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The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental

importance and its relevance for interpreting astrophysical data. Here we present measurements of the

energy spectra from a series of high-resolution direct numerical simulations of magnetohydrodynamics

turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with

numerical resolutions up to 20483 mesh points and statistics accumulated over 30 to 150 eddy turnover

times, constitute, to the best of our knowledge, the largest statistical sample of steady state magnetohy-

drodynamics turbulence to date. We study both the balanced case, where the energies associated with

Alfvén modes propagating in opposite directions along the guide field, Eþðk?Þ and E�ðk?Þ, are equal, and
the imbalanced case where the energies are different. In the balanced case, we find that the energy

spectrum converges to a power law with exponent �3=2 as the Reynolds number is increased, which is

consistent with phenomenological models that include scale-dependent dynamic alignment. For the

imbalanced case, with Eþ >E�, the simulations show that E� / k�3=2
? for all Reynolds numbers

considered, while Eþ has a slightly steeper spectrum at small Re. As the Reynolds number increases,

Eþ flattens. Since E� are pinned at the dissipation scale and anchored at the driving scales, we postulate

that at sufficiently high Re the spectra will become parallel in the inertial range and scale as Eþ / E� /
k�3=2
? . Questions regarding the universality of the spectrum and the value of the ‘‘Kolmogorov constant’’

are discussed.
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I. INTRODUCTION

Astrophysical plasmas are typically magnetized and
turbulent, with turbulent fluctuations spanning a tremen-
dous range of scales in which the energy spectrum follows
a power law scaling (see, e.g., [1,2]). Incompressible mag-
netohydrodynamics (MHD) provides the simplest theoreti-
cal framework for studying magnetized plasma turbulence.
The precise form of the MHD turbulence spectrum is
crucial for a variety of processes in astrophysical systems
with extended inertial intervals, such as plasma heating and
wave-particle interactions, which are sensitive to small
variations in the spatial scaling of the fluctuations (see,
e.g., [3–5]). The incompressible MHD equations take the
form

�
@

@t
� VA � r

�
z� þ ðz� � rÞz�

¼ �rPþ �r2z� þ f�; r � z� ¼ 0; (1)

where z� ¼ v� b are the Elsässer variables, v is the
fluctuating plasma velocity, b is the fluctuating magnetic
field (in units of the Alfvén velocity), VA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4��0

p
is

the Alfvén velocity based upon the uniform background
magnetic field B0, P ¼ ðp=�0 þ b2=2Þ, p is the plasma
pressure, �0 is the background plasma density, � is the fluid
viscosity (which, for simplicity, we have taken to be equal
to the magnetic diffusivity), and f� represent forces that
drive the turbulence at large scales. It can be shown that in
the limit of small amplitude fluctuations, and in the ab-
sence of forcing and dissipation, the system describes non-
interacting linear Alfvén waves with dispersion relation
!�ðkÞ ¼ �kkVA. The incompressibility condition re-

quires that these waves be transverse. Typically, they are
decomposed into shear Alfvén waves (with polarizations
perpendicular to both B0 and the wave vector k) and
pseudo-Alfvén waves (with polarizations in the plane of
B0 and k and perpendicular to k).
Nonlinear interactions (or collisions) between counter-

propagating Alfvén wave packets distort the packets, split-
ting them into smaller ones until a scale is reached when
their energy is converted into heat by dissipation [6]. The
efficiency of the nonlinear interaction is controlled by the
relative size of the linear and nonlinear terms in Eq. (1):
The regime in which the linear terms dominate over the
nonlinear terms is known as weakMHD turbulence, other-
wise the turbulence is called strong. The Fourier energy
spectrum of MHD turbulence can be derived analytically
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only in the limit of weak turbulence (see, e.g., [7–14]).
However, it has been demonstrated both analytically and
numerically that the energy cascade occurs predominantly
in the plane perpendicular to the guiding magnetic field
[8,10,15,16], which ensures that even if the turbulence is
weak at large scales, it encounters the strong regime as the
cascade proceeds to smaller scales. Although weak turbu-
lence may exist in some astrophysical systems (see, e.g.,
[13,17–19]), magnetic turbulence in nature is typically
strong, in which case an exact analytic treatment is not
available. In this case, high-resolution, well-optimized
numerical simulations play a significant role in guiding
our understanding of the turbulent dynamics. This provides
the motivation for the present work.

The ideal MHD system conserves the Elsässer energies
Eþ ¼ 1

4

RðzþÞ2d3x and E� ¼ 1
4

Rðz�Þ2d3x [equivalently,

the total energy E ¼ Ev þ Eb ¼ 1
2

Rðv2 þ b2Þd3x ¼
Eþ þ E� and the cross helicity HC ¼ Rðv � bÞd3x ¼
Eþ � E� are conserved]. The energies Eþ and E� cas-
cade in a turbulent state toward small scales due to the
nonlinear interactions of oppositely moving zþ and z�
Alfvén packets. MHD turbulence is called balanced
when the energies carried by oppositely moving fluctua-
tions E� are equal, and it is called imbalanced when they
are not the same. MHD turbulence in nature and in the
laboratory is typically imbalanced. For instance, this is the
case when the turbulence is generated by spatially local-
ized sources, as is the case in the solar wind where more
Alfvén waves propagate away from the Sun than toward it.
The independent conservation of the two Elsässer energies
(compared to only one conserved energy in hydrodynam-
ics) has a profound consequence for the MHD dynamics
(see, e.g., [20–29]).

In this work, we present the results of a series of direct
numerical simulations of MHD and reduced MHD
(RMHD) for balanced and moderately imbalanced turbu-
lence and investigate how the scalings of the Elsässer
spectra behave as the Reynolds number is increased. We
also present the first high-resolution direct comparison of
simulations of MHD vs RMHD turbulence, demonstrating
that the latter model completely captures the turbulence
dynamics of strong MHD turbulence at roughly half the
computational cost of a full MHD simulation.

