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Quantum spin liquids (QSLs) are intriguing phases of matter possessing fractionalized excitations.
Several quasi-two-dimensional materials have been proposed as candidate QSLs, but direct evidence for
fractionalization in these systems is still lacking. In this paper, we show that the interplane thermal
conductivity in layered QSLs carries a unique signature of fractionalization. We examine several types of
gapless QSL phases—a Z2 QSL with either a Dirac spectrum or a spinon Fermi surface, and a Uð1Þ QSL
with a Fermi surface—and consider both clean and disordered systems. In all cases, the in-plane and c-axis
thermal conductivities have a different power-law dependence on temperature because of the different
mechanisms of transport in the two directions: In the planes, the thermal current is carried by fractionalized
excitations, whereas the interplane current is carried by integer (nonfractional) excitations. In layered Z2

and Uð1Þ QSLs with a Fermi surface, and in the disordered Z2 QSL with a Dirac dispersion, the c-axis
thermal conductivity is parametrically smaller than the in-plane one but parametrically larger than the
phonon contribution at low temperatures.
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I. INTRODUCTION

Quantum spin liquids (QSLs) are phases of matter with
intrinsic topological order, which cannot be characterized
by local order parameters as typically used in symmetry-
breaking phases. Instead, their primary characteristic is the
emergence of excitations with fractional quantum numbers
[1–6]. The presence of these excitations is related to the
existence of long-range entanglement in ground states of
such systems [7,8]. In addition, the excitations are accom-
panied by an emergent gauge field leading to a low-energy
description in terms of gauge theories. The relevant gauge
group can be discrete (e.g., Z2) or continuous [e.g., Uð1Þ].
The matter excitation spectrum may be gapped (as in a
gapped Z2 phase [9–15]) or gapless [as in a gapless Z2

[16,17] or Uð1Þ [18–26] QSL].
Several materials have been proposed as candidates for

spin liquids; these three-dimensional materials are often
layered compounds of frustrated 2D lattices, such as
kagome and triangular lattices. For example, members of
the iridate family [27–30] have been proposed to display

QSL gapless Z2 behavior; the triangular organic salt
EtMe3Sb½PdðdmitÞ2�2 has been proposed to have a spinon
Fermi surface, while κ − ðETÞ2Cu2ðCNÞ3 is believed
to be a gapped QSL [31–34]. In addition, the material
Herbertsmithite is thought to be either a gapless or a small
gap QSL, with its class not yet known [35–46].
The excitations of QSLs can carry fractional quantum

numbers corresponding to global symmetries possessed
by the system [13,47,48] and also possess fractional
(anyonic) statistics [10,48–50]. There have been numer-
ous proposals to detect these fractional quantum numbers
and statistics in QSL materials [48,51–57]. The presence
of fractionalization itself has primarily been deduced
through a diffuse scattered intensity seen in inelastic
neutron scattering experiments on various candidate spin
liquids at temperatures much smaller than the relevant
exchange coupling [43,58]. The absence of sharp features
in the neutron scattering intensity is attributed to the
presence of a multiparticle continuum [59]. However,
such broadening can also arise from other factors such as
disorder, and it would be useful to have additional
signatures of fractionalization.
In this work, we propose the interplane thermal con-

ductivity κc as a probe for fractionalization in a system
of weakly coupled layers of two-dimensional gapless
QSLs [60]. The in-layer thermal conductivity κab in these
materials is dominated by the low-energy fractionalized
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excitations pertinent to the type of QSL in question; in
contrast, the thermal current between the planes must be
carried by a gauge-invariant excitation with integer
quantum numbers. This is because the emergent gauge
charge carried by fractionalized excitations is conserved
separately in each layer, and therefore, a single spinon
cannot move from one layer to the next. Moreover, a
non-gauge-invariant fractionalized excitation, such as a
spinon, is highly nonlocal in space (it is composed of a
long “string” of local spin operators). This implies that the
matrix element of a local operator to transfer pairs of
spinons from one layer to another decays exponentially
with the spatial separation between the two spinons.
Therefore, only pairs of nearby spinons can hop between
adjacent layers.
The situation is depicted schematically in Fig. 1,

where a single spinon is deconfined and may propagate
freely in each plane, while only pairs of spinons may hop
between planes. Therefore, κc in a gapless QSL is expected
to be qualitatively different from the in-layer thermal

