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Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with
only one designed folding motion inevitably contain an exponential number of “distractor” folding
branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the
ground state in a glassy energy landscape with an exponential number of other attractors of higher energy,
much like in models of protein folding (Levinthal’s paradox) and other NP-hard satisfiability (SAT)
problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully
chosen creases. We show that seeding successful folding in this way can be understood in terms of
subpatterns that fold when cut out (“folding islands”). Besides providing guidelines for the placement
of active hinges in origami applications, our results point to fundamental limits on the programmability of
energy landscapes in sheets.
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I. INTRODUCTION

Single-degree-of-freedom (d.o.f.) mechanical structures
are attractive in a range of fields, as almost any force will
actuate that specific designedmode.Much like an umbrella or
a folding chair, such “self-folding” structures can be reliably
deployed even in uncertain environments with unreliable
actuation forces. This principle has found wide use in kinetic
or deployable architecture, heart stents, microelectromechan-
ical systems (MEMS), sensors, and robots on a range of
length scales [1–4]; recently, self-foldingorigami has become
a popular framework for such applications [5–10].
The self-folding approach is similar in spirit to other

bottom-up methods such as self-assembly of particles [11]
and self-folding of polymers [12]; these methods exploit
careful programming of interactions to allow for careless
actuation at deployment. However, in these other self-
actuating frameworks, the interactions needed for the
desired assembly or folding inevitably create many other
“distractor” states (e.g., kinetic traps in self-assembly
[13–15] or in protein folding [12,16,17]), necessitating
more care at deployment than one would naively expect.
Here, we show that it is difficult to fold self-folding

origami (a thin sheet precreased to allow only a single
folding motion) because of a similar inevitable proliferation
of distractor folding branches. The distractor branches,
shown schematically in Fig. 1, meet at a bifurcation at the

flat state, but they are dead ends since they are of zero
energy only to linear order. The number of distractors
grows exponentially with the size of the sheet, and
consequently, most spatial distributions of folding forces
will actuate a distractor [Figs. 1(c) and 1(d)]. As a result,
despite having only one extended d.o.f., self-folding crease
patterns require multiple actuators placed at carefully
chosen spatial locations for successful actuation.
We trace the origin of distractors to frustrated loops of

vertices, each of which can fold along one of two branches.
Such frustrated loops create a glassy energy landscape for
the sheet around the flat state, i.e., a landscape with an
exponential number of local minima corresponding to the
distractors. Material properties are expected to modify the
precise details of this landscape, yet will not change its
fundamental glassy nature. Successful folding must be
seeded by actuation at a carefully chosen set of creases that
picks out the ground state of the glassy landscape, much
like with protein folding [17–20] and other satisfiability
problems [21]. We find that the spatial arrangement of
actuators needed can be understood heuristically in terms of
unfrustrated “folding islands,” the largest subpattern con-
taining a given actuated crease that will fold when cut out
of the full pattern.
In this way, our work shows fundamental limits to the

programmability of self-folding sheets due to an inevitable
glassy landscape of undesired states. In conjunction with
similar limits in other bottom-up approaches like self-
assembly [11] and self-folding polymers [12], our work
adds to a common picture of glassiness intrinsic to bottom-
up methods based on frustrated and disordered interactions,
independent of the details of specific implementations.
In addition, our results provide a practical means of
understanding where to place active creases. For example,
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in hydrogels or shape memory alloys, one must choose the
active hinges; our theory predicts which combination of
hinges would be successful and even predicts that some-
times, adding a new active crease (aiding in the right
direction) to an existing successful actuation can in fact
prevent folding.
Our results on glassiness and the difficulty of physically

folding origami superficially resemble earlier works, such as
Bern and Hayes’s classic result on nondeterministic poly-
nomial (NP) hardness of flat-foldability [22] and others
[6,23–25]. However, Bern and Hayes focused on the order-
ing of folds in multistage folding, also investigated later in
Refs. [26–28]. Here, we focus on self-folding sheets with a
single temporal stage. More significantly, many earlier
works [22,25] concern the computational difficulty in
finding consistent global mountain-valley assignments
(e.g., “forcing sets” [23,24]), while our work concerns
whether the physics of folding can find a desired global
mountain-valley assignment, taking into account physical
effects such asmechanical advantage and energy landscapes
that play no role in these earlier works. A recent work [29]
considers similar actuation questions for single vertices and
simple loops of vertices; in contrast, we use an energymodel
and focus on statistical results for large quadrilateral meshes
with an exponential number of distractors.

II. RESULTS

A. 4-vertex and chains of 4-vertices

When a vertex with n creases is folded, the n dihedral
fold angles ρi, i ¼ 1;…; n are related by three equations
[30]. Thus, n-valent vertices with n ≤ 3 will be com-
pletely rigid, while vertices with n ≥ 5 have multiple
d.o.f. 4-vertices are of special interest as they have
precisely one d.o.f.
However, a crucial caveat to this Maxwell counting is

that only two of the three vertex equations are independent
when the vertex is laid out flat [29] (i.e., unfolded).
Consequently, it was shown [31] that a generic 4-vertex
has two distinct folding branches that meet at a bifurcation
at the flat state (Fig. 2).
To see this quantitatively, we follow Tachi’s use of

rotation matrices [32,33] to derive three constraint equa-
tions Taðρ⃗; θ⃗Þ ¼ 0, a ¼ 1, 2, 3, associated with the vertex,
where ρ⃗ are the fold angles at creases and θ⃗ are the in-plane
angles between creases (see Appendix B). We expand
the constraints Ta in a series in ρi about the flat state ρ⃗ ¼ 0

as Taðρ⃗Þ ¼ Ci
aρi þDij

a ρiρj þ � � � (where repeated indices
are summed over). Configurations that violate these con-
straints will have Taðρ⃗Þ ≠ 0 and we can associate an energy
EVertex ≡P

aT
2
a with these configurations. See Appendix B

for more discussion on alternative choices of energy.
Such an energy of a general vertex configuration scales

as ∥ρ⃗jj2. However, Ci
a has rank 2, giving a two-dimensional

space of zero modes in the linear approximation about the
flat state ρ⃗ ¼ 0. The energy scales as ∥ρ⃗jj4 for folding
modes in this linearized null space (with no bent faces).
Figure 2(b) shows the energy for folding modes within the
linearized null space as we fold to larger angles. We see that
two special folding brancheswithin the linearized null space
have zero energy to all orders. Thus, a generic 4-vertex
has a full two-dimensional vector space of zero modes at the
flat state in a linear approximation, but only two one-
dimensional branches of zero energy upon nonzero folding.
This is consistent with Maxwell counting, as one constraint
is redundant at, but only at, the flat state.
The two folding branches differ qualitatively in the sign

of their fold angles. Both branches satisfy the following
rule [34,35]; three of the four creases must fold in a
common orientation (say, valley fold) with the final odd-
one-out crease folding the other way (mountain fold). The
final odd-one-out crease can be either one of the two
creases whose neighboring angles add to less than π; see
Fig. 2(a). This discrete choice gives rise to the two
branches. Note that the two creases capable of being the
odd one out are always adjacent.

