig. 2(b). The Rabi contrast is doubled
following reset, consistent with approximately 50% of the
population being in jei in thermal equilibrium. If we
prepare the system in jgi, the jei ↔ jfi Rabi contrast
indicates a 3� 2% error in state preparation, depending
on the jfi state thermal population. Since the jfi frequency
is similar to the typical transmon frequencies, its thermal
population is in line with that of most transmons. The
effective qubit temperature following reset is approximately

190 μK, lower than the ambient temperature by a factor
of 100.
Readout of the fluxonium levels is performed using

circuit QED [30] by capacitively coupling the fluxonium
circuit to a readout resonator [31]. Since the qubit states are
far away in frequency from the readout resonator, the
dispersive shift χ of the resonator due to a change in the
occupation of computational states is small (60 kHz).
Therefore, while the large detuning reduces the qubit
heating through the resonator, it makes direct dispersive
readout challenging. We circumvent this issue by utilizing
the larger dispersive interactions χf and χh of the excited
levels jfi and jhi, respectively, which are closer in
frequency to the readout resonator. We thus perform a π
pulse on the jei − jfi transition in 80 ns, before standard
dispersive readout. Since the population in jei is transferred
to jfi, the readout signal becomes proportional to (χf − χg),
which is 5 times larger than (χe−χg). A previously reported
dispersive shift engineering technique [28] for fluxoniums
tries to increase (χe − χg), while our protocol uses state
selective transfer and the dispersive shift between the
excited plasmon states and the computational states for
readout. This plasmon-assisted readout scheme results in
50% single-shot readout fidelity, which can be further
improved with a parametric amplifier and by optimizing the
resonator κ and the dispersive shifts (see Appendix F).

IV. CHARACTERIZING DEVICE COHERENCE

Having developed protocols for initialization and read-
out, we characterize the coherence properties of the qubit.
Figure 3(a) shows the experimentally measured T1 (black
circles) as a function of the applied external flux, while the
inset shows T1 ¼ 315� 10 μs measured at the flux-
frustration point (⋆) following initialization of the qubit
in either the jgi or the jei state. The qubit relaxes to a
near-equal mixture where the excited state population
PðjeiÞ ¼ 0.4955� 0.0015, with the deviation providing
an estimate of the temperature of the surrounding bath,
T ¼ 42� 14 mK. At the flux-frustration point, the wave
functions are delocalized into symmetric and antisymmetric
combinations of the states in each well. As we move away
from this degeneracy point, the wave functions localize into
different wells, resulting in a suppression of tunneling and
an increase in the relaxation times; see Fig. 3(a). Here, the
qubit relaxation times are measured over a wide range of
external flux by driving the jgi − jhi transition for 120 μs
(5 times the jhi state T1) to ensure most of the population
reside in the jei state and monitoring the subsequent decay.
While moving away from the flux-frustration point, T1

increases to a maximum value of 4.3� 0.2 ms, consistent
with previous heavy-fluxonium devices [13,26], before
subsequently decreasing.
To explain the measured relaxation times, we consider

several avenues by which the qubit can decay, including
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FIG. 2. Reset and readout schemes and measurements. (a) Level
diagram for the reset and readout protocols, where the letters g, e,
f, and h denote qubit energy levels and the numbers 0 and 1
denote resonator levels. Reset is performed by simultaneously
driving both jg0i → jh0i and jh0i → je1i transitions (blue
double-headed arrows). The spontaneous photon decay je1i →
je0i provides a directional transition (blue single-headed arrow),
removing the entropy and completing the reset. An je0i → jf0iπ
pulse is applied before the readout to boost the output signal.
(b) Rabi oscillations between jei and jfi for different initial state
preparations. Black circles: The initial state is the thermal
equilibrium state. Blue squares: The initial state is prepared in
jei before the jei ↔ jfi Rabi. Orange diamonds: The initial state
is prepared in jgi.
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Purcell loss, decay via charge and flux coupling to the
control lines, 1=f flux noise, dielectric loss in the capacitor,
and resistive loss in the superinductor. Conservative esti-
mates of the flux-noise-induced loss are lower than the
measured loss by nearly an order of magnitude (see
Appendix G). The loss near the flux-frustration point is
believed to be largely due to dielectric loss in the capacitor.
This loss can be thought of as Johnson-Nyquist current
noise from the resistive part of the shunting capacitor,
which couples to the phase matrix element hgjφ̂jei and
grows rapidly as we approach the flux-frustration point
[26]. Assuming a fixed loss tangent for the capacitor, this
loss rate is inversely proportional to the impedance of the
capacitor and is given by