conductivity and to obey a different power law at low
temperatures [61]. An experimental detection of such a
parametrically large anisotropy in the ratio κab=κc at low
temperatures will be a strong indication of the existence of
fractionalized excitations and hence a QSL state.
Our findings are summarized in Table I. We have

considered three cases: a gapless Z2 QSL with either a
Dirac spectrum or a spinon Fermi surface, and Uð1Þ
QSL with a spinon Fermi surface. In all cases, the in-
plane and c-axis thermal conductivity follow qualita-
tively different behavior as a function of temperature,
for both clean and mildly disordered systems. In all
QSLs we consider, the interplane thermal conductivity
follows a power-law behavior in temperature, with an
exponent that is larger than for the corresponding
intraplane behavior. Interestingly, in some cases, the
exponent of the interplane thermal conductivity is
smaller than 3, and therefore, it is parametrically larger
than the phonon contribution (proportional to T3) at
sufficiently low temperatures.

II. CLEAN Z2 QUANTUM SPIN LIQUID

We begin by considering a layered system where each
layer forms a Z2 QSL with gapless fermionic excitations.
The fermions may either have a Dirac spectrum or form a
Fermi surface. As a concrete example of the gapless Z2 QSL,
one may consider the gapless phase of the Kitaev honey-
combmodel [16], which consists of spin-1=2 s interacting in
an anisotropic manner on a two-dimensional hexagon lattice.
We use this model to facilitate our discussion; our con-
clusions are generic to any gapless Z2 QSL.
The low-energy theory of the Kitaev QSL phase may

be described either as two linearly dispersing Majorana
fermions or, equivalently, as a single complex Dirac theory.
Here, we consider a three-dimensional layered generaliza-
tion of the Kitaev model. The low-energy effective
Hamiltonian of each layer is given by

FIG. 1. A schematic representation of the difference between
in-plane and interplane transport. In each QSL plane, the spinons
are deconfined and may travel freely. However, transport between
the planes is only possible via gauge-invariant excitations, such as
spinon pairs.

TABLE I. In-plane and c-axis thermal conductivity for several
types of QSL. Here, Z2 Dirac refers to a Z2 QSL with a Dirac
spectrum of fermionic fractional excitations, and Z2 FS is a Z2

QSL with a Fermi surface of fractional excitations. Note that
Uð1Þ refers to a spinon Fermi surface coupled to a Uð1Þ
fluctuating gauge field, and α ¼ 6ΔA=ðπ þ ΔAÞ, with ΔA the
(dimensionless) time-reversal (TR) preserving disorder strength
[see Eq. (11)]. The result for the clean Z2 FS case is correct up to
logarithmic factors.

In-plane c-axis

Clean Disordered Clean Disordered

Z2 Dirac T [62] T T5 T5−α

Z2 FS T−1 T T3 T2

Uð1Þ T1=3 [63] T [63] T5=3 T2
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HZ2

l ¼
Z

d2k
ð2πÞ2 ψ

†
l ðkÞ½vσ · kþmσz þ Δσ0�ψ lðkÞ; ð1Þ

where l is the layer index, and ψ†
l ðkÞ ¼ (ψA†

l ðkÞ;
ψB†
l ðkÞ) is a spinor of complex fermionic spinon creation

operators in layer l, with A, B denoting the sublattice.
Here, σ is a vector of Pauli matrices, k ¼ ðkx; kyÞ is
measured relative to the corner of the honeycomb lattice
(the K point), and v is the Fermi velocity. Note that m
and Δ describe a mass gap and an effective chemical
potential, respectively. Throughout the paper, we have set
ℏ ¼ 1. In Appendix A, we show an explicit microscopic
spin Hamiltonian that leads to a low-energy effective
Hamiltonian in Eq. (1). The m and Δ terms arise from

TR-breaking three-spin interactions. On the honeycomb
lattice, in the presence of time reversal (TR) symmetry,
m ¼ Δ ¼ 0, and the Fermi energy is at the Dirac point.
Breaking TR symmetry [17], or considering generaliza-
tions of the Kitaev model to other lattices [64–69], allows
for a stable Fermi surface. In all Z2 QSLs we consider,
the fermionic excitations (“spinons”) are gapless, which
corresponds to jΔj ≥ jmj. The fluxes of the Z2 gauge
field (“visons”) are gapped.
Although the in-plane theory is described by fractional

excitations, interplane transport must be mediated by
gauge-invariant excitations. The most relevant interlayer
coupling terms that are allowed by symmetry are
given by