B. Branch selection through mechanical advantage

When external folding torques τi, i ¼ 1…4, are applied
to the creases of a 4-vertex and released, the vertex will
relax into one of the two branches [Fig. 2(a)] with
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FIG. 1. (a) Structures designed with only one folding motion
(“mechanisms”) are thought to be easy to control since any
applied force not exactly perpendicular to that motion will actuate
it. (b) However, if a mechanism has a branched d.o.f. (bifurca-
tion), the applied force (green) must make a smaller angle with
the desired branch than with the undesired branch. (c) We show
that programming a stiff sheet with one folding motion inevitably
creates an exponential number of other dead-end distractor
branches that are of zero energy only to linear order. The applied
force needs to be highly aligned with the desired folding motion
in order to avoid the distractors. (d) Consequently, we must
actuate multiple creases in a carefully selected combination
(green) to successfully fold a self-folding crease pattern.
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corresponding folding angles ρ⃗α, α ¼ 1, 2. In the linear
regime ∥ρ⃗∥ ≪ 1, using our energy model [Eq. (1)] we find
that computing the normalized dot product between the
applied vector of torques (“applied force”) τ⃗ and the folding
angles ρ⃗α of the two branches identifies the actuated
branch; the vertex will relax into the branch with higher
dot product τ · ρ⃗α=∥τ⃗∥∥ρ⃗α∥. This rule is equivalent to a
selection based on mechanical advantage; when one crease
is actuated, the vertex folds into the branch in which that

crease’s folding is larger relative to other creases (i.e.,
contributes more to the norm ∥ρ⃗α∥).
Our mechanical advantage rule is based on a model

energy landscape where the angular bisector of the two
branches separates their attractor basins. In real material
vertices, the dividing line between the attractors might be
closer to one branch than the other (Appendix C); such
complications do not change our results qualitatively.
In contrast, the authors of a recent work [29] assumed
that actuation might fail if the applied force has a positive
dot product with any other available branch. In such a
model, even applied forces perfectly aligned with a branch
may be classified as incapable of evoking that branch, in
contrast to energy-landscape-based models.
Our mechanical advantage rule can be restated as a

heuristic in terms of mountain-valley (MV) choices. In
either folding branch, the crease with odd-one-out MV state
and its transverse crease fold less than the other pair of
creases that share a common MV state [29] (To see this
intuitively, consider the limiting case in which all in-plane
angles are nearly 90 degrees and the vertex folds in half
along one pair of creases with the same MV state; the other
pair of creases barely fold at all.)
Combining this observation with the dot product rule, we

conclude that when a single crease is actuated, the vertex
will choose the branch in which the crease transverse to the
control crease will fold with the same MV state [Fig. 2(c)].
This branch-picking rule is easily extended to chains or

trees of vertices, as long as no loops are present. If we
actuate at one select crease at a vertex in this chain, we can
determine the branch choice at that vertex using the above
rule and thus the MV state of all creases at that vertex. Any
neighboring vertex is actuated by the creases connecting
them. In the absence of loops, there is only one path from
the controlled vertex to any other and hence the mode-
propagation rule unambiguously determines the branch
choice at each vertex [Fig. 2(d)].
In this way, for any given actuated crease, the branch

selection and propagation rule unambiguously selects one
branch out of the 2N bifurcated folding branches of an N
vertex chain. Thus, at least with idealized materials, a
choice of branch can easily be made in the loopless case.
In contrast, we will now show that patterns with loops, even
if made from idealized materials, are intrinsically difficult
to fold.

C. Loops of vertices create glassy energy landscapes

If 4-vertices are connected around a loop, we can no
longer make an independent choice of folding branch
at each of the vertices. For example, for a loop of four
4-vertices like that in Fig. 3(a), we can make independent
branch choices for three of the vertices—say, for V1, V2,
and V3—which puts them in one of their zero-energy states
[red or blue points in Fig. 3(b)]. The final vertex’s folding
branch is then completely determined because the states of

FIG. 2. Bifurcations for vertices and chains of vertices. (a) A
single vertex has two distinct folding branches, in which three
creases form amountain fold (black line) and one becomes a valley
fold (magenta), or vice versa. The distinct branches are identifiable
by the odd-one-out crease that folds opposite to the rest, with the
two choices marked by blue and red lines. (b) The two branches
meet at a bifurcation at the flat state. Φ1 andΦ2 correspond to the
two eigenvectors of folding angles that span the two-dimensional
null space of the vertex. Given a folding amplitude (e.g.,
∥ρ⃗∥ ¼ 0.1), we blow out the energy of any configuration on a
circle of that radius, with two clearly identified zero-energy
configurations (and their negatives). (c) When a selected crease
is actuated, the vertex chooses the branch in which that actuated
crease folds more relative to other creases (rule of mechanical
advantage). Since the odd-one-out crease and its transverse crease
tend to fold less than the other crease pair, the odd-one-out crease is
generally adjacent to the actuated crease. (d) When N vertices are
linked together into an open-ended chain, the chain can fold in 2N

different folding branches. Given an actuated crease, the resulting
MV data can be predicted by applying the branch selection rule of
(c) to vertices in sequence, as each successive vertex is actuated
through the crease linking it to the prior vertex.
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two creases at V4 are already determined (namely, creases
V3 − V4 and V4 − V1). Generically, the resulting state for
V4 will not be of zero energy [36] [red dots in Fig. 3(b)].
We thus find that the resulting folding branch is of nonzero
energy, unlike for chains of vertices.
Such thin sheet configurations with nonzero energy will

also show face bending. We add a stiff face diagonal to each
inner face in a crease pattern with face stiffness parameter
κf (see Appendix B for more details, specifically on the
balance of stretching and bending). The energy model of a
generic configuration with loops thus becomes