Γdiel ¼
ℏω2

q

4ECQcap
coth

�
ℏωq

2kBT

�
jhgjϕ̂jeij2: ð2Þ

The T1 at the flux-frustration point sets an upper bound of
1=Qcap ¼ 4 × 10−6 for the loss tangent of the capacitor,
which is within a factor of 2 of the value reported in
previous heavy-fluxonium devices [26], and results in the
dashed red curve in Fig. 3(a). Sinceωq is below the ambient

temperature near the flux-frustration point, a combination
of the temperature-dependent prefactor ∼2kBT=ðℏωqÞ and
the relation between charge and phase matrix elements in
fluxonium, hgjn̂jei ¼ ωq=ð8EcÞhgjϕ̂jei, results in the
dielectric-loss scaling as 1=ωq, which is consistent with
the observed trend in the T1 near the flux-frustration point.
The measured T1 at the flux-frustration point also sets an
upper bound of 1.7 × 10−9 for the loss tangent of the
inductor. The decay from inductive loss, however, increases
more rapidly with frequency than dielectric loss (∝ 1=ω3

q)
and is inconsistent with measured data. Our qubit oper-
ations are performed between 0.4Φ0 and 0.5Φ0, where
the T1 is mainly limited by dielectric loss. As we move
further away from the flux-frustration point (approximately
0.4Φ0), T1 starts to decrease. This additional loss is
believed to be due to a combination of radiative loss to
the charge drive line and Purcell loss from higher fluxo-
nium levels excited by heating from the jgi and jei states.
The Purcell loss calculated based on the coupled fluxo-
nium-resonator system using a bath temperature of 60 mK
results in the dotted blue curve shown in Fig. 3(a).
This result is slightly higher than the temperature inferred

from the qubit thermal steady state population and can be
attributed to the fact that the noise environments could be
significantly different at frequencies that are more than 2
orders of magnitude apart. The enhanced loss near Φext ¼
0.35Φ0 is suggestive that heating to higher levels may
contribute, as there are several near resonances of higher
fluxonium levels with the readout resonator, which depend
sensitively on the circuit parameters (see Appendix G).
The dephasing is characterized using a Ramsey sequence

with three echo π pulses and found to be minimized at
Φext ¼ Φ0=2, where the qubit frequency is first-order
insensitive to changes in flux. The dephasing rate near
the flux-frustration point can be separated into two parts.
The first is a frequency-independent term ΓC mainly
composed of qubit depolarization and dephasing from
cavity photon shot noise and other flux-insensitive white
noise sources. The second arises from 1=f flux noise that is
proportional to the flux slope as Γ1=f ¼ ðdω=dΦextÞη

ffiffiffiffiffi
W

p
,

where η is in the flux-noise amplitude and W depends
on the number of π pulses in an echo experiment
(W ¼ 4 ln 2 − 9

4
ln 3 for three π pulses [32]). Thus, our

spin-echo signal decays as expð−t=TCÞ × expð−Γ2
1=ft

2Þ.
Here, TC ¼ 1=ΓC is the T2e value at the flux-frustration
point. It is found to be approximately 300 μs, much higher
than the T2e values for state-of-the-art transmons; see the
inset in Fig. 3(b). The T�

2 is found to be approximately
70–100 μs (Fig. 9 in Appendix H), indicating that the
dephasing is limited by low-frequency flux noise (see
Appendix H). The T2e values around the flux-frustration
point, defined as the time for the echo oscillation amplitude
to decay to 1=e, are shown in Fig. 3(b). This value falls off
rapidly as we move away from the flux-frustration point,
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FIG. 3. Qubit coherence as a function of the flux. (a) Energy
relaxation time (T1) as a function of the external flux, denoted by
black circles. The lines represent theoretical limits set by
dielectric (Tcap

1 ), inductive (T ind
1 ), Purcell (TPurcell

1 ), and the
combined loss (T total

1 ). The inset shows the decay of PðjeiÞ to
0.495 after preparing the qubit in jgi,jei at the flux-frustration
point (⋆). (b) Echo decay time T2e as a function of the flux near
the flux-frustration point. The inset shows an echo measurement
at the flux-frustration point (⋆).
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consistent with the small tunnel coupling between levels.
Away from the flux-frustration point, T2e is mainly limited
by 1=f flux noise. The T2e far from the frustration point is
projected to be approximately 10 μs according to our
model, which is consistent with other reported results [26].

V. FAST SINGLE-CYCLE FLUX GATES

In order to maximize the advantage of the large anhar-
monicity of the heavy fluxonium, we rethink the standard
microwave-drive control of the circuit which is hindered
by the suppressed charge matrix elements. We instead
control the qubit through fast-flux pulses and report the first
use of nonadiabatic Landau-Zener transitions to realize
ultrafast gates that occur within a single Larmor period.
Near the flux-frustration point where the fluxonium is
operated, the Hamiltonian within the computational space
can be idealized as a spin-1=2 system, ðH=hÞ ¼
½AðΦextÞ=2�σx þ ðΔ=2Þσz. Here, Δ ≈ 14 MHz is the split-
ting of jgi and jei at the flux-frustration point and
corresponds to the qubit frequency. The amplitude of
the σx term is proportional to the flux offset δΦext
from the flux-frustration point and given by A ¼
4πhgjφ̂jeiðEL=hÞðδΦext=Φ0Þ. The coefficient of the σx
term can be much larger than the qubit frequency,
with A ∼ 300 MHz when δΦext ¼ 0.06Φ0, disallowing
any rotating wave approximation.
Figure 4(a) shows the protocol for a generic qubit pulse.