This paper is organized as follows. In Sec. II we briefly
describe the most recent phenomenological efforts to
understand scaling laws in MHD turbulence, particularly
in the imbalanced case. In Sec. III we describe the numeri-
cal set up and the parameter regime for our simulations. In
Sec. IV we show measurements of the energy spectrum
from a series of numerical simulations with varying
Reynolds numbers. In Sec. V we show measurements of
scale-dependent dynamic alignment and establish its rela-
tion to the�3=2 scaling of the energy spectrum. In Sec. VI
we discuss the approach to the universal regime and the
universality of Kolmogorov’s constant in MHD. We show

that dynamic alignment introduces a new robust scale-
dependent quantity that enters the definition of the energy
spectrum and uniquely sets the Kolmogorov constant. We
propose that this new quantity is a consequence of cross-
helicity conservation. Finally, in Sec. VII we discuss our
results.

II. MHD TURBULENCE PHENOMENOLOGY

For strong MHD turbulence, Goldreich and Sridhar [30]
argued that the pseudo-Alfvén modes are dynamically
irrelevant for the turbulent cascade (since strong MHD
turbulence is dominated by fluctuations with k? � kk,
the polarization of the pseudo-Alfvén fluctuations is almost
parallel to the guide field and they are therefore coupled
only to field-parallel gradients, which are small since
kk � k?). If one filters out the pseudo-Alfvén modes by

setting z�k ¼ 0, it can be shown that the resulting system is

equivalent to the RMHD model:�
@

@t
� VA � rk

�
z� þ ðz� � r?Þz�

¼ �r?Pþ �r2z� þ f�?: (2)

We note that in RMHD the fluctuating fields have only two
vector components, but that each depends on all three
spatial coordinates. Moreover, because the z� are assumed
incompressible (r � z� ¼ 0), each field has only 1 degree
of freedom, which is more commonly expressed in terms of
stream functions in the more standard form of the RMHD
equations [31,32].
Conservation of both the Elsässer energies means that

once an imbalance has been created, it cannot be destroyed
by the MHD dynamics. It is also well known that decaying
MHD turbulence, affected only by the dissipation, be-
comes increasingly more imbalanced with time (see, e.g.,
[20,26,27]). Several analytic and numerical studies have
shown that imbalance is also an inherent property of driven
MHD turbulence even if the turbulence is forced without
introducing a net imbalance at the largest scales—the
turbulent domain spontaneously fragments into local im-
balanced domains where the cross helicity is either positive
or negative [21–26,28,29].
In imbalanced domains, the directions of the magnetic

and velocity fluctuations are not independent; rather, they
are either aligned or counteraligned to a certain degree
[33]. The organization of such a domain is the following:
The directions of both the magnetic and velocity fluctua-
tions vary within a small angle (comparable to the align-
ment angle) throughout the domain, while their amplitudes
change predominantly in the direction normal to their
polarizations. Such positively and negatively aligned do-
mains appear to be the building blocks of MHD turbulence,
whether it is balanced overall or not.
The origin of such domains can be qualitatively under-

stood from the conservation of energy and cross helicity in
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an ideal MHD system. When small dissipation is present
and the system is unforced, it can be argued that energy
decays faster than cross helicity. This selective decay
would eventually lead to Alfvénization of the flow, that
is, to progressively stronger alignment (or counteralign-
ment, depending on the initial state) between the directions
of the magnetic and velocity fluctuations(see, e.g.,
[20,21,34,35]). In a perfectly aligned (counteraligned)
state, either zþ or z� is identically zero, and the nonlinear
interaction vanishes. In a driven state, characterized by
strong nonlinear interaction and a constant energy flux
over scales, the alignment cannot be perfect. Rather, it
turns out that alignment depends on the scale, and that
the smaller the scales the better the alignment. Below, we
will demonstrate this phenomenon in numerical simula-
tions. From a more qualitative point of view, one can argue
that whenever a partly aligned domain appears, nonlinear
interaction inside such a domain gets reduced, and its
evolution time increases compared to nonaligned domains.
Therefore, aligned domains persist longer, which explains
the tendency of a turbulent flow to exhibit such self-
organization. These aligned domains are the domains
where the essential energy of the turbulence is contained,
and they are typically well seen in numerical simulations.
Solar wind observations also show that globally balanced
turbulence is made up of locally imbalanced patches at all
scales [36–38].

In the aligned or imbalanced domains, the Elsässer
energies are unequal, and one can ask whether their spectra
have to be the same. This raises questions of whether MHD
turbulence is universal and scale invariant. Indeed, if im-
balanced domains have different spectra that depend on the
degree of imbalance, their superposition may not have a
universal scaling.

Phenomenological treatment of strong imbalancedMHD
turbulence is complicated by the fact that one can formally
construct two time scales for the nonlinear energy transfer:
The times of nonlinear deformation of the z� packets at
some spatial scale � are �� � �=z�� , which can be signifi-

cantly different in the case of strong imbalance (see, e.g.,
[20,27]). In recent years, several phenomenological models
attempting to accommodate this difference have been pro-
posed. However, the theories have generated conflicting
predictions because they use different assumptions regard-
ing the physics of the nonlinear energy cascade. For ex-
ample, the theory by Lithwick et al. [39] concludes that in
the imbalanced regions, the Elsässer spectra have the scal-

ings, Eþðk?Þ / E�ðk?Þ / k�5=3
? ; the same spectra were

also suggested by Beresnyak and Lazarian [40]. The theory
by Chandran [41] proposes that the spectra of Eþðk?Þ and
E�ðk?Þ are different depending of the degree of imbalance,
while the theories by Perez and Boldyrev [28] and Podesta
and Bhattacharjee [42] find that the spectra of Eþðk?Þ and
E�ðk?Þ have different amplitudes but the same scalings,

Eþðk?Þ / E�ðk?Þ / k�3=2
? .

One would expect that numerical simulations could
clarify the picture. However, the first numerical simula-
tions of strongly imbalanced MHD turbulence (see, e.g.,
[28,40,43]) also produced conflicting results regarding
which power law E� should follow. The conflicting nu-
merical findings apparently reflect the fact that imbalanced
MHD simulations require significantly more computa-
tional effort compared to the balanced cases [44]. This
happens because, in the imbalanced domains, the nonlinear
interaction is depleted and the Reynolds and magnetic
Reynolds numbers are reduced. This can be formally
seen from the fact that, in a strongly imbalanced domain
with zþ � z�, the zþ field is advected by a low-amplitude
z� field, and therefore zþ becomes directly affected by the
dissipation at smaller wave vectors (compared with the
balanced case), which reduces its inertial interval. Now,
z� is advected by a strong zþ, but zþ is significantly
affected by the dissipation, so the inertial interval of z�
becomes spoiled as well.
In order to produce large inertial intervals simulta-

neously for both Elsässer fields when strongly imbalanced
domains are present in the flow, one needs to have a
significantly higher Reynolds number as compared to the
balanced case. However, as one increases the Reynolds
number, one needs to increase the numerical resolution in
order to appropriately resolve the small scales and to make
sure the numerical run is stable. Therefore, the larger the
imbalance, the larger the numerical resolution required to
describe correctly the Elsässer spectra. Fortunately, it has
been argued that RMHD can be used to investigate the
universal properties of MHD turbulence, which offers the
advantage that a RMHD simulation can be achieved at half
the cost of a MHD simulation.