E≡ EVertex þ EFace ¼
X
a

T2
a þ

1

2
κfρ⃗

2
f; ð1Þ

where ρ⃗f are the face bending angles.
Going through the 23 ¼ 8 independent branch choices

for V1, V2, V3 (which then determine the state of V4), we
should expect to generically find eight branches of nonzero
energy. In fact, these folding branches are of zero energy to
quadratic order but of nonzero energy at next order; i.e.,
the energy of these branches scale as κρ4 with κ ≠ 0.
In contrast, κ ¼ 0 for all the 2N folding branches of a chain
of vertices. To gain more intuition about these branches and
their energies, we fixed the overall folding magnitude ∥ρ⃗∥

for a single four-loop and computed the energy as a
function of the angular directions in ρ⃗ space. A two-
dimensional projection is shown in Fig. 3(c), where each
branch shows up as a local minimum with depth propor-
tional to κ. (See Appendix B for more details, including
accounting for finite face bending and stretching energies at
different ∥ρ⃗∥.)
Thus, we find that loops of vertices have a glassy folding

energy landscape, much like a spin network with frustrated
loops [37], and unlike trees or chains of spins.
A desired branch’s energy can be made arbitrarily low or

even zero to all orders in folding by fine-tuning in-plane
angles using “loop” equations [38,39]. While the design
process can make a desired folding branch be the ground
state of the landscape, it does not change the glassy
attractor structure shown in Fig. 3(c); see Appendix A
(Fig. 6) for comparison. Different actuated creases initialize
the folding process in different parts of the glassy land-
scape; folding then involves flowing downhill to a local
minimum. Hence, actuating a desired branch in such a
landscape can be difficult in the presence of a multitude of
distractor branches.

D. Large patterns: Number, attractor size of distractors

Large patterns made of many 4-vertices contain many
loops and the number of distractor branches grows rapidly.
We generated quadrilateral meshes of random geometry
made of

ffiffiffiffi
A

p
×

ffiffiffiffi
A

p
vertices, folded each mesh with random

applied forces τ⃗, and allowed it to relax into a local energy
minimumuntil nomore newminimawere discovered. In this
way, we determined the following landscape properties:
(a) The total number of distinct branches Nbranches for a

given quadrilateral mesh grows exponentially with the size
of the mesh, with the precise number of minima depending
on the distance ∥ρ⃗∥ from the flat state at which folding is
stopped [Fig. 4(a)].
The increase in the exponential number of minima with

folding distance arises because of the well-studied relation-
ship between stretching and bending in thin sheets [39–41].
As discussed in Appendix B, close enough to the flat state,
face bending and stretching energies are comparable. In this
regime, as suggested by Fig. 3(a), choosing the states of
three vertices around the loop strongly constrains the state
of the fourth vertex. As one folds more, face bending
becomes less expensive than stretching for thin sheets.
Consequently, constraints on the fourth vertex weaken,
revealing a larger (but still exponential) number of branches
at larger ∥ρ⃗∥, as shown in Fig. 4(a).
Note that while our numeric results unambiguously show

exponential growth for all the ∥ρ⃗∥ shown in Fig. 4(a), we
find that the precise form cannot be numerically determined
with confidence, despiteNbranches varying over 2.5 orders of
magnitude. Note that in the limit of free face bending, our
self-folding mesh is transformed into the fully triangulated
patterns studied recently in Ref. [42].

FIG. 3. Loops of vertices give rise to a glassy landscape. (a)–(b)
When a chain of vertices is closed by adding a final vertex, the
resulting branches are no longer of zero energy. For example, if
vertices V1, V2, V3 are at one of their two zero-energy states (red
dots), V4’s folding state is constrained since the folding states of
creases V1 − V4 and V3 − V4 are already set. The resulting
energy for V4 is generically not zero (red dot for V4). We
computed the energy in the four-dimensional linearized null
space at a fixed norm ∥ρ⃗∥. (c) The heatmap and surface plot show
a two-dimensional projection onto the two top eigenvectors Φ1,
Φ2 in the linearized null space.
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(b) The attractor size of each distractor branch (taken to
be the fraction of random actuation forces that actuate the
branch) is generally small; see Fig. 4(b). The largest
attractor for the 4 × 4 mesh sampled is only ≈15%; i.e.,
only 15% of random torques will actuate that branch. Most
branches have far smaller attractor basins. The typical
attractor size is expected to drop sharply with A. Data for
small patterns up to A ¼ 64 suggests a power law depend-
ence of the mean attractor size.

E. Actuation of large loopy patterns

How many creases need to be actuated—and which
ones—to pick the desired branch in a landscape with an
exponential number of other minima? Such landscapes
arise in diverse areas of physics for the same reason—
frustrated disordered interactions—and are often referred to
as “complex” or “glassy” [12,17,21,37,43].
To answer this question for self-folding origami, we

study a random pattern with a chosen branch, shown in
Fig. 5(a). Since the crease locations at which folding
torques are applied can be better controlled than the precise
magnitude of torques in many applications [1], we applied
folding torques of fixed magnitude to different randomly
selected subsets of creases. The applied torques were
always of the correct sign (mountain or valley) needed
at that crease for the chosen branch. As seen in Fig. 5(b),
actuators are needed on 18 out of a total of 60 creases to
have a 50% probability of folding the pattern.
For applications where the precise torque magnitudes

can be controlled in addition to location (as explored
recently in [29]), we must characterize how closely the
applied vector of torques must align with the folding angles

of the desired branch (see Fig. 1). We present such results
on dot products in Appendix D.
Requiring a large number of actuators or precise control

of torque magnitudes defeats the purpose of designing a
single-d.o.f. mechanism; it is hard to call a system requiring
such delicate control “self-folding”.
How then can self-folding origami be folded with a

minimal number of actuators? A lesson can be drawn from
similarglassy landscape searchproblems inmodels of protein
folding (e.g., Levinthal’s paradox [17,19,20,44]) and related
NP-hard satisfiability (SAT) problems [21,45] that vary from
the traveling salesman problem to Sudoku [46]. A common
element in these satisfiability problems is that random
seeding of the search for the global minimum leads to
repeated backtracking after reaching local minima, both in
the context of computer algorithms (as the Davis–Putnam–
Logemann–Loveland (DPLL) algorithm for k-SAT [21]) or
for physical dynamics (as in protein folding) [45]. However,
careful seedingof the search—e.g., if the right boxes are filled
in first in Sudoku [46] or if the right parts of the protein
are folded first—can greatly reduce or even eliminate
backtracking [21] before reaching the global minimum.
Correct seeding is even more important for origami since

folding is assumed to happen at “zero temperature” (e.g.,
without any noise or fluctuations). As a result, the structure
cannot backtrack out of a local minimum as in the case of
nonzero temperature SAT problems [45].

