
 

Rapid Evolution of the Photosystem II Electronic Structure during Water Splitting
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Photosynthetic water oxidation is a fundamental process that sustains the biosphere. A Mn4Ca cluster
embedded in the photosystem II protein environment is responsible for the production of atmospheric
oxygen. Here, time-resolved x-ray emission spectroscopy (XES) is used to observe the process of oxygen
formation in real time. These experiments reveal that the oxygen evolution step, initiated by three
sequential laser flashes, is accompanied by rapid (within 50 μs) changes to the Mn Kβ XES spectrum.
However, no oxidation of the Mn4Ca core above the all-MnIV state is detected to precede O─O bond
formation, and the observed changes are therefore assigned to O─O bond-formation dynamics. We propose
that O─O bond formation occurs prior to the transfer of the final (fourth) electron from the Mn4Ca cluster
to the oxidized tyrosine TyrZ residue. This model resolves the kinetic limitations associated with O─O
bond formation and suggests an evolutionary adaptation to avoid releasing harmful peroxide species.
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Enzymes function as nature’s catalysts, facilitating virtu-
ally all the reactions necessary for life. By carefully coordi-
nating electron dynamics and atomic rearrangementswithin a
predefined energy landscape, they enable a broad range of
efficient and highly selective transformations, many of which
have proven challenging for chemists. Among these, the
reaction catalyzed by the Mn4Ca cluster of photosystem II
(PS II) during photosynthesis holds a special place, as the
ability to biosynthesize O2 from H2O occurred only once
during evolution. The development of this process dramati-
cally altered our planet by generating the oxygen-rich
atmosphere we live in today. The catalytic activity and

quantum efficiency of the oxygen evolving complex
(OEC) remain unmatched by synthetic systems developed
for artificial photosynthesis. Despite its far-reaching conse-
quences, the underlyingmechanismof PS II remains debated.
In 1970, Kok, Forbush, and McGloin described a

potential water-splitting mechanism in which the
OEC cycles through five states (S0–S4), corresponding to
the oxidation states of manganese, following sequential
visible-light absorptions [Fig. 1(a)] [1]. Antenna pigments
from the surrounding protein matrix absorb these photons
and funnel energy towards P680, the chlorophyll a special
pair responsible for charge separation. Within nanoseconds,
the tyrosine residue (TyrZ) located between P680 and the
OEC is oxidized by the special pair to form TyrZ•, which is
subsequently reduced by the OEC on a microsecond time-
scale. This process drives the water-splitting reaction [2].
The past 40 years have yielded new insights into the

structure of PS II [6–15], as well as the nature and timing of
the S-state transitions that form the Kok cycle [Fig. 1(a)]
[3,16–19]. Nonetheless, the critical step during which the
O─O bond is formed remains poorly characterized and,
thus, cannot be implemented in artificial systems. O─O
bond formation likely occurs on a microsecond timescale
during the S3-to-S0 transient step of the catalytic cycle,
culminating in O2 evolution. Direct monitoring of this
transient process, however, has proven challenging, and
details remain elusive. A preeminent report by Babcock,
Blankenship, and Sauer, as well as recent studies by
Nilsson et al., support a rate of TyrZ• reduction with
t1=2 ∼ 1 ms following three flashes and associates this rate
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constant with the formation of the S4 state, subsequently
capable of fast O2 evolution [20,21]. It was pointed out later
that such hypotheses face a serious kinetic challenge in that
the timescale of molecular oxygen release, following the
formation of the S4 state, is very short for the associated
redox chemistry and bond-formation dynamics [22]. As an
alternative hypothesis, S3-state peroxide formation was
proposed [22], but this proposal has not yet been confirmed
experimentally.
Given the lack of definitive spectroscopic results, com-

putational simulations have been performed to model
the O─O bond-formation path [23–26]. Many of these
imply oxidation of the OEC past MnIV4 via the formation
of a MnVMnIV3 state, also presented as MnIV4 − O• (oxyl
radical). This oxidized configuration is currently associated
with S4 and would precede O─O bond formation [23,27].
Experimental proof for a MnVMnIV3 intermediate state is
currently lacking, and our data rule out its formation. Here,
we examine the earliest dynamic in the S3-to-S0 transition
via time-resolved x-ray emission spectroscopy (TR XES),
utilizing dispersive detection, to aid our understanding of

