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We derive a bulk-boundary correspondence for three-dimensional (3D) symmetry-protected topological
phases with unitary symmetries. The correspondence consists of three equations that relate bulk properties of
these phases to properties of their gapped, symmetry-preserving surfaces. Both the bulk and surface data
appearing in our correspondence are defined via a procedure in which we gauge the symmetries of the system of
interest and then study the braiding statistics of excitations of the resulting gauge theory. The bulk data are
defined in terms of the statistics of bulk excitations, while the surface data are defined in terms of the statistics of
surface excitations. An appealing property of these data is that it is plausibly complete in the sense that the bulk
data uniquely distinguish each 3D symmetry-protected topological phase, while the surface data uniquely
distinguish each gapped, symmetric surface. Our correspondence applies to any 3D bosonic symmetry-
protected topological phase with finite Abelian unitary symmetry group. It applies to any surface that
(1) supports only Abelian anyons and (2) has the property that the anyons are not permuted by the symmetries.
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I. INTRODUCTION

A gapped quantum many-body system is said to belong to
a nontrivial symmetry-protected topological (SPT) phase if
it satisfies three conditions. First, the Hamiltonian is
invariant under some set of internal (on-site) symmetries,
none of which are broken spontaneously. Second, the
ground state is short-range entangled—that is, the ground
state can be transformed into a product state or atomic
insulator using a local unitary transformation. Third, it is
impossible to continuously connect the ground state to a
product state or atomic insulator, by varying some parameter
in the Hamiltonian, without breaking one of the symmetries
or closing the energy gap [1-7]. Famous examples of
nontrivial SPT phases include the one-dimensional
Haldane spin chain [8], which is protected by time-reversal
symmetry, and the two-dimensional and three-dimensional
topological insulators [9,10] which are protected by time-
reversal and charge-conservation symmetry.

Perhaps the most interesting property of nontrivial SPT
phases is that they have protected boundary modes. Here,
the precise meaning of “protected” depends on dimension-
ality. For example, in the two-dimensional case, the edges
of SPT phases are believed to be protected in the sense that
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they cannot be both gapped and symmetric [11-16]. On the
other hand, in the three-dimensional case, the surfaces of
SPT phases are believed to be protected in the sense that
any surface that is both gapped and symmetric must also
support anyon excitations [17-27].

For some SPT phases, we can not only establish the
existence of a protected boundary, but we can derive a “bulk-
boundary correspondence.” Let us clarify what we mean by
this term since there are at least two different types of bulk-
boundary correspondences discussed in the literature. One
type of bulk-boundary correspondence is a construction that
provides a particular (i.e., nonunique) field theory descrip-
tion of the boundary for each bulk phase [17,28-31]. Another
type of bulk-boundary correspondence is a universal relation
between measurable properties of the bulk and boundary. In
this paper, we are interested in bulk-boundary correspond-
ences of the second kind.

The classic example of such a bulk-boundary correspon-
dence appears in the context of 2D noninteracting fermion
systems with charge-conservation symmetry. For these
systems, one can relate the bulk electric Hall conductivity
0y, measured in units of e?/h, to the number Ng, N, of
right-moving and left-moving edge modes [32]:

O-Xy:NR_NL' (1)
Similar relations, which connect bulk topological band

invariants to the properties of boundary modes, are known
for other noninteracting fermion systems [9,10].

Published by the American Physical Society


http://dx.doi.org/10.1103/PhysRevX.6.021015
http://dx.doi.org/10.1103/PhysRevX.6.021015
http://dx.doi.org/10.1103/PhysRevX.6.021015
http://dx.doi.org/10.1103/PhysRevX.6.021015
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

WANG, LIN, and LEVIN

PHYS. REV. X 6, 021015 (2016)

Less is known about such bulk-boundary correspond-
ences for interacting SPT phases. One place where it would
be particularly useful to have such a correspondence is in
the context of 3D SPT phases with gapped symmetric
surfaces. This case is interesting because surfaces of this
kind are relatively easy to characterize due to the energy
gap, but at the same time they exhibit nontrivial structure
associated with surface anyon excitations. It is natural to
ask, what are the general constraints that relate the bulk and
surface properties of these systems?.

There are several cases where this question has been
answered—at least partially. In particular, in the case of 3D
topological insulators, Refs. [18,33] derived constraints
connecting the properties of the surface to properties of
monopoles in the bulk. Similarly, it is possible to derive
constraints for other 3D SPT phases with at least one U(1)
symmetry and one antiunitary symmetry [34].
Unfortunately, however, these constraints rely on a special
combination of symmetries and therefore do not give
insight into the more general structure of the bulk-boundary
correspondence.

In this paper, we take a step towards a more general theory
by deriving a bulk-boundary correspondence for a large class
of 3D SPT phases. More specifically, we consider general
3D bosonic SPT phases with unitary Abelian symmetries.
To simplify the discussion, we focus on gapped symmetric
surfaces with the properties that (1) the surface anyons
are Abelian and (2) these anyons are not permuted [35-37]
by the symmetries. We denote the symmetry group by
G=1I%,z ~,» and the group of surface anyons by
A=T[L, Zy—with the group law in A corresponding
to fusion of anyons. For this class of systems, we derive a
bulk-boundary correspondence analogous to Eq. (1).

Before we can explain our correspondence, we need to
describe the bulk and surface data that we use. The bulk
data were originally introduced by Ref. [38] and consist of
three tensors,

bulk data = {®i,l7 G)ij.l’ ®ijk,l}’ (2)

where the indices i, j, k, [ range over 1,...,K. These
quantities are defined via a simple recipe. Suppose we are
given a lattice boson model belonging to a SPT phase with
symmetry group G. To find the corresponding bulk data,
the first step is to minimally couple the model to a
dynamical lattice gauge field with gauge group G [39].
After gauging the model in this way, the second step is to
study the braiding statistics of the “vortex loop” excitations
of the resulting gauge theory [40,41]. The tensors
{©;,.9;;,.0;j,} are then defined in terms of the braiding
statistics of these vortex loops, as reviewed in more detail
in Sec. IIL.

The surface data have a similar character and consist of
five tensors,

surface data = {®,, @ x4} (3)

I in Qi/ﬂ’
where the indices i, j, [ range over 1, ..., K and the indices
u, vrange over 1, ..., M. Like the bulk data, the surface data
are defined by gauging the lattice boson model and
studying the braiding statistics of the excitations of the
resulting gauge theory. The only difference is that we
consider the braiding statistics of surface excitations
instead of bulk excitations. In particular, the tensors
{®,.®,,.Q;,.9Q;;,.x;} are defined in terms of the braiding
statistics of surface anyons and vortex lines ending at the
surface.

The reason we use the above bulk and surface data is that
these data have a number of appealing properties. First, the
quantities in Eqs. (2) and (3) are measurable in the sense
that they can be extracted from a microscopic model by
following a well-defined procedure. Second, these quan-
tities are topological invariants; that is, they remain fixed
under continuous, symmetry-preserving deformations of
the (ungauged) Hamiltonian that do not close the bulk or
surface gap, respectively [42]. Finally, there is reason to
think that the bulk data and surface data are complete in the
sense that the bulk data uniquely distinguish every 3D SPT
phase, while the surface data uniquely distinguish every
gapped symmetric surface (we discuss the evidence for this
claim in Secs. II B and III C).

The main result of this paper is a set of three equations
[Egs. (30)—(32)] that connect the bulk data Eq. (2) to the
surface data Eq. (3). We derive these equations by relating
the bulk braiding processes that define Eq. (2) to the surface
braiding processes that define Eq. (3) using topological
invariance and other properties of braiding statistics.

Our results are closely related to a conjecture of Chen
et al. [20]. To describe this conjecture, we need to recall
two facts. The first fact is that many (possibly all) 3D SPT
phases with finite unitary symmetry group G can be
realized by exactly soluble lattice boson models known
as group cohomology models [7]. These models are para-
metrized by elements of the cohomology group
H*(G,U(1)). The second fact is that each 2D anyon
system with unitary symmetry group G is associated with
an anomaly that takes values in H*(G,U(1)) [20,43]. (See
Refs. [17,44-46] for other related discussions of anoma-
lies.) If this anomaly is nonzero, then the corresponding
anyon system cannot be realized in a strictly 2D lattice
model. Given these two facts, Chen et al. conjectured that
gapped symmetric surfaces of the group cohomology
model always have an anomaly v that matches the v €
H*(G,U(1)) defining the bulk cohomology model. The
authors checked that this conjecture gives correct predic-
tions for a particular lattice model.

What is the relationship between our bulk-boundary
correspondence and this conjecture? To make a connection,
we use our bulk-boundary formulas [Egs. (30)—(32)] to
obtain constraints on the surfaces of group cohomology

021015-2



BULK-BOUNDARY CORRESPONDENCE FOR THREE- ...

PHYS. REV. X 6, 021015 (2016)

models. We then compare these constraints to those
predicted by the conjecture and we show that the two sets
of constraints are mathematically equivalent. Thus, our
bulk-boundary correspondence gives a proof of the con-
jecture for the case where G is Abelian. Conversely, the
conjecture implies our bulk-boundary correspondence, if
we assume that the group cohomology models realize every
possible 3D SPT phase.

The rest of the paper is organized as follows. In Secs. 11
and III, we define the bulk data and surface data, respec-
tively. In Sec. IV, we present the bulk-boundary corre-
spondence [Egs. (30)—(32)] that relates the two sets of data
to one another. We derive the correspondence in Sec. V. We
discuss the implications of the correspondence for purely
2D systems in Sec. VI. In Sec. VII, we explain the
connection between our bulk-boundary correspondence
and the conjecture of Chen et al. [20]. Technical arguments
and calculations are given in the appendixes.

II. BULK DATA: REVIEW

In this section, we review the definition of the bulk data
{8;1,0;;,,0;,} [38]; that is, we explain how to compute
these quantities given an arbitrary 3D lattice boson model
belonging to a SPT phase with unitary Abelian symmetry
group G = []£, Zy,.

As discussed in the Introduction, the computation and
definition proceeds in two steps. The first step is to
minimally couple the lattice boson model of interest to a
dynamical lattice gauge field with gauge group G [39]. The
details of this gauging procedure are not important for our
purposes; the only requirement is that the gauge coupling
constant is small so that the resulting gauge theory is
gapped and deconfined. (See Refs. [15,38] for a precise
gauging prescription in which the coupling constant is
chosen to be exactly zero.) The second step is to study the
excitations of the gauged model. The bulk data are defined
in terms of the braiding statistics of these excitations.

In what follows, we focus on the second step of this
procedure. First, we discuss the excitations of the gauged
models and review their braiding statistics. After this
preparation, we give the precise definition of {O©;;,
0.1 Oijes}-

A. Bulk excitations

We begin by reviewing the excitation spectrum of the
gauged models. The gauged models support two types of
excitations in the bulk: particlelike charges and looplike
vortices. Charge excitations are characterized by their
gauge charge

q=1(q1.---+qk). 4)

where each component ¢; is an integer defined modulo N;.
Similarly, vortex loop excitations are characterized by their
gauge flux

¢ = (b1, dx)- (5)

where each component ¢; is a multiple of (2z/N;) and is
defined modulo 2z. An important point is that while charge
excitations are uniquely characterized by the amount of
gauge charge that they carry, there are typically many
topologically distinct types of vortex loops that carry the
same gauge flux ¢. These different loops can be obtained
from one another by attaching charge excitations.

Some comments on notation: we use greek letters a, /3, etc.
to denote vortex excitations, and we use ¢, to denote the
amount of gauge flux carried by a. We use ¢, ¢/, ... to denote
charge excitations, and we use the same symbols ¢, ¢/, ... to
denote the amount of gauge charge that they carry.

We now discuss the braiding statistics of these excita-
tions. There are several types of braiding processes one can
consider: (i) braiding of two charges, (ii) braiding of a
charge around a vortex loop, and (iii) braiding involving
multiple vortex loops. The first kind of braiding process is
not very interesting because the charges are all bosons: one
way to see this is to note that the charges can be viewed as
local excitations of the original ungauged model, and the
ungauged model has only bosonic excitations since it is
short-range entangled. As for the second kind of process, it
is easy to see that if we braid a charge g around a vortex
loop a, the resulting statistical phase is given by the
Aharonov-Bohm law

0=q-da (6)

where the centered dot denotes the vector inner product.

All that remains is the last type of braiding process,
involving multiple loops. There are several ways to braid
vortex loops, but in this paper we are primarily interested in
a braiding process in which a loop « is braided around a
loop  while both loops are linked to a “base loop” o
(Fig. 1) [40,41]. We also consider more general braiding
processes involving multiple loops ay,ay, ...,ay, all of
which are linked to a single base loop ¢. The reason we
focus on these kinds of braiding processes is that the
associated Berry phases are not fixed by the Aharonov-
Bohm law, but instead probe more interesting properties of
the bulk.

One technical complication is that in some models the
vortex loop excitations have non-Abelian braiding statistics

FIG. 1. (a) Three-loop braiding process. (b) Cross section of the
braiding process in the plane containing the base loop o.
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even though the gauge group G is Abelian. Therefore, even
if we specialize to the case where G is Abelian, as we do
here, it is still important to have a more complete theory of
loop braiding statistics that includes the concepts of fusion
rules, quantum dimensions, and so on.

Fortunately, this formalism can be developed rather
easily. The key point is that there is a direct analogy
between 3D loop braiding and 2D particle braiding. This
analogy can be seen by considering a 2D cross section of
the loop braiding process [Fig. 1(b)]. We can see that a
braiding process involving two loops linked with a single
base loop can be mapped onto a process involving two
particles in two dimensions. More generally, a process
involving N loops linked to a single base loop can be
mapped into a process involving N particles in two
dimensions. In addition to braiding, the analogy also carries
over to fusion processes. Just as two particles can be fused
together to form another particle, two loops a, f that are
linked to the same loop ¢ can be fused to form a new loop
that is also linked to o.

With this analogy, we can immediately generalize the
notation and results of 2D anyon theory [47] to 3D loop
braiding. In particular, we can define F' symbols, R
symbols, and quantum dimensions of loops in the same
way as for particles. We denote these quantities by F iﬁy_c,
Rg/}.c’ and d, .. Here, a, f3, y are loops linked with a base
loop o, while c¢ is an integer vector that parametrizes the
gauge flux carried by o:

bo = (2” .,2—”c,<). (7)

N—1C1,.. NK

(The reader may wonder why we use ¢ instead of ¢ in our
notation for Fgﬁy’c, Rgﬂ.c, etc. The reason is that these
quantities depend on only the gauge flux carried by o, and
this gauge flux is conveniently parametrized by c.)

An additional quantity that we need below is the
topological spin of a loop «a linked to a base loop o. We
denote this quantity by s, ., where 0 < s, . < 1. Here, s,

is defined in the same way as for 2D anyon theories:

1
da, c

ei 288 g0 —

Zd&cTr(Rfm,c)? (8)
1

where the summation runs over all fusion channels & of two
a loops, both of which are linked to o.