F. Folding islands

To understand the role of frustration and seeding in the
origami context, we must consider both the branch selec-
tion rule and the effect of loops. Even in the absence of
loops, when an actuated vertex is folded into its desired
branch, the MV state propagated to a target vertex, as
shown in Fig. 2(d), can disagree with the desired folding
branch at the target vertex and thus fold it incorrectly.
The situation is complicated by the presence of loops

since a target vertex can be reached from a control crease by
multiple paths. The mechanical advantage heuristic applied
to different paths, which reach a particular vertex from
different directions, may not be consistent. For example,
different paths might imply different folding branches for
the target vertex. Thus, in the presence of loops, the
mechanical advantage heuristic (or any other such path-
based heuristic) is not sufficient for folding all vertices into
desired branches.
As a result, while a designed folding branch guarantees a

globally consistent configuration of vertex branch choices
[e.g., blue dots in Fig. 3(b)], such a global configuration
may be difficult to reach using the local MV propagation
rule in Fig. 2(c) from a single actuator. Hence, successfully
folding a large pattern in a desired branch can require
actuating multiple creases at the same time.
A clue to finding good sets of actuators is seen in Fig. 5(c):

When actuated at a single crease, the obtained (undesired)

FIG. 4. Large patterns have an exponential number of branches
(i.e., minima) of decreasing attractor size. We characterized the
landscape by sampling random quadrilateral meshes of size up to
A ¼ 81 vertices and folded each one with random torques until
no new stable branches were found [κf ¼ 10−6; see Eq. (1)].
(a) Quadrilateral meshes show an exponential number of distinct
folding branches (i.e., local minima) in their energy landscape;
the precise scaling depends on the total extent of folding ∥ρ⃗∥,
reflecting the relative importance of bending and stretching
energies (Appendix B). (b) The size of attractor basins around
different branches for a fixed pattern does not exceed 15% of
the total space for a 4 × 4 mesh.
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branch is generally “localized,” where folding amplitudes
near the actuated crease are larger than those far away from it.
This suggests that globally desired foldingmight be achieved
with cooperative local actuators, each of which fold their
local neighborhoods correctly.

To find the number of actuators needed for successful
actuation of a desired branch, we identify unfrustrated
subpatterns called folding islands. We define the folding
island of a crease (with respect to a desired folding branch)
as the largest contiguous region of the pattern that will fold

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

FIG. 5. Spatial distribution of actuators determines folding success. (a) A 4 × 4 quadrilateral mesh pattern, with their designed soft
branch indicated by line colors (black for mountain, red for valley). (b) If standard actuators are placed on randomly chosen creases of
the pattern, at least 18 actuators (∼30% of creases) are needed to have a 50% chance of successful folding. (c) If just one crease is
pressed, the resulting branches typically have a decreasing folding magnitude for creases away from the actuated crease. (d) The folding
island of a crease is the largest subpattern that folds correctly when cut out from the full pattern and actuated at that crease. The area of
the union of folding islands (UFI) relative to the entire pattern provides a simple design heuristic. (e) Actuated crease sets with UFI < 1
generally do not successfully fold the pattern while (f) actuators with UFI ¼ 1 are successful. (g) However, successful actuation can
sometimes be ruined by actuating an additional crease (orange) with a small folding island. (h) Actuated crease sets of a given size are
dramatically more likely to fold successfully if their UFI ¼ 1 (green) rather than UFI < 1 (red). (i) Using the data in (b), we find that UFI
is a sharper predictor of success than the number of actuators. (j) Folding islands also explain a counterintuitive effect where successful
actuation can sometimes be ruined by actuating an additional crease (orange) with a small folding island. The obtained branch is
different than the designed one primarily in creases close to the “bad” actuator (thick lines).
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in the desired branch, if that region is cut out and actuated at
the chosen crease. For computation of the folding islands,
see Appendix E. Figure 5(d) shows that folding islands for
different creases can vary greatly in size and generally do
not cover the whole pattern. While folding islands can be
approximately deduced using the simple MV propagation
rule in Fig. 2(c), the exact shape depends on the precise
in-plane angles.
These considerations suggest a heuristic necessary con-

dition for a set of actuated creases to fold a pattern; the
union of their folding islands should cover the whole
pattern. If not, as in Fig. 5(e), when folding reaches the
boundary of a folding island, folding will jam in a high-
energy distractor branch as vertices outside the union of
islands will fold incorrectly. On the other hand, the two
actuators shown in Fig. 5(f), whose folding islands together
cover the entire pattern, successfully fold the pattern.
Folding islands provide a new perspective on why

randomly placed actuators [Fig. 5(b)] were poor at folding
the pattern. In Fig. 5(h), we went through the different
actuated crease sets used in Fig. 5(b) and computed the area
of theunionof folding islands (whichwedenoteUFI, defined
as the fraction of all creases belonging to the union) for
each set. We see, for example, that a set of five actuators is
60× more likely to fold the pattern if it has UFI ¼ 1 rather
than UFI < 1. Similarly, Fig. 5(i) shows all the data in
Fig. 5(b), but plotted against UFI instead of the number of
actuators. These results show the union of folding islands,
and thus, spatial placement of actuators is a much better
predictor of folding success than the number of actuators (We
find a few cases of successful actuation, e.g., at UFI ¼ 0.8
when the folding islands cover most vertices.) In particular,
the conditionUFI ¼ 1 eliminates many spatial arrangements
of actuators that are nearly guaranteed to fail.
Folding islands also shed light on a counterintuitive

phenomenon shown in Fig. 5(g). While the two actuators in
Fig. 5(f) can successfully fold the pattern, adding another
actuator with a very small folding island, as in Fig. 5(g), can
stop the previously successful folding. Figure 5(j) shows
the resulting undesired branch, which is different than the
desired branch in the bold creases. Thus, the interaction
between the green and orange actuators leads to misfolding,
mostly in proximity to the orange actuator (just outside of
its small folding island), consistent with the falling influence
of actuators with distance as shown in Fig. 5(c). Such effects
reduce the probability of success in Fig. 5(g) when UFI ¼ 1

to be less than 1. Predicting these subtle competitions
between different control creases requires knowledge of
the precise in-plane angles of the pattern, and we are unable
to formulate a strictly necessary and sufficient condition for
successful folding without full pattern information.
Nevertheless, identifying the folding islands provides a
useful design heuristic to greatly reduce the number of
actuators needed, as seen in Figs. 5(h) and 5(i). See
Appendix E for more on how folding islands can be

incorporated into an algorithmic framework for actuator
placement that is vastly more feasible than blind search
(experimental or in simulations) through all combinations of
actuators.