HZ2⊥ ¼ J⊥
X
hl;l0i

X
α¼0;1;2;3

Fα

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2 ψ

†
l ðkÞσαψ lðkþ qÞψ†

l0 ðk0Þσαψ l0 ðk0 − qÞ

þ J⊥
X
hl;l0i

F4

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2 ½ψ

A†
l ðkÞψB†

l ð−k − qÞψA
l0 ðk0ÞψB

l0 ðk0 − qÞ þ H:c:�; ð2Þ

where hl; l0i are neighboring layers, σα are the Pauli
matrices (with σ0 the identity matrix), J⊥ is the strength
of the interplane coupling, and F0;…;4 are dimensionless
coupling constants. In Appendix. A4, we argue that,
generically, J⊥ is proportional to the microscopic spin-
spin interlayer interactions.
For simplicity, we mostly focus on the case where only

F0 ¼ F is nonzero. A derivation of such a coupling term
from a microscopic spin-spin interaction is given in
Appendix A. We believe that the particular form of the
interlayer coupling is not important; the contribution to the
thermal conductivity from other terms gives the same
parametric dependence on temperature. The crucial point
is that the interplane coupling term must contain an even
number of fermion operators from each layer, as a single
fractional excitation may not hop from one layer to another.
In a generic Z2 QSL, there are also short-range intraplane

interactions between the fermionic spinons. However, for
most of the following discussion, we can ignore such
interactions, as they are irrelevant in the Dirac case and lead

to a Landau Fermi liquid state with well-defined quasi-
particles in the Fermi surface case.
For a clean Z2 QSL, whose low-energy theory is

described by weakly interacting fermions, the interlayer
thermal conductivity may be calculated to lowest order in
J⊥ using Fermi’s golden rule. We work in the basis of the
eigenvalues of the in-plane Hamiltonian; we therefore
revert from the sublattice (α ¼ A, B) to the band
(λ ¼ �1) basis and consider the transformed function
Fλ1…λ4
k;k0;q in this basis. In the case of a Dirac spectrum, the

eigenstates of the in-plane Hamiltonian are given by
aλ¼�
l ðkÞ ¼ ½ψA

l ðkÞ � eiϕkψB
l ðkÞ�=

ffiffiffi
2

p
, with energy ϵλk ¼

λvk; here, ϕk ¼ atanðky=kxÞ. In this basis, Fλ1…λ4
k;k0;q ¼

1
4
½1þ λ1λ2eiðϕk−ϕkþqÞ�½1þ λ3λ4e

iðϕk0−ϕk0−qÞ�. Energy is
transported between layers by the excitation of spinon
pairs; thus, if a temperature difference δT is applied
between two adjacent layers l and l0, the rate with which
energy transfer occurs, for the specific momenta k, kþ q,
k0, k0 − q, is

ΓE
k;kþq;k0;k0−q ¼ 2π

Z
J2⊥

X
λ1…4

jFλ1…λ4
k;k0;q j2

X
il;il0 ;fl;fl0

�
exp

�
−

Ei;l

T þ δT
−
Ei;l0

T

�
− exp

�
−

Ef;l

T þ δT
−
Ef;l0

T

��

× jhfljhfl0 jaλ1†l ðkÞaλ2l ðkþ qÞaλ3†l0 ðk0Þaλ4l0 ðk0 − qÞjilijil0 ij2ðEi;l − Ef;lÞδðEi;l þ Ei;l0 − Ef;l − Ef;l0 Þ; ð3Þ

where jili,jfli are the initial and final many-body states of layer l (which are eigenstates of the J⊥ ¼ 0 Hamiltonian), with
energies Ei;l and Ef;l, respectively, and similarly for layer l0. Here, Z is the partition function.
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The thermal conductivity is then given by (here, JQ is the thermal current)

κc ¼
∂JQ
∂δT ¼

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2

∂
∂δT ΓE

k;kþq;k0;k0−q

¼ 2π
J2⊥
T2

X
λ1…4

Z
dϵ1dϵ2dϵ3(1 − nFðϵ1Þ)nFðϵ2Þ(1 − nFðϵ3Þ)nFðϵ1 − ϵ2 þ ϵ3Þ × ðϵ1 − ϵ2Þ2

×
Z

d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2 jF

λ1…λ4
k;k0;q j2δðϵ1 − ϵλ1k Þδðϵ2 − ϵλ2kþqÞδðϵ3 − ϵλ3k0 Þδðϵ1 þ ϵ3 − ϵ2 − ϵλ4k0−qÞ; ð4Þ

where nFðϵÞ is the Fermi function.
For the case of a Z2 QSL with a Dirac spectrum,

the dependence of the integral on temperature can be
evaluated easily by rescaling ϵ ⇒ ϵ=T and fk;k0;qg ⇒
fk=vT;k0=vT;q=vTg. This gives the result

