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DEVICE, EXPERIMENTAL SETUP AND TECHNIQUES2

The flip-chip device, setup and techniques used for this experiment are strictly identical to [1], except that the3

data shown in this paper were acquired in a separate cool-down of the cryostat used for the experiment (base4

temperature < 7 mK). A full wiring diagram and a description of the room-temperature set-up may be found in5

Ref. [2]. The fabrication description is given in Ref. [3]. The circuit is shown in Fig. S1. Compared to Ref. [1], we6

note a 5% shift in the nominal values of the Josephson junctions of the two tunable couplers, as well as an overall7

reduction of the coherence times of the qubits.8

For this run, we implemented in addition a three-state dispersive readout. Each qubit readout resonator is a9

λ/4 resonator inductively coupled to a λ/2 Purcell filter. A 500-ns microwave tone is applied at resonance with10

each qubit readout resonator and the transmitted signal is successively amplified by a traveling-wave parametric11

amplifier [4], a high-electron mobility transistor amplifier, and a room-temperature amplifier, before homodyne12

mixing and recording the integrated value of the quadrature amplitudes I and Q. To estimate the fidelity of13

the preparation and readout of each state, we successively prepare each qubit in |g〉, |e〉 or |f〉 and repeat each14

measurement 4000 times. The state-dependent dispersive shift of the readout resonator allows us to attribute a15

sector of the IQ plane to each state, enabling us to identify the qubit state from any single-shot readout based on16

its recorded I and Q values. These calibrations also determine the fidelity of each state readout, which are all17

above 90%, see Table S1. Data shown in Fig. 3 and Fig. 4b in the main text are corrected for readout errors using18

this calibration.19

To perform a delayed-choice quantum eraser test, we modified the Q1 measurement procedure to fit within a20

phonon round-trip time, by shortening its readout pulse from 500 ns to 200 ns. When performing a two-state21
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Figure S1. Electrical circuit. Elements in blue are the qubit equivalent circuits, in red the variable couplers and the inductive

couplers between the qubit sapphire chip and the acoustic lithium niobate chip, and green the interdigitated transducer (IDT)

for phonon emission and capture.
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Figure S2. Qubits Q1 (a) and Q2 (b) single-shot readout using a 500-ns readout pulse. Dots indicate the coordinates in the

IQ-plane of each integrated integrated readout pulses for the 4000 measurements realized after preparing each qubit either in

|g〉 (blue), |e〉 (red) or |f〉 (green). This calibration allows us to assign any given measurement to the ground, excited or second

excited state, as separated by the black lines in the IQ plane. Corresponding fidelities are given in inset.

readout, this decreases the visibility of Q1’s |e〉 and |g〉 states to 81%.22

RELAXATION RATES AND CIRCUIT MODELING23

In this section, we describe the modeling and the measurements of the relaxation rates when one qubit (Q1) is24

maximally coupled to the IDT, and the other qubit is disconnected (coupler 2 turned off), see Fig. 2 in the main25

text. For a given qubit frequency, the operating points are determined by (1) maximizing the coupler-induced26

frequency shift on the qubit, (2) maximizing the other qubit relaxation time. We prepare the qubit in |e〉 or |f〉 by27

the successive application of resonant π pulses and measure the qubit state populations after a varying amount of28

time t during which coupler 1 is open. The measurements realized on Q1 for the two operating points described in29

the main text are shown in Fig. S3.30

A weakly anharmonic transmon- or xmon-style qubit is expected to have decay rates very similar to a harmonic31

oscillator [5], with the population of the |e〉 and |f〉 excited states evolving as32

Ṗf = −κefPf − κgfPf (S1)

Ṗe = −κgePe + κefPf , (S2)
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Figure S3. (a-b)Q1 energy decay rates are extracted for its first two transitions, κge and κef at two operating points, ωge/2π =

3.95 GHz (panel a) and ωge/2π = 4.15 GHz (panel b). The decay rates are fit from the exponential decay of Q1’s state

populations after excitation to |e〉 (|f〉), see top (bottom) panels. Dashed lines are the fits described in the text. (c) Extracted

Q1 energy decay rates when including a direct two-phonon relaxation from |f〉 to |g〉 with rate κgf .

where κef = 2κge and κgf = 0. Here, due to the IDT response, we measure a very different behavior.33

We first make the assumption that κgf = 0, as this two-phonon relaxation is expected to be exponentially34

suppressed for a transmon [5]. To determine the rates κge and κef , we start by fitting the decay from |e〉 after35

excitation to |e〉 with a single decaying exponential for all qubit frequencies. We only consider times past the36

transient on-set of the coupler (t ≥ 3 ns) and prior to any re-excitation of the qubit by the phonons reflected off the37

mirrors (t < 500 ns) when within the mirrors’ bandwidth. We also fix the steady-state populations by measuring38

the qubit population without any microwave excitation. This fit determines κge.39