III. NUMERICAL SETUP

We solve the MHD equations (1) and their RMHD
counterpart (2) in a periodic, rectangular domain with
aspect ratio L2

? � Lk, where the subscripts denote the

directions perpendicular and parallel to B0, respectively.
We set L? ¼ 2�, Lk=L? ¼ 6 or 10, andB0 ¼ 5ez. A fully

dealiased 3D pseudospectral algorithm is used to perform
the spatial discretization on a grid with a resolution of
N2

? � Nk mesh points. We note that the domain is elon-

gated in the direction of the guide field in order to accom-
modate the elongated wave packets and to enable us to
drive the turbulence in the strong regime while maintaining
an inertial range that is as extended as possible (see [45]).
This is a physical requirement that should be satisfied no
matter what model system, full MHD or RMHD, is used
for the simulations.
In the case of RMHD though, when the z�k components

are explicitly removed, the resulting system (2) is invariant
with respect to the simultaneous rescaling of the back-
ground field B0 and the field-parallel spatial dimension of
the system, if one neglects the dissipation terms. Therefore,
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for any strength of the background field B0 � 1, one can
rescale the field to B0 ¼ 1 and reduce the parallel box size
accordingly. We should note, however, that the dissipation
terms in (2) are not invariant and they should be changed
accordingly under such a rescaling.

To save on computational costs, we have reduced the
field-parallel numerical resolution for some simulations,
i.e., the numerical grid is anisotropic with Lk=Nk >
L?=N?. This is appropriate since the energy cascade
proceeds much faster in the field-perpendicular direction,
and the energy spectra decline relatively slowly in the
field-perpendicular direction and relatively fast in the
field-parallel direction. Energies at large kk are therefore

reduced and a lower field-parallel resolution is not ex-
pected to alter the behavior of the spectra in the inertial
interval. An isotropic resolution with the value imposed
by the field-perpendicular dynamics would therefore be
wasteful.

We should, however, caution that a reduced resolution
(or, equivalently, unreasonably high Reynolds number for a
given resolution) may contaminate the dissipative physics,
even if the inertial interval is unaffected. For example, if
the precise scaling behavior in the dissipation interval is of
interest, as is the case for extended scaling laws such as the
dynamic alignment angle (see below), somewhat smaller
Reynolds numbers may need to be chosen. As a general
rule, whether the numerical simulations are conducted
to investigate the inertial or the dissipation interval, a

resolution study must be performed in order to establish
the optimal Reynolds number for a given task. In particu-
lar, it has to be verified that increasing the numerical
resolution while keeping the physical parameters such as
Reynolds number, forcing mechanism, etc., unchanged
does not affect the studied spectra (see, e.g., [46]). This
point will be illustrated below in the balanced case.
The turbulence is driven at the largest scales by colliding

Alfvén modes [47]. We drive both Elsässer populations by
applying statistically independent random forces fþ and
f� in Fourier space at wave numbers 2�=L? 	 k? 	
2ð2�=L?Þ, kk ¼ 2�=Lk. The forces have no component

along z and are solenoidal in the xy plane. All of the
Fourier coefficients outside the above range of wave num-
bers are zero and inside that range are Gaussian random
numbers with amplitudes chosen so that vrms � 1. The
individual random values are refreshed independently, on
average, approximately 10 times per turnover of the large-
scale eddies. The variances �2� ¼ hjf�j2i control the
average rates of energy injection into the zþ and z� fields.
We take �þ >�� and in the statistically steady state we
measure the degree of imbalance through the parameter
h ¼ ðEþ � E�Þ=ðEþ þ E�Þ ¼ HC=E. Thus, h ¼ 0 corre-
sponds to balanced turbulence and h ¼ 1 defines maxi-
mally imbalanced turbulence. Time is normalized to the
large-scale eddy turnover time �0 ¼ L?=ð2�vrmsÞ. The
field-perpendicular Reynolds number is defined as Re? ¼
vrmsðL?=2�Þ=� 
 1=�. In order to accommodate the

TABLE I. Simulation parameters: Summary of the numerical runs with different numerical
resolutions and different Reynolds numbers. No particular scheme is used to choose the
Reynolds number for a given resolution other than to ensure that the studied scaling properties
are well demonstrated and the numerical runs are stable.

Case Regime N? Nk h Lk=L? Re? �k
RB1a RMHD 512 256 0 6 2400 �

RB1b RMHD 512 512 0 6 2400 �

RB1c RMHD 512 512 0 6 1800 �

RB2a RMHD 1024 256 0 6 6000 2:5�

RB2b RMHD 1024 1024 0 6 6000 �

RB2c RMHD 1024 1024 0 6 3200 �

RB2d RMHD 1024 1024 0 6 1800 �

RB3a RMHD 2048 512 0 6 15 000 2:5�

RB3b RMHD 2048 2048 0 6 15 000 �

RB3c RMHD 2048 2048 0 6 9000 �

RB3d RMHD 2048 2048 0 6 5700 �

RI1 RMHD 512 256 0.45 10 2200 �

RI2 RMHD 1024 256 0.5 10 5600 2:5�

RI3 RMHD 2048 512 0.5 10 14 000 2:5�

MB1 MHD 512 256 0 10 2200 �

MB2 MHD 1024 256 0 10 5600 2:5�

MI1 MHD 512 256 0.5 10 2200 �

MI2 MHD 1024 256 0.5 10 5600 2:5�

MI3 MHD 2048 512 0.5 10 14 000 2:5�
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reduced field-parallel resolution, we have also modified the
diffusion operator in Eqs. (1) and (2), i.e., we have replaced
�r2 with �ð@xx þ @yyÞ þ �k@zz.