III. DISCUSSION

Sheets with crease patterns designed to exhibit exactly
one folding behavior are nevertheless difficult to fold. We
traced this difficulty to the fact that stabilizing one folding
behavior using frustrated interactions between binary d.o.f.
(bifurcated origami vertices [30,31]) inevitably stabilizes
an exponential number of other distractor behaviors,
i.e., a complex or glassy landscape [43]. Thus, our results
establish fundamental limits on the programmability of
energy landscapes for sheets, paralleling similar limitations
in other bottom-up approaches such as self-assembly of
particles [11] and self-folding of polymers [12], as well as
classic NP-hard satisfiability (SAT) problems [21,45].
Self-folding with real materials can introduce other

complications, specific to those realizations, that make
folding more difficult than described in our paper. In
Appendix C, we explore several other models of self-
folding sheets, incorporating stiffness of creases, variable
bending vs stretching energy of sheets using COMSOL, and
manufacturing error in crease placement. We find that the
statistical properties of the glassy landscape remain
unchanged. Thus, our work points to a fundamental glassy
difficulty that is intrinsic to self-folding, reliant only on
frustrated interactions between bifurcated 4-vertices—and
hence must be faced by any material realization.
We saw that many actuators are needed to successfully

fold self-folding sheets, if their locations are randomly
chosen. However, carefully choosing the set of actuated
creases can reduce their number dramatically. We inter-
preted successful combinations in terms of unfrustrated
subpatterns called folding islands that successfully fold
when cut out of the full pattern. The connection to protein
folding and other NP-hard problems drawn here suggests
other ways forward, including temporal staging, folding
funnels, and chaperoned folding [12,21].
Recent self-folding origami applications vary greatly in the

materials used and in actuationmechanisms for active hinges,
including electric [1], optical [47], thermal [48], and chemical
(pH) [49] methods. In many applications, energy can be
selectively input to specific creases, e.g., by controlling the
electric current to shape-memory polymer hinges [27,50] or
light input to hydrogels [36]. Our work suggests which
combinations of creases should be given energy input for
successful folding, even showing how adding an actuator can
ruin successful folding [Fig. 5(h)].Going beyond self-folding
patterns, our considerations also apply to each temporal stage
of multistage sequential folding patterns [26–28].
The folding difficulty described here and the resulting

need for careful actuation mathematically applies only at
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the flat state; but since the energy barriers between
branches grow more slowly with folding for a softer sheet,
careful actuation needs to be maintained until a larger
folding angle for soft sheets.
Recent experiments on controlled repeated crumpling

and extension of sheets suggest an inability to refold along
existing creases, leading to the formation of new creases
[51]. While the 4-vertex patterns studied here are not good
models of crumpled soft paper with significant face
bending, our results do suggest that the difficulty of
refolding a crease pattern, and thus the propensity to create
new creases, grows with the softness of the sheet and when
unfolded closer to the flat state.
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APPENDIX A: DESIGN OF FOLDING BRANCHES
AND THE ENERGY LANDSCAPE

An origami pattern containing loops made of 4-vertices
inevitably has many folding branches of finite energy. For a
generic pattern of some particular topology (e.g., a “quad”
made of four 4-vertices in a loop), the folding branches
have nonzero energies distributed over a wide range when
folded with the same magnitude ρ≡ ∥ρ⃗∥ [Fig. 6(a)].
However, all these energies scale as E ∼ ρ4, since the
folding branches are within the null space of the linear part
of the expression for energy.
For many applications, one requires softer folding

branches that can be folded to a nonlinear extent (large
ρ) with a small input energy. Designing such soft folding
branches can be accomplished by fine-tuning in-plane
angles using loop equations [38,39]. The process entails
picking a branch and modifying the geometry of the pattern
to make that branch gradually softer. Each successive loop
equation, when solved exactly, changes the scaling of the
folding energy for the designed branch,

Eðρ⃗Þ ∼ ρ2þ4n; ðA1Þ

where n loop equations are solved in sequence.
We can thus design a specific branch of the pattern to be

as soft as needed, but what becomes of all the other folding
branches of the pattern? We find that the other branches, for
which no loop equations are solved, remain qualitatively

the same. Their number in general does not change, and
neither does their energy. As their energy still scales with
ρ4, we are left with a distinct energy landscape, where the
one designed branch is qualitatively softer than all of the
rest [Fig. 6(b)]. We thus call the other branches distractors,
as they correspond to high-energy minima in a glassy
landscape, with energy much higher than the ground state
(i.e., the designed branch).
A remarkable fact about the distractor branches is that

they do not have to comply with single-vertex rules. One
might find a distractor branch in which a few vertices have
“illegal” (non-Kawasaki-Justin) configurations, e.g., four
valleys or mountain, two valleys or mountains, etc. Clearly,
vertices with such configurations must contribute to the
energy of the entire pattern, but they can do so within the
linearized null space of the pattern. It is notable that all
designed soft branches must be “legal” at the single vertex
level. The energy of any configuration containing illegal
assignments for any vertex scales at least as E ∼ ρ4.

APPENDIX B: ENERGY AND VERTEX
CONSTRAINTS

A single 4-vertex has two zero-energy folding branches
that extend to arbitrary overall folding magnitude ∥ρ⃗∥.
These modes cost no energy as the corresponding choices
of ρ⃗ exactly satisfy the vertex constraints.

FIG. 6. Energy landscape of a quad loop pattern at a fixed
norm of folding angles ∥ρ∥. (a) A generic quad loop pattern
has three to seven folding branches seen as minima in the
energy landscape. Left: Heat map. Right: Corresponding three-
dimensional surface. Generic minima have energies that scale as
E ∼ ρ4. (b) By solving loop equations [38,39], we can design one
specific folding branch to be qualitatively softer than all others
(identified as the much deeper minimum). The rest of the
branches retain their original energy scaling and thus become
distractors in the energy landscape.
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Vertex constraints are derived for any closed vertex by
considering a condition such that the vertex does not tear
open when folded [32,33]. A small disk surrounding the
vertex configuration is defined by the folding angles ρi and
the in-plane angles between the creases θi. One can “walk
around” the edge of the disk around the vertex and
eventually return to the same point only if the vertex is
not torn anywhere. Thismotion around the vertex consists of
rotating with the θi angle about the central axis of the vertex
and then rotating about the dihedral angle ρi until one returns
to the original position. If one orients the current vertex face
such that the face occupies the xy plane and the crease is on
the x axis, these two rotations can be expressed as [32,33]

Ri ¼

0
B@

1 0 0

0 cos ρi − sin ρi
0 sin ρi cos ρi

1
CA

0
B@

cos θi − sin θi 0

sin θi cos θi 0

0 0 1

1
CA:

ðB1Þ

In general,Ri ¼ AiBi, where Ai is a rotation matrix about
an axis along crease i by angle ρi, while Bi is a rotation
matrix about an axis perpendicular to face i by angle θi.
The condition that the vertex is not torn becomes