B. Definition of bulk data

With this preparation, we are now ready to define the
bulk data. These data consist of three tensors
{©;1.9;;,.09;jx,}, where the indices i, j, k, [ range over
1,..., K. To define these tensors, let @, f3, y be vortex loops
linked to a base loop o. Suppose that a carries unit type-i
flux; that is ¢, = (27/N;)e;, where e; is the vector

(0,...,1,...,0) with the ith entry being 1 and all other
entries being 0. Similarly, suppose that f, y, ¢ carry unit
flux (2z/N;)e;, (27/Ny)ey, (27/N,)e,, respectively. Then,
0,1, ©;j1, ©;ji,; are defined as follows:

(1) ©;; =2aN;S4e,, Where s, is the topological spin
of a when it is linked to o;

(2) ©;;, is the Berry phase associated with braiding the
loop a around S for N*/ times, while both are linked
to o,

(3) O;ji; is the Berry phase associated with the follow-
ing braiding process: a is first braided around f, then
around y, then around S in the opposite direction,
and finally around y in the opposite direction. Here,
a, p, y are all linked to o.

Above, we use N'/ to denote the least common multiple of
N; and N;. (Throughout this paper, we use NV-* and N;;
to denote the least common multiple and greatest common
divisor of integers N;, N;, ..., Ny, respectively.)

These definitions deserve a few comments. First, we
point out that one needs to do some work to show that the
above quantities are well defined. In particular, one needs to
establish two results: (1) ©;; ;, ©;j;; are Abelian phases and
(2) ©;, ©;j;, ©;j;; depend only on i, j, k, [ and not on the
choice of the loops a, 3, v, 6. The first fact is not obvious
since vortex loops can have non-Abelian braiding statistics
in some cases so that the Berry phase associated with
general braiding processes is actually non-Abelian. The
second fact is not obvious either since there are multiple
topologically distinct loop excitations that carry the same
gauge flux [48]. The proof of these two properties is given
in Ref. [38].

We should also explain our motivation for using this data
to characterize bulk SPT phases. Much of our motivation
comes from a result of Ref. [38], which showed that
{©;,.0;;,.0;;,} take different values in every group
cohomology model with symmetry group G = [[;Zy,.
What makes this result especially interesting is that it
has been conjectured that the group cohomology models
realize every 3D SPT phase [7]. If this conjecture is true,
then we can conclude that the above data are complete in
the sense that they can distinguish all 3D SPT phases with
finite Abelian unitary symmetry.

Finally, we make a comment about the definition of ©; ;.
Unlike the other two quantities which are concretely
defined through braiding processes, ©;; is a rather abstract
quantity since s, . does not have a simple interpretation in
terms of physical processes. Fortunately, there is an
alternative definition of ©;; that is more concrete [38]:

(1) ©;;is equal to (—1) times the phase associated with
braiding « around its antivortex @ for N;/2 times,
while both a and @ are linked to o.

Obviously, this definition fails when N; is odd since N;/2 is
not an integer. However, when N, is odd, there is no need to
find an alternative definition for ©; ;: the reason is that ©;
is known to satisfy the constraints (see Appendix G 2)
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Ni®i,l =0 (mOd 27[), 2@1"[ = ®ii.l (mOd 27[) (9)
Together with another constraint N;0;; ; = 0 (mod 2x), it is
easy to see that these constraints completely determine ©;
in terms of ®;; ; when N; is odd. More specifically, one can

derive the following relation:

N+ 1

®.
il D)

®ii,l (mOd 2ﬂ') (10)

III. SURFACE DATA

Here, we define the surface data {@H, Qs Qs Qi x4}
Our task is as follows: suppose we are given a 3D lattice
boson model belonging to a SPT phase with symmetry
group G = []X | Zy . Suppose that this model is defined in
a geometry with a surface and that this surface has three
properties: (1) it is gapped and symmetric, (2) it supports
only Abelian anyons, and (3) it has the property that the
surface anyons are not permuted by the symmetries. Given
a microscopic model of this kind, we need to explain how
to compute the corresponding surface data.

The computation and definition proceeds in the same
way as for the bulk data. First, we couple the lattice boson
model to a dynamical lattice gauge field with gauge group
G. Then, after gauging the model, we study the surface
excitations of the resulting gauge theory. The surface data
are defined in terms of the braiding statistics of these
surface excitations.

In what follows, we build up to the definition of
{®,. CIDW,Q,-”,Qij”,xfI} in several steps. First, we discuss
the surface excitations of the original ungauged boson
models. Then, we discuss the excitations of the gauged
models. Finally, after this preparation, we explain the
definition of the surface data.

A. Surface excitations of ungauged models

By assumption, the surfaces of the ungauged boson
models only support Abelian anyons. The purpose of this
section is to introduce some notation for labeling these
anyons and describing their braiding statistics.

Our notation for labeling the anyons is based on the
observation that the anyons form an Abelian group under
fusion. Denoting this Abelian group by A = [[}L; Z , we
label each anyon by a group element x € A, or equivalently,
an M-component integer vector

. (11)

where each component x* is defined modulo N,. The
vacuum anyon 1 corresponds to the zero vector (0, ..., 0),
while the fusion product of two anyons y, y' is given
by y + .

To describe the braiding statistics of these particles, we
focus on the unit anyons—that is, the anyons labeled by

vectors €, = (0, ..., 1,...,0) with the uth entry being 1 and
all other entries being 0. We denote the exchange statistics
of the unit anyon €, by ®,, and we denote the mutual
statistics of the unit anyons €, and €, by ®,,. From ®, and
®,,, we can reconstruct the exchange statistics 6, and

mutual statistics 6, of any anyons x,y € A:

0, = Z(x”)2<1>ﬂ + Zx”x’“@m,, (12)

H H<v

O,y = Zx"y”@”y. (13)
uv

Here, the above formulas [Eqgs. (12) and (13)] follow
immediately from the linearity relations for Abelian sta-
tistics:

6x+y = ex + ey + exyv
QX(H“)'/) = gx)’ + HXY"

B. Surface excitations of gauged models

We now move on to discuss the surface excitations in the
gauged models. The gauged models support three types of
excitations on or near the surface: (1) pointlike charge
excitations that can exist in either the bulk or the surface,
(2) pointlike surface anyons that are confined to the surface,
and (3) vortex line excitations that end on the surface. See
Fig. 2 for a sketch of these excitations.

Let us discuss each of these excitations in turn. We begin
with the charges and vortex lines. Like their bulk counter-
parts, the charges can be labeled by their gauge charge
q = (qy,.--,qx) while the vortex lines can be labeled by
their gauge flux ¢ = (¢, ..., Px). Just as in the bulk, the
gauge charge uniquely characterizes the charge excitations,
while the gauge flux does not uniquely characterize the
vortex lines: there are multiple topologically distinct vortex
lines that carry the same gauge flux ¢, which differ from
one another by the attachment of surface anyons and
charges.

There are three types of braiding processes we can
perform with charges and vortex lines. First, we can braid
or exchange charges with one another. These processes are
not very interesting since the charges are all bosons. Second,

FIG. 2. Sketch of excitations on and near the surface. Above the
surface is the gauged SPT model and below is the vacuum.
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we can braid charges around vortex lines. As in the bulk, the
Berry phase for such processes is given by the Aharonov-
Bohm formula Eq. (6). Finally, we can braid vortex lines
around one another [49]. The latter processes are highly
nontrivial and can even give non-Abelian Berry phases. We
see some examples of these processes later when we derive the
bulk-boundary correspondence in Sec. V.

Let us now turn to the surface anyons. To understand the
structure of these excitations, it is helpful to think about
their relationship to the surface anyons in the ungauged
models. In particular, we argue below that each surface
anyon X’ in the gauged model is naturally associated with a
corresponding surface anyon in the ungauged model, which
we denote by £y. We think of the mapping X — £, as
being analogous to the mapping between vortices a and
their gauge flux ¢,; therefore, we use the terminology that
&y 1s the “anyonic flux” carried by X Like the gauge flux,
£y can be concretely represented as a vector—or, more
precisely, an M-component integer vector, as in Eq. (11).

At an intuitive level, £y is obtained by “ungauging” the
excitation X; to define £, more precisely, let ) be an
excited state of the gauged model which contains an anyon
X localized near some point r. Let us suppose that |y) has
vanishing gauge flux through every plaquette in the lattice.
(We can make this assumption without any loss of general-
ity since X is not a vortex excitation.) Then we can find a
gauge in which the state |) has a vanishing lattice gauge
field on every link of the lattice. In this gauge, the state [y)
can be written as a tensor product ) = |y) ® |a = 0),
where |a = 0) is a ket describing the configuration of the
lattice gauge fields, and |w) is a ket describing the
configuration of the matter fields. Since |y) involves only
matter fields, we can think of it as an excited state of the
ungauged model. By construction, this state contains a
localized excitation near the point r; we define £ to be the
anyon type of this localized excitation [50].

The mapping between anyons &’ and their anyonic flux
£y has several important properties. The first property is
that the mapping is not one to one: distinct anyons X’ # X’
can carry the same anyonic flux, £, = £ys. The simplest
example of this is given by the charge excitations: all the
charges share the same (trivial) flux, &, = (0, ...,0). More
generally, two anyons X, X’ have the same anyonic flux if
and only if X’ can be obtained from X by attaching a
charge excitation; that is, X’ = X’ x ¢ for some gq.

Another important property of the mapping X' — &£y is
that the braiding statistics of anyons X, ), etc. is identical
to the braiding statistics of £y, &y, etc. More specifically, it
can be shown that the mutual statistics between any two
anyons & and ) is Abelian and is given by

ng = 95,1‘§y : (14)

Similarly, the exchange statistics of X, or, equivalently, its
topological spin 2zsy, is given by

ZHSX == 92\’ == 9":,\)’ (15)

Given these results, one might be tempted to conclude
that the surface anyons in the gauged model have Abelian
statistics. However, this conclusion is incorrect: the surface
anyons in the gauged model can be non-Abelian in general.
This non-Abelian character is not manifest when we focus
on braiding processes that involve only surface anyons, but
it becomes apparent when we consider processes in which a
surface anyon is braided around a vortex line. Such
processes will play an important role in the definition of
the surface data in the next section.

The last property of the mapping X — £ involves fusion
rules. Because the surface anyons can be non-Abelian, they
can have complicated fusion rules of the general form

XxY=) N3 Z (16)
Z

However, these rules have a special structure: all the fusion
outcomes Z carry the same anyonic flux £ z, which is given by

Sz =<Cx+ ¢y (17)

C. Definition of surface data

Now that we have discussed the surface excitations and
their statistics, we are ready to define the surface data.
These data consist of five tensors {®,,, ®,,Q;,. Q;;,. )},
where the indices i, j, [ run over 1, ..., K while g, v run over
1,...,M. We have already defined ®,,, ®, in Sec. III A;
below, we define the other two quantities €2, and €;;,. We
discuss x%; in the next section.

The two quantities €2;, and €2;;, are defined in terms of
braiding statistics of surface anyons and vortex lines. Let X’
be a surface anyon with unit type-u anyonic flux; i.e.,
$xy =€,, where €, = 0,...,1,...,0) with the uth entry
being 1. Let a,  be vortex lines carrying unit type-i and
type-j flux; ie., ¢, = (22/N;)e; and ¢y = (27/N)e;.
Then, €;, and €;;, are defined by the following:

(1) €, is the Berry phase associated with braiding X

around o for N times;

(2) €, is the Berry phase associated with the following
process: X is first braided around @, then around f,
then around « in the opposite direction, and finally
around £ in the opposite direction.

The above braiding processes are shown in Fig. 3. Similarly
to Sec. II B, we use the notation N to denote the least
common multiple of N; and N, where the N; are the cyclic
factors in the symmetry group G = [[X, Zy,, and the N,
are the cyclic factors in the anyon group A = Hﬁ”zl Zy,.

To show that the above quantities are well defined, we
need to prove that (i) €;,, €;;, are always Abelian phases
and (ii) they depend only on the indices i, j, u, i.e., on the
gauge flux of the vortex lines and the anyonic flux of X. In
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« « B
—
72 Joles
X
FIG. 3. Braiding processes that define the surface data Q;, (a)
and Qij;l (b)

other words, if we choose another anyon X" with £y = ¢,
and another pair of vortex lines o, f with ¢, =
(27/N;)e;, ¢y = (2n/N;)e;, we will obtain the same
phases €;, and €;;,. The proof of these two points is
technical, and hence is given separately in Appendix A.
Our motivation for using the above surface data is
twofold. First, there is reason to think that the surface data
are complete in the sense that they can distinguish every
gapped symmetric surface satisfying our two assumptions,
namely that (1) the surface supports only Abelian anyons
and (2) these anyons are not permuted by the symmetry.
The main evidence for this is that our data
{®,. 2, Q;,. Q. Xy} are mathematically equivalent to
another set of data [36,37.47,51] {F,,.R,. @€
H?*(G,A)} that characterizes 2D anyon systems with
symmetry group G. We discuss this equivalence in
Sec. VII. The latter data are plausibly complete in the
context of the above class of surfaces [52], and if this is the
case, then our data must be complete as well. Our second
source of motivation for using the above surface data is that
they can be naturally related to the bulk data via a bulk-
boundary correspondence, as we discuss below.

D. Auxiliary surface quantity

The last piece of surface data is a three index tensor x%),
where the indices i, / run from 1, ..., K, while y runs from
1, ..., M. We define this quantity implicitly via the equation

v —
xp®,, =Q

v

(mod 27). (18)

ilu

More precisely, we define x¥, to be the unique integer tensor
that satisfies the above equation and has compo-
nents x4, € {0,1,...,N, — 1}.

To understand the physical meaning of Eq. (18), let us
imagine fixing the indices i, /. Then, x%, reduces to an M-
component integer vector, which we can think of as
describing a surface anyon x; in the ungauged model.
Likewise, the left-hand side of Eq. (18) can be interpreted
as the statistical phase associated with braiding a type-u
unit anyon around the anyon x;;. In this interpretation, x;;
represents the unique surface anyon with the property that

its mutual statistics with a type-u unit anyon is €;;,. From

this point of view, it is not hard to see why x/; exists and is
unique. Indeed, the uniqueness of x%, follows from the
general principle of “braiding nondegeneracy,” which
guarantees that no two surface anyons have the same
mutual statistics with respect to all other surface anyons
[47]. As for the existence of x%, this is less obvious but can
also be deduced, with some algebra, from braiding non-
degeneracy together with the fact that €;;, is a multiple of
2z/N, [see Eq. (24) below].

From Eq. (18) we can see that x’i‘l carries the same
information as €;;, (assuming we know ®,,). Therefore,
the reader may wonder why we bother to define this
additional quantity. One reason is that x% is often more
convenient to work with than Q;;,. Another reason is that
the quantity x%, plays an important role in the bulk-
boundary correspondence. This role can be traced to the
following thought experiment. Imagine a configuration of
two linked vortex loops, a and ¢ in the bulk (Fig. 4), where
a and o carry unit type-i and type-/ flux, respectively; that
is, ¢, = (27/N;)e; and ¢, = (2z/N,;)e;. Now imagine
that we pull the linked loops down to the surface, absorbing
a part of each loop into the surface, leaving a pair of tangled
vortex “arches” [Fig. 4(b)]. We then disentangle the two
arches by unwinding one of the two ends of ¢ [the braiding
path is shown in Fig. 4(b)]. The result is two separate arches
[Fig. 4(c)]. We then shrink the two separated arches to the
surface, leaving behind two localized surface excitations.
We denote the resulting state by |w). In general, we know
that any surface excitation can be written as a linear
superposition of different states, each of which has a
definite anyon type. Thus, we can write

W) = c|X) ®1S) + X)) @ [S) +---, (19)

where |X') ® |S) denotes a state with surface anyons X" and
S, while |[X") ® |S’) denotes a state with surface anyons X"
and &', and the coefficients ¢, ¢/, etc. are the corresponding
complex amplitudes [Fig. 4(d)]. What does this thought
experiment have to do with x%,? We show in Appendix B
that all the anyons X, X, ... carry the same anyonic flux
x;;, while all the anyons S, &', ... carry anyonic flux —x;;:

Sx=8Cx = =X,
$s=8s =" =—xj. (20)

Thus, the quantity x; naturally appears when we think
about absorbing linked vortex loops into the surface.