We repeat the same single decaying exponential fit for the decay from |f〉 after excitation to |f〉, determining40

κef . The |e〉 population evolution after excitation to |f〉 is modeled by Eq. S2 using the two fitted rates. The41

resulting fits are shown in Fig. S3 for the operating frequencies ωA and ωB defined in the main text for Q1, and42

agree very well with the data. The frequency dependence of κge and κef is shown in Fig. 2 of the main text.43

We now consider the possibility of a two-phonon relaxation process, under the hypothesis that it could be44

strongly enhanced due to the frequency dependence of the IDT [6]. The two-phonon relaxation is expected to be45

maximal when ωge − |α|/2 matches the IDT central frequency. We fit the population evolution from |f〉 using a46

two-parameter fit and keeping κge as given by fitting the decay from |e〉 after excitation to |e〉. The result is shown47

in Fig. S3c. The extracted κgf reaches a maximum of 1/30 ns. At the operating frequencies of the main text, ωA48

and ωB , the ratio κgf/κef is below 10%. The uncertainty of this determination is also quite large when κef is large49

- more than 50% whenever κef/2π 6 20 MHz. We thus conclude that even if this process occurs, it is negligible50

in our experiment.51

We attempted to model the frequency-dependent relaxation rates using a circuit model for the qubit-coupler-IDT

system. The IDT is modeled using a coupling-of-modes model [7], taking into account the internal reflections oc-
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curring between the electrodes of the IDT, thus allowing us to infer the IDT admittance as a function of frequency,

see Fig. S4a. For reference, we also study the ideal case of an uniform transducer with no internal reflections,

where the IDT admittance is given by

Ya(ω) = iC0ω +Ga(ω) + iBa(ω), (S3)

where C0 is the IDT electrical capacitance, Ga(ω) the IDT conductance given in the main text, and Ba the IDT52

susceptance related to its conductance by an Hilbert transformation Ba(ω) = Ga(ω) ∗ [−1/πω]. We then derive53

the equivalent impedance Z(ω) for the circuit shown in Fig. S1 looking into terminals A-B for qubit Q1 (or C-D54

for qubit Q2). We extract the circuit resonant frequencies by looking for the zeros of Z(ω) in the complex plane.55

Ignoring losses in the IDT (by setting Re[Y (ω)] = 0), we identify three modes: the qubit, the IDT series reso-56

nance, and the mode created by the IDT capacitor and the couplers’ inductance networks. We then re-evaluate the57

frequencies of these modes in the presence of IDT loss. To extract the qubit relaxation rate and its anharmonicity,58

we approximate the circuit near the qubit resonance ωq as an RLC series circuit, with effective parameters59

Leff = 2/Im[Z ′(ωq)], (S4)

Ceff = 1/(Leffω
2
q ), (S5)

Reff = Re[Z(ωq)]. (S6)

The qubit relaxation rate κge = 1/T1 is then given by T1ωq = Q, where the qubit quality factor is given by

Q =

√
Leff/Ceff

Reff
. To evaluate the anharmonicity, we split the effective qubit inductance Leff into its non-linear part,

arising from the qubit SQUID inductance Lq(φq), and its linear part Leff − Lq(φq). The anharmonicity is then

given by [8]:

α = − e2

2Ceff

(
Lq(φq)

Leff

)3

. (S7)

Finally, the relaxation rate from state |f〉 is given by κef = 2/T1,ef where T1,ef × (ωq + α) = Qef and Qef is60

evaluated considering the following updated circuit parameters:61

Leff,ef = 2/Im[Z ′(ωq + α)], (S8)

Ceff,ef = 1/[Leff,ef(ωq + α)2], (S9)

Reff,ef = Re[Z(ωq + α)], (S10)

Qef =

√
Leff,ef/Ceff,ef

Reff,ef
. (S11)

To obtain the model relaxation rates shown in Fig. 2 of the main text, we use the parameters listed in Table S162

as input parameters. The non-design parameters were calibrated as follow: The qubit capacitance was adjusted to63

reproduce the qubit anharmonicity and the qubit SQUID inductance was adjusted to reproduce the measured qubit64
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Figure S4. (a) Conductance (orange) and susceptance (green) for a 20 finger pairs uniform IDT, with no internal reflectivity