Y
i

Ri ¼ I; ðB2Þ

where the product is taken over all creases and faces i, and I
is the 3 × 3 identity matrix. Equation (B2) can be shown to
be equivalent to three independent equations for the off-
diagonal upper matrix. Crucially, these are three nonlinear
constraints relating the folding values ρi around the vertex.
A 4-vertex is a one-d.o.f. object, as three equations relate its
four folding angles.
Near the flat state, all ρi ≈ 0, and the matrices of

Eqs. (B1)–(B2) become essentially two-dimensional rota-
tion matrices about an axis perpendicular to the flat vertex;
hence, one vertex constraint is lost. The preceding consid-
erations apply to all vertices constructing the pattern.
As shown in the main text, the constraints can be

expanded about any configuration, in particular the flat
state ρ⃗ ¼ 0:

Taðρ⃗Þ ¼ Ci
aρi þDij

a ρiρj þ… ðB3Þ

Violation of these vertex constraints can be interpreted as
a stretching energy at that vertex, EVertex ¼ T2

a. Figure 7
illustrates the vertex energy in this model. Random con-
figurations of ρ⃗ for which Caiρ

i ≠ 0 are characterized by an
energy that grows quadratically in ρ. Configurations
existing in the two-dimensional linearized null space of
the vertex have a scaling E ∼ ρ4. Large patterns made of
4-vertices have a high-dimensional linearized null space
where the energy scales like that of a vertex. However, we

show in the main text that patterns with loops are frustrated,
such that in general no zero-energy folding branches exist.
In addition to vertex energy, when vertices form loops,

one also expects face bending in thin sheets [40,52]. We
model such face bending by adding stiff face diagonals to
each inner face; that is, we add face diagonals with
torsional springs on them of stiffness κf and rest angle
ρf ¼ 0. Putting these together, our energy model is

Eðρ⃗Þ≡ EVertex þ EFace

¼
X
a

T2
a þ

1

2
κf

X
i∈faces

ρ2i ; ðB4Þ

with κf a proper dimensional face stiffness factor. As a
sheet is made thinner, the bending modulus is reduced
relative to stretching [40,41], effectively reducing κf.
Every folding branch of generic looped patterns balances

stretching (i.e., vertex) and bending (i.e., face) energies,
with relative importance depending on the folding ampli-
tude ρ. To illustrate the importance of the different ρ scaling
of the two energy terms, we counted the number of
branches for quadrilateral meshes of different sizes, at
different values of folding magnitude ρc (Fig. 8).
Note that the stretching term scales as ρ4 (for branches

in the linearized null space), while the bending term scales
as ρ2. Thus, at smaller folding magnitudes bending of
faces is expensive and suppressed. In contrast, at large
folding magnitudes, stretching is more expensive and
faces can bend much more freely. As explored in earlier
work [39], the number of branches of origami patterns

−

−

−

−

−

−

−

−

−

−

−

−

−

−
− − −

FIG. 7. Stretching energy scaling in a 4-vertex Eð∥ρ⃗∥Þ depends
on the direction of ρ⃗. For random directions, we have E ∼ ρ2,
while for directions within the linearized null space of the system,
E ∼ ρ4. Only two special directions (not shown) exist for which
E ¼ 0 to all orders in folding.
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scales exponentially with the ratio of face bending to
crease folding, consistent with these results.
Finally, while these models quantify the violation of

constraints (using vertex energy and face bending, respec-
tively) and a glassy landscape emerges in this context, the
results hold for arbitrarily stiff sheets. However, these
results cannot be derived directly for strictly infinitely stiff
sheets, a mathematical idealization that assigns infinite
energy to all non-zero-energy folding configurations.
Consequently, that mathematical limit misses the glassy
landscape that exists for arbitrarily stiff sheets. In this sense,
softness is a singular perturbation and strictly infinitely stiff
sheets are not a good approximation of realistic sheets, no
matter how stiff, for the question of actuation.

1. Folding method

When external folding torques are applied to creases of a
pattern, we fold the pattern by accounting for both the
external and the internal forces generated by the energy
model above [Eq. (1)].
Given an external folding torque τi applied to crease i, the

folding of an “overdamped” but unconstrained crease fol-
lows γ _ρi ¼ τi, with γ the stiffness of the crease. In self-
folding patterns, folding motions are one-dimensional such
that there exist preferable configurations ρi. This notion is
encoded by the energy model presented above, as unfavor-
able configurations require more bending of the faces. Thus,
if left on its own, the pattern will change its configuration
introducing internal torques γ _ρi ¼ −½∂Eðρ⃗Þ=∂ρi�.
These considerations allow construction of a folding

algorithm, implemented as an ordinary differential equation
(ODE) system:

γ
dρi
dt

¼ τi −
∂Eðρ⃗Þ
∂ρi ðB5Þ

In practical computation, we usually start the solution
from the flat state ρi ¼ 0 and solve this system with a fixed
external torque τi until one of the dihedral angles reaches a
certain predefined value (say, 0.5 rad). The equations are
solved using the MATLAB ODE solver.

APPENDIX C: EFFECTS OF MATERIAL
PROPERTIES AND IMPERFECTIONS

So far, we have considered a simplified model for self-
folding origami made of stiff elastic materials. Bending
energy is represented by stiff face diagonals, while all
stretching energies are focused at the vertices as constraints.
Creases themselves are free folding with no stiffness. Our
model is a good approximation for self-folding origami in
which the sheet is very thin and faces do not bend too much.
However, real origami made of realistic elastic materials

is more complicated. This appendix illustrates how chang-
ing the energy model to incorporate the imperfections and
complications of real materials—e.g., manufacturing error,
crease stiffness, nonlocalized bending and stretching, finite
thickness of sheets—modifies the configuration energy
landscape.
The main results are that while these complications can

indeed change details of the landscape, such as the precise
number and energy of the minima, the underlying expo-
nential structure and statistical properties of the landscape
remain unchanged since they arise from the bifurcation of
the 4-vertex. We thus conclude that while folding in
specific real materials can face additional complications
than those described here, our results point at foundational
hurdles intrinsic to the concept of self-folding that must be
faced by any material.