E. General constraints on surface data

In this section, we discuss some of the constraints on

{® x4 }. Two important constraints are

/w’ Qiﬂ’ Ljpo il

N,®,=0

M = py

(mod 27) (21)
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(a)
(o

FIG. 4.
and
0 (mod2n) if N, is odd
N,®, = . . (22)
Oorz (mod2z) if N,is even.

To derive these constraints, consider the unit type-y anyone,,.

Using the fact that the fusion product of N, of these anyons

gives the vacuum excitation, it is not hard to show that

N,®,, =0 (mod2x) and N;®, = 0 (mod 27). With these

relations in hand, the above constraints follow immediately.
Another set of constraints is

N, Q, =0 (mod2r), (23)
N;;uQ;j, =0  (mod27), (24)
Qi+ Qi =0 (mod2r), (25)
Qi, =0 (mod2x). (26)

We derive these constraints in Appendix G 1. A final set of
constraints involve x%:

Ny =0 (modN,), (27)
x4+ =0 (modN,), (28)
xj;=0 (modN,). (29)

These constraints follow from Eqgs. (24)—(26) together with
the definition of x’i‘l [Eq. (18)].

Note there are additional constraints on the surface data
beyond those listed above. In particular, the requirement
that the surface anyons obey braiding nondegeneracy [47]
gives extra constraints on ®,,. We do not write out these
constraints explicitly since they are not necessary for our
purposes.

IV. BULK-BOUNDARY CORRESPONDENCE

A. The correspondence

Having defined the bulk data {©,;,0;;,,0,;,} and the
surface data {®,,. ®,,Q;,.Q;;,.x}}, we are now ready to
discuss the connectlon between the two. This connection is

encapsulated by three equations, defined modulo 27:

Gy, A

X- S-

Interpreting x%; through a 3D thought experiment. See the main text for details.

ZNW il i/l + ZNl(xﬂl)z(I) (30)
"
®iju = Z(me/llg +mel;g )
NY(NY -1 ’
+ %Z("jﬁ = x) Qi (31)
i
O = Z(XQQW + Qg + X5 Q,). (32)

H

These equations are the main results of this paper. We
present their derivation in Sec. V, but before doing that, we
make some comments about these formulas and their
implications.

6]

2

3

021015-8

Note that the left-hand side of Egs. (30)—(32)
consists of the bulk data {©;;,0;;,,0;;,}, while
the right-hand side is built entirely out of the surface
data {®,,, ®,,Q;,.Q;;,. x;}. Thus, these equations
allow us to completely determine the bulk data from
the surface data. They also provide some constraints
on the surface data given the bulk data. This
asymmetry between bulk and surface, which is also
manifest in Eq. (1), is not surprising, since we expect
that a given bulk phase can support many different
types of surfaces.

Equations (30)—(32) have an important corollary:
any 3D short-range entangled bosonic model that
has nonzero values for {@;,,0;;,,0;;,}, has a
protected surface; i.e., its surface cannot be both
gapped and symmetric unless it supports anyon
excitations. To derive this corollary, we note that
if we could find gapped symmetric surface without
anyon excitations, then the right-hand side of
Egs. (30)—(32) would vanish for this surface since
the sum over y would run over the empty set. Clearly
this vanishing is inconsistent with nonzero values of
{0;1.0;;,,0;j,}, so we conclude that such a sur-
face is not possible.

Another important corollary is that the right-hand
side of Egs. (30)—(32) vanishes for any strictly 2D
system. Indeed, we can derive this by thinking of the
2D system as living on the boundary of a 3D vacuum
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where {@;;,0;;,, 0} are all zero. We discuss this
point in more detail in Sec. VL

(4) Itis natural to ask whether there could be additional
constraints relating bulk and surface data beyond
Eqgs. (30)—(32). The analysis in this paper is not
capable of answering this question definitively. That
being said, if there are additional constraints, we can
always replace the bulk data appearing in these
constraints with surface data, using Egs. (30)-(32).
Hence, any additional constraints can be written
entirely in terms of surface data.

(5) The coefficient of Q;, in Eq. (30) is an integer. This
is not obvious, but can be proven using one of the
general constraints on x;, namely, Eq. (27). This
integrality property is important because Q;, is only
defined modulo 27: therefore, it is only because its
coefficient is an integer that Eq. (30) gives a well-
defined phase ©;;. In a similar fashion one can
check that all the coefficients of the phase factors
Q. ®, in Egs. (30)—(32) are integers, so all of these
equations are well defined. Finally, one can check
that the coefficients of %, and (x;)? in Eqgs. (30)—
(32) satisfy appropriate conditions so that all three
equations are well defined even if x, is defined
modulo N,,.

(6) Several of the terms in these equations can take only
two values: O or 7. In particular, this is the case for
the second term on the right-hand side of Eq. (30) as
well as the second term on the right-hand side of
Eq. (31). This property is interesting because it
means that the above equations are simpler than they
appear. These results can be established using the
general constraints Eqgs. (29), (22), and (24).

How can we make use of the above bulk-boundary
correspondence? We envision two types of applications.
First, if we are given a surface theory and are able to extract all
the surface data, we can use the bulk-boundary correspon-
dence to constrain the bulk SPT phase. Conversely, if we are
given a bulk SPT phase, we can use the bulk-boundary
correspondence to constrain the possible surfaces. Below, we
give two examples to illustrate these two ways of applying
the bulk-boundary correspondence.

B. Example 1

In this section, we demonstrate the bulk-boundary
correspondence by computing the bulk data corresponding
to four different types of surfaces with Z, x Z, symmetry.
These surface theories were originally introduced and
analyzed by Ref. [20], as we explain below.

To set up our example, imagine that we have a 3D lattice
spin model that realizes a SPT phase with a symmetry
group G = Z, X Z,. Imagine that we study the model in a
geometry with a boundary and we find that the surface is
gapped and symmetric and that it supports two distinct

types of Abelian anyons: a semion s with exchange
statistics 8, = z/2 and the vacuum excitation 1 with trivial
statistics. Translating this information into our notation,
this means that the surface anyons form a group A = Z,,
while their statistics can be summarized by two quantities:

q)l :T[/z, @11 = T. (33)
Here, the index u can take only one value—namely,
4 = l—since the group A = Z, has only one generator.

Next, suppose we couple the system to a Z, x Z, gauge
field in order to probe its symmetry properties. After
performing this gauging procedure, we take a surface
anyon with anyonic flux s and we braid it twice around
a vortex line that carries gauge flux (z,0). We find that the
Berry phase associated with this process is z. We also braid
the surface anyon twice around the vortex line (0, ) and
we find a Berry phase of z. Finally, we braid the surface
anyon around one vortex line carrying flux (z,0) and one
vortex line carrying flux (0,7z), then we braid in the
opposite direction around both vortex lines as described
in Sec. III C and we find that the associated Berry phase is
again z. In our notation, this information is summarized by
the surface data:

Q =n, Q) =n, Qy = 7. (34)

Here, the indices i, j can take two values i, j = 1, 2 since
the symmetry group G = Z, x Z, has two generators.

To complete the surface data, we still need several more
quantities, namely, {Q;;,Q,Q;} and {x},,x},
x1,,x},}. The first set of quantities can be completely fixed
using general properties of Q;;,. In particular, we know that
Qi = Qy =0 by Eq. (26), while Q) = —€Q5; by
Eq. (25). The remaining quantities {x!,,x},,x!, x},} are
then completely determined by the definition of x/
[Eq. (18)]:

xiz = xél =1 xh = xéz =0. (35)

With the above surface data in hand, we can now
illustrate the bulk-boundary correspondence Egs. (30)—
(32). Let us focus on computing the bulk data ®,, and
0, ;. Substituting the surface data into Eq. (30), we obtain

O, = x,Qy + 2(x],)*®,
=n+r
=0

and

0,1 = x5, Qyy + 2(x3, )P,
=n+r

= 0.
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Similarly, we can go ahead and compute the remaining bulk
data, e.g., O, ©,,, Oy, etc., with the result being that
they all vanish as well. Alternatively, we can obtain this
result using the general constraints Egs. (G5)-(G14), which
completely determine these quantities in terms of ©, , and
©, ;. In other words, ©, ; and ©, ; are the only independent
bulk quantities.

For comparison, we now consider three other possibil-
ities for the surface data, which we will refer to as APS-X,
APS-Y, and APS-Z (we explain this terminology below):

APS-X: Qp =7, Q) =0, Q) =,
APS-Y: Q) =0, Q) =7m, Qp =,
APS-Z: Q1 =0, Q) =0, Qp =7 (36)

Here, as before, we assume that the surface anyons form a
group A = Z, with statistics Eq. (33). Applying the bulk-
boundary formulas, we can compute 0, and ©,; in the
same way as above. The results are shown in Table I, along
with those corresponding to the surface data Eq. (34),
which we refer to as CSL.

What conclusions can we draw from these calculations?
First, we can see from Table I that ®;, and O, take
different values in each of the four cases. Therefore, we can
conclude that the corresponding bulk spin models all
belong to distinct SPT phases. Also, we see that at least
one of ®;, and ®,; is nonzero for each of the APS-X,
APS-Y, APS-Z cases listed above, which implies that the
corresponding bulk spin models belong to nontrivial SPT
phases. Finally, since the bulk data vanish for the CSL case,
we can conclude that the corresponding bulk spin model
belongs to a trivial SPT phase—if we make the additional
assumption that the bulk data are complete.

As we mentioned above, these four types of surfaces
were originally discussed by Ref. [20]. Our terminology for
these surfaces follows that of Ref. [20]: the reason we refer
to the first type of data as CSL is that a variant of the 2D
Kalmeyer-Laughlin chiral spin liquid (CSL) state is
described by these data; likewise, the reason we refer to
the other types of data as APS-X, APS-Y, and APS-Z is
because they correspond to the anomalous projective
semion (APS) states of Ref. [20]. Here the word “anoma-
lous” signifies the fact that the last three types of surface

TABLE 1. Surface and bulk data for four surfaces with G =
Zz X Zz and A = Zz.
Surface data Bulk data

Model Q Q) Qi 0, 0,
CSL T T T 0 0
APS-X T 0 T 0 T
APS-Y 0 V3 T T 0
APS-Z 0 0 T T V3

data are incompatible with a pure 2D lattice model and can
exist only on the boundary of a nontrivial 3D SPT phase.

It is worth pointing out that Ref. [20] used a different
language to describe the surface data than what we use
here. In this alternate description, the symmetry properties
of the surface are described by an element @ of the
cohomology group H?(G,A) instead of the quantities
{Q;,.Q;;,. x%;}. We explain this alternative language and

Q;,. Xy} in Sec. VIL

its relationship with {€;,,

C. Example 2

We can also use the bulk-boundary correspondence in
the opposite direction; that is, we can use it to constrain the
types of surfaces that are compatible with a given bulk
Hamiltonian. For an example of this, imagine that we have
a lattice boson model that realizes a SPT phase with
symmetry group G = Z, x Z,. As we mentioned in the
previous section, there are only two independent pieces of
bulk data for this symmetry group: ®;, and ©, ;. Let us
suppose that one or both of these quantities takes a nonzero
value for our lattice spin model. Using this information we
can constrain the possible surfaces of this system. In
particular, assuming that the surface anyons are all
Abelian and are not permuted by the symmetries, we
can show that the group of surface anyons A =
Hﬁ”zl Zy, has the property that N, is even for at least
one value of pu.

One way to see this is to examine the general constraints
Egs. (27)~(29) on x%. In particular, from the constraint
Eq. (29), we can see that x{; = x4, = 0. Also, if N, is odd,
then the constraint Eq. (27) implies that x|, = x5, = 0.
Hence, if N, were odd for all y, then xf ; would necessarily
vanish completely. But then ©, ; and ®, ; would also have
to vanish according to the bulk-boundary formula Eq. (30).
We conclude that if either ®;, or ©,; is nonzero, then at
least one of the N,’s must be even.

V. DERIVATION OF THE BULK-BOUNDARY
CORRESPONDENCE

In this section, we derive the bulk-boundary formula
Eq. (31) for ©;; ;. The derivations of the other two formulas
[Egs. (30) and (32)] are similar and are given in
Appendixes C and D.

A. Step 1: Deforming the braiding process

Our derivation proceeds in four steps. In the first step, we
derive an equivalence between the three-loop braiding
process associated with ©;;; and another process that
involves braiding vortex “arches” on the surface. The
key to deriving this equivalence is the general principle
that statistical Berry phases are invariant under “smooth”
deformations of braiding processes; that is, if two braiding
processes can be “smoothly” deformed into one another,

021015-10
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then the associated statistical Berry phases must be equal.
Here, a smooth deformation is a sequence of local changes
to the excitations involved in the braiding process. The
local changes can be arbitrary except that the moving
excitation must stay far apart from the other excitations at
every step of the deformation. (Here, when we say “local
changes” to the excitations we mean any changes that can
be implemented by unitary operators supported in the
neighborhood of the excitations).

To begin, let us imagine performing the three-loop
braiding process in the bulk [Fig. 5(a)]. That is, we braid
a loop a around another loop /3 for N/ times while both are
linked to a third loop o. Here, a, f, o carry unit type-i, type-
J» and type-/ flux; ie., ¢, = (27/N,)e;, ¢y = (27/N,)e;,
and ¢, = (2z/N,)e,;. The Berry phase associated with this
process is ©;; ;.

Next, we stretch a and f and absorb the bottoms of these
loops into the surface [53]. This step changes a, f into
vortex arches that terminate on the surface [Fig. 5(b)].
After this step, the deformed braiding process involves
braiding vortex arches a, # while they are both linked to .
By the general principle described above, this deformed
process must yield the same Berry phase, ©;; ;.

To proceed further, we now stretch ¢ and absorb its
bottom into the surface. This step changes ¢ into another
vortex arch [Fig. 5(c)]. Finally, we disentangle the three
arches by unwinding one of the two ends of the arch o
[Fig. 5(d)]. The braiding process now involves braiding two
unlinked arches a, # around one another. Again, the Berry
phase must be the same as in the original process. Putting
this all together, we conclude that ®;; ; is equal to the Berry
phase associated with braiding the arch « around the arch
for N times, as shown in Fig. 5(d).

At this point, the reader may be puzzled by the following
question: given that ¢ is completely decoupled from the
other arches, it appears that the Berry phase for the process
shown in Fig. 5(d) must be independent of the flux carried
by o, i.e., independent of . Yet at the same time, we know
that this Berry phase is equal to the three-loop braiding
statistics ©;; ;, which certainly depends on /. How can this
be? The resolution of this paradox is that the vortex arches
a and f are actually non-Abelian excitations. This means
that the Berry phase associated with braiding a and f
depends on their initial state (and also need not be Abelian,

FIG. 5.