this critical biological process [28,29]. In 2015, we proposed
a new mechanistic model [Fig. 1(e)] in which O─O bond
formation occurs prior to the transfer of the final (fourth)
electron from the Mn4Ca cluster to explain our preliminary
spectroscopic results [30]. An x-ray crystallographic study of
the S3 state [13] recently confirmed our DFT-based proposal,
producing a virtually indistinguishable S3-state model,
within the experimental resolution of x-ray diffraction [31].
Here, we deliver an extensive statistical analysis of these

initial data sets in conjunction with those collected sub-
sequently, each consistently composed of almost a half
million repetitive interrogations of the OEC electronic
structure. The power of large statistical data sets has long
been realized, often enabling the development of new
research tools. A single, blurry electron microscopy image
of a complex biomolecule, for instance, provides little
insight into its structure, while several thousand images can
now deliver atomically resolved models [32]. In a similar
fashion, repetitive measurement of a spectroscopic
response allows us to solidify the rapid electronic structure
evolution in the S3-to-S0 transition, a result which is
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FIG. 1. (a) Current model of the Kok cycle. Depiction of sequential incident visible-light photon absorptions triggering electron or
proton release [3]. The dashed region is based on previous analysis of the S3-to-S0 transition in which the S4 state is proposed [3,4].
(b) Electronic transitions, reflected in the Kβ main lines, are influenced by the spin state of the Mn ion. (c) A spectral comparison of Mn
oxides depicts the effect of oxidation state on the Kβ emission lines. (d) Nanosecond laser pulses (1, 2, or 3) are used to advance the Kok
cycle in the protein (Table S1 [5]). The pump-probe delay time Δt, measured from the final laser flash to the center of the x-ray pulse, is
set dependent on the desired S state. X-ray fluorescence from the sample is reflected by ten flat analyzer crystals onto a 2D-position-
sensitive detector.Kβ emission spectra are extracted to form snapshots of the electronic structure in time. Smoothed emission spectra are
presented for 2F (majority S3) and two time points during the S3-to-S0 transition. (e) The proposed reaction scheme shows the early
evolution of the OEC during the S3-to-S0 transition, providing an interpretation of spectroscopic results.
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required to complete the description of O─O bond for-
mation in natural photosynthesis.
Mn Kβ spectral emission lines reflect the number of

unpaired 3d electrons and, thus, provide information about
the oxidation and/or spin states for a given Mn ion,
inaccessible via structural methods such as x-ray crystal-
lography [33]. The exchange interaction between the 3p
hole and 3d valence electrons in the final state causes
multiplet splitting that results in separate Kβ1;3 and Kβ0

peaks [Figs. 1(b) and 1(c)]. This coupling is directly linked
to the electronic state of Mn such that an increase in the
oxidation state results in decreased splitting between the
Kβ spectral lines. This effect is most apparent in the Kβ1;3
peak position shift to lower energies with increasing
oxidation. XES also allows for dispersive detection, in
which the full emission spectrum is recorded during a
single, intense, polychromatic x-ray pulse [Fig. 1(d)] [28].
The temporal resolution of such a setup is limited in
practice only by the time structure of the x-ray source.
In our experiments, we utilize multibunch x-ray exposures
of 22–44 μs duration to match the microsecond kinetics
of the OEC [3] [Table I and Fig. S1(a) [5]]. We previously
determined that exposures of up to 66 μs under these
conditions are undamaging to PS II [28,34]. Data collection
is performed using a von Hamos–style miniature x-ray