κc ∼
J2⊥
v6

T5 ðclean Z2 with Dirac spectrumÞ: ð5Þ

The case of a Z2 QSL with a Fermi surface corresponds
to Δ ≠ 0 in Eq. (1). To simplify the calculation, we set the
mass term in Eq. (1) such that Δ > m but jΔ −mj ≪ m. In
this limit, the eigenstates of the band that crosses the Fermi
energy simplify to aðkÞ ¼ ψAðkÞ, with a nonrelativistic
dispersion ϵk ¼ k2=2m� − μ, with μ ¼ Δ −m and
m� ¼ m=v2. The result should not depend on this choice.
The evaluation of the integrals in Eq. (4) for the case of a

Fermi surface is described in Appendix B. After integrating
over k, k0, and ϵ1;2;3, κc has the form

κc ∼ J2⊥T3

Z
d2kd2k0d2q

ð2πÞ6 δðϵkÞδðϵkþqÞδðϵk0 Þδðϵk0−qÞ

∼ J2⊥
ν4

k2F
T3

Z
2kF

0

dq
1

q
1

1 − q2=4k2F
; ð6Þ

where ν ¼ m�=2π is the density of states on the Fermi
energy, and kF ¼ ffiffiffiffiffiffiffiffiffiffiffi

2m�μ
p

. This integral is logarithmically
divergent; this is similar to the divergence of the electronic
self-energy in a Fermi liquid in two dimensions [70]. As in
a Fermi liquid, intralayer short-range interactions between
the spinons lead to a finite spinon lifetime τ ∝ 1=T2. The
associated broadening of the spinon spectral function
provides an infrared cutoff for the logarithm [71], giving

κc ∼ J2⊥
ν4

k2F
T3 logðΛ=TÞ ðclean Z2 with FSÞ; ð7Þ

with Λ a high-energy cutoff, of the order of the Fermi
energy (which is proportional to the exchange coupling
between the original spins).
The in-plane thermal conductivity of the Z2 QSL with

a Fermi surface is given, using the Einstein relation, by

κab ∼ cVv2Fτ=2, where cV ¼ π2νT=3 is the specific heat of
the system at low temperatures, vF ¼ kF=m� is the Fermi
velocity, and τ is the spinon lifetime. In a perfectly clean
crystal, the finite lifetime is due to the weak short-range
interaction between the spinons mediated by the gapped
gauge field (assuming that Umklapp processes are available
to relax the total momentum of the scattering spinons). The
lifetime is given by τ−1 ∼ T2 logðΛ=TÞ as discussed earlier,
and therefore, we have

κab ∼ ½T log ðΛ=TÞ�−1: ð8Þ

III. DISORDERED Z2 QUANTUM SPIN LIQUID

As we now show, quenched disorder changes the low-
temperature interplane transport in a qualitative way. The
effects of disorder depend crucially on the type of disorder,
which is subject to the symmetry of the problem. Consider,
for example, the case of the honeycomb Kitaev model with
time-reversal symmetry. Then, disorder can take the form
of a random bond strength that translates to a random vector
potential [72] in the low-energy Dirac Hamiltonian, Eq. (1).
Breaking time-reversal symmetry can induce random scalar
potential and mass terms as well (see Appendix C1 for a
demonstration of how such terms arise in a disordered
version of the Kitaev model).
Here, we focus on random vector and scalar potentials; a

random mass term is important at the transition between
different gapped spin-liquid states, a case we will not
consider in the present work. The disordered part of the
low-energy effective Hamiltonian in layer l is given by