1. Stiff creases

So far we modeled idealized origami patterns in which
the faces are stiff and the creases fold freely without any
resistance. In real materials, the creases can offer some
resistance to folding as well. We can model such compli-
cations by introducing a torsional spring on each crease.
The energy model will be modified to

E ¼ EVertex þ EFace þ ECrease

¼
X
a

T2
a þ

1

2
κf
X
faces

ρ2f þ
1

2
κc

X
creases

ρ2: ðC1Þ

We compared the branching statistics of a 3 × 3 looped
disordered mesh [Fig. 10(e), blue] by considering 5 × 103

initial random torque schemes in the simplified and stiff
crease models. Compared to the supplied external torque,
the stiffness of faces was assigned a value kf ¼ 0.1τ, and
the stiffness of creases was kc ¼ 0.02τ. The numbers of

FIG. 8. Number of folding branches for patterns of different
sizes, folded to magnitude ∥ρ⃗c∥. At large folding angles, the same
patterns have many more folding branches due to the lesser
importance of face bending compared to stretching. In the main
text, Fig. 4(a) shows vertical slices of the same data, illustrating
the exponential size scaling of the branch number (κf ¼ 10−6).
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branches found for these two models were different by less
than 1%. As shown in Figs. 10(b) and 10(c) the statistics of
the landscape are also very similar; the energy of minima
and their attractor region sizes have nearly identical
cumulative distribution functions, showing that the glassy
attractor structure is essentially the same. Another metric
by which we can estimate how similar the landscapes are is
by pairing up the closest attractors (in the dot product
sense) between the two landscapes. We find that the
majority (approximately 64%) of the folding torque
schemes lead to paired up branches in the two models.
In contrast, only rarely does the same torque lead to
approximately orthogonal branches in both models, show-
ing that the expected resulting branches are well correlated.

2. Mechanical advantage rule

In the idealized model considered in the paper, we find
that the mechanical advantage rule predicts the branching
of a 4-vertex for any applied torque. The simplified 4-
vertex will always fold into the branch that has the larger
dot product with the applied torque. A graphical repre-
sentation of this fact is seen in Fig. 2(c), in which the ridge
in the angular energy function is always located halfway
between the two minima.
This idealization will be modified for more complicated

(and realistic) elastic models, for which the energy ridge
might be shifted closer to one of the branching minima.
One way to model such alterations is again considering stiff
creases (modified with torsional springs). We find that the
energy ridge can be moved towards one of the minima by
increasing the stiffness of creases [Fig. 10(a)]. However, a
significant deviation requires very stiff creases that over-
whelm the vertex constraints (meaning the origami pattern

will more effectively bend and stretch than fold). As long as
the pattern retains its folding topology, when creases are not
too stiff and can be practically folded, the mechanical
advantage rule is approximately correct.
To test this prediction under more real-world complica-

tions, we simulated an origami vertex made of realistic
materials with COMSOLMultiphysics (Fig. 9). This COMSOL

model includes finite thickness of the sheet, creases of finite
width, thickness and stiffness, face bending and stretching
that is distributed generally over the sheet, among other
complications that were not accounted for in our simplified
model. Despite this, the mechanical advantage rule does in
fact predict the correct branch folded by the tested initial
torque schemes.
Finally, we emphasize that real-world deviations from

the mechanical advantage rule can only change the relative
attractor size of the two branches at each vertex. The
qualitative glassy landscape relies only on the existence of
two branches at each vertex and is not tied to their precise
size.

3. Manufacturing errors

An additional complication to realistic origami patterns
is the impossibility of perfectly manufacturing a designed
pattern. Any physical manufacturing process will inevi-
tably introduce errors in the pattern by placing vertices
slightly off of their designed position. The effect of such
errors on the energy of the designed branch was discussed
previously [39], but even if the pattern could still fold into
the designed branch, it remains possible that the designed
actuation scheme will not work. This might happen if the
designed applied torques (e.g., chosen by considering the
folding islands method) now lead to a different uncorrelated
high-energy minimum (distractor) in the landscape.

Actuated crease

=

=

=

=

Branch #1 Branch #2

Actuated crease

FIG. 9. Finite-element models of realistic sheets, simulated with COMSOL Multiphysics, show that the mechanical advantage rule
identifies the right folding branch. When a torque is applied to just one crease, the resulting branch is predicted by the mechanical
advantage rule [Fig. 2(c)]. We used the COMSOL shell model to simulate folding a realistic origami vertex (experiencing elastic strains).
The folded configurations match those expected from our simplified vertex model defined only by vertex constraints, even though the
COMSOL model accounts for many real-world complications not accounted for by our simple model (e.g., finite crease stiffness and
thickness, delocalized bending and stretching). The pattern parameters are length approximately 0.2 m, crease width 0.015 m, thickness
10−4 m. Material parameters of the faces are density ρ ¼ 1760 kg=m3, Young’s modulus Y ¼ 8 × 108 Pa. Material parameters of the
creases are density ρ ¼ 930 kg=m3, Young’s modulus Y ¼ 5 × 106 Pa.
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We simulated two patterns, one with vertices displaced
by 2% compared to the other [Fig. 10(e)]. To check whether
the energy landscape changed considerably as a result of
this perturbation, we computed the same metrics as dis-
cussed previously in this section [Figs. 10(f) and 10(g)]
for 5 × 103 random torque schemes. The statistics of the
energy landscape are once more essentially the same, with
the same distribution of branch energies and attractor sizes.
Moreover, paired-up branches between the two patterns (by
dot product proximity) have highly overlapping attractors,
as approximately 55% of the random folding torques fold
into paired-up branches [Fig. 10(h)]. However, there is
indeed a significant probability that a designed actuation
scheme for the original pattern will fail for the displaced
pattern (in this sample, approximately 45%). Still, by
controlling the manufacturing error, one could make the
energy landscape of the displaced pattern a better approxi-
mation of the original landscape, such that the success of
actuation would be nearly guaranteed.

APPENDIX D: DOT PRODUCT AND
ATTRACTOR SIZE

In the main paper, we mostly considered actuators
applying equal torques to reflect many applications where
the precise locations of actuators are easily controlled but
the precise magnitudes of applied torque are not.