emission spectrometer (miniXES) [Fig. S1(b) [5] ] [28,35],
and a nonjet open-air sample delivery system [see
Supplemental Material and Fig. S1(c) [5] ] is used to
supply fresh, unrecycled PS II for each measurement at
a controlled repetition rate. Samples are excited given a
defined number (0–3) of laser flashes (F) and probed at a
time (Δt) after the final laser flash by a single x-ray pulse
[Figs. 1(d) and S1(a) and Table S1 [5] ]. For clarity, we note
that 0F, i.e. no laser flashes, corresponds to majority state
S1, 1F corresponds to majority state S2, etc.
Our total data set is composed of five separate beam times,

ultimately accumulating over two million x-ray pulses to
measure different S states (Table II). Note that data set five is
analyzed separately as its background differs from the other
four beamtimes due to beamline upgrades. Time-resolved
spectra of the majority S states S1, S2, and S3 are collected
following zero, one, and two laser flashes, respectively, with
a spacing between consecutive laser flashes of 100 ms,
corresponding to a laser frequency of 10 Hz. Samples are
probed with the x-ray beam following a Δt ¼ 500 μs time
delay from the final laser flash to allow for the full reduction
of TyrZ• with limited decay of the formed S state (Table S1
[5]) [3,36]. Given the multiplet character of the spectra and
the noise inherent for such a dilute biological sample,
previous studies recommend the use of the statistical first
moment ðPj Ej · IjÞ=ð

P
j IjÞ, surrounding the Kβ1;3 peak,

as an indicator of changes to the electronic structure (Figs. 2
and 3) [37]. It has been reported, and should be emphasized
here, that any data manipulation such as background
subtraction and smoothing can affect first moment magni-
tudes, leading to a risk of misinterpretation of small spectral
changes [19]. To avoid uncertainties due to these processing
methods, we provide the first-ever analysis of primary
photosystem II emission data. These data sets are subject
to no manipulation beyond the extraction of spectra via
energy calibration of the detector. The statistical significance
of the observed spectral changes is then determined using

TABLE I. Experimental characteristics of the pulsed x-ray
source.

Characteristics BioCARS

Excitation energy Peak energy 7.85 keV, FWHM
about 500 eV

X-ray spot size Approximately 45 × 100 μm2

Pulse length 44 μs (22 μs data set 5)
Photon flux 3 × 1011 photons=pulse
Dose delivered
per pulse

Approximately 7 × 107 photons=μm2

TABLE II. Approximate number of x-ray pulses per state, per beam time.

Data sets

Majority S state Flash 1 2 3a 4 5b

S0 3F40 ms 43 250 60 000 55 333 107 222 97 800
S1 0 62 267 72 800 60 233 n=a 100 000
S2 1 42 083 61 556 55 333 n=a 88 900
S3 2 n=a 62 000 57 178 48 889 107 222 95 600
S4a 3F50 μs n=a n=a 57 178 48 889 111 667 93 300
S4b 3F200 μs n=a 60 889 57 178 48 889 110 556 86 700
S04 3F500 μs 43 750 60 889 57 400 n=a 91 100

Total 191 350 322 334 546 500 436 667 653 400
aAdditional statistics are collected for S3, S4a, and S4b for data set 3. The columns are split to reflect the additional x-ray pulses for

these states.
bThis data set is collected after 2015 upgrades to the optics at the BioCARS beam line which made impossible the use of the old

experimental conditions and required twice shorter (1=2 intensity) pulses to minimize the heat load on new optics components.
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one-way analysis of variance (ANOVA), a simple statistical
method employed broadly across many scientific disci-
plines. Resultantp values represent the probability of falsely
rejecting the null hypothesis, i.e., that a difference in