We first rapidly move the flux-bias point away from the
flux-frustration point in one direction and back, thus
generating a rotation about the x axis through a large σx
term in our computational basis. There is additionally a
relatively small rotation about the z axis corresponding to
the timeΔtp of the triangular spike. We subsequently idle at
the flux-frustration point for a durationΔtz, which results in
a rotation by ωqΔtz about the z axis. Finally, we rapidly
move the flux-bias point in the other direction and back,
resulting in a −σx term and another small z rotation. We
choose the two spikes to be exactly antisymmetric, ensur-
ing zero net flux, simultaneously minimizing the effect of
microsecond and millisecond pulse distortions ubiquitous
in flux-bias lines [33], and echoing out low-frequency
noise. The pulse is also immune to shape distortions, since
the total σx and σz amplitudes depend only on the area of
the spike and Δtz. By sweeping the amplitude A of the
triangular spike and idling length Δtz of the pulse and
measuring the expectation value of the spin along each axis,
we obtain the 2D Rabi patterns shown in Fig. 4(c) that
provide a measure of our gate parameters. Avertical line cut
of these graphs corresponds to Larmor precession in the lab
frame, with an oscillation frequency of Δ ¼ 14 MHz. We
thus obtain a Z=2 gate by idling at the flux-frustration point
for Δtz ¼ 1=ð4ΔÞ. We obtain a Y=2 gate at the point
indicated by the red star, with the corresponding trajectories
on the Bloch sphere for three different cardinal states
shown in Fig. 4(d). Y=2 and arbitrary rotations about the

z axis are sufficient for generating any single-qubit
unitary, thus realizing universal control. An X=2 gate,
for instance, is performed through the combination
ð−Y=2Þ · ðZ=2Þ · ðY=2Þ.
We characterize the fidelities of our single-qubit gates

through randomized benchmarking (RB) [35,36] and inter-
leaved RB (IRB) [34]. RB provides a measure of the
average fidelity of single-qubit Clifford gates and is
performed by applying sequences containing varying
numbers of Clifford gates on the state jei. For a given
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universal control pulses. They are constructed using three
sections, a positive triangular pulse with amplitude A and width
Δtp on the fast-flux line, an idling period of Δtz, and, finally,
another triangular pulse identical to the first one but with a
negative amplitude. (b) Energy levels of the computational space
as a function of the external flux (Φext) showing how the fast-flux
pulse changes the energies of the instantaneous eigenstates.
(c) Expectation values of σx, σy, and σz as a function of pulse
parametersΔtz and A. These 2D sweeps are used to determine the
optimal parameters for the Y=2 and arbitrary Z gates. ⋆ indicates
the parameters for a Y=2 gate. (d) Trajectories of three distinct
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2
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applied. (e) Comparison of standard RB (black circles) and
interleaved RB for Z=2 (red triangles), Y=2 (gold diamonds), and
X=2 (cyan squares) gates. The plot is a result of 75 randomized
gate sequences averaged over 10 000 times. The average gate
fidelity is F avg ¼ 0.9980, and the individual gate fidelities
are FZ=2 ¼ 0.9999, F Y=2 ¼ 0.9992, and FX=2 ¼ 0.9976 [34].
The uncertainties in all fidelities are smaller than the least
significant digit.
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sequence length, we perform 75 randomized sequences,
each containing a recovery gate to the state jei before the
final measurement. IRB allows us to isolate the fidelities of
individual computational gates and is performed by inter-
leaving the gate between the random Clifford gates of the
RB sequence. The averaged decay curves of PðjeiÞ as a
function of the sequence length for standard RB (black
circles) and IRB for Z=2 (red triangles), Y=2 (gold
diamonds), and X=2 (cyan squares) gates are shown in
Fig. 4(e). The infidelities thus extracted for the Y=2, Z=2,
and X=2 gates are 8, 1, and 24 × 10−4, respectively. The
X=2 gate infidelity is slightly worse than the combined
infidelities from two Y=2 and one Z=2 gate. The durations
for Y=2 and Z=2 are approximately 20 ns, while that for
the X=2 gate is approximately 60 ns, and, thus, all the
computational gates are performed within one qubit Larmor
period 2π=ωq ¼ 70 ns (see Appendix D), with all the
operations occurring in the lab frame. The calculated
decoherence limited errors of the Y=2 and X=2 gates are
6.67 × 10−5 and 2 × 10−4, respectively, suggesting that the
major source of gate error arises from residual calibration
errors in the pulse parameters, providing room for improve-
ment even from these state-of-the-art values.

VI. CONCLUSION

In conclusion, we have realized a heavy-fluxonium qubit
with a 14 MHz transition frequency and coherence times
exceeding those of state-of-the-art transmons while dem-
onstrating protocols for plasmon-assisted reset and readout
of the qubit and a new flux control scheme that performs
fast high-fidelity gates. We have explored a new frequency
regime in superconducting qubits and demonstrated the
feasibility of a subthermal frequency qubit, providing a
path for manipulating fluxonium qubits with computational
frequencies in the range of several gigahertz at temper-
atures much higher than current dilution-refrigerator tem-
peratures. We have demonstrated improved coherence
times over previous flux qubits and fluxoniums while
using conventional fabrication processes that can be further
improved by using new materials [37] or surface treatments
[26]. Our control scheme has dramatically improved the
single-qubit gate speed of fluxonium qubits, making them a
viable candidate for large-scale superconducting quantum
computation. The gate pulses can be directly synthesized
with inexpensive digital-to-analog converters and are
insensitive to shape distortions. Furthermore, they are
broadly applicable to any system which can be driven
nonadiabatically, including other low-frequency qubits,
protected qubits, and interactions between qubits.
Our device is compatible with existing schemes for