The system is evolved until a stationary state is reached,
which is confirmed by observing the time evolution of the
total energy of the fluctuations. The data are then sampled
in intervals of the order of the eddy turnover time. All
results presented correspond to averages over 30–150
samples for each run. As shown in Table I, we conduct a
number of MHD and RMHD simulations in the balanced
and imbalanced regime in order to investigate the scaling
of the energy spectra as the field-perpendicular Reynolds
number increases.

IV. MEASUREMENTS OF THE ENERGY
SPECTRUM

The field-perpendicular energy spectrum is obtained by
averaging the angle-integrated Fourier spectrum,

Eðk?Þ ¼ 0:5hjvðk?Þj2ik? þ 0:5hjbðk?Þj2ik?; (3)

over field-perpendicular planes in all samples. Identifying
the inertial range in numerical simulations with limited
resolution is generally difficult due to the relatively modest
separation between the forcing and dissipation scales that
current supercomputers can afford. For instance, a mea-
surement of the turbulence spectrum for a single Reynolds
number is not enough to ensure that the simulated turbu-
lence has converged to the asymptotic universal scaling.
Instead, one carries out a set of numerical simulations with
increasing resolution and Reynolds number. The spectra
are then compensated by the different phenomenological
predictions and the preferred model is distinguished by the
best fit. In Figs. 1–4 the inertial range is identified by the

flat regions of the spectra compensated by k3=2, which
extend further to the right with increasing Reynolds num-
ber (and resolution).

Figures 1 and 2 show the total field-perpendicular
energy spectrum Eðk?Þ in the balanced regime for the
RMHD and MHD cases, respectively. The RMHD and

MHD spectra are remarkably similar, confirming that the
pseudo-Alfvén modes are dynamically insignificant and
that the RMHD approximation is valid. In both cases, the

total energy spectrum remains of the form Eðk?Þ � k�3=2
?

as the Reynolds number increases, with the inertial range
starting at k 
 4 and extending up to k * 30 in the highest
Reynolds number case. In neither RMHD nor MHD is
there any evidence of a build up of energy close to the

FIG. 1. Total field-perpendicular energy spectrum in balanced
RMHD as the Reynolds number increases (cases RB1a, RB2a,
and RB3a in Table I).

FIG. 2. Total field-perpendicular energy spectrum in balanced
MHD as the Reynolds number increases (cases MB1 and MB2 in
Table I).

FIG. 3. Energy spectra Eþðk?Þ and E�ðk?Þ in imbalanced
RMHD as the Reynolds number increases (cases RI1, RI2, and
RI3 in Table I).

FIG. 4. Energy spectra Eþðk?Þ and E�ðk?Þ in imbalanced
MHD as the Reynolds number increases (cases MI1, MI2, and
MI3 in Table I).
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dissipative wave numbers—often referred to as a bottle-
neck effect—with both spectra falling off smoothly in the
dissipative range.

Figures 3 and 4 show the field-perpendicular Elsässer
spectra in the imbalanced regime for the RMHD and MHD
cases, respectively. Again, the behavior of both spectra in
the RMHD and MHD regimes are very similar. In both

cases, it is seen that while E� keeps the scaling E�ðk?Þ �
k�3=2
? as the Reynolds number increases, the scaling of

Eþðk?Þ is more difficult to pin down. Indeed, both the
RMHD and MHD results for Re ¼ 2200 yield a steeper
spectrum for Eþðk?Þ, with an exponent possibly nearer to
�5=3 than�3=2. However, we believe that there is no real
significance to the value of �5=3 here, the exponent is
simply steeper than �3=2. Indeed, in both cases, as the
Reynolds number is increased, Eþðk?Þ appears to flatten,
which means that Eþðk?Þ has not fully established the
universal scaling behavior yet. Since Eþðk?Þ and E�ðk?Þ
are pinned (i.e., converge with each other) at the dissipa-
tion scales and are anchored (i.e., independent of the
Reynolds number) at the driving scales, we postulate that
at sufficiently high Re (where the inertial range is exten-
sive) the spectra will become parallel in the inertial range

and attain the scaling E�ðk?Þ � k�3=2
? . Numerical tests of

this prediction must await a significant increase in compu-
tational power.

V. MEASUREMENTS OF DYNAMIC ALIGNMENT

An important test that can be performed in the presented
simulations concerns the so-called dynamic alignment
angle. This angle is defined by the following ratio of the
two specially constructed structure functions [25]:

�ðlÞ ¼ hj�v?ðlÞ � �b?ðlÞji
hj�v?ðlÞjj�b?ðlÞji ; (4)

where �v?ðlÞ and �b?ðlÞ are the field-perpendicular
velocity and magnetic field increments, respectively, cor-
responding to the field-perpendicular scale separation l.
[We note that in Eq. (4) we have assumed that the angle is
small, and hence no distinction between �ðlÞ and sin�ðlÞ is
made. Hereafter, by �ðlÞ we will always understand the
quantity (4).]

As proposed in [23,24] the alignment angle �ðlÞ has a
nontrivial scaling with l, which may explain the observed
�3=2 scaling exponent of the energy spectrum. As dis-
covered in [46], the scale-dependent dynamic alignment
exists not only in the inertial interval, but it also extends
into the dissipation range and is limited by the grid size of
the numerical scheme. We will demonstrate that the
alignment-angle scaling provides a sensitive test probing
the turbulent cascade deep in the dissipation interval. In
particular, we will see that if the simulated dissipation
range is under resolved (e.g., as a result of the use of
too large a Reynolds number or strongly anisotropic

resolution), the dynamic alignment can be easily spoiled
at the dissipation scales even if it is present in the inertial
interval.
The measurements of the alignment angle are presented

in Fig. 5. The first panel shows three simulations (RB2d,
RB2c, and RB2b in Table I) performed at the same
numerical resolution of 10243 but with different
Reynolds numbers Re ¼ 1800; 3200; 6000. Plots for Re ¼
1800; 3200 show a remarkable property of the alignment
scaling: It extends deep down into the dissipation region,
practically up to the scale of the numerical discretization,
independently of the Reynolds number (see also [46]).
However, this behavior is spoiled if the Reynolds number
is pushed to very high values, at which the dissipation
interval becomes under resolved. In this case, the scaling
starts to degrade at large wave numbers, as is seen in the
case Re ¼ 6000.