the first moment between the two states listed is a
random statistical variation. Thus, the lower the p value,
the stronger the evidence for changes in the spectra
between compared data sets. In this study, we take the
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FIG. 2. Analysis of the statistical significance for S1 → S2 → S3 transitions serves as a proof of concept. (a) Spectral shifts occurring
as a result of 0F → 1F and 1F → 2F transitions are characterized using 2D heat maps, illustrating the p value (see Table S2 for n [5])
for changes to first moments calculated over the ranges defined by the x and y axes, i.e., start and end energy, respectively. Contours
appear in plots comparing 0F → 1F data indicate a statistically significant difference. By contrast, limited low p-value regions are
observed for the 1F → 2F transition, suggesting a smaller change. The directionality and magnitude of spectral shifts are shown in the
final column. These 2D heat maps, which graphically illustrate the change in first moments (ΔFM ¼ FMpostflash − FMpreflash) calculated
over the ranges defined by the x and y axes. 0F → 1F and 1F → 2F transitions are dominated by negative, or oxidative, shifts. An
example of statistical noise is presented by randomly dividing a 0F data set and performing the same analysis, e.g., 0F → 0F. Relevant
data from data sets 1–4 are merged to generate the final columns. Note that 0F and 1F data are not collected for data set 4, while data set
5 is collected independently following a beam-line upgrade and is therefore analyzed separately; see Fig. S4 [5]. (b) Wavelet-transform
smoothed and background-subtracted emission spectra for merged 0F, 1F, and 2F data. The region (6.485–6.495 keV), over which the
first moment is calculated, is highlighted, and a magnified inset as well as difference spectra are presented. Difference spectra are
smoothed with a rolling average calculated over 14 points (approximately�0.7 eV). (c) (Top) Average first moments from unprocessed
(color) and processed (gray) spectra. Errors are presented as SEM with n given in Table III. Those moments with a statistically
significant difference (p < 0.05) from 0F data are indicated with an asterisk. (Bottom) Dot plot of first moments from raw data. Each dot
represents a calculated first moment from a thread collected during the beam time corresponding to its color in the legend. Dashed lines
represent the average first moment, while solid bars are the 95% confidence interval.
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95% confidence interval to be significant. Background
subtraction and smoothing are used only to produce figures
for comparison with previous XES PS II studies, which all
present significantly processed data.

While it is common to analyze first moments calculated
over 6485–6495 eV, this approach fails to convey the full
information content of XES spectra. To show that our
trends are not dependent on a particular range chosen for
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analysis of the first moment, p contours over variable energy
integration ranges are shown in Figs. 2, 3, and S3 [5]. It is
evident that merged data are dominated by statistically
significant shifts, with the exception of 1F to 2F, in
agreement with earlier work [37]. Note that corners of the
contour maps, which encompass either integration ranges
outside the peak position or incomplete portions of the peak,
may be influenced more significantly by noise, which is
especially true for contour maps of individual beam times.
S1-to-S2 state transition.—The obtained S1 state spectral

shape and peak position are in good agreement with
previous RT PS II measurements [28]. A comparison of
0F and 1F first moments evaluated by one-way ANOVA
shows a reproducible, statistically significant shift of the
Kβ1;3 peak to lower energies (Table III and Figs. 2 and
S4 [5]). Cryogenic measurements previously reported a
−0.059 eV shift following spectral smoothing and back-
ground subtraction procedures [37]. Analysis of three
combined data sets (1, 2, and 3) following similar data
processing yields a first moment shift of −0.16 eV for our
0F → 1F transition (note that data set 4 is measured
without the S2 state, and 5 is measured after the beam-
line update and analyzed separately). The observed shift of
the Kβ1;3 peak to lower energies following a single laser
flash is likewise consistent with previous cryogenic
XANES [11,38] and recently published room-temperature
XES [19] results for the S1-to-S2 state transition, both of
which indicate Mn-centered oxidation. X-ray free electron
laser (XFEL)-based TR XES experiments struggle to
reproduce this result, likely due to a combination of lower
spectrometer resolution and data-processing methods [29].
Although some XFEL studies [39,40] observe spectral
shifts for x-ray measurements made following a different
number of laser flashes, they have not yet provided any new
mechanistic insights. Overall, we consider our results for
the 0F → 1F transition robust and in good agreement with
the previous characterization of the S1-to-S2 transition in
which one Mn center is oxidized from MnIII to MnIV.