Hdis
l ¼

Z
d2kd2k0

ð2πÞ4 ψ†
l ðkÞðVk−k0 þvAk−k0 ·σÞψ lðk0Þ; ð9Þ

where Vk−k0 and Ak−k0 are random scalar and vector
potentials, respectively. We assume that the disordered
potentials in different layers are statistically independent.
First, we study the case of a Dirac QSL with time-

reversal symmetry, in which only a random vector potential
term is allowed, Vk−k0 ¼ 0. The effects of a vector potential
disorder on a system with a Dirac dispersion were studied
extensively in Ref. [73], where it was shown that such a
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term leads to a line of fixed points, characterized by scaling
exponents that depend continuously on the disorder
strength. Using the methods introduced in Ref. [73], we
can find the scaling form of correlation functions at this
fixed point, as described in detail in Appendix C2a. This
allows us to show that vector potential disorder results in a
modification of the exponent of the thermal conductivity,
which is given by

κz ∼ T5−α ðdisordered Z2 with Dirac spectrumÞ; ð10Þ

with α ¼ 6ΔA=ðπ þ ΔAÞ, ΔA being the disorder strength:

ð2πÞ2δðqþ q0ÞΔA ¼ hAqAq0 idis; ð11Þ

and the average is over disorder configurations. We con-
sider smooth disorder, such that ψ†ψ† terms (corresponding
to intervalley scattering in the Majorana model) are
negligible.
Next, we consider the effect of disorder on a Z2 QSL

with a Fermi surface, corresponding to Δ ≠ 0 in Eq. (1).
In this case, since time-reversal symmetry is broken, both
scalar and vector disorder potentials are allowed. To
simplify the computation, we neglect the vector potential
in this case and assume that the scalar potential is short-
range correlated in space: hVqVq0 idis ¼ δðqþ q0Þ=ð2πντÞ,
where ν is the density of states at the Fermi level, and τ is
the mean-free time of quasiparticles at the Fermi surface.
Moreover, we again set the mass term in Eq. (1) such that
Δ > m but jΔ −mj ≪ m. We expect that none of the
qualitative aspects of the solution depend on these choices.
In the presence of disorder, the calculation of the thermal

conductivity is most conveniently done using the Luttinger
prescription [74–76]. The thermal conductivity is written as

κ ¼ −1
T

lim
ω→0

Im½ΠðωÞ�
ω

; ð12Þ

where ΠðωÞ is the retarded thermal current–thermal current
correlation function,

ΠðωÞ ¼ hJQðiωnÞJQð−iωnÞijiωn→ωþiδ: ð13Þ

The c-axis thermal current operator can be derived using

the energy continuity equation: JQc ðiωnÞ ¼ limqc→0
iωnhðqcÞ

qc
,

where hðqcÞ is the energy density operator at wave vector
qc. An explicit calculation to leading order in J⊥ using
Eq. (2) gives (see Appendixes D1 and D2)

JQc ðiωnÞ ¼
1

32
J⊥F0

X
l;η¼�1

η

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2

1

β3
X

νn;νm;Ωn

Ωn

×ψ†
l ðk; iνnÞψ lðkþq; iνnþ iΩnþ iωnÞ

×ψ†
lþηðk0; iνmÞψ lþηðk0−q; iνm− iΩnÞ: ð14Þ

Here, we have suppressed the eigenstate indices λ1;…;4

since in the nonrelativistic limit jΔ −mj ≪ m, the wave
functions of states at the Fermi surface are confined to a
single sublattice. Similarly, we have suppressed the eigen-
state indices in F0, which is now momentum independent.
Note that, similarly to the interplane coupling, the thermal
current operator in our model is quartic in the fermionic
operators, corresponding to the fact that energy is carried
between the plane by the hopping of fermion pairs.
The diagrams describing the leading-order contribution

to κc are shown in Fig. 2. The computation is lengthy
but straightforward, and we only describe the main steps
here, deferring the details to Appendix D5. We assume that
the disorder is weak, such that kFl ≫ 1, where kF is the
Fermi momentum and l ¼ kFτ=m is the mean-free path.
Under these conditions, we may use the self-consistent
Born approximation [77], equivalent to summing only
noncrossed diagrams [78].
A key object is the disorder-averaged four-point corre-

lator within a single layer ϒ, depicted in Fig. 2(b):

ϒðk;k0;q;iνn;iνmÞ
¼hψ†

l ðk;iνnÞψ lðkþq;iνmÞψ†
l ðk0 þq;iνmÞψ lðk0;iνnÞidis:

ð15Þ

k1 k'1

k+q1 k'+q1

k2 k'2

k'-q2k'-q2

(a)

= +

+ +...

k k'

k+q k'+q

(b)