>

in general). The Berry phase ©;;; occurs for a particular
initial state, namely the state obtained through the sequence
of deformations shown in Fig. 5. This initial state “knows”
about / because unwinding o affects the state of @ and . We
see this explicitly in step 2, below, when we imagine
shrinking @ and  down to the surface.

B. Step 2: Splitting the excitations

Our task is now to analyze the vortex arch braiding
process in Fig. 5(d). Before doing this, it is useful to first
consider a thought experiment in which we shrink down the
arches a, f so that all that is left are two localized surface
excitations. From general considerations, we know that the
resulting surface excitations can be written as a linear
superposition of states, each of which has a definite anyon
type. We ask, what types of surface anyons appear in this
linear superposition?

The answer is simple: if we shrink a, we get a super-
position of different surface anyons, all of which have
anyonic flux x;; likewise, if we shrink B, we get a
superposition of surface anyons, all of which have anyonic
flux xj;. To see this, notice that shrinking down a, f3, ¢ in
Fig. 5(d) is very similar to shrinking @, ¢ in Fig. 4.
Furthermore, in the latter case, we know that shrinking
a gives a superposition of different surface anyons, all of
which have anyonic flux x;; [see Eq. (20)]. Therefore, the
same must be true for Fig. 5(d).

The most important point from this discussion is that if
we shrink a or f to the surface, we will generally get
nontrivial surface anyons. This property is inconvenient for
our subsequent analysis and motivates us to split a, f into
more “elementary” excitations.

For this reason, the next step in our analysis is to split the
arch « into a surface anyon X and a new arch a. Similarly,
we split /8 into a surface anyon ) and a new arch j3 (Fig. 6).
We choose the surface anyons X, ) to be any anyons with
anyonic flux

Sx = Xirs Sy =xji, (37)
while we choose the arches a, B to be any arches with the
property that @ can be written as a fusion product of X" and

a, and that # can be written as a fusion product of ) and ﬁ

iy (e

(c)

Deforming a three-loop braiding process (a) in the bulk into a braiding process (d) of vortex arches near the surface. The
deformation splits into three steps, (a) — (b), (b) — (¢), and (c) —

(d). The gray curves in (a)—(d) are trajectories of some points on «;

the red curve in (c) is the trajectory of one of the end points of o.
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The motivation for performing this splitting is that the
new arches a,  have a nice property, by construction: if we
shrink a, ﬁ to the surface, we get a superposition of charge
excitations instead of more complicated surface anyons.
This property will play an important role below when we
compute the Berry phase associated with braiding @ around

B [see Eq. (59)].

C. Step 3: Decomposing the braiding process

After splitting a, f as described above, our braiding
process reduces to one in which we braid @ and X around,B
and ) for N/ times (Fig. 6). The next step is to decompose
this process into a series of simpler processes.

First, we introduce some notation. Let |y) be the initial
state at the beginning of the braiding, i.e., the state obtained
from the deformation process shown in Fig. 5 followed by
the splitting process in Fig. 6. Let V be the subspace
consisting of all states that are degenerate in energy with
|y). Here, V could have dimension 1 or higher. Let W:V —
V be the unitary braiding matrix that describes the
(possibly) non-Abelian Berry phase associated with braid-
ing @ and X around B and Y once.

Then, with this notation, the fact that the Berry phase for
our braiding process is ©;;; translates to the equation

W |yr) = et y). (38)

To proceed further, it is helpful to represent this braiding
process using a 2D picture. One way to do this is to imagine
folding the surface and straightening the vortex arches, as
shown in Fig. 7. After doing this, the braiding process now
involves vertical vortex lines. If we now take a top view of

[o13
1=

FIG. 6. Splitting « into @ and &, and splitting f into pand V.

«

B
67 o

FIG. 7. Folding the surface and straightening the vortex lines in
Fig. 6. In between the top and bottom parts of the surface is the
gauged SPT model, and outside is the vacuum.

Fig. 7, then W can be visualized as

With this picture in mind, it is easy to see how to
decompose the above braiding process into simpler proc-
esses. In p.articular, let W@ P Wiy, WXB’ ar}d Wy be the
braid matrices corresponding to the following processes:

Wis = (ﬁ 5, (40)

Way = . . 41
v= 5 (41)
AR, (42)

W = ] o 4 43
= 8 5 (43)

Then, it is easy to see that if we perform the above four
processes sequentially, the result can be smoothly deformed
into the process corresponding to W. Translating this into
algebra, we derive

W = WX)}WX/;,W&J)W&/}. (44)
Substituting this into Eq. (38), we obtain

(WayW 5 Way W, 5)No

) = eCilly).  (45)

Equation (45) is the main result of this step.

D. Step 4: Evaluating Eq. (45)

We now evaluate the expression on the left-hand side of
Eq. (45). We accomplish this using several algebraic
properties of the braid matrices Wy, W X Wsy, and
W, B that we derive below. The first property is that these
braid matrices all commute with each other, except for the
pairs (W5, W y5) and (W, 5. Way), which obey the com-
mutation relations
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le W~

ap’ (46)

W, WXﬂ—e

Wa/}Way = e’gz X WayW (47)

ap

where {;, ¢, are given by
O= Q. L= X
u 7

Another important property of these matrices is that when
we raise them to the power N/, they simplify considerably:

WIX% = 0], (48)
WA = e, (49)
Wy, =1, (50)
W lw) = ). (51)

where 1 is the identity matrix in V, and {3, {4 are given by

ZNJ” tl I/ C4 - ZNW jl i

Notice that the last relation [Eq. (51)] is different from the
others because it tells us only about the action of a braid
matrix on the specific state |y) defined above. In contrast,
the other relations are matrix equations that hold through-
out the degenerate subspace V.

We now use these relations to evaluate the left-hand side
of Eq. (45) and thereby derive the bulk-boundary formula
Eq. (31). First, from the commutation relations Eqs. (46)
and (47), we reorder operators at the cost of a phase factor:

(WayW g WayWas) V' lw) = Wi WS W W)

x elINVINU=D/2(6+8) - (52)
Here, the phase factor comes from the fact that the
commutation relations Eqs. (46) and (47) are used

(N /2)(N"V — 1) times during reordering.
Next, we apply the identities Eqgs. (48)—(51) to obtain

N N NI yNT N i(G4 )
wh WXﬁW Waﬁ|l;/>—e 3T ). (53)

Putting this together, we derive

(WXJIWXﬁW&yW&ﬁ)NU|W> = /&ty
x eiINT(NT=1)/2](¢1+83)

Comparing with Eq. (45), we conclude that

NU(NT = 1)

@) (54

Q=80+ +

This is nothing other than the bulk-boundary formula
Eq. (31), as one can see from the definitions of {;, {,,
3, L4

To complete the argument, we now derive the algebraic
relations Egs. (46)—(51). We begin by proving the statement
that precedes Eq. (46), namely, that the braid matrices all
commute with each other except for the pairs (W, ; »W X/;)
and (W B W3y). To establish this statement, it suffices to

show that (1) Wy commutes with the other three operators
and that (2) W5y and W xj commute with one another. The

first result follows from the fact that the mutual statistics
between surface anyons is Abelian, so that W y,, is propor-
tional to the identity 1. The second result follows from the
observation that the braiding paths associated with Wy,
and W ,; do not overlap.

Next, we need to establish the commutation relations
Egs. (46) and (47). Proving these relations is more technical
and, hence, we postpone their derivation to Appendix E.
Here, we give only the intuitive picture behind these
relations. Consider for example Eq. (46). This relation
can be equivalently written as

lC _
= WAW LW W . (55)

To understand the meaning of the right-hand side, remem-
ber that braiding processes are symmetrical in the sense that
braiding X around Y is topologically equivalent to braiding
Y around X (for properly chosen paths). Therefore, the
product on the right-hand side can be interpreted as a

process in which ﬁ is first braided around X, then around a,
then around X in the opposite direction, and finally around
a in the opposite direction. This is very similar to the

braiding process that defines €2, except for two

differences: (1) the moving excitation is the vortex B rather
than the anyon X, and (2) the anyon X’ carries anyonic flux
&y = x;; instead of having unit type-u flux. It turns out that
the first difference is irrelevant and can be safely ignored.
On the other hand, the second difference is important and

changes the product on the left-hand side from e™%i] to
eizﬂx}’l’g""‘? (see Appendix E).

We now move on to prove the identities Eqs. (48)—(51).
We begin with Eq. (50) since it is the simplest to derive. To
prove this identity, recall that the surface anyons &', )) have
Abelian statistics so the braid matrix W yy takes the form

WX)} = €i0'1)yi. (56)
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Next, from Egs. (14) and (13) we see that
= leillx;l@uw (57)
nv

eXy = eé’xfy

where we use &y = x;; and &y = xj;.
results, we obtain the identity

Combining these two

J = 2 iitn], (58)

If we now raise both sides to the N/ power, we can see that
the right-hand side reduces to the identity operator I since
NUx! is a multiple of N, according to Eq. (27), and N, ®
is a multiple of 2z according to Eq. (21). We conclude that
WY, =T as claimed.

Next, we consider Eq. (51). To derive this result, we use
a property of |y) that we discuss in Sec. V B: if we shrink &

or B down to the surface, the result is a superposition of
charge excitations. To see why this property is useful, let us

consider the special case where shrinking a, ,B gives definite
charge excitations gz, gj instead of a superposition of
different charges. In this case, it is easy to see that the
statistical phase 6 associated with braiding a around B is
given by the Aharonov-Bohm law: 6 = q; - ¢ + qj - Pz
Here, the first term comes from braiding the charge g
around the flux gbﬁ, while the second term comes from
braiding the flux ¢z around the charge gj. (See Ref. [40] for

a derivation of this formula in a closely related context.)
Translating this equation into our algebraic notation gives

W) = e/ tit it y). (59)

Now recall that a is a unit type-i flux while S s a unit type-j
flux, so that ¢; = (2z/N;)e; and b = (27/N;)e;.
Substituting this into the above equation, and raising both
|w). This
establishes Eq. (51) for the special case where shrinking a,
B gives definite charge excitations. In fact, since the
equation Wfl’/)’, w) = |w) holds independent of the values

sides to the N/ power, we see that W&N;W) =

of g3, 9 the superposition principle implies that it must

also hold in the case where shrinking &, f§ gives a super-
position of charge excitations. This proves Eq. (51) in the
general case.

Finally, we need to discuss Eqs. (48) and (49). The proof
of these relations is technical, so we postpone it to
Appendix E. However, the physical picture for these
relations is simple. For example, consider Eq. (48). We
can see that {5 is the Berry phase associated with braiding
X around f for N times. If we compare this braiding
process to the one that defines Q,,, we see that they are very
similar, except for two differences: (1) X’ carries anyonic
flux £y = x;; instead of carrying unit type-u flux, and (2) X
is braided N/ times instead of N/* times. Given these two

differences, it is perhaps not surprising that the Berry phase
for this process is Y, (NY/N/#)x}Q;, instead of Q.

VI. IMPLICATIONS FOR PURELY 2D SYSTEMS

Thus far, we have used the data {®,, ®,,.Q,,. W,x"}
to describe surfaces of 3D systems. However, the same data
can also be used to describe purely 2D systems. More
specifically, suppose we are given a 2D gapped lattice
boson model with Abelian symmetry group G = [[X Zy,
and Abelian anyon excitations described by a group
A= H,’f’:l Zy,. Suppose, in addition, that the symmetry
action does not permute the anyons. Then we can define the
quantities {®,, ®,,,Q;,. Q;;,. x{;} for this 2D system in the
same way as we did for surfaces—with ®,,, &, describing
the exchange and mutual statistics of anyons, €2;,, €;;,
describing the braiding statistics between anyons and
vortices, and x/; given by Eq. (18).

Now that we have defined {®,, ®,,, Q;,, Q. x4} for 2D
systems, we can ask what happens if we insert th1s data into
the right-hand side of Eqs. (30)—(32) and compute the
corresponding “3D bulk” quantities ©;;, ©;;;, ©;; ;. In this
section, we argue that if we do this, then these bulk quantities
will always vanish. That is, for any 2D system we have

0, =0;;; =0, =0, (60)

where ©; ;, ©;; ;, ©;;; are defined by Eqgs. (30)—~(32). We can
think of the above equations as constraints on which data
{®,.0,,.Q;,,Q;,. x;} can be realized by 2D systems.
The simplest way to derive the constraints Eq. (60) is to
think of our 2D system as living on the surface of the 3D
vacuum. It is clear that ©; ;, ©;;;, ©;j;; vanish for the 3D

vacuum, so by using the bulk-boundary formulas,
Egs. (30)—-(32), we obtain three constraints on
{®,.®,,.Q;,.9;;,.x;}, which are precisely Eq. (60).

While the above argument is perfectly solid, it is
instructive to rederive the constraints using purely two-
dimensional arguments. In what follows, we present such
an argument for one of the three constraints, namely,
©;;; = 0. (Similar arguments can be used to establish
the other constraints.) At the heart of our derivation is a
particular braiding process that we describe below. Our
strategy is to compute the statistical phase associated with
this process in two ways: in one approach we see that the
statistical phase is given by the right-hand side of Eq. (31),
while in the other approach we see that the phase vanishes.
Combining the two calculations, we then derive ©;;; = 0.

Before describing the braiding process, we first need to
describe the initial state |¥) at the beginning of the process.
Imagine that we start in the ground state. We then create
three vortex-antivortex pairs, {a,@}, {8.4}, and {c.5},
where a, 3, o carry unit type-i, type-j, and type-/ gauge flux
[Fig. 8(a)]. We then braid ¢ around @& and § [Fig. 8(b)].
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FIG. 8.

The state obtained in this way is the initial state | V') for our
braiding. The braiding process itself is rather simple:
starting in the state | ), we braid a around 8 for N¥/ times
in the counterclockwise direction, while simultaneously
braiding @ around /3 for N/ times in the clockwise direction
[Fig. 8(c)].

Let us try to compute the statistical phase associated with
this process. To this end, notice that there is a close analogy
between the 2D braiding process shown in Fig. 8(c) and the
3D arch braiding process shown in Fig. 5(d): the 2D
braiding process looks like a horizontal cross section of the
3D process. There is also a close connection between the
initial state |¥) for the 2D process and the initial state [y)
for the 3D process since the two states are obtained from
similar manipulations of vortices [compare Figs. 8(a)
and 8(b) with Figs. 5(a)-5(c)]. Because of these similar-
ities, we can compute the statistical phase for the 2D
process using essentially the same calculation as in the 3D
case discussed in Sec. V. In the first step, we split the vortex
a into another vortex a together with an anyon A carrying
anyonic flux £y = x;;. Also, we split f# into ,B and )/, where
&y = xj;. Then, after performing the splitting, we decom-
pose the braiding process shown in Fig. 8(c) into simpler

processes involving X, ), a, f, etc. Using the same
arguments as in Sec. V, we can express the statistical
phases for these simpler processes in terms of
{®,.0,,,Q;,.Q;;,.x;} and then put everything together
to obtain the statistical phase for the whole process. Since
the computation is almost identical to the 3D case, the
result is also the same; that is, one finds that the statistical
phase is given by the right-hand side of Eq. (31).