realizing two-qubit gates via capacitive coupling and the
use of excited circuit levels [38]. The single-qubit gate
scheme used in this work can also be generalized to two
fluxonium circuits with strong inductive coupling, even
comparable to the qubit frequencies. This generalization

would allow for two-qubit gate operations that are as fast as
the single-qubit gates demonstrated in this work, without
involving the participation of the more lossy excited levels.
Despite minimal optimization, we have realized a qubit
with state-of-the-art gate fidelities and one of the longest
reported coherence times in superconducting circuits. The
readout and reset can also be improved by leveraging
methods that have been demonstrated in other devices
[39,40]. With the coherence times and gate speeds expected
only to improve, the heavy-fluxonium circuit offers tanta-
lizing prospects for scaling to processors of increased size
and complexity.
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APPENDIX A: EXPERIMENTAL SETUP

The experiment is performed in a Bluefors LD-250
dilution refrigerator with the wiring configured as shown
in Fig. 5. The flux and charge inputs are attenuated at the
4 K stage and the mixing chamber with standard XMA
attenuators, except the final 20 dB attenuator on the rf
charge line (threaded copper). The dc and rf-flux signals are
combined in a modified bias tee (Mini-Circuits® ZFBT-
4R2GW+), with the capacitor replaced with a short. The dc
and rf-flux lines included commercial low-pass filters
(Mini-Circuits®) as indicated. The rf flux and output lines
also have additional low-pass filters with a sharp cutoff
(8 GHz) from K&L microwave. Eccosorb (CR110) IR
filters are added on the flux and output lines, which helps
improve the T1 and T2 times and reduces the qubit
and resonator temperatures. The device is heat sunk to
the base stage of the refrigerator (stabilized at 15 mK) via
an oxygen-free high-conductivity copper post while sur-
rounded by an inner lead shield thermalized via a welded
copper ring. This shield is additionally surrounded by
two cylindrical μ-metal cans (MuShield), thermally
anchored using an inner close-fit copper shim sheet,
attached to the copper can lid. We ensure that the sample
shield is light tight, to reduce thermal photons from the
environment.

HELIN ZHANG et al. PHYS. REV. X 11, 011010 (2021)

011010-6



APPENDIX B: DEVICE FABRICATION

The device (shown in Fig. 1 in the main text) is
fabricated on a 430-μm-thick C-plane sapphire substrate.
The base layer of the device, which includes the majority of
the circuit (excluding the Josephson junctions), consists of
150 nm of niobium deposited via electron-beam evapora-
tion, with features fabricated via optical lithography and
reactive ion etch (RIE) at wafer scale. A 600-nm-thick layer
of AZ MiR 703 is used as the (positive) photoresist, and the
large features are written using a Heidelberg MLA 150
Direct Writer, followed by RIE performed using a
PlasmaTherm ICP fluorine etch tool. The junction mask
is fabricated via electron-beam lithography with a bilayer
resist (MMA-PMMA) comprising of MMA EL11 and
950PMMA A7. The e-beam lithography is performed on
a Raith EBPG5000 Plus E-Beam Writer. All Josephson
junctions are made with the Dolan bridge technique. They
are subsequently evaporated in a Plassys electron beam
evaporator with double angle evaporation (�19°). The
wafer is then diced into 7 × 7 mm chips, mounted on a
printed circuit board, and subsequently wire bonded.

APPENDIX C: DECONSTRUCTION OF
SINGLE-QUBIT GATES

Modulation of the external flux drive with appropriate
amplitude and duration is sufficient to perform arbitrary
single-qubit rotations. The native gates available in our
system are the arbitrary phase gate RzðθÞ, which rotates the
qubit by an arbitrary angle θ about the Z axis, and a
combination of X and Z rotation RxzðθÞ. RzðθÞ is realized
by waiting for a period of Δtz ¼ θ=ωq (since we are
working in the lab frame), whereas RxzðθÞ is implemented
by a flux drive applied for a duration of Δtp ¼ λθ=ωq.
Here, λ (λ ≤ 1) is the ratio of Z rotation to X rotation rates.
These rotation matrices can be expressed, respectively, as

RzðθÞ ¼ e−iσzθ=2; ðC1Þ

RxzðθÞ ¼ e−iðθσxþλjθjσzÞ=2: ðC2Þ

The jθj in Eq. (C2) arises due to the always-on Z rotation,
which is unidirectional in the lab frame. A generic zero-flux
pulse can be constructed as

RðθÞ ¼ Rxzð−θxÞ · RzðθzÞ · RxzðθxÞ: ðC3Þ

A π=2 rotation about the Y axis (Y=2), i.e.,

Ryðπ=2Þ ¼
1ffiffiffi
2

p
�
1 −1
1 1

�
; ðC4Þ

is obtained using

θx ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2
p cos−1

�
λð1þ λÞ
−ð1 − λÞ

�
; ðC5aÞ

θz ¼ 2tan−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2λ − 2λ3 − λ4
p

ð1þ λÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
�

ðC5bÞ

in Eq. (C3) provided 0 ≤ λ ≤
ffiffiffi
2

p
− 1. Similarly, we can

construct

RyðπÞ ¼
�
0 −1
1 0

�
¼ −iσy ðC6Þ

using

θx ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2
p cos−1ðλ2Þ; ðC7aÞ

θz ¼ π − 2tan−1
�

λffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
�
; ðC7bÞ

with 0 ≤ λ ≤ 1. An arbitrary rotation about the X axis can
be constructed using

20
 d

B

 Still  
(700 mK) 