FIG. 2. (a) The thermal current–thermal current correlation
diagram. The Green’s functions on the top, which are functions
ofmomentum k1, are related to layer l, while those on the bottomare
from layer l0. Note that the current vertex consists of four Green’s
functions, two fromeach layer. (b)The disorder-averaged four-point
correlator within each layer, ϒðk;k0;qÞ. The black lines denote
fully dressed fermion propagators, dashed lines represent the effects
of disorder, the squiggly lines are the bare thermal current vertex,
and the green area stands for the fully renormalized two-particle
vertex. We work in the self-consistent Born approximation, appli-
cable for kFl ≫ 1, where only ladder diagrams are taken into
account. We suppress the frequency dependence for clarity.
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The thermal current correlation function, Eq. (13), is
then given as a convolution of two four-point correlation
functions of two adjacent layers:

ΠðiωnÞ¼
1

64
J2⊥

1

β3
X

νn;νm;Ωn

Z
k
F2
0Ω2

nϒðk1;k0
1;q;νn;νnþΩnÞ

×ϒðk2;k0
2;−q;νmþωn;νm−ΩnÞ: ð16Þ

Here,
R
k ¼

R ½ðd2k1d2k2d2k01d2k02d2qÞ=ð2πÞ10�.
The clean, free fermion limit of this expression, with the

correlator ϒðk1;k1
0;q; iνn; iνmÞ ¼ δðk1 − k1

0ÞGðk1; iνnÞ
Gðk1 þ q; iνmÞ, reproduces the Fermi golden rule calcu-
lation, Eq. (4). In the presence of disorder, the computation
of ϒ for small q (such that ql ≪ 1) involves a summation
over a ladder series (see Appendix D5); this results in

ϒðk;k0;q; iνn; iνmÞ ≈Gðk; iνnÞGðkþ q; iνmÞ
× fδðk − k0Þ þ 1=ð2πντ2Þ
× ½jνn − νmj þDq2�−1Gðk0; iνnÞ
×Gðk0 þ q; iνmÞg; ð17Þ

where the diffusion constant D ¼ v2τ=2, with τ the
disorder-induced single-particle lifetime, and

Gðk; iνnÞ ¼
1

iνn − ϵk þ isgnðνnÞ=2τ
: ð18Þ

Note the appearance of the diffusion kernel in Eq. (17); this
is related to the diffusive behavior of the dynamical charge
correlation function in a disordered system.
The computation of the sums in Eq. (16) is described in

Appendix D5. The dominant contribution comes from low
frequencies and momenta, where the four-point correlator
takes the form (17). At low temperatures, T < 1=τ, the
result is

κc ∼ J2⊥
ν2

D
T2 ðdisordered Z2 with Fermi surfaceÞ: ð19Þ

At higher temperatures, T ≳ 1=τ, κc crosses over to the
clean form, Eq. (7). Equation (19) can also be derived from
scaling arguments, assuming that the intraplane density-
density correlation function has a diffusion form; see
Appendix C2b.
In Appendix D6, we show that the F4 pair hopping

interlayer term results in the same power law, κc ∼ T2.

IV. Uð1Þ QUANTUM SPIN LIQUID

We further study the case of a layered Uð1Þ QSL with a
spinon Fermi surface. In addition to the fermionic spinons,
there exist gapless gauge field photons, which also con-
tribute to transport. The low-energy sector of each layer is
described by the Lagrangian density [20–26]

Ll ¼
X
σ¼↑;↓

ψ†
l;σð∂t − ia0 − μÞψ l;σ þ

1

2m
ψ†
l;σð−i∇ − aÞ2ψ l;σ;

ð20Þ

where ψ†
l;σ creates a spinon at layer l with spin σ, ða0; aÞ

is the Uð1Þ gauge field, μ is a chemical potential that
sets the size of the spinon Fermi surface, and m is the
spinon effective mass. A “Maxwell” term for aν,
½1=ð2gÞ�Pνλf

νλfνλ, where g is a coupling constant and
fνλ ¼ ∂νaλ − ∂λaν is also allowed by symmetry; however,
it gives rise to subleading contributions at low momenta
and frequencies; hence, we drop it in the following.
Under the random phase approximation (RPA), the

clean system is described by a strong-coupling fixed point,
with the retarded gauge boson and spinon propagators
[DRðq;ωÞ and GRðk;ωÞ, respectively] given by