Now we compute the statistical phase using a different
approach and show that it vanishes. This alternate approach
is based on the observation that the two braiding processes
shown in Figs. 8(b) and 8(c) commute with one another,
since they do not overlap. This commutativity means that
instead of starting our braiding process [Fig. 8(c)] in the
state |U), which is obtained after we do the braiding in
Fig. 8(b), we can equally well start our braiding process in
the state | '), which is obtained before we do the braiding
in Fig. 8(b). But if we start in the state |¥’), then it is easy to
see that the statistical phase for our braiding process must
vanish. In fact, even a single braiding of a around S in the

(c)

60

A 2D braiding process that shows that ©;;, vanishes for strictly 2D systems. See the main text for details.

counterclockwise direction together with a simultaneous
braiding of @ around f in the clockwise direction already
gives a vanishing statistical phase [Fig. 9(a)]. To see this,
note that in the state |¥’), the two pairs a, @ and 3, # are
both in the vacuum fusion channel. This means that we can
annihilate @ and @ with local operators, if we bring them
close together. Similarly, we can annihilate  and . Using
this fact, we can deform the braiding process shown in
Fig. 9(a) so that we annihilate a and @ at some stage of the
braiding and recreate them at a later stage [Fig. 9(b)]. After
this, we can further annihilate the pair 3,4 [Fig. 9(c)].
Finally, we can deform the process so that @ and @ are
braided around the vacuum [Fig. 9(d)]. Clearly, the stat-
istical phase associated with Fig. 9(d) is zero, so since the
deformation cannot change the statistical phase, we con-
clude that the statistical phase for the original braiding
process shown in Fig. 9(a) must also vanish. Comparing
this calculation with the previous one, we conclude
that ®ij,l =0.

(a) (b)

Qi
LR

FIG.9. Deforming a process in which « is braided around $ and
simultaneously @ is braided around /3 in the opposite direction. In
the initial state |¥’) before the braiding starts, the two pairs a, @
and f, f§ are both in the vacuum fusion channel. See the main text
for details.
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VII. CONNECTION WITH GROUP
COHOMOLOGY

Recall that the group cohomology models are exactly
soluble lattice models that can realize SPT phases in
arbitrary spatial dimension [7]. One needs to specify two
pieces of information to construct a d-dimensional group
cohomology model: (1) a symmetry group G and (2) a
(d + 1)-cocycle v, i.e., a function v: G4*! — U(1) satisfy-
ing certain algebraic properties. It can be shown that if two
cocycles v; and v, differ by a (d 4+ 1)-coboundary y, that is,
vy = 1, ), then the corresponding models are identical to
one another. Thus, the distinct group cohomology models
are parametrized by elements of the cohomology
group H (G, U(1)).

Focusing on the 3D case, the group cohomology models
raise a basic question: Which surfaces can exist on the
boundary of a 3D group cohomology model with
4-cocycle v?

Chen et al. [20] proposed a possible answer to this
question for surfaces that are (1) gapped and symmetric and
(2) have the property that the symmetry does not permute
the surface anyons. Specifically, Chen et al. conjectured
that any surface of this kind must obey the relation

v(a,b,c,d)
~ Ro(c.d).(ab)
X Fob.c)wabre)oarbred u_)(lh,c),w(b+c,d),m(a,h+6+d)
X Fo(ab)wlc.d)wlatberd) ;éa,h),a)(m»h,c).a)(a+h+c.d)

—1
X Fw(c,d),a)(b,c+d),(u(a,b+c+d)Fa)(c.d),w(a,b),w(a+b,c+d)’

(61)

where a,b,c,d € G and R,,, F,,., and :G> —> A are
various pieces of data that describe the properties of the
surface. This conjecture was motivated by the authors’
analysis of anomalies in 2D anyon systems.

We make two comments about the notation in Eq. (61).
First, the “~” sign means that the left- and right-hand sides
are equal up to multiplication by a 4-coboundary
x(a,b,c,d). Second, we use the “+” symbol for the group
law because we assume that G is Abelian in what follows.

It is interesting to compare Eq. (61) to the predictions of
the bulk-boundary formulas [Egs. (30)-(32)]. Indeed, for
each group cohomology model we can compute the
corresponding bulk data ©;;, ©;;;, ©;j ;. If we substitute
this bulk data into the bulk-boundary formulas Eqgs. (30)—
(32), we can obtain constraints on the surface data
{®,.®,,.Q;,,Q;,.x;}, as illustrated by the example in
Sec. IVC. Since both the bulk-boundary formulas
Egs. (30)—(32) and (61) give constraints on the set of
allowed surfaces, we can ask how these constraints are
related to one another. In this section, we show that these
constraints are exactly equivalent.

We establish this equivalence in several steps. First, in
Sec. VII A, we review the definition of the surface data
{Ryy,Fyy;, @}. Next, in Sec. VIIB, we show how to
translate between the two types of surface data, that is,
{R.y.Fy.. 0} and {®,, ®,,,Q; Q;, x;}. Similarly, in
Sec. VIIC, we review how to compute the bulk data
{0;1.0;j,,0;j;,} corresponding to a 4-cocycle v. Finally,
in Sec. VIID, we put everything together and derive the
equivalence between Eq. (61) and the constraints coming
from the bulk-boundary formulas Egs. (30)-(32). See
Fig. 10 for a summary of these results.

A. Review of surface data {R,,.F,, .o}

We begin by reviewing the definition of {R,,, F ., ®}.
Unlike {®,,®,,.Q;,,Q;;,. x;;}, these quantities are all
defined using the ungauged lattice boson models. The first
two quantities, R,, and F,., are relatively easy to explain.
These are the “R symbols” and “F symbols” [47] that
describe the braiding and associativity relations of the
Abelian anyons that live on the surface. These quantities
take values in U(1), while their indices x, y, z run over the
group A of Abelian surface anyons. (Here, we suppress
extra indices that are often included in these symbols, e.g.,
R5,, since these indices are redundant in the Abelian case.)

The other piece of data, w, is an element of the
cohomology group H?(G,A). More concretely, w:G x
G — A is a function that obeys the relation

w(a,b) +w(a+b,c)=wb,c)+wlab+c) (62)
and is defined up to the gauge transformation
w(a,b) = w(a.b) +y(a+0b) —x(a)—x(b).  (63)

where y:G — A is some arbitrary function. Here,
w(a,b) + w(a+ b, c) denotes the fusion product of the
Abelian anyons w(a,b) and w(a + b,c), while a+ b
denotes the group composition of a,b € G.

The physical meaning of w is that it describes how the
symmetry acts on the surface anyons. (See
Refs. [36,37,47,51] for general discussions about sym-
metry actions on anyons.) To explain the precise definition,
let us first consider the simpler case of a purely 2D anyon
system (as opposed to a surface). In the purely 2D case, @ is
defined as follows. For each group element a € G, we can
construct a corresponding “defect line” by twisting the
Hamiltonian along some line running from some point r to
infinity. Here, by “twisting” the Hamiltonian we mean that
we conjugate the Hamiltonian by a global symmetry
transformation S, acting on one side of the defect line:
H, = S;'HS,. Importantly, there is some ambiguity in
defining this twisting procedure near the end of the defect
line, ry. Because of this ambiguity, we can construct many
different defect line Hamiltonians H,, Hyy, .... for the
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FIG. 10. The equivalence between Eq. (61) and the bulk-
boundary formulas, Eqs. (30)-(32). The arrow (a) represents
the one-to-one mapping between the surface data used in Eq. (61)
and in Egs. (30)—(32). The arrow (b) represents the one-to-one
mapping between the bulk data used in Eq. (61) and in Egs. (30)—
(32). Arrows (c) and (d) represent Eq. (61) and Eqgs. (30)—(32),
respectively. We show that the whole diagram commutes in
Sec. VIID.

same group element a € G. These Hamiltonians are all on
an equal footing, so their ground states are equally good
definitions of defect lines. At the same time, if we compare
the ground states of different Hamiltonians, H,, Hy,, they
can differ in general by the attachment of an anyon x € A at
the end of the defect line.

Now choose a representative defect line for each a € G.
Consider two defect lines corresponding to a, b € G. If we
“fuse” the two lines together, we get a defect line
corresponding to a + b (Fig. 11). In general, this defect
line will differ from our representative a + b defect line by
an anyon x € A, as discussed above. We then define a
function w:GxG —>A by w(a,b)=x. Note that
(a,b) # w(b,a) in general because, unlike point par-
ticles, the fusion of defect lines need not be commutative;
1.e., there is a well-defined distinction between the defect
line on the left and the defect line on the right.

It is not hard to see that this function @ obeys the
constraint Eq. (62) and is well defined up to the trans-
formation Eq. (63). Indeed, to derive the constraint
Eq. (62), consider three defect lines a, b, ¢, and imagine
fusing them together in two different ways. Using the fact
that the two different fusion outcomes must be consistent
with one another, one can see that the function @ obeys the
constraint Eq. (62). As for the gauge transformation
Eq. (63), this follows from the fact that we can freely
change our choice of representatives for each defect line a.

Thus far, we have defined w for purely 2D systems. We
still need to explain how to define w for a surface. In this
case, we can use essentially the same definition as before

(a) (b) ()
a b a+b a+b
a_\b w(a,b)

FIG. 11. Definition of w(a, b). Panel (a) shows two defect lines
labeled by a and b. In (b), we fuse the two defect lines and get a
defect line corresponding to a + b. This defect line differs from
the representative a + b defect line shown in (c) by an anyon
w(a,b).

but with one extra dimension; in particular, instead of
twisting the Hamiltonian along a defect /ine that ends at a
point, we need to twist it along a defect plane that ends at a
line that is perpendicular to the surface. The rest of the
definition follows the 2D case in the obvious way [54].

B. Translating between the two types of surface data

Now, we explain how to translate between the two types
of surface data:
{ny, Fly., a)}<—>{<I>”, P

inQ xl:z}

o iju>
This translation problem can be divided into two pieces,
one of which involves the braiding statistics data, namely,
{R,y.Fyy,} and {®,, ®,,}, and the other of which involves
the symmetry data, namely, ® and {Q,,, Q,-_,-”,x’i‘,}.

First, we fix our notation. As in the previous sections, we
assume that the symmetry group is G = [[£, Zy, while
the anyon group is A = Hﬁil Zy,. We parametrize group
elements a € G by K-component integer vectors
a=(ay,...,ax), while we parametrize anyons x € A by
M-component integer vectors x = (x!, ..., x™). We let the
components a; take values in the range 0,1, ..., (N; — 1),
and let the components x* take values in the
range 0,1, ..., (Nﬂ -1).

We begin by describing the dictionary between the two
types of braiding statistics data, {R,,, Fy,.} and {®,, ®,,}.
One direction is easy: it is clear from the definitions of @,
and ®,, that

e = Re#e},v e = Re},e,,Re,,e;p (64)
where €, denotes the unit type-x anyon, 0,...,1,...,0)
with a 1 in the uth entry. [Here, the “—” sign in the exponent
is not particularly significant and depends on conventions:
the sign can be either “+” or “—” depending on whether R
is defined in terms of counterclockwise or clockwise
braiding. The reason we choose “—” rather than “+” is
that, with this convention, the bulk boundary formulas
Egs. (30)—(32) are consistent with the cohomology formula
Eq. (61). If we choose the “+” sign instead, then Egs. (30)—
(32) are consistent with a modified version of Eq. (61)
which is obtained by replacing v — v7!.]

The opposite direction, in which we express {R,,, Fy,.}
in terms of {®,, ®,, }, is harder. One problem is that there
are some gauge choices in the definition of {R,,, F,,.}, so
the inverse map is not uniquely defined. Another problem is
that there are complicated constraints on {R,,,F,,,}
coming from the pentagon and hexagon equations [47].
Thus, we not only have to invert Eq. (64), but we also have
to solve these constraints. Fortunately, both of these
problems can be overcome by doing things in the right
order. In particular, we proceed by first finding the most
general solution {R,,, F,,.} to the pentagon and hexagon
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equations [47] that is consistent with the fusion rules
specified by A = Hﬁ”: 12N, and then matching the general
expression for R,, to Eq. (64). Skipping over the inter-
mediate steps, the final result is that we obtain the following
expressions for {R,,, F,,. }:

R,, =exp (—in”y/‘@” — in"y"(I)W),

“ u<v

F,y, = exp (—in"(y” + =+ z”])cb,,). (65)

Here, the square bracket [y* + z¢] is defined to be y* + z*
(mod N,,) with values taken in the range O, ..., N, — 1. The
two mappings [Eqs. (64) and (65)] define a one-to-one
correspondence  between the data {®,,®,} and
{R,y, Fyy,} (up to gauge equivalence).

Next, we turn to the connection between @ and
{Q;,,Q;j,, x4 }. In order to make this connection, it is
helpful to introduce another quantity, namely, a unitary
matrix U, (x) that is associated to each surface anyon x € A
and each group element a € G. This matrix U,(x) is
defined as follows [36,37,47,51]. Recall that the surface
anyons are all Abelian (by assumption), so they do not have
any topologically protected degeneracies. However, they
can have symmetry-protected degeneracies; that is, the
surface anyons can have multiple internal states that are
degenerate with one another and that cannot be split
without breaking one of the symmetries. As a consequence
of this degeneracy, if we braid an anyon x around a defect
line a, then the resulting Berry phase can be non-Abelian
since the internal states of x can mix with one another. We
define the matrix U,(x) to be the (possibly non-Abelian)
Berry phase associated with this braiding process.

An important property of the U, (x) matrices is that they
obey the following relation [37,51]:

LU0 = exp (100t ., ) Uos(o). (66

Here, @*(a,b) denotes the vth component of w(a,b),
which we think of as an M-component integer vector.
To derive this relation, imagine we braid an anyon x around
a type-b defect line and then around a type-a defect line.
We can compute the Berry phase associated with this
process in two different ways. In the first approach, we
simply compose the two braiding processes, giving a Berry
phase U,(x) - U,(x). In the second approach, we fuse the
two defect lines together to form a type a + b defect line
together with an additional surface anyon w(a,b). The

Berry phase is therefore equal to eizwm’p(‘l’b)%u Ugyp (%),

where the first factor comes from the statistical phase
associated with braiding x around the anyon w(a,b).

Demanding consistency between these two calculations
gives Eq. (66).

With the help of Eq. (66), we can now derive the
connection between @ and {Qiﬂ,Qijﬂ,x’;l}. Let us start
by expressing €;, in terms of . Recall that ;, is defined
as the Berry phase associated with braiding a type-¢, anyon
around an e; gauge flux for N** times. Equivalently, given
the connection between gauge fluxes and defect lines, Q;,
is equal to the Berry phase associated with braiding a type-
€, anyon around a type-e; defect line for N i times.
Expressing the latter Berry phase in terms of the U,(x)

matrices, we derive
e = (U, (e,))N". (67)

Next, we express the right-hand side of Eq. (67) in terms of
by using Eq. (66) repeatedly:

. NW
(Ue,(€,))V" = exp <i22w”(e,~,ne,~)¢>ﬂy>. (68)
v n=lIl

Combining Egs. (67) and (68), we conclude that

N#

Q=Y a(e;.ne)d,. (69)
v n=I1

In a similar fashion, we can express €2;;, in terms of w.
First, we note that €;;, is equal to the Berry phase
associated with braiding a type-¢, anyon around a type-
e; defect and then around a type-e; defect and then around
the type-e; defect in the opposite direction and finally
around the type-e; defect in the opposite direction.
Expressing this Berry phase in terms of the U, (x) matrices
gives

e i = Uej(e;t)_lUe,-(eu)_erj(eu)Ue,-(eu)' (70)
As before, we can now rewrite the right-hand side in terms
of w to obtain

Q= Z[a}”(ej, e;) — (e, ej)](pm/- (71)

12

Finally, we need to express x/; in terms of @. Comparing
the expression for €;;, with the definition of x%,, Eq. (18),
we see that

iju

x’;, = ot(e; e;) — (e, e)). (72)

One can check that the expressions Eqgs. (69), (71), and (72)
are all invariant under the gauge transformation Eq. (63).