(dashed lines) and a small reflectivity (solid lines). (b) Energy decay rates κge (blue) and κef (red) extracted for the electrical

circuit considered in Fig. S1, as detailed in the text, considering a non-reflective transducer (dashed lines, r = 0,M = 0.23 pH)

and a small amount of internal reflections (solid lines, r = 0.009j,M = 0.21 pH). The mutual coupling between the two chips

was adjusted to reproduce the height of the κge peak. (c) Induced qubit anharmonicity for both types of transducers. The error

in κef seems to arise from an overestimate of the anharmonicity.

bare frequency. The couplers’ Josephson junction inductances were calibrated using the qubit frequency shift in-65

duced by the coupler, with the qubit tuned at a non-zero emission point for the IDT. The mutual inductive coupling66

between the two chips was calibrated using the qubit-qubit direct electrical coupling (∼ g/2π = 1.1 MHz) at a67

non-zero emission point for the IDT. The SAW velocity for the IDT was adjusted to match the frequencies of the68

two zero emission points. Finally the IDT reflectivity r is an imaginary free parameter, whose value is expected to69

be small (|r| . 1%) for a 30-nm-thick aluminum transducer fabricated on a 128◦Y −X lithium niobate wafer [7].70

The IDT internal reflectivity (r = 0.009i) and the mutual inductance (M = 0.23 pH) between the chips are71

adjusted to match as closely as possible the κeg curve. As can be seen in Fig. 2 of the main text, this model can72

reproduce qualitatively the κeg rates, but only roughly matches the κef measured rates, with a significant 50-MHz73

discrepancy for the κef maximum. Tuning the parameters of the IDT (capacitance and reflectivity) and of the74

coupling circuit (mutual inductance between the flip-chips and the couplers’ junction inductances) does not give a75

better agreement.76

By comparing the model derived using the simple symmetric IDT admittance given by Eq. S3, see Fig. S4, we77

see that most of the asymmetry of the κeg curve is actually due to the coupling of the qubit to the IDT, and not78

to the internal reflections of the IDT. This can be understood as the Lamb shift induced on the qubit [6] when79

coupled to the IDT, which is related to Ba(ω) [6] and which also induces a frequency dependence for the qubit80

anharmonicity when coupled to the IDT.81
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NUMERICAL MODELING82

In this last section, we address the numerical modeling of the quantum eraser experiment, as well as the transfers83

from Fig. 3 in the main text. In the quantum eraser experiment, the system comprises two qubits (Q1 and Q2 and84

the itinerant wavepackets corresponding to the phonons A and B.85

We model the qubits as anharmonic oscillators with bosonic creation operators ŝi. Their non-interacting Hamil-

tonians in the frame rotating at the frequency of phonon A is given by

H0,i/~ = ∆iŝ
†
i ŝi + αiŝ

†
i ŝ
†
i ŝiŝi, (S12)

where ∆i is the detuning of qubit i with respect to phonon A and αi its anharmonicity. We also define the qubit86

matrix element operators ŝge,i = |g〉〈e| and ŝef,i = |e〉〈f | to take into account transition-dependent effects.87

The itinerant wavepackets are modeled as bosonic modes. To accurately describe the emission and capture of the88

phonons, and model the evolution of the populations in these itinerant bosonic modes, we use the theory derived89

in [9]. Each interaction of the qubits with the acoustic channel requires the use of two wavepackets: an input90

wavepacket and an output wavepacket. As we wish to model four interactions (the half-emission (or the herald91

emission) and the half-phonon capture (or the herald capture) for phonon mode A (or B)), we only need to consider92

six wavepackets: First, ain(t) (bin(t)), the input acoustic field that interacts with qubit Q1 during the phonon A93

(B) emission at time te,A (te,B). Second, art(t) (brt(t)) is the acoustic output field describing the result from the94

interaction of ain(t) (bin(t)) with the qubit and contains the emitted phonon A (B). This field will then be used as95

input for the second interaction with the qubit after it completes one round-trip during the capture process. Third,96

the field cout(t) (bout(t)), the acoustic output field containing the phonon resulting from this second interaction.97

According to [9], bosonic annihilation operators can be used to describe the quantum state contained in these98

wavepackets, defined as99

ŵ =

∫
w(t)uw(t)dt, (S13)

where the functions uw(t) describe the wavepacket envelopes and are normalized such that
∫
|uw(t)|2dt = 1.100

To describe the interactions of the qubits with the acoustic channel during the quantum eraser experiment, we101

thus use six bosonic creation operators, three (âin, ârt, and âout) for the half-phonon and three (b̂in, b̂rt, and b̂out)102

for the heralding phonon. We note that ârt and b̂rt correspond to what we call phonons A and B in the main text.103