DR
αβðq;ωÞ ¼ PαβðqÞ

�
−iγ

ω

q
þ χq2

�
−1

GRðk;ωÞ ¼ ½cð−iωÞ2=3 − ξk�−1 ½clean Uð1Þ QSL�;
ð21Þ

with ξk ¼ k2=m − μ the spinon energy, γ ¼ kF=π,
χ ¼ 1=ð12πmÞ, c ¼ ðkF=mÞχ−2=3k−1=30 , and PαβðqÞ ¼
δαβ − qαqβ=q2, with k0 of the order of kF ¼ ffiffiffiffiffiffiffiffiffi

2mμ
p

, the
Fermi momentum. The use of the RPA has been formally
justified in a large-N expansion, where N is the number of
fermion flavors [26], but this has been shown to be
problematic [79]. Additional expansion parameters have
been proposed that essentially reproduce the RPA results
[80,81]. We use the RPA approximation, assuming it is
pertinent to at least some area in parameter space.
In a layered Uð1Þ QSL, heat may be transferred between

the layers, both by spinon and by photon excitations. The
most relevant interlayer interaction term of each sector is
given by

HUð1Þ
⊥ ¼ Jsp⊥

X
hl;l0i

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2 F

σ1;…;4
sp ðk;k0;qÞ

× ψ†
lσ1
ðkÞψ lσ2ðkþ qÞψ†

l0σ3
ðk0Þψ l0σ4ðk0 − qÞ

þ Jph⊥
Z

d2k
ð2πÞ2 k

2FphðkÞaTl ðkÞaTl0 ðkÞ; ð22Þ

where aT is the transverse part of the gauge field. The
coupling functions Fsp and Fph depend on the spatial
structure of the interlayer coupling; their explicit form is
unimportant. In real space, the gauge-invariant term ∇ × a
is related to the chirality of the underlying spin degrees of
freedom [25], and therefore, the Jph⊥ term corresponds to
an interaction between the chiralities of the spin textures in
the two layers. Microscopically, this term may be small
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compared to Jsp⊥ since it is of higher order in the interplane
Heisenberg exchange coupling. However, as we see below,
in a clean case, it gives a dominant contribution to κc at
asymptotically low temperatures.
The calculation of the spinon-mediated interplane ther-

mal conductivity proceeds in a similar fashion as in the Z2

QSL case. Note that κc is given by a similar expression to
Eq. (D20) (with the replacement F → Fsp):

κc;sp ≈ ðJsp⊥ Þ2
ν2

v2
T3 log

�
T

ðW=cÞ3=2
�
; ð23Þ

where W is an appropriate UV cutoff (see Appendix E).
However, in the clean case, the dominant source of low-

T thermal transport turns out to be the exchange of gauge
fluctuations; this contribution may also be calculated by
the Kubo formula, and it is given by (see Appendix E for
details)

κc;ph ¼
ðJph⊥ Þ2
T

Z
d2k
ð2πÞ2 k

4

Z
∞

0

dϵA2
phðk; ϵÞϵ2∂ϵnBðϵÞ

∼ ðJph⊥ Þ2γ2=3χ4=3T5=3 ½clean Uð1Þ QSL�: ð24Þ
Here, Aphðk;ϵÞ ¼−2ImDRðk;ϵÞ ¼ γ½ðjϵjkÞ=ðχ2k6þ γ2ϵ2Þ�
is the photon spectral function.
Thus, at sufficiently low temperature, κc;ph ≫ κc;sp.

Note that the thermal conductivity can be written as
κc;ph ∼ T2−1=z, where z ¼ 3 is the dynamical critical expo-
nent of the fixed point described by RPA.
The introduction of disorder to the Uð1Þ theory is likely

to destabilize the z ¼ 3 fixed point, leading instead to
diffusive behavior, similar to that of a disordered Fermi
liquid. In the RPA approximation, the propagators of the
disordered theory are given by [82]

DR
αβðq;ωÞ ¼ PαβðqÞ½−iωþDq2�−1;

GRðk;ωÞ ¼ ½ω− ξk þ i=ð2τÞ�−1 ½disordered Uð1Þ QSL�;
ð25Þ

with D a diffusion constant and τ the disorder-induced
finite lifetime. The calculation of the c-axis thermal
conductivity is then similar to the disordered Z2 QSL case.
Inserting Eq. (25) in the Kubo formula for the c-axis
conductivity leads to

κc ∝ T2 ½disordered Uð1Þ QSL� ð26Þ
for both spinon and photon contributions.