It is also possible to translate in the opposite direction;
that is, we can express @ in terms of {€;,, ;. x4} for a
particular gauge choice. However, we do not need this
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expression in what follows, so we do not write it down
explicitly. Instead, we only need the fact that Egs. (69),
(71), and (72) define a one-to-one correspondence between
{Q,. Qij,. ¥y} and {w € H*(G,A)}. We establish this
result in Appendix H.

C. Translating between the two types of bulk data

Next, we review how to compute the bulk data
{8;1,0;;,,0;,} for a group cohomology model with
4-cocycle v. This calculation was worked out in Ref. [38].
The result is

€% = H)(e]e e;. ne;) (73)

N

= [ tepmetoa o). 00

eOijrs = I—el <ek’ ¢ )

75
Zel,e[< ]’ek) ( )

where

Xe, (€D, C)ye (D, c.e;)
be) == ’ 76
){e,.e;( 7C) ){e](b’ei’c> ( )
and

Za(b.c.d) = v(b,a,c,d)u(b,c.d,a) -

v(a,b,c,d)v(b,c,a,d)’

Importantly, Ref. [38] showed that the bulk data
{8;/,0;;,,0;;,} uniquely distinguish every group coho-
mology model; in other words, the mapping between
{0©;1.9;;,.0;;,} and v is a one-to-one correspondence
(up to gauge equivalence).

D. Establishing the equivalence

With the help of the dictionaries described above, we are
now ready to compare the cohomology formula Eq. (61) to
the bulk-boundary formulas, Eqs. (30)—(32). Our strategy is
to translate Eq. (61) into three equations relating
{0,1.0,;,.0,;,} and {®,. ®,,.Q; Q. xi}. We then
compare these equations directly to Eqs. (30)—(32).

We begin with the equation for ©,; To derive this
equation, we first express ©; ; in terms of v using Eqs. (73),
(76), and (77):

N
0i®u — Hy(eiv ne;, e;, e)v(e;, e, ne; e;)
v(e;, ne; e, e;)v(e,e;, ne;, e;)

(78)

Next, we substitute Eq. (61) into the right-hand side. Since
the resulting expression is complicated, it is helpful to

separately evaluate the contributions from the R and F
symbols. We start with the contribution from the R symbol:

N, R
€i®” H w e;.e)m(e w(ne;.e;).0(e;.e) (79)
=1 R, (e,.e;).w(e;.ne; )Rw(ne,-,e,-),m(el.e,-)

Ultimately, we want to express the quantities on the right-
hand side in terms of the surface data {@ D, Q5

Q;;,, x4 }. However, rather than doing this immediately,
it is convenient to first use the identity [55]

w(ne;, e;) = w(e;, ne;) (80)
to rewrite the above expression as

Y Roe ) .oe, ne,) Roo

eie'f H w(e;.e;),
R

n=1 Nw(e.e;).w(e;.ne; )Rw(e ne;)w(e.e;)

(e;.ne;).w(e; ;) . (81)

We can then express the product of R symbols in terms of
®,, using

R R, = exp(—if,,) = exp (—in"y”(I)W), (82)

1

thus giving

¢®iu[R] —exp{ ;er @ (e, ne;)®, } (83)

where X!, = w*(b,a) — @*(a,b). Identifying X¢,, with
x4 [see Eq. (72)], and comparing with the expression for
Q;, Eq. (69), we derive

eiG),-,z [R} = exp (lz%xltllglﬂ> . (84)
u

Now consider the contribution from the F symbols,
¢'91[F). Since each of the v’s in Eq. (78) contributes 6 F’s,
the expression for ¢’®[F] contains 24 F’s. We need to
relate this product of 24 F’s to the surface data
{2, @, ,m,x”} To do this, we express each F
in terms of ®,, ®,, using Eq. (65), and then simplify the
resulting expression. After some straightforward but tedi-
ous algebra, we obtain

¢Ou[F] = exp{i;N,@M (X’é,.,e,)z}. (85)

Combining the R and F contributions and using the fact
that X¢, ¢, = x%;, we finally derive an expression for ©; :
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e®i = exp{iz %x’flgiﬂ + Ni(x’;l)zq)”}. (86)

At this point we can gee that the above expression for ©;
is identical to the bulk-boundary formula Eq. (30). In a
similar fashion, we can show that the formulas for ©;;; and
©;jx,; also match the corresponding bulk-boundary formu-
las Egs. (31) and (32). Since the expressions for
{8;1,0;;,,0;,} all match, we conclude that the coho-
mology formula Eq. (61) and the bulk-boundary formulas
Egs. (30)-(32) give equivalent constraints for the surfaces
of the group cohomology models.

VIII. CONCLUSION

In summary, we derive a bulk-boundary correspondence
for 3D bosonic SPT phases with finite unitary Abelian
symmetry group. Our correspondence relates the bulk
properties of these phases to the properties of their gapped
symmetric surfaces. This relationship is described by three
equations, Eqgs. (30)—(32), which express the bulk data
{0;1,0;;,,0;,} in terms of the surface data {®,, ®
iy, Qg X}

It should be possible to generalize our bulk-boundary
correspondence beyond the case considered in this paper.
For example, we make the simplifying assumption that the
surface supports only Abelian anyons. However, there is
reason to think that this assumption is actually unnecessary
—that is, the bulk-boundary formulas Egs. (30)—(32)
continue to hold even if the surface supports non-
Abelian anyons [56]. One piece of evidence for this is
the close connection between Egs. (30)—(32) and the
conjecture Eq. (61) of Ref. [20]. Indeed, the conjecture
Eq. (61) is believed to hold whether or not the surface
supports non-Abelian anyons, suggesting that our corre-
spondence should hold more generally as well.

Another natural extension of this work would be to
fermionic SPT phases. It is not hard to see that two of the
bulk-boundary formulas, Eqs. (31) and (32), generalize
trivially to the fermionic case since they do not involve
exchange statistics in any way. On the other hand, the formula
Eq. (30) likely needs to be modified since this relation makes
use of exchange statistics and topological spin.

An interesting direction for future work would be to
study bulk-boundary relations for 3D SPT phases with
gapless surfaces. A recent paper [57] proposed a bulk-
boundary correspondence in this context by considering
modular transformations on a three-dimensional torus; it
would be interesting to understand the relationship between
this correspondence and the bulk-boundary relations
derived in this paper.

Hv

ACKNOWLEDGMENTS

We thank M. Cheng and Z.-C. Gu for helpful discus-
sions. This work is supported in part by the NSF under

Grant No. DMR-1254741. Research at Perimeter
Institute is supported by the Government of Canada
through Industry Canada and by the Province of Ontario
through the Ministry of Economic Development &
Innovation. C.-H. L. acknowledges the funding from the
Canada Research Chair (CRC) program and the University
of Alberta.

APPENDIX A: SHOWING Q;, AND Q;, ARE

WELL DEFINED

1. Q;, is well defined

Recall that Q;, is defined as the Berry phase associated
with braiding a surface anyon X" around a vortex line a for
N times. Here, X is any surface anyon carrying unit type-
u anyonic flux, while « is any vortex line carrying unit type-
i gauge flux. The goal of this section is to show that this
definition is sensible, that is, (1) the above Berry phase is
Abelian and (2) the Berry phase does not depend on the
choice of X or a.

To establish these points, we analyze the above braiding
process using a diagrammatic technique. This diagram-
matic technique was originally developed for 2D anyon
systems; in order to apply it to our system, we imagine
folding the surface and straightening the vortex line « as in
Fig. 7. After doing this, we can view our system as two
dimensional, and we can view a and X as 2D anyons.
We will assume this quasi-2D point of view in what
follows.

While the diagrammatic method has sophisticated rules,
we only need a few ingredients in our proof. (For more
details about the diagrammatic method, see Ref. [47].) The
diagrams that we use are built out of lines and trivalent
vertices and are drawn in a (2 4 1)-dimensional space.
Roughly speaking, the lines represent space-time trajecto-
ries of 2D anyons with the arrow of time being upward,
while the vertices are where the anyons fuse or split. Each
diagram defines a complex number or matrix, which can be
interpreted as the quantum mechanical amplitude for the
process shown in the diagram. These amplitudes can be
evaluated using certain relations. What we need below are
the following two relations:

i/

Sl

:ua

(A1)

where @ is the antiparticle of an anyon a and u, is a
complex number associated with a, and
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FIG. 12. Diagrammatic proof that €;, is well defined.

(A2)

where n labels the states in the fusion space V¢, i.e., the
different ways to split ¢ into a and b.

With this background, we are now ready to establish
points (1) and (2) listed above. The main calculation is
shown in Fig. 12. We start with the diagram on the far left,
which shows a braiding process in which X is braided
around a for N** times. (The case N* = 3 is shown for
illustration.) The first equation follows from Eq. (Al),
while the second equation follows from Eq. (A2). Here, the
index Y runs over the different fusion products of X’ x X,
while the index g runs over the fusion products of ) x X.
Importantly, we know that ¢ must be a charge excitation,
since if we fuse X with itself N times, the resulting fusion
products are all charge excitations according to Egs. (16)
and (17). To derive the third equation, we note that the
mutual statistics between the charge g and the vortex a is
Abelian and is given by the Aharonov-Bohm law, i.e.,
exp(iq - ¢,); therefore, we can pass the charge g worldline
through the a worldline at the cost of introducing a factor of
exp(iq - ¢,). Moving on to the last equation, we observe
that in the fourth diagram of Fig. 12, the a worldline
is completely decoupled from X, but & still has some
“self-interaction.” This self-interaction may contribute a
complicated numerical factor to the amplitude, but no
matter how complicated it is, we can see that it depends
only on X, ), and ¢, and not on the fusion channel of X
and a. Therefore, after we perform the sum over ) and g,
we can group all the numerical factors into a single
complex number Cy 4 and thereby derive the last equation
in Fig. 12. We note that since the braiding process is
unitary, the constant Cy 4 must be a phase factor.

How does this calculation help us establish the two
claims (1) and (2)? The key point is that Cy , depends on
only X and a and does not depend on their fusion channel.
This means that the braid matrix associated with this
process is proportional to the identity matrix; i.e., it is
an Abelian phase. This establishes property (1). To

establish (2) we need to show that the phase factor
Cy g, is independent of the choice of X or a as long as
X carries unit type-u anyonic flux and a carries unit type-i
gauge flux. It is obvious that Cy 4 is independent of the
choice of a: to see that it is independent of the choice of X,
let X’ be another anyon that carries unit type-u anyonic
flux. We need to show that Cy , = Cy 4, . To prove this,
we use the fact that X’ can be obtained by fusing some
charge ¢ to X. Then, by the Aharonov-Bohm law, we have

Crg, = Crg, "N = Cuy,, (A3)
where the last equality follows from the fact that N# g, is a
multiple of 2.

2. Q.. is well defined

ijp

Recall that €2;;, is defined as the Berry phase associated
with the following process: a surface anyon X is first
braided around a vortex «, then around a vortex f, then
around « in the opposite direction, and finally around £ in
the opposite direction. Here, X is any surface anyon
carrying unit type-u anyonic flux, and a, f# are any vortex
lines carrying unit type-i and type-j gauge flux. Our goal is
to show that this definition is sensible, that is, (1) the above
Berry phase is Abelian and (2) the Berry phase does not
depend on the choice of X, a, or . As in the previous
section, we establish these claims using the 2D diagram-
matic technique; just as before, this 2D technique is
applicable even though our system is three dimensional
since we can fold the surface and straighten the vortex lines
as in Fig. 7 so that X, a, and # can be viewed as 2D anyons.

The main calculation is shown in Fig. 13. The diagram
on the far left shows the space-time trajectories of X, a, 8
during the above braiding process. The first equation
follows from the relation Eq. (Al), while the second
equation follows from the relation Eq. (A2), which we
apply to the two shaded regions shown in the second
diagram. Here, the indices ¢, g run over the fusion products
of X x X. Importantly ¢ and § can only be charge
excitations since all the fusion products of X x X’ are
charges according to Eqgs. (16) and (17). To derive the third
equation, we note that the Aharonov-Bohm law tells us that
the mutual statistics between ¢ and f3 is exp(iq - ¢b3), while
the statistics between ¢ and « is exp(iq - ¢, ); therefore, we
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can pass the g, ¢ worldlines through the 3, @ worldlines at the
cost of introducing factors of exp(iq - ¢4) and exp(—igq - ¢,,),
respectively. Moving on to the last equation, we note that in
the fourth diagram of Fig. 13, the a, f worldlines are
completely decoupled from X, but A still has some self-
interaction. By the same arguments as in the previous section,
the contribution from this self-interaction can be grouped
together with the other numerical factors into an overall
constant Cyy 4, 4. In this way, we derive the last equation in
Fig. 13. We note that since the braiding process is unitary, the
constant Cy 4 4, must be a phase factor.

We are now ready to prove the two claims (1) and (2). To
prove (1), we observe that Cy 4, does not depend on the
fusion channel between X, a, 5. This implies that the braid
matrix associated with this process is proportional to the
identity matrix; i.e., it is an Abelian phase. To prove (2), we
need to show that the phase factor Cy 4,4 ’ is independent
of the choice of &, a, or f as long as & carries unit type-u
anyonic flux and «, f carry unit type-i and type-j gauge
flux. It is obvious that Cyy 4, is independent of the choice
of a, p: to see that it is independent of the choice of X, let
X’ be another anyon that carries unit type-u anyonic flux.
We need to show that Cyr 4 = Cx 4, 4, To prove this,
we note that X” can be obtained by fusing some charge g to
X. Therefore, by the Aharonov-Bohm law, we have

Cx oty = Cug g€t baty

= CX,d)(,,d)/;' (A4)

This establishes claim (2).

APPENDIX B: PHYSICAL
INTERPRETATION OF x;

In Sec. III D, we give a physical interpretation of the
quantity x;; in terms of the thought experiment depicted in
Fig. 4. More precisely, we make the claim that [see Eq. (20)
in the main text]

Ev=Ev ="
fs=Eg =

© = Xils

= =X (B1)

where X, X, ... are the different surface anyons obtained
by shrinking the arch a in Fig. 4(c), while S, &', ... are the

Diagrammatic proof that Q;

_ =2 iqg-¢g—iq- _
= Z uy e o =Cx,60,65
a,q

ju 18 well defined.
different surface anyons obtained by shrinking the arch o.
In this appendix, we prove Eq. (B1).

The key step in our derivation is to consider a process in
which we braid a surface anyon F around the two vortex
arches shown in Fig. 4(b):

W= m (B2)
LD
f

v

Assuming that F carries unit type-u anyonic flux, what we
show is that the above process gives rise to an Abelian
Berry phase that is equal to Q;,. Equivalently, in more
formal language, we show that

ilu:

Wly) = e rly), (B3)
where |y) denotes the initial state at the beginning of the
braiding process.