S2-to-S3 state transition.—For the ensuing S-state tran-
sition, S2 → S3, previous cryogenic measurements deter-
mined that changes to the Mn Kβ emission spectrum are
minimal, and a small (−0.02 eV) shift, on the order of our
systematic error (0.02 eV; see Supplemental Material [5]
for more details), is reported [37]. A comparison of our 1F
and 2F first moments, analyzed with one-way ANOVA,
indicates a lack of statistical significance over most energy
ranges (Table III and Figs. 2 and S4 [5]). Any associated
spectral differences are likely too small to reach statistical
significance under our experimental conditions. In contrast
to both these measurements and earlier XAS studies
[11,34,35], Zaharieva et al. recently observed a shift in
the room-temperature emission spectrum equivalent to
that observed during the S1 → S2 transition [19].
Although the proposed Mn oxidation to form MnIV4 in
the S3 state [41–45] [Fig. 1(a)], at its most basic, suggests a
comparable XES shift for S1 → S2 and S2 → S3 transitions,
we now know that the OEC undergoes a major structural
change during the S2 → S3 transition from both extended
x-ray fine structure (EXAFS) [38], femtosecond (fs) x-ray
crystallography [12–14], and electron paramagnetic reso-
nance (EPR) [44]. Studies on model compounds indicate
that changes to the local spin densities associated with
structural rearrangements, such as changes to the ligand
environment, could obscure a Mn-centered oxidative shift
[31,46,47]. Minimal changes to the emission spectra,
observed upon the S2 → S3 transition in previous studies,
are attributed to ligand-centered oxidation [37]. Low S1-to-
S2 state conversion following the first laser flash could
produce equivalent changes in the S1-to-S2 and S2-to-S3
transitions observed by Zaharieva, Dau, and Haumann [18];
however, the origin of such discrepancies between reports
has yet to be elucidated.
S0 forms after O2 evolution.—To probe samples

enriched with S0, XES spectra are collected after a
40-ms delay following a third laser flash (3F40 ms). The
first moment of 3F40 ms is consistently shifted to higher

TABLE III. p and F-statistic values from ANOVA for state-to-state comparisons between the state in the row and the state in the
column for data sets 1–4 combined. p values are based on the first moments over the range 6.485–6.495 keV. The number of “samples”
(i.e., threads) is shown in parentheses for each state. These values are broken down by beam time in Table S2 [5]. See Table II for
additional comparisons between the states based on the number of x-ray pulses per state per beam time and Figs. 2(c) and 3(c) for dot
plots of all first moments used for p-value calculations. Values for the F-statistic are given in parentheses. An analysis of data set 5 is
shown in Fig. S4 [5].

S0 S1 S2 S3 S4a S4b S04
Majority S state (n) Flash 3F40 ms 0F 1F 2F 3F50 μs 3F200 μs 3F500 μs

S0 (117) 3F40 ms 1 0.08 (3.06) 0.06 (2.19) 0.06 (3.60) 0.17 (1.82) 0.63 (0.23) 0.66 (0.19)
S1 (78) 0F 1 <0.01 (9.00) <0.01 (13.56) 0.68 (0.17) 0.19 (1.67) 0.05 (3.80)
S2 (81) 1F 1 0.85 (0.04) <0.01 (7.27) 0.02 (3.68) 0.98 (0.82)
S3 (96) 2F 1 <0.01 (11.32) 0.02 (5.87) 0.22 (1.50)
S4a (75) 3F50 μs 1 0.11 (0.80) 0.18 (2.60)
S4b (98) 3F200 μs 1 0.39 (0.73)
S04 (82) 3F500 μs 1
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energies [Figs. 3(c), S3, and S4 [5]], supporting the
expected reduction of Mn. Overall, the RT TR XES results
are in good agreement with previous Mn Kβ emission data
[19,37]. Having validated the experimental technique, we
investigate the elusive transient S3-to-S0 process also
initiated by three laser flashes (3F).
O─O bond formation step.—Figure 3 depicts the earliest