FIG. 5. Measurements of the dynamic alignment angle (4) vs
scale l in balanced RMHD. Upper panel: Simulations RB2d
(solid line), RB2c (dashed line), and RB2b (dash-dotted line) on
10243 mesh points. Lower panel: Simulations RB3a (dash-triple-
dotted line) on 20482 � 512 mesh points, RB3b (dash-dotted
line), RB3c (dashed line), and RB3d (solid line) on 20483 mesh
points at different Reynolds numbers. The dynamic alignment
scaling extends well into the dissipation range, up to scales close
to the grid cell (roughly l� 3 grid cells). When the Reynolds
number is pushed to very high values (so that the dissipation
interval becomes under resolved) or the numerical resolution
in the field-parallel direction is reduced, the alignment-angle
scaling degrades at small scales. The vertical lines show the
approximate boundaries of the inertial interval (cf. Fig. 8). The
straight dotted line has a slope of 1=4.
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The alignment scaling is, however, restored back to its
original value if the numerical resolution is increased to
20483, so that the dissipation scales become well resolved
again. This is seen from a comparison of the plot for RB2b
(10243;Re ¼ 6000) in the first panel of Fig. 5 with the plot
for RB3d (20483;Re ¼ 5700) in the second panel. A fur-
ther increase of the Reynolds number in the second panel
of this figure demonstrates that the alignment scaling is
stable up to Re ¼ 9000 (RB3c, 20483); however, it starts to
degrade at large wave numbers for higher Reynolds num-
bers Re ¼ 15 000 (RB3b, 20483), in complete analogy
with the behavior depicted in the upper panel of Fig. 5 at
a smaller resolution. The alignment angle is spoiled even
more in the run RB3a (20482 � 512;Re ¼ 15 000) in the
same figure where we simultaneously decrease the field-
parallel numerical resolution, making the dissipation inter-
val even more under resolved. Note, however, that in both
the first and the second panels of Fig. 5, the heaviest
distortion of the alignment behavior occurs in the dissipa-
tion region, while the inertial interval (approximately
contained between the two vertical lines) is relatively
unaffected. This may explain why an under-resolved dis-
sipation interval is not manifest in the scaling of energy
spectra, as seen in Fig. 6.

Figure 7 shows three well-resolved simulations with
numerical resolutions increasing from 5123 to 10243 to
20483. We observe that the scaling interval of the align-
ment angle becomes progressively longer and its scaling
index stays close to the predicted value 1=4 [23] with little
or practically no dependence on the Reynolds number [49].
This means that we observe a truly universal scaling be-
havior of the dynamic alignment. The lower panel of Fig. 7
shows the same curves where the spatial scale is normal-
ized by the dissipation length. We observe that the flattened
parts of the curves at small scales do not overlap under such
rescaling, which supports our observation mentioned
above that the extent of the scaling interval is not defined
solely by the dissipation scale, but rather depends on the
numerical discretization step.

VI. ENERGY SPECTRUM: KOLMOGOROV
CONSTANTAND DISSIPATION SCALE

For a more complete study of the energy spectrum, one
can also evaluate the amplitude of the spectrum and the
dissipation scale for each simulation and verify that they
agree with a given phenomenology. Since our spectral
scaling conforms to the phenomenology of Boldyrev
[23,24], we now study in more detail the scaling associated
with this model. First, we need to derive the expression
for the energy spectrum, which is done in the following
way [23]. The time of nonlinear interaction at field-
perpendicular scale � in this model is �� �=ðv���Þ,
where v� denotes the typical (rms) velocity fluctuations,

�� ¼ �0ð�=L?Þ1=4 is the scale-dependent alignment
angle between magnetic and velocity fluctuations, which
was studied in Sec. V, and �0 is the typical alignment
angle at the outer scale (forcing scale) L?. The rate of
energy cascade is then evaluated as 	 ¼ v3

���=�, from

which it follows that Eðk?Þ � 	2=3ð�0=L1=4
? Þ�2=3k�3=2

? .

FIG. 6. Energy spectra for runs RB3a (solid line) and RB3d
(dash line). Simulation RB3a on 20482 � 512 has an unresolved
dissipation at the expense of a longer inertial interval. Simulation
RB3d is performed at lower Re to capture alignment in the
dissipation region, with a shorter inertial range.

FIG. 7. Measurements of the dynamic alignment angle (4) in
balanced RMHD. The frames show numerical simulations with
an increasing Reynolds number and numerical resolution with
properly resolved dissipation ranges [runs RB1c (dash-dotted
line), RB2c (dashed line), and RB3d (solid line)]. In the lower
plot, the scale l is rescaled by the dissipation length (see
section VI for precise definitions). It can be seen from here
that the region of scale-dependent dynamic alignment increases
as smaller scales are made available by increased numerical
resolution. The extent of the alignment region is not limited by
the dissipation scale, but rather depends on the grid size of the
numerical scheme. The straight dotted line has the slope 1=4.
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One, however, notices that the amplitude of the energy
spectrum is not uniquely defined in this equation, since the
outer-scale quantities, �0 and L?, essentially depend on the
forcing routine. This is understood from the following
example. Assume that the large-scale force drives only
unidirectional Alfvén waves zþ, for which v is perfectly
aligned with b and �0 ¼ 0. Then the wave energy will
grow without bound, since the nonlinear interaction lead-
ing to the energy cascade and eventual dissipation at small
scales is absent.