Before we establish Eq. (B3), we now argue that it
implies Eq. (B1). To see this, notice that the above braiding
process W can be smoothly deformed into a process in
which F is braided around both ends of « in Fig. 4(c). The
latter process can then be deformed into a process in which
F is braided around the surface excitation obtained by
shrinking down a [see Fig. 4(d)]. Since the Berry phase
must remain unchanged during these deformations, it
follows that

rx|y) = eilrv

y) == Wly), (B4)
where X, X, ... are the different surface anyons obtained
by shrinking the arch a. At the same time, we can

straightforwardly compute the statistical phase 6, using
Egs. (14) and (13):

‘9]-')( - effglr - Z(éz\,’)yq)/w' (BS)
Similarly, we have
9.7:/\” = Z(&X’)”@ﬂl/’ (B6)

v
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and so on. Putting together Egs. (B3)—(B6), we derive

Z(gé\.’)y@ﬂv = Z(éé\.”)v@mx == Qilﬂ (mOd 2”)

v v

We conclude that

(fx)y = (52{’)” =

where x is the unique integer solution to

Zx?lq)/w = Qy, (mod 2x).

J— v
= Xip»

This establishes the first relation in Eq. (B1).

As for the second relation in Eq. (B1), this follows from
the fact that if we further fuse the two surface anyons in
Fig. 4(d), the outcome must be a charge excitation or the
vacuum; hence, S, &', ... etc. must carry opposite anyonic
flux to X, X, ... etc.

All that remains is to derive Eq. (B3). To do this, we
decompose W into simpler processes. In particular, let

W, = (B7)
j."
7\ U
v w9
7»‘/
(6% ag
f
With these definitions, we can see that
W= W;Wi'W,W,. (B10)

Next, we observe that W, and W, obey the commutation
relation

W' WiIW, W, = e @], (B11)
This relation follows from the definition of €;;,, where the
minus sign comes from the fact that F is braided around the

“incoming-flux” end of a, instead of the “outgoing-flux”
end (see Fig. 3).

In addition, we have the relation

WiWaly) = [w). (B12)
To see this, note that W3 W, describes a process in which F
is braided around both ends of a in the configuration shown
in Fig. 4(b). This braiding must give a trivial Berry phase
since we can deform the vortex arches from Fig. 4(b) back
to Fig. 4(a) by fusing together the ends of « and lifting « off
the surface, and this lifting process commutes with the
braiding of F.
Combining Egs. (B10)-(B12), we derive

Wly) = (WsWo) (W3 W WoWy)|y) = e fys).

Equation (B3) now follows immediately from the fact
that Qliﬂ = _Qilﬂ'

APPENDIX C: DERIVING EQ. (32)

In this appendix, we derive the bulk-boundary formula
Eq. (32). The derivation closely follows that of Eq. (31).

To begin, let us recall the braiding process that defines
©;jxi: first, we braid a loop a around a loop $3, then we braid
a around another loop y, and then finally we braid « around
f and y in the opposite direction. Here, a, f3, y are linked
with a base loop ¢ and the four loops carry unit flux of type
i, j, k, I, respectively; ie., ¢, = (27/N;)e;, ¢p=
(27/N))e;, ¢, = (2n/Ny)e, and ¢, = (27/N,)e,.

The first step of the derivation is to deform the above
process onto the surface using the same procedure as in
Fig. 5. After this deformation, @, f, y, 0 become vortex
arches, and the braiding process involves braiding the arch
a around the arch f, and then braiding a around y, and then
finally braiding a around f and y in the opposite direction.
By the same arguments as in Sec. VA, the Berry phase for
this new process must be the same as for the old one; that is,
it must be equal to O, ;.

In the next step, we split a into two excitations: a surface
anyon & and a vortex arch a. Similarly, we split § into an
anyon )Y and an arch B, and we split y into an anyon Z and
an arch y. Similarly to Sec. V B, we choose X, ), and Z to
be any anyons carrying anyonic flux

Sx = xu, &y = xj, Ez = xp, (C1)
while we choose a, B and y to be any arches with the
property that @ can be written as a fusion product of X and
a, and similarly for B, 7. This splitting is designed so that a,
B. 7 have a special property; namely, if we shrink these
arches to the surface, we get a superposition of charge
excitations rather than more complicated surface anyons.

At this point our braiding process involves braiding the
pair {a, X} around {f, Y}, and then around {7, Z}, and
then finally around {f,)} and {7,Z} in the opposite
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direction. Following the same notation as in Sec. V C, let
|w) denote the initial state at the beginning of the braiding,
and let U denote the braid matrix associated with this
braiding. Then, in this notation, the fact that the Berry
phase for this process is ©;;;; translates to the equation

Uly) = e@tfy). (C2)
Next, we write U as
U =U;'UT'U,U,, (C3)

where U, U, are the braid matrices corresponding to the
following processes:

We then further decompose U, U, into simpler processes.
In particular, define

U~ 2 = ] L] ] ]
. aﬁ y N CY
Usy = @ . . (O
a X B ¥ oz
U 2 — ] o [} 3 °
G ;@ y ¥ Z (c8)
Ury= o 4 . . (C9)
a X 3 vz
Usy = . (C10)

joN
e
Qe
e
AN

= o T . (C11)
a X B3 Y 2l
U 5 = . o ° o C12
YTA X 3y z (C12)
Uxz= - s e . (C13)
a X I5; vy

With these definitions, it is easy to see that

U1 — nyUXﬁUayU&B, (C14)

U2 = UXZUX?U&ZU&fl' (CIS)

Combining Egs. (C2) and (C3), we conclude that
eOmily) = (U UzzUspUrz) (U U U URY)
X (UxzUx3UazUs3)(UxyU;UayUs ) lw).
(C16)
The last step is to evaluate the expression on the right-
hand side of Eq. (C16). Our strategy is straightforward: since
every operator U appears along with its inverse U~!, we use
the commutation relations satisfied by these braid matrices to

bring each U and U~' next to one another and then cancel
each pair. These commutation relations are as follows:

UniUys = €M Up3Uss.  UgyUsy = €™ UzpUs;.
UaZU&BZEWBU&/}U&Z, UX/?U&/;’:elnAU&/?UX/}’

Uz Uay = ™ UsyUs5, UajUsz = " UszUs;,

(C17)
where
m = Zx’flgjkw = le;lgkiw
[ Il
=D Qe =) X
[ u
(C18)

s = Zx’;leiw e = Zx’;]gkiﬂ'
Iz Iz

All other pairs of the U’s commute with one another, with
the only exception being (Usy. U, ﬁ): this pair satisfies the
weaker commutation relation
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U&;‘/Ua/'}|‘//> = UaﬁU&;?|W>- (C19)
The derivations of Eq. (C17) are similar to those of
Egs. (46) and (47), which are given in Appendix E.
Likewise, the derivation of Eq. (C19) is similar to that
of Eq. (51).

Let us now use these commutation relations to derive the
bulk-boundary formula. Inserting these relations into
Eq. (C16), and commuting through the different U matri-
ces, we obtain

Ok =m + 1 +13. (C20)
If we now examine the definitions of 7, 15, 173, we see that
this is precisely the bulk-boundary formula Eq. (32).

Before concluding, it is worth pointing out that the
relations in Eq. (C17) are not as complicated as they appear.
In particular, these relations all share a common structure:
they all involve pairs (Uyy, Uxry) in which (1) three of the
four indices {X, Y, X’, Y’} are distinct, (2) two of the three
distinct indices are vortices @, B, 7, and (3) the remaining
distinct index is a surface anyon X, ), Z.

APPENDIX D: DERIVING EQ. (30)

In this appendix, we derive the bulk-boundary formula,
Eq. (30), for ®;,. For the purposes of our derivation, it is
helpful to separate the cases where N, is odd and N, is even.

The case where N; is odd is very simple: in this case, we
can express ©;; in terms of ®;; ; using the relation Eq. (10).
Making use of the bulk-boundary formula for ®;;; Eq. (31)
together with the constraints Eqs. (22) and (27), the
required formula Eq. (30) follows immediately.

Now consider the case where N; is even. To derive
Eq. (30) in this case, we recall the alternative definition of
0, discussed at the end of Sec. II B: ©;; is equal to (—1)
times the Berry phase associated with braiding a vortex
loop a around its antivortex @ for (N;/2) times while both &
and «a are linked to another vortex loop o. Here, @ and o
carry unit type-i and type-l flux, respectively; i.e.,
¢, = (27/N,;)e;, ¢, = (2x/N,)e,. (Note that this alterna-
tive definition is applicable only in the case where N,
is even.)

The first step of the derivation is to deform the above
braiding process onto the surface following the same
procedure as in Fig. 5. After the deformation, the vortex
loops @, @ become vortex arches, and the deformed braiding
process involves braiding the arch a around its “antiarch” @
for (N;/2) times [58]. By the same arguments as in Sec. V
A, the Berry phase for this process must be the same as the
original process; i.e., it must be equal to —0; ;.

Let us translate this statement into more formal language.
Following the notation of Sec. V C, let |y) be the initial
state at the beginning of the braiding, and let V be the braid
matrix associated with braiding @ around @ once. Then, the

fact that the Berry phase for our process is —0; ; translates
into the equation
VNP2 ly) = e Ouly). (D1)
To proceed further, we imagine folding the surface and
straightening the vortex lines as shown in Fig. 7. After
doing this, we then view the folded surface as a 2D
system—a 2D slab. This point of view is convenient
because it allows us to think about the braiding process
as one involving 2D anyons, so we can make use of the
powerful tools that have been developed for 2D systems.
In particular, using these tools, one can show that (see
Appendix F)

Vp) = e~ i5ay), (D2)

where s, is the topological spin of @ when viewed as a 2D
anyon. Putting together Egs. (D1) and (D2), we derive
i

1 — e27riN,-sa .

(D3)
Thus, our problem reduces to computing the topological
spin s,,. To do this, we split @ into two excitations: a surface
anyon A and a vortex arch a. We choose X to be any
surface anyon that carries anyonic flux £y = x;;, and we
choose @ to be any arch such that @ can be written as a
fusion product of & and X. As in the previous sections, this
splitting is designed so that @ has a special property: if we
shrink & to the surface, we get a superposition of different
charge excitations (instead of more complicated surface
anyons).
After this splitting, we apply the following result from
2D anyon theory:
R(,l\f&RgX — 62”1'(5(1—5&—Sx)i' (D4)
Here, R is the R symbol, so R%,. RS, describes the effect
of a full braiding of A around @ in the fusion channel a.
Comparing this relation with Eq. (D3), we derive
9 — eZﬂiN,-(s;,JrsX) (RK/&RZX)Ni- (DS)
Now we evaluate the terms on the right-hand side of
Eq. (D5). The quantity s, can be computed as

e27ri.\'(\» — eian

= eizu ()2, eizﬂqx’[’le.l{)m,’ (D6)
where the first equality follows from Eq. (15), and the
second equality follows from &y = x;; together with
Eq. (12). If we now raise this equation to the N;th power,
the second term on the right-hand side drops out since N ;x%;
is a multiple of N, and N, ®,, is a multiple of 2z according
to the constraints Eqs. (27) and (21). Thus, we obtain
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eeriN,vsX — eiZ”Ni(XJ:[)zq) (D7)

Next, consider the mutual braiding statistics term
(R%R%,)Ni. This term is given by

(Rgl('aRgX P= exp ( ZNW il ) (Dg)

according to Egs. (48) and (49), with i = j.

The final piece to compute is e>"Visz, We now argue that

this term is trivial:

eZn’iN,s;, = 1. (Dg)
To prove this, recall that a has a special property: if we
shrink @ down to the surface, we get a superposition of
charges rather than more complicated surface anyons. Let
—q be one of the charges that appears in this superposition,
and let & be another vortex arch obtained by fusing & with
g. Clearly &, like @, has the property that if we shrink it
down to the surface, we get a superposition of charges.
Furthermore, by construction, one of the charges that
appears in this superposition is ¢ = 0, i.e., the vacuum.
This means that if we shrink & down to the surface and then
apply a projection operator that projects onto the ¢ = 0
state, then we can annihilate & locally.

Let us think about this property of & in a geometry
where we fold the surface and straighten & as in Fig. 7.
Then, if we view our system as two dimensional, the above
property is equivalent to the statement that &' can be
annihilated locally at the edge of our system (where the
edge runs along the folding axis).

At this point, we use a general result about 2D systems:
any anyon excitation a that can be annihilated locally at a
gapped edge of a 2D system must have vanishing topo-
logical spin, s, = 0. This result was discussed in Ref. [59]
in the case where the anyon a has Abelian quasiparticle
statistics, but we expect that this result holds in the non-
Abelian case as well, and we assume this in what follows.

Assuming the above result, we deduce that s = 0. With
this identity, it is now simple to derive Eq. (D9). First, we
express s; in terms of sy:

ZmSaI _ eZm(s s )R(x R(x
aq gt

(D10)

Next, we note that the product Rg,qRZ&, describes a full
braiding of g around & and, therefore, is an Aharonov-
Bohm phase of the form e27i(integen)/Ni - At the same time, we
have s, = sz = 0. Making these substitutions, we con-
clude that s; must be a multiple of 1/N;, which
implies Eq. (D9).

The derivation is now complete: substituting Egs. (D7),
(D8), and (D9) into Eq. (D5), we derive the for-
mula Eq. (30).

APPENDIX E: SOME EQUATIONS FROM SEC. V

In this appendix, we establish several equations that we
use in the derivation of bulk-boundary correspondence. To
be specific, we prove the commutation relations Eqs. (46)
and (47), as well as the relations Egs. (48) and (49), which
involve taking the N%/th power of various braid matrices.

1. Commutation relations

To avoid repetition, we prove only the commutation
relation Eq. (46); the derivation of the other commutation
relation Eq. (47) follows similar arguments. We begin by
rewriting Eq. (46) as

WAW LW, W o = e 2o 1%,

(lﬁ xp (El)

Here, the braid matrices Waj; and W ; are defined as in
Egs. (40) and (41), while a, f are vortex lines carrying unit
type-i and type-j gauge flux, and X is a surface anyon
carrying anyonic flux x;;.

Next, we recall that braiding statistics is symmetric in the
sense that braiding X around Y is topologically equivalent
to braiding Y around X. This means that W,; = Wj, and
Wip = Wsa
suffices to prove

. Therefore, instead of proving Eq. (El), it

W3LWSL W3 Wiy = €21,

(E2)

To proceed further, we imagine splitting X into a
collection of more “elementary” surface anyons {X}}.
More specifically, we split X’ into {X;}, where each A7,
carries unit type-u anyonic flux. Here, the index u runs
from 1,..., M, while n runs from 1, ..., x%.

After this splitting, we decompose the process W B into
a sequence of subprocesses in which /} is braided around
each elementary anyon Xj. Translating this into algebra,
we obtain
where we use the abbreviation x = x//.

Given Eq. (E3), our task reduces to proving a commu-
tation relation involving the elementary anyons X:

w3 W/;X,,W Wi, = e, (E4)

Indeed, it is easy to see that Eq. (E2) follows from Eqs. (E3)
and (E4) since our decomposition X — {7/} contains x/,
anyons carrying unit type-yu anyonic flux.

To complete the proof, we now derive Eq. (E4). Consider
the following braiding processes:
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W")(n = ) °
B NG
Wy = = XA

Now consider the product W W, 7 We.can see that_this
product corresponds to a process in which a is braided
around # and A, as a whole. It follows that this product
commutes with W/), s since the two braiding processes do
not overlap. Therefore we derive

(W&X;} Wi /}) W/}Xﬁ = W/};v; (Wa/'\,’” Wa /}) (ES5)
At the same time, we have the relation

Wﬁ;lgn Wiy Wi Way = €l (E6)
which follows from the definition of €2;;, and the property
Wyxy = Wyx for any X and Y. Combining Eqgs. (ES5) and
(E6) and using W;; = Wj;, straightforward algebra
gives Eq. (E4).