evolution of the OEC electronic structure following three
laser flashes and the associated first moment changes of
Mn Kβ1;3 measured at Δt ∼ 50 μs (3F50 μs) and Δt ∼
200 μs (3F200 μs). The trend of an increasing first moment
is robust and statistically significant (Table III and Figs. 3
and S4 [5]). It is important to note that this statistically
significant change occurs after the S2-to-S3 transition, for
which our analysis does not detect a statistically significant
change in the spectra (Table 3 and Fig. 2). Furthermore, the
observed increase in the first moment cannot be explained
by mixing of S states due to poor protein advancement, as
this mixing would produce an oxidative (decrease in the
first moment) trend or no change; see Supplemental
Material [5] for details regarding laser excitation. Based
on the results of our statistical analysis, there is less than a
5% chance that this trend of an increasing first moment is
merely noise. It is extremely unlikely that we would
repeatedly observe p values less than 0.05 if we were
prevented from detecting small spectral changes due to
inherent limitations of our spectroscopic setup. Random
reassignment of S-state labels, representative of data sets
limited by spectrometer resolution, for example, yields p
values less than 0.05 in only 5% of the random assign-
ments, which is the expected false-positive rate. We are
therefore confident that these trends are not resolution
limited. To further probe the robustness of the shifts, we
repeat our ANOVA analysis on randomly divided halves of
the data. Recovery of statistical significance after this
procedure demonstrates that there is, in fact, a ð5%Þ2 ¼
0.25% chance that the reported effect is due to noise.
This statistically significant spectral shift suggests that

during the S3-to-S0 transition the OEC undergoes a
significant transformation at short timescales. Changes
observed at 50 and 200 μs are likely due to a short-lived
isoform of the S3 state (S3OO), in which the O─O bond has
been formed and Mn centers have been reduced from the
ðMnIVÞ4 state [48]. The accumulation of this species is
controlled by its rate of formation (k1) and rate of oxidation
due to electron transfer to TyrZ• (k2), which produces a one-
electron-more oxidized S4OO state [Fig. 1(e)]. The first
moment of the Mn Kβ1;3 line is commonly correlated
with the nominal spin value of the Mn center (Fig. 4). We
observe that the nominal spin of 3F50 μs and 3F200 μs

deviates from the all MnIV assignment reported for S3
and represented on our plot by MnO2 oxide as well as
two model compounds containing a single MnIV center.
Intriguingly, the shift between 2F and 3F200 μs is greater
than that observed between 2F and 3F500 μs, for which

statistical significance is visible only on some plots (Fig. 3)
but is not strictly demonstrated in the 6.485–6.495 keV
range. It is currently unclear whether this effect is rooted in
statistical uncertainty or is simply a weak spectral change
due to transient oxidation of the OEC by electron transfer
to TyrZ• (k2) [Fig. 1(e)]. Transient oxidation would likely
temporarily pause or reverse the reductive (increasing)
trend in first moments.
While density functional theory (DFT) modeling

has proven inconclusive regarding the formation of a
MnV¼O species [24,26,49,50], we are unable to observe
oxidation of the OEC, which would likely be associated
with lower values of the first moment, at any observation
time point following the third flash and measured over
multiple beam times. This lack of evidence for oxidation
past 2F (majority state S3) is consistently observed
(Figs. 3, S3, and S4 [5]) thereby excluding formation
of a MnVMnIV3 state kinetic intermediate. Current DFT
models [23–26] also do not resolve the previously
identified kinetic challenge [22]. UV-vis difference spec-
tra show that TyrZ• is reduced quite slowly, approximately
1 ms after the third flash. Given that this time constant is
comparable to the rate of O2 evolution, only a very short
approximately 50 μs time window remains for all bond-
formation dynamics and product and substrate exchange
to occur.
The TR XES results detailed above cannot be explained

by most DFT mechanistic models. Those which propose a
MnIV4 − O• (oxyl radical) in place of MnV¼O, for
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FIG. 4. Analysis of Mn Kβ first moments. Placement of fully
processed 2F and 3F data along a linear fit to a series of Mn oxide
first moments empirically predicts the average spin state of Mn
centers in the OEC. For reference, relevant Mn coordination
complexes are placed along the line by using the nominal spins
reported by Davis et al. and Jensen et al. [31,46]. Note that S4a and
S4b correspond to 3F stateswithΔt between the final laser flash and
an x-ray pulse of 50 and 200 μs, respectively. Compounds 1–3 are
formally mixed valence MnIII=MnIV complexes. 1 is a di-μ-oxo
dimer, [Mn2O2L0