Even when a particular forcing routine is specified, the
definitions of the values of �0 and L? are still subjective
since they essentially rely on the outer-scale properties of
turbulence rather than on the measurements of the inertial
interval. We now propose that this problem can be rem-
edied in an efficient way. We notice that there exists a
well-defined quantity that is remarkably stable (scale-
independent) in the inertial interval:

��1=4 ¼ �ðlÞ=l1=4; (5)

where �ðlÞ is defined in (4); see the discussion in Sec. V. In
this definition one can use any scale l from the inertial
interval or dissipation interval if the numerical simulations
are well resolved. A somewhat simpler rule can be used in
numerical (or observational) studies, where one does not
have to know a prioriwhat scales correspond to the inertial
interval and does not have the luxury of having the plot in
Fig. 7 available. In this case, l in Eq. (5) can be chosen
to be the Taylor microscale based on either the magnetic
or the velocity fluctuations, l¼vrms=jr�vjrms or l¼
brms=jr�bjrms, assuming the magnetic Prandtl number is
of order one. We therefore propose the following normal-
ization of the energy spectrum:

Eðk?Þ ¼ Ck	
2=3�1=6k�3=2

? ; (6)

where� is defined by (5). The scale� that is defined solely
through the inertial-interval quantities incorporates the es-
sential information about the cross-helical structure of
MHD turbulence. It is not uniquely defined by the outer
scale of the turbulence, rather it also depends on the large-
scale driving mechanism. Therefore, the inertial-interval
energy spectrum is defined by the two quantities, 	 and �,
characterizing the energy-cascade rate and the level of
cross-helical organization of the flow. The presence of the
two quantities characterizing the spectrum of MHD turbu-
lence (as oppose to only one quantity in hydrodynamic
turbulence) is the manifestation of the two conserved quan-
tities cascading toward small scales in MHD turbulence:
energy and cross helicity.

We expect that the constant Ck in (6) may be ‘‘univer-
sal,’’ that is, largely independent of the character of the
driving, analogous to the Kolmogorov constant in hydro-
dynamical turbulence. This constant can be measured in
our simulations in the following way. First, we specify l
that we use to measure the alignment scale � in (5).

According to our plots in Figs. 5 and 7, we may choose
l ¼ 0:07L?, say, as a scale belonging to the inertial inter-
val and not yet affected by the numerical resolution effects.
Then, for simulations RB1a, RB2a, RB3a we find � ¼
1:34L?, 1:41L?, 1:48L?, respectively.
The dissipation rate can be evaluated based on the

energy spectrum (6) as follows:

	 ¼
Z

Eðkk; k?Þð�k2? þ �kk2kÞdkkdk?: (7)

Our numerical results confirm that the integral of �kk2k
leads to a negligible correction to the dissipation rate,
and therefore it can be omitted, and we can use the field-
perpendicular spectrum Eðk?Þ ¼

R
Eðkk; k?Þdkk. Then,

for simulations RB1a, RB2a, and RB3a we find 	 ¼
0:15, 0.15, and 0.16, respectively.
The dissipation scale can be found (or defined) based on

the energy spectrum. Omitting the dimensionless con-
stants, we then accept, by definition,


 ¼ 	�2=9�1=9�2=3: (8)

We can demonstrate that our simulations agree with this
scaling by plotting the energy spectra in the balanced
case (RB1a, RB2a, RB3a) versus the wave vector normal-
ized with the dissipation scale (8), where we measure the

FIG. 8. Upper panel: Total field-perpendicular energy spec-
trum Eðk?Þ in balanced RMHD turbulence for different
Reynolds numbers (cases RB1a, RB2a, and RB3a in Table I).
The wave number is normalized by the dissipation scale (8) and

the energy is compensated by ��1=6	�2=3k3=2? . The rescaled

curves collapse onto each other (up to the forcing scale) reveal-
ing the universal functional form of the energy spectrum. Lower
panel: The scaling of the length of the inertial interval with the
Reynolds number. Good agreement with the phenomenological
model (6) and (8) is observed.

PEREZ et al. PHYS. REV. X 2, 041005 (2012)

041005-8



dissipation rate directly from the simulations via (7), and
the alignment scale from (5). The top frame in Fig. 8 shows
that, in this case, the dissipative region starts around k
 

0:1, independent of the Reynolds number. The extent of the
inertial range, defined as the ratio between the scale l0 at
the beginning of the inertial range (from Fig. 1, k ¼ 4 and
hence l0
L?=8) and the beginning of the dissipation
range ld 
 �=kd, where kd ¼ 0:1=
 from Fig. 8), in-
creases up to one decade in the RB3a case [50]. Note
that with the wave vector normalized with the single pa-
rameter 
, the whole spectra collapse onto each other, thus
providing additional evidence that the universal functional
behavior of the spectrum is obtained in our simulations.
The lower plot in Fig. 8 shows that the length of the inertial

range increases as l0=ld � Re2=3, which is also in good
agreement with the estimate for the dissipation scale (8).
The ‘‘Kolmogorov constant’’ Ck can be evaluated from the
upper plot as Ck 
 2.

VII. DISCUSSION

We have presented results from state-of-the-art direct
numerical simulations of balanced and imbalanced driven
MHD turbulence. The simulations are achieved at the ex-
tremely large numerical resolution of up to 20483 and the
longest running time, with many runs spanning more than a
hundred eddy turnover times in the steady state. The simu-
lations were performed using two pseudospectral codes,
one solving the MHD equations and the other solving the
RMHD equations. In theories and simulations of MHD
turbulence, it has long been argued that RMHD provides a
correct and accurate framework for investigating the uni-
versal properties of MHD turbulence both in the weak and
strong turbulence regimes. We have presented a direct
comparison of high-resolution numerical simulations of
MHD vs RMHD turbulence using the two codes with
identical parameters. It is shown that in the strong turbu-
lence regime, in both the balanced and imbalanced state, the
energy spectrum of the Elsässer variables in MHD and
RMHD are in remarkable agreement (for details of a lower
resolution comparison, including the individual velocity
and magnetic spectra and the alignment angle, see [51]).
These results are of essential value for MHD turbulence
research, as simulating MHD turbulence can be accom-
plished using RMHD codes that generally incur a smaller
computational cost.

In the balanced case, the simulated energy spectra of Eþ
and E� show a clearly identifiable inertial range, consistent

with a slope of k�3=2
? for both Eþ and E�. It is observed

from Figs. 1 and 2 that the compensated energy spectra
show a flat region that extends as the Reynolds number is
increased. This is consistent with previous, lower resolu-
tion simulations of strongly magnetized MHD turbulence
(see, e.g., [16,48,51–56]). In the imbalanced case, the
interpretation of the numerical results is not as straightfor-
ward. Figures 3 and 4 show that the energy spectrum of E�

remains reasonably close to k�3=2
? , only slightly changing

its overall amplitude for small Reynolds numbers. As for
the Eþ spectrum, the compensated spectrum shows a slope
slightly steeper than �3=2 that, however, flattens as the
Reynolds number increases. Another observation from the
large Reynolds number imbalanced numerical simulations
is that the spectra of Eþ and E� are ‘‘anchored’’ at large
scales and ‘‘pinned’’ at the dissipation scale. From these
results, we propose that the energy spectra of Eþ becomes