MC 
(10-20 mK)

4 K

50 K
  300 K

HEMT 

dc flux 

Fluxonium 
sample

dc

K
 &

 L
 F

ilt
er

LP
- 

6 
G

H
z

E
cc

os
or

b
fil

te
r 

(s
tr

on
g)

M
in

ic
irc

ui
ts

V
LF

-2
35

0
M

in
ic

irc
ui

ts
S

LP
-1

.9
+

 

Flux in

B
ia

s 
te

e 
w

ith
ou

t
ca

pa
ci

to
r

50   

50   

dc
Block

C
irc

ul
at

or
s 

µ metal shield

+30 dB

C
ha

rg
e 

in

rf flux 

20
 d

B

20
 d

B

10
 d

B

M
in

ic
irc

ui
ts

V
LF

-2
35

0
E

cc
os

or
b

fil
te

r 
(w

ea
k)

Out

E
cc

os
or

b
fil

te
r 

(w
ea

k)

50   

K
 &

 L
 F

ilt
er

LP
- 

6 
G

H
z

E
cc

os
or

b
fil

te
r 

(w
ea

k)
20

 d
B

20
 d

B

rf charge rf output

Lead shield

FIG. 5. Wiring diagram inside the dilution refrigerator. Outside
the dilution fridge, there is approximately 16 dB of attenuation
and a dc block on the rf-flux line and an ultralow-pass
(approximately 1 Hz) RC filter on the dc flux line. The total
attenuation on the rf-flux line proves important for both the T1

and T2 of the qubit, likely due to reduction in noise from the
arbitrary waveform generator (Agilent 81180A).
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RxðθÞ ¼ Ryðπ=2Þ · RzðθÞ · Ryð−π=2Þ: ðC8Þ

These gates are sufficient to construct any single-qubit
unitary operation. We use the QuTiP [41] PYTHON package
to simulate the evolution of the computational levels under
application of the pulse that is shown in Fig. 3 and obtain
the gate parameters. We sweep the drive amplitude A and
idling period Δtz in our simulation to match the sweep
performed in the experiment, as shown in Fig. 6. Δtp ¼
4.76 ns in all the experiments and simulations reported in
this paper.

APPENDIX D: CLIFFORD GATE LENGTHS
AND FIDELITIES

A complete Clifford set includes the computational
gates ½expð�iπσj=4Þ; j ¼ x; y� and the Pauli gates
[expð�iπσj=2Þ; j ¼ I; x; y; z�. In this work, we construct
Y=2 and Z=2 gates and use them as building blocks for the
other gates in the Clifford set. The total gate lengths,
experimental infidelities (computational gates only), and
gate compositions are shown in Table I. The computational
gate lengths range from 21 to 60 ns, and the longest Pauli
gate (X) has a length of 78 ns. Since 2π=ωq ≈ 70 ns, the
computational gates are all within a single cycle of the
qubit, and the longest gate is around one cycle as well.
These single-cycle flux gates are 10–30 times faster than
standard microwave-driven gates, whose durations are
longer than 10 × 2π=ωq.

APPENDIX E: FLUXONIUM MATRIX
ELEMENTS AND RESET PROTOCOL

We derive the charge drive transition rates by simulating
the full qubit-resonator dressed system. The drive power is
normalized to 258 MHz so that the jg0i → jh0iπ pulse
takes 80 ns, which corresponds to the typical experimental
value. The simulated single-photon and two-photon tran-
sition rates (in megahertz) are shown in Tables II and III.
The observed transition rates have additional contributions
arising from the frequency dependence of the transmission
through the drive line.
We utilize the jg0i → jh0i and jh0i → je1i transitions

for the reset protocol due to their large matrix elements. In
principle, any transition combination that leads to fast,
unidirectional population transfer can be used as the reset
transitions. We choose the protocol based on the strength of
the coupling between different states and the detailed level
structure for fastest reset. The excited state population as a
function of the reset time is shown in Fig. 7. The majority
of the population is pumped to state jei in 5 μs, which is
mainly determined by the jh0i → je1i transition rate. The
reset process continues for another 10 μs until the steady
state (97% in jei) is reached. We subsequently perform an
additional π pulse on the jgi − jei transition to initialize the
system in the ground state jg0i.

APPENDIX F: PLASMON-ASSISTED READOUT

The resonator frequency shifts in increasing order are χe,
χg, χh, and χf. We select the jgi and jfi states for plasmon-
assisted readout, since χf − χg is larger than χh − χe. This
result is reflected in the single-shot readout histogram data
for jgi, jei, jfi, and jhi as shown in Fig. 8. The histograms
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FIG. 6. Simulated expectation values of σx, σy, and σz as a
function of pulse parameters Δtz and A with Δtp ¼ 4.76 ns. The
simulation shows extremely good agreement with the experi-
mental data as shown in Fig. 4(c).

TABLE I. Clifford gates.