In the frame rotating at the phonon A emission frequency, the stationary Hamiltonian of the system is

H0/~ =
∑
i=1,2

H0,i/~ +
∑

i=in,rt,out

∆b,ib̂
†
i b̂i (S14)

where ∆b,i is the detuning of phonon B with respect to the frequency of phonon A.104
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The interaction of the sub-system comprising one incoming bosonic mode âx and one outgoing bosonic mode

ây interacting with one of the qubits at time t, either on its g-e or e-f transition, ĉ = ŝge,i or ĉ = ŝef,i, at the

coupling rate κi(t) set by the coupler, is described by this master equation:

ρ̇(t) = − i
~

[ρ(t), Ĥ(t)] + L̂0ρL̂
†
0 −

1

2
{L̂†0L̂0, ρ(t)}, (S15)

where the Hamiltonian Ĥ(t) is given by

Ĥ/~ = Ĥ0/~ +
i

2

(√
κi(t)g

∗
in(t)â†xĉ+

√
κi(t)gout(t)ĉ

†ây + g∗in(t)gout(t)â
†
xây − h.c.

)
, (S16)

and the Lindblad operator is given by

L̂0(t) =
√
κi(t)ĉ+ gin(t)âx + gout(t)ây. (S17)

In the above equations, the coupling coefficients are given by105

gin(t′) =

√
κc√

1 + e−κct′
, and (S18)

gout(t
′) = −

√
κc√

1 + eκct′
, (S19)

using the cosecant wavepackets from the experiment.106

We simulate the total evolution of the system using four consecutive integrations of Eq. S15. In addition,107

we include the action of qubit decoherence and acoustic losses by including the following Lindblad dissipation108

operators:
√

1/T1ŝi for the intrinsic qubit relaxation,
√

1/Tφŝ
†
geŝge and

√
1/Tφŝ

†
ef ŝef for the qubit decoherence109

for the g-e and e-f transitions, with 1/Tφ,ge|ef = 1/T2,R,ge|ef − 1/(2T1), and
√
κaâ,

√
κbb̂ for the acoustic losses,110

with κa and κb defined to match the round-trip transfer efficiency ηa = e−κaτ and ηb = e−κbτ . The qubits’ XY111

drives are modeled using HD/~ = β(ŝie
iωdt + ŝ†ie

−iωdt), where β is adjusted to give the measured rotation.112

We perform these master equations simulations using QuTip [10], with the control sequences defined in Fig. 3113

and 4 of the main text as inputs. The model input parameters are given in Table S1. The extracted populations are114

shown in Fig. 3 and 4 of the main text, corrected for readout errors only in Fig. 4b, and giving good agreement115

with the measured data.116
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Qubit parameters Qubit 1 Qubit 2
Qubit bare frequency (GHz) 4.86 ∼ 6

Qubit capacitance (fF) 100 100
SQUID inductance (nH) 10.4 7.0
Qubit anharmonicity (MHz) -179 -188
Qubit intrinsic lifetime, eg transition, T1,eg,int (µs) 18 18
Qubit intrinsic lifetime, ef transition, T1,ef,int (µs) 11 11
Qubit Ramsey dephasing time, eg transition, T2,ge,Ramsey (µs) 1.2 0.8
Qubit Ramsey dephasing time, ef transition, T2,ef,Ramsey (µs) 0.4 0.4
|f〉 state readout fidelity 0.93 0.92
|e〉 state readout fidelity 0.97 0.95
|g〉 state readout fidelity 0.99 0.99

Tunable coupler parameters Coupler 1 Coupler 2
Coupler junction inductance (nH) 1.19 1.24
IDT grounding inductance (design value) (nH) 0.4 0.4
Coupler grounding inductance (design value) (nH) 0.4 0.4
Mutual coupling inductance between IDT and coupler (nH) 0.21 0.21

SAW resonator parameters Free space Mirror Transducer
Aperture (µm) 75 75
Wave propagation speed (km/s) 4.034(2) 3.928(2) 3.911(2)
Wave propagation losses (Np/m) 70(10) - -
Number of cells 400 20
Pitch (µm) 0.5 0.985
Reflectivity -0.049i(5) 0.009i(2)
Metallization ratio 0.58 0.58
Effective mirror-mirror distance (µm) 2029.6
Free spectral range (MHz) 1.97

Table S1. Device parameters for the two qubits, parameters related to the interdigitated acoustic transducer (IDT), the tunable
couplers connecting each qubit to the SAW resonator, and the SAW resonator itself.
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