asymptotically closer to k�3=2
? as the Reynolds number is

increased. Much higher resolutions, exceeding the capa-
bilities of today’s supercomputers, are required to conclu-
sively demonstrate this conjecture.
Finally, it appears necessary to compare our results with

those in recent publications by Beresnyak and Lazarian
[57–59], in which the authors address issues similar to the
ones contained in this paper. Most of the conclusions of
those papers appear to be at odds with ours (and with
similar results or other groups, e.g., [16,48,51–56]). We,
however, note that the actual numerical results presented in
[57–59] agree with ours in the range of scales that we study,
while they differ from ours at very large wave numbers, e.g.,
k * 50 in the runs with highest resolution. Beresnyak and
Lazarian suggest that the true inertial interval exists only at
these largewave numberswhere they perform their measure-
ments of the scaling relations. The formal cause of the
disagreement of our conclusions with those by Beresnyak
and Lazarian is thus the numerical measurements being
performed in essentially different regions of the phase space.
The question, however, remains as to what causes the

results of the numerical simulations by Beresnyak and
Lazarian to disagree with ours at small, subinertial scales.
According to our analysis, the answer is the following: The
k-space intervals on which Refs. [57–59] base their con-
clusions are significantly affected by numerical effects due
to the numerical setup they use. It is not appropriate in their
simulations to use those intervals for addressing either the
inertial or the dissipation regimes. We, however, note
that the dissipation-range dynamics and the behavior of
the numerical solution of the MHD equations close to the
numerical cutoff is an interesting and not well-studied
question. It is therefore worth addressing the differences
between our simulations and those by [57–59] in more
detail. Since such an analysis is not the main objective of
the present work, we have presented the corresponding
discussion in the Appendix.
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APPENDIX: NUMERICAL STUDY OF MHD
TUBRULENCE AT SUBRANGE SCALES

In this Appendix, we comment on the numerical recon-
struction of the solution of the MHD equations at small
scales, that is, scales within the dissipation range and close
to the numerical cutoff in k space (the dealiasing cutoff in a
pseudospectral code). Recent publications by Beresnyak
and Lazarian [57–59] found that the energy spectrum in
this region (roughly corresponding to k * 50 in their
highest-resolution runs) can have a peculiar structure that
is inconsistent with the structure and the scaling found in
our numerical simulations. Much confusion was created
by the suggestion by Beresnyak [58,59] that this high-k
region is, in fact, the true inertial interval of MHD turbu-
lence, while the region that is studied in our work (corre-
sponding to 4 & k & 30 in highest-resolution runs) is a
‘‘nonconverged’’ forcing-dominated region.

It is therefore useful to address the small-scale numerical
solution of the MHD equations in more detail and to relate
our findings and conclusions to those presented in the recent
work by Beresnyak and Lazarian [57–59]. Therein, it is
claimed that the energy spectral index of MHD turbulence
is�5=3 and that there is no conclusive evidence for dynamic
alignment in the numerical results. In discussing what could
lead to such (in our opinion, erroneous) conclusions it is
useful to distinguish two factors. One is related to differ-
ences that arise because the simulations by Beresnyak and
Lazarian that allegedly are identical to ours, in fact, are not
identical at all because of differences in the details of the
numerical setup. The other is related to the methods that are
used to analyze the results and, ultimately, support one claim
or another. Both play a role in the origin of the disagreement.

First, we concentrate on issues that result from the differ-
ent setup of the numerical simulations. In our previous
publications (e.g., [44,51]) we have discussed at length
those aspects of the simulation design that are essential
for accurately capturing the physics of the strong turbulent
cascade. It is not necessary to repeat those discussions here;
however, it is important to point out that many of the

simulations of Beresnyak and Lazarian [57–59] differ
from ours through their choice of numerical hyperdissipa-
tion, significantly smaller viscosities for a given numerical
resolution, and a considerably smaller statistical ensemble
from which averages are computed. Each of these factors is
potentially detrimental for the observation of the correct
scaling behavior. For example, the measurements of the
alignment angle that are shown in Fig. 3 of Ref. [58] and
Fig. 2 of Ref. [59] lead Beresnyak to conclude that dynamic
alignment is not present in MHD turbulence as the align-
ment angle saturates, i.e., flattens as a function of l at small l,
when the Reynolds number increases. However, those plots
exhibit a behavior that is similar to that displayed in our
Fig. 5, where insufficient numerical resolution is demon-
strated to affect the alignment angle at small scales. It there-
fore reasonable to conclude that the observed flattening of the
alignment angle in the simulations of Refs. [58,59] is an
artifact of unresolved dissipation scales and, possibly, part
of the inertial-range scales, rather than a physical effect.
The influence of hyperdissipation may be similarly as-

sessed from comparing the energy spectra obtained in our
work with the energy spectra obtained in, say, Ref. [58].
Our spectra in Figs. 1, 2, 6, and 8, exhibit an extended

interval with the scaling k�3=2, identified as the inertial
interval, followed by a steep decline, identified as the
dissipation range. The spectra in Fig. 2 of Ref. [58] also

show an extended interval with the scaling k�3=2 (inter-
preted in Ref. [58] as a ‘‘nonconverged’’ range) followed at
large wave numbers by a very short steepening (interpreted
in [58] as the inertial interval) and then flattening and,
finally, a cutoff. In our view, such an interpretation is
incorrect; the spectral behavior observed in Ref. [58] close
to the dissipation region is not a property of the inertial
interval, but rather is evidence of the so-called bottleneck
effect that is expected when numerical hyperdissipation is
present. Indeed, as discussed in Refs. [60,61], an energy
spectrum abruptly terminated in k space by hyperdissipa-
tion or by other Galerkin-type truncation mechanisms,
exhibits an inertial interval followed by a pseudodissipa-
tion region (steepening of the spectrum), then by a partly
thermalized region (a rise in the spectrum), and then by a
far dissipation range (ultimate cutoff). The measurements
presented in Refs. [58,59] are consistent with such spectral
behavior, which motivates a natural explanation of their
results as an inertial interval with the �3=2 scaling, modi-
fied by a substantial bottleneck effect close to the dissipa-
tion scales. Moreover, a thermalization brought about by
sharp termination of the spectrum in the k space tends to
decorrelate small-scale fluctuations, which otherwise
would remain strongly aligned throughout the dissipation
interval; cf. our Fig. 7. This is also consistent with the
significant loss of dynamic alignment at small scales that is
observed in Refs. [58,59].
A more detailed comparison of our results can be

made with those MHD simulations by Beresnyak [59]
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that employ a physical Laplacian dissipation (simulations
R8 and R9 in [59]). By evaluating the Reynolds numbers
for those calculations in the same way that it is done in our
work, Re ¼ vrmsL=ð2��Þ with vrms 
 1, we find that
simulation R8, with a resolution of 7683 mesh points, is
performed at the Reynolds number Re 
 8000, while cal-
culation R9 (resolution 15363) is performed at Re 