Gate Length (ns) Exp. infidelity Gate composition

Y=2 21.19 8 × 10−4

Z=2 17.87 1 × 10−4

X=2 60.25 24 × 10−4 Y=2, Z=2, −Y=2
Y 42.38 Y=2, Y=2
Z 35.73 Z=2, Z=2
X 78.11 Y=2, Z, −Y=2

TABLE II. Single-photon matrix elements.

jg0i je0i jf0i jh0i jg1i je1i
jg0i 0.0738 6.2577 257.9425
je0i 0.0738 5.8679 257.9108
jf0i 5.8679 1.2475 0.0138
jh0i 6.2577 1.2475 0.1028
jg1i 257.9425 0.0138 0.0741
je1i 257.9108 0.1028 0.0741

TABLE III. Two-photon matrix elements ×103.

jg0i je0i jf0i jh0i jg1i je1i
jg0i 1.9213 0.9177
je0i 1.6489 0.4207
jf0i 1.9213 0.0644
jh0i 1.6489 0.1258
jg1i 0.4207 0.1258
je1i 0.9177 0.0644
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are not well separated, since the current sample is not
optimized for high-fidelity readout. There are several
avenues for further increasing the readout fidelity. The
dispersive shifts of the plasmon levels can be increased by
engineering the device parameters to bring some excited
circuit levels closer to those of the resonator. We can further
optimize readout by exploring different flux bias points to
take full advantage of the metastability of the fluxon.
Lastly, the rich excited state spectrum allows for the use
of different excited states for population transfer and
dispersive shift engineering.

APPENDIX G: MODELING
FLUXONIUM RELAXATION

To explain the measured relaxation times of the fluxo-
nium, we consider decay via charge and flux coupling to
the control lines, 1=f flux noise, dielectric loss in the
capacitor, resistive loss in the superinductor, and Purcell
loss. The decay rates arising from these loss mechanisms

are derived using Fermi’s golden rule, with the bath
described using the Caldeira-Leggett model [42,43]. For
a noise source with amplitude fðtÞ and coupling constant α
between the fluxonium qubit states, the interaction
Hamiltonian can be written as H0 ¼ αfðtÞσx in the qubit
subspace. This derivation results in a qubit depolarization
rate

Γ ¼ α2

ℏ2
½Sfðþω01Þ þ Sfð−ω01Þ�: ðG1Þ

Here, SfðωÞ ¼
R∞
−∞ eiωτhfðτÞfð0Þi is the noise spectral

density associated with the source. We note that, at a finite
bath temperature corresponding to an inverse temperature
β ¼ ð1=kBTÞ, detailed balance relates the positive and
negative frequency components of the noise spectral density
as Sfð−ωÞ=SfðωÞ ¼ e−βℏω. Depending on the noise source
f, the coupling constant α is proportional to the charge or
phase matrix element of the fluxonium. Since the only term
in the Hamiltonian that does not commute with ϕ̂ is the
charging energy 4Ecn̂2, and ½ϕ̂; n̂� ¼ i,

hjj½ϕ̂; Ĥ�jki ¼ ðωj − ωkÞhjjϕ̂jki ¼ ið8EcÞhjjn̂jki: ðG2Þ

The matrix elements of the fluxonium circuit are, thus,
related by jhg0jn̂jg1ij ¼ ðω=8EcÞjhg0jϕ̂jg1ij for all flux
values.

1. Relaxation from flux noise

Flux noise couples to the phase degree of freedom
with an interaction strength that depends on the inductive
energy EL. Expanding the fluxonium potential to lowest
order in flux results in a coupling constant of α ¼
2πELhg0jφ̂jg1i=Φ0. We consider flux-noise contributions
from current noise in the flux-bias line, as well as 1=f flux
noise. In our experimental setup, the current noise is
believed to be mainly due to resistive Johnson-Nyquist
noise arising from a 10 dB attenuator with resistance R ¼
26 Ω (last resistor in the T network) on the fast-flux line,
corresponding to a current noise spectral density of
SIðωÞ ¼ ð2=RÞ½ℏω=ð1 − e−βℏωÞ�, with the expected inter-
polation between quantum and thermal noise. This noise is
related to flux noise by the mutual inductance M ¼
Φ0=1.6 mA between the flux line and the qubit, obtained
from the dc flux period. Therefore, SfðωÞ þ Sfð−ωÞ ¼
2ℏωðM2=RÞ coth ðβℏω=2Þ, and the decay rate

ΓR ¼ π3
�
RQ

R

��
M
L

�
2

jhg0jφ̂jg1ij2ω coth

�
βℏω
2

�
; ðG3Þ

where RQ ¼ h=e2 is the resistance quantum and L is the
fluxonium inductance.
For 1=f flux noise, the noise spectral density is of the

form SΦðωÞ ¼ 2πη2=ω, with the resulting decay rate
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FIG. 7. The population in the jei state as a function of the
length of the reset pulse. The population is measured after
simultaneously driving the jg0i → jh0i and jh0i → je1i tran-
sitions for different lengths of time. Reset of the state is achieved
in approximately 5 μs.
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Γ1=f ¼ 8π3
�
EL

ℏ

�
2
�

η

Φ0

�
2 jhg0jφ̂jg1ij2

ω
: ðG4Þ

The 1=f noise amplitude is fit from T2e data and corre-
sponds to η ¼ 5.21μΦ0. The suppression of the 1=f noise-
induced decay by E2

L results in a limit of T1 ¼ 2.4 ms for
the relaxation time at the flux-frustration point, which
grows rapidly (∝ω3) as we move away from it.