Here, we study vectors of folding torques τ⃗ whose
components might be variable in magnitude across the
pattern. We might expect folding to be successful if the dot
product D ¼ τ⃗ · ρ⃗desired=∥τ⃗∥∥ρ⃗desired∥ between the applied
torque and the desired mode is higher than the dot products
τ⃗ · ρ⃗α=∥τ⃗∥∥ρ⃗α∥ with all distractor modes α. In practice,
how large does D need to be for successful folding of the
desired branch?
To determine the dot product needed, we actuated

folding using random torques as in the main paper but
now characterized success of folding as a function of the
dot product (Fig. 11). We see that, for sufficiently large
patterns, a dot product of D ∼ 1 between the applied force
and the desired branch is needed to have a significant
chance of success.
Naively, a high dot product might seem easy to achieve;

but note that in high dimensions (e.g., 4 × 4 patterns have a
60d configuration space), a vanishingly small fraction of all
vectors (e.g., τ⃗) has a non-negligible dot product D with
any fixed vector (e.g., ρ⃗desired).
In conclusion, large patterns require a high dot product

D ∼ τ⃗ · ρ⃗desired between the applied vector of torques τ⃗ and
the folding angles of the desired branch ρ⃗desired to fold
successfully; since random vectors have vanishing dot
products in high-dimensional spaces, high dot product D
is increasingly difficult to achieve. Such finely tuned

(a)

(e) (f)

− − − − − − − − − − − − −

− − − − − − −− − − − − − − −

(g) (h)

(b) (c) (d)

FIG. 10. Varying material models changes landscape details but maintains underlying structure of exponential minima. (a) Simulating
a 4-vertex with stiff creases results in the same two modes of an idealized vertex, as long as the creases are not overwhelmingly stiff. The
shift in minima position causes a moderate deviation from the mechanical advantage rule for sufficiently stiff creases. (b) and
(c) Comparing a pattern with free-folding faces and creases to the same pattern with stiff faces and creases, the number of branches
remains similar. Furthermore, the distribution of branch energies and attractor sizes is statistically indistinguishable, implying that the
glassy structure retains the same statistics. (d) When branches of the patterns with free-folding and stiff faces or creases are paired up, we
find that most random attempts to fold the system enter the same branch for both patterns, showing how corresponding branches remain
“close” in configuration space. (e) Realistic origami structures are expected to have manufacturing errors in vertex placement. The blue
and orange pattern’s vertices differ in location by 2% of the mean lattice spacing. (f)–(h) The same metrics as in (b)–(d) show how the
landscape of patterns with manufacturing errors retain the same statistics as the originals.
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torques applied to every crease of a large pattern defeat the
purpose of building self-folding origami structures.

APPENDIX E: COMPUTATION OF
FOLDING ISLANDS

As discussed in the main text, identifying the folding
islands of the pattern provides a design principle for
actuation schemes that successfully fold the desired branch.
We find that choosing actuators whose union of folding
islands covers the entire pattern dramatically improves the
probability of successful folding. In this section, we outline
how folding islands are found and list some limitations
regarding these procedures.
The folding island of a crease is defined as the largest

contiguous region that can be folded successfully when cut
out of the pattern. In principle, there might exist distinct
folding islands of equal area for a given actuator; in this
case, we associate both of these maximal folding islands to
the actuator with the understanding that when combined
with another actuator, the more favorable folding island can
be used. However, we did not find any such instances in our
numerical exploration of patterns.
The method we employ to compute the folding island of

a given crease is directly derived from the definition. (a) For
the given pattern [e.g., Fig. 5(a)] and a given actuator
crease, we first try folding a subpattern composed of just
the two vertices connected to it. (b) We check whether any
vertex in this set folds into the desired branch. If so, such

vertices are included into the folding island. (c) We then
enumerate the candidate vertices for the folding island
found at the boundary of the current folding island—i.e.,
we enumerate all vertices connected to vertices already in
the folding island. We pick a random member from this list,
add it to the folding island, and attempt to fold. (d) If the
putative extended folding island folds correctly (including
the new added vertex), the new vertex is included into the
folding island. (e) We go back to step (c) and repeat until
we can no longer add any vertices that fold successfully
when the initial crease is actuated. When the process
terminates, we are guaranteed a correctly folding region
that is not contained in any larger folding region. (f) We
repeat the entire process multiple times from scratch to
explore alternative orderings of growth. The largest result-
ing folding island over many runs is taken to be the true
folding island.
Given enough trials, the algorithm will pick out the

largest folding subset (defined to be the true folding island).
With finite running time, the algorithm can, in principle,
underestimate the size of the true largest folding island. In
such a case, the heuristic of UFIs is an even better metric
than that implied by Fig. 5, since some actuation schemes
that worked at UFI < 1 should actually be described by
UFI ¼ 1.
In practice, we found that testing putative boundary

vertices by order of their distance (instead of a random
order) from the actuator crease was particularly effective—
this method quickly provided folding islands at least as
large as those obtained after a small fixed number of
random order trials, but it is much faster. We used this faster
method to compute the large number of folding islands
needed for Fig. 5.

1. Design principle for actuator placement

Our results suggest a design principle for actuator
placement: We first work out the folding island for each
crease (through simulation or experiments). Then, using
algorithms for the set covering problem [53], we can
identify minimal combinations of actuator creases whose
folding islands cover the whole pattern. (The set covering
problem is a classic problem in computer science; given a
set of subsets S of a “universe” set U, one is asked to find a
minimal combination of subsets S whose union is U. Many
algorithms exist [53]. Here, U represents our vertices and S
represents the set of folding islands of each vertex in the
pattern.) Thus we have replaced a mechanically difficult
problem at the time of actuation with a computationally
difficult problem at the time of design. Further, by reducing
properties of actuator combinations to a property of single
actuators (i.e., their folding island), the above proposal is
vastly more feasible than an exhaustive computational or
experimental search through all combinations of actuators.
We can offer a rule of thumb for identifying which

creases are likely to have large folding islands. Each vertex

FIG. 11. Large meshes require the applied vector of torques τ⃗ to
be closely aligned with the folding angles ρ⃗desired of the desired
branch for successful folding. By folding random quadrilateral
meshes of different sizes with random τ⃗ and determining the
success of folding, we find that the dot product D ¼
τ⃗ · ρ⃗desired=∥τ⃗∥∥ρ⃗desired∥ in a large quadrilateral mesh must be
close to 1. Since most vectors in high-dimensional space are
orthogonal, only a vanishingly small fraction of applied vectors
of torques can successfully fold the desired branch.
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may be considered to “point” to two of its neighbors, along
the transverse line whose two creases have the same sign of
folding in the desired state. If the folding propagates from
an actuator to the vertex via one of these neighbors, the
vertex will fold correctly, by the mechanical advantage rule
discussed above. Paths of pointing can be constructed, and
if a crease is pointed to by many, long paths, it will tend to
have a large folding island. The effect of loops and material
complications means that this rule gives only a guide, not
an exact prescription.
Applying these ideas to common patterns, note that

Miura-Ori has a sequence of long narrow folding islands
along the zigzag creases that fold in the same MV state.
We previously showed [39] that origami patterns can be
classified into three classes: natural, seminatural, and
unnatural. Natural patterns are the easiest to design and
resemble Miura-Ori in that they contain one direction along
which rows of creases are either all mountains or valleys;
columns of creases in the perpendicular direction have
alternating MV states. Such patterns should generally be
expected to have long thin islands along the homogeneous
direction. In contrast, seminatural and unnatural patterns
[e.g., that in Fig. 5(j)] tend to have compact islands.
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