2. Relations with N7th power

We now derive the relation Eq. (48), which we reproduce
below for convenience:

ij Nlj
(WX/})N = exp ( ZNJM leQ]M> (E7)

The other relation, Eq. (49), can be obtained in the same
way, so we do not discuss it here.

To begin, we recall that braiding is symmetric, so it
suffices to show that

Wi = o (15 o)1 @)

Next, we split X’ into elementary anyons {X;}, as in the
previous section. As before, each elementary anyon X7
carries unit type-u anyonic flux and the index y runs from
1,....M, while n runs from 1, ..., x/. .

We then decompose the process of braiding # around X
into a sequence of subprocesses in which f is braided
around each A. Translating this into algebra gives

Wix = Wiz Wi (E9)

where we use the abbreviation x = x//.

Next, we claim that W pa commutes with WﬂXm for
arbitrary n, m, u, v. To see ‘this, note that the following
identity holds by the same reasoning as Eq. (ES):

(WX;J’BWXTX;})WX;"[} —_= WXZ~ (WXmﬂWXan)
Furthermore, the mutual statistics of X7 and A7’ is Abelian
[see Eq. (14)], s0 Wynyy is proportional to the identity
operator. It follows that WX;"/}WXZ/? =W Xﬁ/;WX;,,/;,, SO

Wﬁx; and WBXZ’ commute.

Using the above commutativity property together with
Eq. (E9), we derive the relation
Nij N N

W~ij Ww.¥ ~"W~ij

px B, pxy, (E10)

To proceed further, we make use of the following result:

N : Q. A
Wik, = e,
H

(E11)
where 9 is some phase that depends only on S and y and
is independent of n.

Before establishing Eq. (E11), we now show that it
implies our claim, Eq. (E8). To see this, we insert Eq. (E11)
into Eq. (E10). Then using the fact that our decomposition
X — {A}} contains x/; anyons carrying unit type-u anyonic
flux, we derive

; N X
N . N
WAL = exp <12Mx’;,,9ﬁ#> 1. (E12)
"
At the same time, we know that
N — eiQu] (E13)

pan

by the definition of Q;,. Comparing Egs. (E11) and (E13),
we see that

N
Therefore, we can rewrite Eq. (E12) as
Nixt NJ# A
N __ . il 5
W/}X exp <’Z N Nj‘()/)’u)l
"
Nl] H
= exp < Z lel Q, ) (E15)

Here, in the second line, we use the fact that (Nx};/N/*) is
an integer which follows from the general constraint
Eq. (27) with a little algebra. This proves the claim,
Eq. (EB).
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All that remains is to derive Eq. (E11). To this end, we
observe that W{V;” is the braid matrix for a process in which
a vortex line 3 is braided around a surface anyon X’ W for N
times. This process is similar to the one discussed in
Appendix A 1, and we can use similar methods to analyze
it. In fact, we can essentially repeat the diagrammatic
computation shown in Fig. 12 with the substitutions
X>p a— X", and N¥ —> N;. The first equation in
Fig. 12 carries over without change. As for the second
equation, we note that if we fuse B with itself N ; times, the
only possible fusion products are surface anyons and
charges, since f carries gauge flux #; = (2n/N,)e;.
Therefore, in the second equation, the summation over
charges ¢ is replaced by a summation over surface anyons
and charges. The third equation also carries over with the
only modification being that the Aharonov-Bohm phases
exp(iq - ¢,) are replaced by the statistical phase between
these surface anyons or charges and X’,. The latter depends
on only the anyonic flux & X1 = €y but not on the anyon X

itself. The last equation also holds, since we can group all
the numerical factors into a single complex constant Cj .
€u

This constant must be a phase factor, since the braiding

process is unitary. Thus, we can write C;, = ¢ for
€5

some 19/;ﬂ. This establishes Eq. (E11).

APPENDIX F: DERIVING EQ. (D2)

In this appendix, we derive Eq. (D2), which we repro-
duce for convenience:

Vly) = e~ y). (F1)

Let us recall the meaning of the different symbols in this
equation: |y) is a particular state containing a vortex arch «
and its antiarch a, V is the braid matrix associated with
braiding a around @, and s, is the topological spin of a.
Here, the precise definition of s, involves folding the
surface and straightening the vortex lines as in Fig. 7. After
this folding and straightening, we view « as a 2D anyon and
we define its topological spin s, in the usual way.

To prove Eq. (F1) we use a special property of the state
|w). To explain this property, imagine fusing together the
two arches o and @. Since a and @ carry opposite gauge
flux, this fusion process annihilates the vortex arches in the
bulk, leaving behind a pair of surface excitations—one
excitation at each end of the arches. Next, imagine that we
fuse together the pair of surface excitations. The special
property of |y) is that this second fusion process yields a
superposition of charges rather than more complicated
surface anyons. To prove this property, recall that the state
|w) is constructed through a particular procedure: we take
two bulk vortex loops a and @, which are linked to a third
loop o, and then we absorb them into the boundary and
unwind ¢ as in Fig. 5. Now, notice that if we fuse the loops

a and @ in the bulk, i.e., before absorbing them to the
surface, then we get a superposition of charge excitations.
At the same time, it is not hard to argue that the deformation
to the surface cannot change this property. Putting these
two facts together, the above property of [y) follows
immediately.

To understand the implications of this property, imagine
that we fold the surface and then view a and o as 2D
anyons, as shown in Fig. 7. We can then think of the a x @
fusion process from a 2D point of view. Clearly, the
different fusion outcomes are of the general form
C = (X,Y), where (X,)) denotes an excitation with a
surface anyon X" on the bottom surface and ) on the top
surface (see Fig. 14). In this setup, the above property of
lw) is equivalent to the statement that

$x+6y=0, (F2)

for any of the possible fusion outcomes C.

Equation (F2) is useful because it implies that all the
fusion outcomes C = (X,))) have vanishing topological
spin; that is,

sc =0. (F3)

To see this, note that C is the fusion product of X' = (X, 1)
and )" = (1,)). Therefore, using a formula from the
general algebraic theory [47] of anyons, we have

ei2nsci _ €i2”<SX+sy0p>Rg(yopR3C}opX, (F4)

where RSy, RS 5, describes a full braiding of X' and )P in
the fusion channel C. Let us compute the different terms on
the right-hand side. We have

Sy = Séx, (FS)

by Eq. (15). Similarly,

Syop = —8y = —Sgy = —S_gy = —SSX, (F6)

where the first equality follows from the fact that the
anyons on the top and bottom surfaces have opposite
statistics, the third equality follows from the relation
s, = s_,, and the last equality follows from Eq. (F2). At
the same time, it is clear that RGw RS = 1 since X and

oW

fuse

£

FIG. 14. Fusing vortex a and its antivortex a. The resulting
doublet (X, )) is viewed as a single anyon from the 2D slab point
of view.

X

Ql > —
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VP live on different surfaces and therefore must have
trivial braiding statistics with one another. Combining all
these results, Eq. (F3) follows immediately.

Once we have Eq. (F3), we can easily derive Eq. (F1).
Indeed, for each of the possible fusion outcomes C, we
have

C pC _ ,i27(sc—sq—55)T
Rz R =e a=Sa [

_ e—4m‘sa7’ (F7)

where in the second line we use the fact that s = 0 and
s, = sz. Since this equation holds for all possible fusion
outcomes of |y), we immediately derive Eq. (F1).

APPENDIX G: CONSTRAINTS ON THE
SURFACE AND BULK DATA

In this appendix, we derive the constraints Eqs. (23)—(26)
on ;, and Q;;,. We also discuss the relationship between
these surface constraints and previously known constraints
on the bulk data.

1. Constraints on Q;, and €,
In the main text, we claim that the surface data satisfy the
constraints Egs. (23)-(26), which we reproduce here for

convenience:

N, Q, =0 (mod2r), (G1)
Nij;lgij/t =0 (mOd 277:), <G2)
Qij,u + le'” = O (m()d 271'), (G3)

Q,, =0  (mod2x). (G4)

We now prove these constraints.

To establish Eq. (G1), it suffices to show that N ,Q;, =0
and N;Q;, = 0. To prove N,Q;, = 0, imagine braiding a
vortex «, carrying unit type-i gauge flux, around a
composite of N, identical anyons X, each carrying a unit
type-u anyonic flux. Imagine further that we perform this
braiding N* times. We can compute the resulting statistical
phase in two different ways. In the first approach, we note
that the fusion product of N, anyons X yields a super-
position of charge excitations, so the statistical phase must
be 0. In the second approach, we decompose the braiding
process into a sequence of elementary processes in which a
is braided around each X" individually. From this alternate
point of view, it is not hard to see that the total statistical
phase is given by N,€;,, since each X" contributes a phase
of ;. Comparing these two calculations, we conclude that
N,Q;, = 0. Similar reasoning shows that N;Q;, = 0, thus
proving Eq. (G1).

The proof of Eq. (G2) is similar to Eq. (G1), so we do not
present it here. As for Eq. (G3), this follows from the fact
that the braiding process associated with Q;, is identical to
the process associated with €;;,, but performed in the
reverse direction.

Finally, we need to show Eq. (G4). To this end, consider
a state containing an anyon X/, a vortex a, and its antivortex
a. Suppose that X carries unit type-y anyonic flux, while «
carries unit type-i gauge flux. Let us fold the surface and
straighten the vortex lines as in Fig. 7, and imagine braiding
a around X and then around @, and finally around X" and &
in the opposite direction. We define the operators V,, and
V & as braiding a around X and @, respectively. Then, the
braiding process is algebraically given by the commuta-
tor V;EIc V;)lc- VaEVaX-

To derive Eq. (G4), we evaluate this commutator in two
different ways. In the first approach, we let the commutator
act on an initial state |y) that satisfies the condition that if
we shrink a and @ into the surface, we obtain a super-
position of charges. Therefore, Eq. (D2) is applicable; i.e.,

Jn>

Valw) = e ¥ sely).

In addition, it is clear that the state V,y|w) satisfies the
same condition as |y), and therefore we also have

V{I(_l V(1X|l//> = 6_4””" V(1X|W> .

Combining the above two relations, we immediately derive

VaVaxVaaVaxly) = ).

In the second approach, we compute the commutator using
the same arguments that we use to derive Eq. (46).
Proceeding as in that derivation, a straightforward calcu-
lation shows that the commutator is equal to e *%u].
Comparing the results from the two approaches, we deduce
that Q;;, = 0.

in

2. Relationship with constraints on bulk data

Reference [38] shows that, in the case of the group
cohomology models [7], the bulk data satisfy the following
constraints (modulo 27):

0, =20, (G5)
0ij1 = 0ji), (G6)
Niji©;j; =0, (G7)
Nil®i,l = Ov (GS)
Nijl Nijl Nijl
WGW + We)jl,i + WQH,/‘ 0. (G9)
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Nil
Vi(ai,l +0,,=0, (G10)
0, =0, (G11)
Oijks = SE0(P)O(i)p(j)p(k).5(1): (G12)
0, =0, (G13)
Niju®ijrs = 0. (G14)

Here, p is a permutation of indices i, j, k, [ and sgn(p) is its
signature. In addition, Ref. [38] proved the converse
statement; that is, every solution to these constraints can
be realized by a group cohomology model.

Interestingly, one can check that the bulk data defined by
the bulk-boundary correspondence Eqs. (30)—(32) auto-
matically obey the constraints Egs. (G5)-(G14) as long as
the surface data obey the constraints Eqs. (21)—(29). The
proof is a straightforward mathematical exercise.

APPENDIX H: EQUIVALENCE BETWEEN

{Q,,.Q;,} AND {w € H*(G.A)}

In this appendix, we show that the mapping defined by
Egs. (69) and (71) is both injective and surjective. That is,
we show that this mapping gives a one-to-one correspon-
dence between the elements {®w} of H*(G,A) and the
values of the surface data {Q;.Q;;,} that obey the
constraints Eqgs. (23)—(26).

To show the mapping is injective, we begin by counting
the elements in H*(G,A). According to the Kunneth for-
mula [7],

1H(G.A) = [[zv, [[ 2w, (HI)
i

i<j.p

where G = [[X, Zy, and A =[[})L, Zy,. Therefore, the
number N of elements in H>(G, A) is equal to

N = HN,-ﬂ 1TV
ip

i<j.p

(H2)

Given this counting, we can establish injectivity if we can
show that the image of the map defined by Eqs. (69) and (71)
contains N distinct values of {Q;,.Q,;,}. To this end,
consider the following class of 2-cocycles w € H*(G, A),
parametrized by integers p;, and p;;,:

u Piv lepi v
[0 (Cl, b) = ZVI(CZI + b[ - [Cli + bl]) + ;Tﬂjalb}
(H3)
(Here, a, b € G.)Itis not hard to check that Eq. (H3) satisfies
the 2-cocycle condition Eq. (62). Inserting Eq. (H3) into
Egs. (69) and (71), we obtain

piN
Q;, = Z#q)uw
12

(pi jv p‘iu)Ny
N

P iju

(H4)

uv

By varying p;, and p;;,, itis easy to see that we can obtain \/

distinct values of {€;,,€;;,}. This proves that the mapping
given by Eqs. (69) and (71) is injective.

To prove that the mapping is surjective, it suffices to
show that there are only A values of {Q;,,Q;;,} obeying
the constraints Eqs. (23)—(26). The latter result can be
established straightforwardly by constructing the most

general solution to these constraints.
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Here, it is important to distinguish between strictly 2D
systems and surfaces of 3D systems. In the context of
strictly 2D systems, the data {F,,.,R,,,o € H*(G,A)}
needs to be supplemented by an additional piece of
information, namely, an element of the cohomology group
v € H3(G,U(1)) [36,37,47]. However, we believe that this
additional piece of data is unnecessary for characterizing
surfaces of 3D systems, at least if one defines the notion
of “topologically equivalent” surfaces in an appropriate
manner.

The fundamental reason that this absorption or annihilation
is possible is that the surface is symmetric by assumption.
This symmetry guarantees that the bottoms of the vortex
loops can be annihilated at the surface using local unitary
operators.

The reader may worry that the ambiguity in defining defect
planes is fundamentally different from that for defect lines
due to their larger dimensionality. This is not the case. If we
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compare two defect planes that correspond to the same
group element a, they can differ at most by the attachment of
a pointlike surface anyon that lies at the intersection of the
end of the defect planes and the surface, since the bulk is
short-range entangled.

This identity follows easily from the cocycle condition
Eq. (62).

Here, we assume that the definitions of the surface data can
be modified appropriately so that these quantities remain
well defined whether or not the surface supports non-
Abelian anyons.

X. Chen, A. Tiwari, and S. Ryu, Bulk-Boundary Corre-
spondence in (3 + 1)-Dimensional Topological Phases,
arXiv:1509.04266.

One subtlety is that, depending on how the deformation is
performed, the arch obtained from the loop @ may or may
not be the “antiarch” of that obtained from a. However, we
can always design our deformation so that this property
holds.

M. Levin, Protected Edge Modes without Symmetry, Phys.
Rev. X 3, 021009 (2013).
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