4] ðClO4Þ3, while 2 and 3 are two examples from
theMn cubane family, Mn4O4L6. Compounds 4 and 5, by contrast,
are mononuclear Mn complexes ½MnIVðOHÞ2ðMe2EBCÞ�2þ and
½MnIVðOÞðOHÞ−ðMe2EBCÞ�þ, respectively.
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example, predict significant activation barriers for O─O
bond formation [23,27], in disagreement with spectro-
scopic results that show early-onset reduction in both
XES and XAS. Our results are, however, in agreement
with the only other published TR studies probing the
electronic structure evolution of the Mn centers via x-ray
absorption spectroscopy (XAS) [3,4,18]. TR XAS detects
no oxidation and, instead, suggests the gradual (millisec-
onds) reduction of the OEC, initiated 250 μs into the S3-to-
S0 transition. In contrast to the XAS study, where only two
energy points along the MnK edge are analyzed, we collect
full spectra with high multiplicity, representing the com-
plete electronic structure of the OEC at Δt ∼ 50 μs and Δt
∼200 μs. In addition, XAS and XES probe different
electronic transitions. It is therefore possible that some
early spectral changes between t ¼ 0–200 μs may have
previously escaped detection or are less pronounced in
XAS due to the transient nature of the early intermediate. A
more recent XES study performed at the Linac Coherent
Light Source indicates no changes to the Mn Kβ spectra
250 μs after the third laser excitation [51]. We attribute this
discrepancy to differences in experimental conditions that
will likely be clarified in the future.
To overcome the kinetic challenge, we propose that the

O─O formation step takes place in the S3-to-S0 transition
prior to the reduction of TyrZ• [Fig. 1(e)] [30,31]. Rapid
evolution of the OEC during the S3-to-S0 transition has
long been a primary target of PS II research. Based on UV-
vis difference spectroscopy [17,52] and TR infrared spec-
troscopy [16], a deprotonation event is proposed to occur
early (0–300 μs) during this transition. Our results do not
explicitly exclude a deprotonation event but necessitate
significant changes to the electronic structure of the 3dMn
frontier orbitals to explain the observed spectroscopic
effect. The results presented here can be better rationalized
if the formation of the (TyrZ•)S3 state, occurring on the
order of 100 ns [16], triggers a sequence of events resulting
in significant redox or structural changes to the OEC, such
as the formation of the O─O bond. The most recent isotope
exchange studies show that substrate exchange stops early
(0–300 μs) in the transition [21], hinting at such a pos-
sibility. The highest activation energies are also noted in
this early timewindow [53]. Likewise, the only molecularly
defined system for water oxidation functioning with a
comparative reaction rate [RuðbdaÞðisoqÞ2] is hypothesized
to work via a radical coupling mechanism, which results in
a peroxo intermediate. During the final catalytic step of this
artificial system, the peroxo intermediate is further oxi-
dized, and release of O2 follows [54]. These results suggest
that the same catalytic mechanism engenders rapid O2

evolution in both biological and biomimetic systems, while
at the same time preventing peroxide release due to the
transient presence of the peroxo isoform.
In summary, to analyze the evolution of the photosystem

II electronic structure, we observed intermediate states of

photosynthetic O2 production via microsecond resolution
time-resolved x-ray emission spectroscopy at a synchrotron
source. Consistent with the obtained full spectra is a
mechanism involving O─O bond formation in the S3-to-
S0 transition prior to TyrZ• reduction. This mechanism
resolves the previously highlighted kinetic problems.
Parallel advancements in the development of molecular
catalysts for artificial photosynthesis strongly support O─O
bond formation prior to the final oxidation step of such
peroxo intermediates and provide further support for the
mechanistic proposal detailed herein.
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