2. Relaxation from radiative loss to the charge line

In addition to current noise, the fluxonium could also be
affected by radiative loss arising from Johnson-Nyquist
voltage noise [SVðωÞ ¼ ð2Rℏω=1 − e−βℏωÞ] that couples to
the qubit via spurious charge coupling, with the resistance
R serving as a phenomenological parameter. In this case,
the coupling constant is related to the charge matrix
element as α ¼ 2ehg0jn̂jg1i, and SfðωÞ þ Sfð−ωÞ ¼
2Rℏω coth ðβℏω=2Þ. The resulting decay rate is

Γc ¼
ω

Qc
coth

�
βℏω
2

�
jhg0jn̂jg1ij2; ðG5Þ

where Qc ¼ ðRQ=16πRÞ. An upper bound for the resis-
tance R can be found using the plasmon T1 of 10 μs,
corresponding to a total quality factor of 1.86 × 105, and
Qc ¼ 7.4 × 104. This bound results in a fluxon T1 limit in
excess of 60 ms at the flux-frustration point.

3. Relaxation from dielectric loss in the capacitor

Dielectric loss associated with the capacitor can be
thought of as Johnson-Nyquist current noise from the
resistive part of the shunting capacitor, which couples
to the phase matrix element hgjφ̂jei. This loss rate is,
therefore, inversely proportional to the impedance
of the capacitor, assuming a fixed loss tangent (1=Qdiel)
for the capacitor. As a result, SfðωÞ þ Sfð−ωÞ ¼
ð2ℏω2C=QdielÞ coth ðβℏω=2Þ, and

Γdiel ¼
ℏω2

4ECQcap
coth

�
βℏω
2

�
jhg0jϕ̂jg1ij2: ðG6Þ

If the T1 at the frustration point is limited by dielectric
loss, a bath temperature of 42 mK results in Qcap ¼
1=ð4 × 10−6Þ. This loss tangent is slightly larger but within
a factor of 3 of that observed in similar fluxonium devices
[26]. Dielectric loss is believed to be the dominant loss
channel near the frustration point, also capturing the flux
and frequency dependence of the measured loss (∝1=ω).

4. Relaxation from resistive loss in the inductor

For inductive loss, we again assume a frequency-
independent loss tangent [L → Lð1þ i=QindÞ], resulting
in Johnson-Nyquist current noise that is inversely

proportional to the impedance of the superinductor, i.e.,
SfðωÞ þ Sfð−ωÞ ¼ ðℏ=LQindÞ coth ðβℏω=2Þ. The induc-
tive loss is, thus,

Γind ¼
2EL

ℏQL
coth

�
βℏω
2

�
jhg0jϕ̂jg1ij2: ðG7Þ

The superinductor is extremely low loss, with a quality
factor of Qind ¼ 8 × 109 resulting in a limit of T1 ¼ 4 ms
at the flux-frustration point, growing as ω3 as we move
away from the flux-frustration point.

5. Relaxation rate due to the Purcell effect

We derive the Purcell relaxation rates of the fluxonium
levels, arising from coupling to the resonator by closely
following Ref. [44]. We model this coupling by assuming
that the resonator is coupled to a bath of harmonic
oscillators, whose Hamiltonian reads

Hbath ¼
X
k

ℏωkb
†
kbk; ðG8Þ

where bk is the lowering operator for mode k. The
interaction Hamiltonian between the bath and the resonator
is given by

Hint ¼ ℏ
X
k

λkðab†k þ a†bkÞ; ðG9Þ

where a is the lowering operator for the resonator. Finally,
the system under consideration is the fluxonium circuit
coupled to the resonator, which we write in the dressed
basis as

Hfluxþres ¼
X
k

Efluxþres
k jψ fluxþres

k ihψ fluxþres
k j: ðG10Þ

We treatHint as a perturbation which can induce transitions
among the eigenstates of the Hamiltonian H ¼
Hbath þHfluxþres, given by

jψ ii ¼ jψ fluxþres
i i⊗

k
jmki: ðG11Þ

The transition rate under the action of a constant perturba-
tion is given by Fermi’s golden rule in the form

γi→f ¼ 2π

ℏ
δðEi − EfÞjhψfjHintjψ iij2; ðG12Þ

where Ei and Ef are the eigenenergies of the states jψ ii and
jψfi, respectively. These energies are
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Ei ¼ Efluxþres
i þ ℏ

X
k

mkωk;

Ef ¼ Efluxþres
f þ ℏ

X
k

m0
kωk; ðG13Þ

where fmkg denotes the initial configuration of the bath
and fm0

kg the final configuration. Inserting the form
of Hint into Eq. (G12) and noting that cross terms vanish
leads to

γi;fmkg→f;fm0
kg ¼ 2πℏδðEi − EfÞ

X
k

jλkj2½jhψ fluxþres
f ja†jψ fluxþres

i jij2mkδm0
k;mk−1

þ jhψ fluxþres
f jajψ fluxþres

i ij2ðmk þ 1Þδm0
k;mkþ1�

Y
k0≠k

δmk0
0 ;mk0 : ðG14Þ

To find the total transition rate, we must sum over all
such initial and final configurations, taking into account
the thermal probability of occupying a given initial
configuration:

Γi→f ¼
X

fmkg;fm0
kg
PðfmkgÞγi;fmkg→f;fm0

kg; ðG15Þ

where

PðfmkgÞ ¼
e−
P

k
βmkℏωk

Z
; ðG16Þ

Z is the partition function of the bath, and β ¼ 1=kBT.
Performing the sums over all initial and final states yields

Γi→f ¼ 2πℏ
X
k

jλkj2δðEfluxþres
i − Efluxþres

f þ ℏωkÞ

jhψ fluxþres
f ja†jψ fluxþres

i ij2nthðωkÞ
þ 2πℏ

X
k

jλkj2δðEfluxþres
i − Efluxþres

f − ℏωkÞ

jhψ fluxþres
f jajψ fluxþres

i ij2½nthðωkÞ þ 1�; ðG17Þ

where

nthðωjÞ ¼
X
fmkg

PðfmkgÞmj ¼
1

eβℏωj − 1
: ðG18Þ

We next take the continuum limit and define κ ¼
2πℏρðωkÞjλkj2, where ρðωÞ is the density of states of the
bath. Introducing ωfluxþres

jj0 ¼ ðEfluxþres
j − Efluxþres

j0 Þ=ℏ leads
to the expressions

Γ↑
i→f ¼ κnthðωfluxþres

fi Þjhψ fluxþres
f ja†jψ fluxþres

i ij2; ðG19Þ

for upward transitions Efluxþres
f > Efluxþres

i , and

Γ↓
i→f ¼ κ½nthð−ωfluxþres

fi Þ þ 1�jhψ fluxþres
f jajψ fluxþres

i ij2;
ðG20Þ

for downward transitions Efluxþres
f < Efluxþres

i . The final
step is to note that, throughout this experiment, the
fluxonium qubit is operated in the dispersive regime with
respect to the frequency of the resonator. Therefore, we
expect that the dressed eigenstates of Hfluxþres can be
labeled with quantum numbers l and n, with l labeling the
fluxonium state and n the resonator state. When performing
numerical simulations, this identification is based on
which numbers l and n produce the maximum overlap
of the dressed state jψ fluxþres

i i ¼ j ¯l; ni with the product
state jl; ni. As in Ref. [44], we are interested mainly
in transitions among fluxonium states, where the
quantum number l changes. We, therefore, define the
total transition rate due to the Purcell effect among
fluxonium states as a sum over all possible initial and
final states of the resonator, weighting initial states by their
probability of being thermally occupied PresðnÞ ¼
½1 − expð−βℏωrÞ� expð−nβℏωrÞ. This sum yields

ΓPurcell;↑
l→l0 ¼

X
n;n0

PresðnÞκnthðωl0;n0;l;nÞ

× jhl0; n0ja†jl; nij2; ðG21Þ

for upward transitions, where ωl0;n0;l;n ¼ ðEl0;n0 − El;nÞ=ℏ,
and

ΓPurcell;↓
l→l0 ¼

X
n;n0

PresðnÞκ½nthð−ωl0;n0;l;nÞ þ 1�

× jhl0; n0jajl; nij2; ðG22Þ

for downward transitions.
The direct Purcell loss (jei → jgi) gives a T1 limit of

approximately 100 ms, effectively negligible in our experi-
ments. However, heating to the excited levels of fluxonium
due to the finite bath temperature results in enhanced
Purcell loss. Some of these states (eighth, ninth, and tenth
eigenstates) have transition frequencies from the logical
manifold that are close to the resonator frequency, resulting
in avoided crossings. While their exact location depends
sensitively on the circuit parameters, these resonances are
likely responsible for the decreased T1 observed near
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0.35Φ0. The total Purcell relaxation rate for a bath temper-
ature of 60 mK corresponds the dotted blue curve in
Fig. 3(a) of the main text.

APPENDIX H: MODELING FLUXONIUM
DEPHASING

On the flux slope, the decay envelope of a
Ramsey experiment is best approximated by a Gaussian
expð−t2=T2

ϕÞ, where Tϕ¼Γ−1
ϕ ¼½ ffiffiffi

2
p

ηð∂ϕω01Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
lnωirt

p �−1
to first order. For the spin-echo experiments, low-frequency
noise has a reduced weight in the noise spectrum, with
Tϕ ¼ ½ ffiffiffiffiffi

W
p

ηð∂ϕω01Þ�−1. We can calculateW for three echo
π pulses based on Ref. [32]. At the flux-frustration point,
the qubit is first-order insensitive to 1=f flux noise, and the
spin-echo data can be explained with an exponential decay
from white noise (T2e ¼ TC ¼ Γ−1

C ). In the regime of our
spin-echo flux sweep, both noise sources contribute sig-
nificantly. The data are, therefore, fit to a product of a
Gaussian and an exponential [44], with the T2e defined as
expð−T2e=TC − T2

2e=T
2
ϕÞ ¼ 1=e, i.e.,

T2e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=T2

C þ 4=T2
ϕ

q
− 1=TC

2=T2
ϕ

: ðH1Þ
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