20 000. According to our results in Fig. 5, in the simula-
tions with a resolution of 10243 mesh points, the dissipa-
tion interval is under resolved already at Re 
 6000, while
in the 20483 simulations, the dissipation interval is under
resolved at Re 
 15 000. Thus, the runs R8 and R9 of
Ref. [59] that are most similar to ours have lower numeri-
cal resolutions and higher Reynolds numbers. Therefore,
they have essentially unresolved dissipation intervals and,
possibly, parts of the inertial intervals.

The lack of resolution at the bottom of the inertial
intervals in simulations R8 and R9 can also be seen from
the alignment-angle curves shown in Fig. 2 of [59]. Under
the rescaling applied in that figure, the curves should
approach each other in the inertial interval, as they do in
our Fig. 7, lower panel. In contrast, one can see only a short
region in Fig. 2 of [59] (runs R8 and R9) where the curves
approach each other, approximately within the range 20 &
l=
 & 40. Apparently, this is the only piece of the inertial
interval that is resolved, and in this interval the scaling
exponent of the angle indeed approaches 1=4, see Fig. 3 in
Ref. [59], as expected according to our results.

We now turn to the second factor that contributes to the
differing conclusions drawn by Beresnyak and Lazarian,
namely, the method of analysis. We recall that the objective
is to determine the scaling behavior within the inertial
range. Concerning the energy spectrum, we assess whether

the numerical data preferentially supports Eðk?Þ / k�3=2
? or

Eðk?Þ / k�5=3
? directly by compensating the numerical data

by k3=2 and by k5=3 in turn. For the correct model, the
inertial range then corresponds to the range of scales over
which the compensated spectrum is flat. We always find

that k�3=2
? provides the better fit, with the inertial range

starting at k? 
 4 and extending up to k? * 30 at the
highest resolution. As the Reynolds number increases,
numerical convergence is demonstrated by the fact that
this region maintains its amplitude and scaling and increases
in extent to larger wave numbers; see, e.g., our Fig. 1.

In contrast, Beresnyak [59] uses an indirect method to
select the preferred spectral exponent. He uses the two
phenomenological models that describe the inertial-range
characteristics to predict the dissipation scales (
), plots the
compensated spectrum as a function of the dimensionless
wave number k
, and identifies the preferred model as that
which displays the better convergence properties at large
wave numbers k
 as the Reynolds number increases.
Figure 1 in [59] leads Beresnyak to conclude that it is the
�5=3model that displays the better convergence properties
at large k.

It can be shown, however, that the convergence at
small scales observed in [58,59] is a simple artifact of the
numerical setup adopted in [58,59], rather than a physical
effect. To explain this, we note that any discrete numerical
scheme solves only the corresponding discrete algebraic
equations. If the numerical setup is done correctly, the
numerical solution approximates the physical one for small
discretization steps. If, however, a special numerical setup
is adopted where 
 is rigidly tied to the grid size such that

N is kept the same in all runs (as is done in [58,59]), then
the numerical solution plotted as a function of k
 is always
affected by the discretization in the same way, thus consis-
tently reproducing the same small-scale numerical effects
that are present in the setup. The convergence at large k
 is
then the convergence among solutions of the given numeri-
cal scheme, which should not be confused with the con-
vergence to the physical solution.
To illustrate this effect in our simulations we replot the

spectra presented in Fig. 8, choosing the Kolmogorov

normalization scale 
K41 ¼ �3=4	�1=4. Because of a par-
ticular choice of viscosities in our runs depicted in Fig. 8,
in this case 
K41 happens to double every time the resolu-
tion decreases by a factor of 2, thus ensuring that

K41N? ¼ const; see Fig. 9. It is therefore not surprising
that all the curves converge in the vicinity of the numerical
dealiasing cutoff corresponding to k
K41 
 0:8, while they
do not converge in the inertial interval and in most of the
dissipation interval. A similar, by design, convergence is
present in Fig. 2 of [58] and Fig. 1 of [59]. Such conver-
gence at very small scales is a spurious numerical effect,
which does not reflect the convergence of the physical
solutions, and which cannot give preference to any
phenomenological model. When the viscosities in different
runs do not conform to the special condition
N? ¼ const,

FIG. 9. The spectra presented in Fig. 8 rescaled with a new
parameter 
K41 ¼ �3=4	�1=4. For this particular choice, 
K41 is
proportional to the step of numerical discretization, that is,
N?
K41 ¼ const. According to our estimate of the onset of
the dissipation region in Fig. 8, the corresponding region in
the present plot starts at k?
K41 
 0:04, while the numerical
dialiasing cutoff that is always imposed at k? ¼ N?=3 is seen
at k?
K41 
 0:8. We observe that the convergence is present in
the vicinity of the dealiasing cutoff, k?
K41 * 0:3, while it is
absent in the inertial interval and in most of the dissipation
interval.
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the spurious convergence disappears, and the �5=3 model
does not fit the data, while the�3=2 model still provides a
good fit in the inertial and dissipation intervals; see Fig. 10.

We therefore conclude that the numerical simulations by
Beresnyak and Lazarian [57–59] are likely significantly
affected by numerical effects at small scales where their
measurements are performed. This is notwithstanding the
statements made in [57–59] that the simulations are re-
solved in those works. These statements, in our opinion,
are not supported by the factual numerical data presented
in these papers. Until the effects of hyperdissipation are
better understood and numerical convergence is demon-
strated in the settings of [57–59], it is hard to assess fully
the degree to which the numerical findings of [57–59] can
be compared with our results, or with similar results of
other groups (see, e.g., [16,48,51–56]).
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