V. EXPERIMENTAL CONSIDERATIONS

In this section, we discuss possible experimental
candidate systems where thermal conductivity provides a
gateway to observing QSL physics. In order to observe the

magnetic contribution to the interlayer thermal conductivity,
one has to be able to separate it from the phonon contribution.
Since the phonon contribution scales as T3, the magnetic
contribution in certain QSLs dominates at sufficiently low
temperatures. This happens inQSLswith a disordered spinon
Fermi surface and in strongly disordered Dirac QSLs (see
Table I). Below, we provide a rough order-of-magnitude
estimate for the temperature T� at which the magnetic
contribution exceeds the phonon one, as a function of system
parameters (such as the strength of the interplane coupling,
the Debye temperature, and the disorder strength). As we
elaborate below, this estimate indicates that at least in some
material candidates, the crossover tomagnetically dominated
thermal transport may occur at accessible temperatures.
We base our estimate of T� on the case of a QSL with a

spinon FS, whose magnetic c-axis thermal conductivity
is given by Eq. (19). We set the unit of length to be the
lattice spacing a and estimate ν∼1=J, D¼ 1

2
vFlsp∼ 1

2
Jlsp,

where J is the in-plane exchange coupling, and lsp is the
spinon mean-free path in the plane. This gives

κsp ∼
2J2⊥T2

J3lsp
: ð27Þ

Next, we estimate the contribution of the phonons. The
acoustic phonon specific heat is cV ∼ ðT=ΘDÞ3, where ΘD
is the Debye frequency. The (three-dimensional) phonon
diffusivity is Dph ¼ 1

3
cslph ∼ 1

3
ΘDlph, where cs is the

sound velocity. Therefore, by the Einstein relation,

κph ∼
T3

3Θ2
D
lph: ð28Þ

The temperature below which the spinon contribution to
the thermal conductivity becomes larger than the phonon
contribution is given by equating Eq. (27) to Eq. (28). The
result is

T� ¼
6J2⊥Θ2

D

J3lphlsp
: ð29Þ

Note that Eq. (27) is only valid for T ≪ J; therefore, T� in
Eq. (29) cannot exceed J.
As an illustrative example, we roughly estimate the

crossover temperature T� for kapellasite, a kagome gapless
QSL candidate [83]. This is a polymorph of Herbertsmithite;
however, the in-plane exchange coupling is about an order of
magnitude smaller. The exchange couplings of kapellasite
have been estimated from first-principle calculations [84]:
J ≈ 10 K, J⊥ ≈ 0.5 K. We assume that kapellasite has a
spinon Fermi surface and that the Debye temperature is
ΘD ∼ 300 K. The mean-free paths of the spinons and the
phonons are not known. However, disorder in the planes is
believed to be substantial. To get a rough estimate of the
order of magnitude of T�, let us assume a strongly disordered
sample, such that lsp ¼ 20a and lph ¼ 200a. This gives

SIGNATURES OF FRACTIONALIZATION IN SPIN … PHYS. REV. X 8, 031064 (2018)

031064-7



T� ≈ 6
0.52 × 3002

103 × 20 × 200
≈ 35 mK: ð30Þ

Kapellasite does not order magnetically, at least down to
20 mK [83]. Thus, for sufficiently strong disorder, we get
that the crossover temperature is within experimental reach.
Let us discuss other QSL candidate materials, where the

spinon contribution to κc may be measurable. A promising
candidate material is the recently discovered 2D spin-orbit
coupled iridate H3LiIr2O6, which has been observed to be
paramagnetic to very low temperatures and hosts gapless
excitations [85,86]. Compared to other similar compounds
like Na2LiO3 and Li2IrO3 (which order at low temper-
atures), in H3LiIr2O6 the interlayer distance is smaller due
to replacement of Li by smaller H atoms in between layers,
which increases J⊥. Furthermore, the in-plane bond length
is also larger, which reduces the scale of in-plane exchange
interactions J. As per Eq. (29), both these factors are
conducive to a larger crossover temperature T�, where the
magnetic contribution becomes large.
Other candidate materials are magnetic insulators with

strong spin-orbit coupling, where the Kitaev interaction
is the dominant term. Some of these materials, like
α − RuCl3, are believed to be proximate to a QSL phase
[87]. Furthermore, the magnetic order can be suppressed by
doping, making such materials an interesting playground
for observing spin-liquid physics [88], although the nature
of the field-induced QSL phase is still unclear.
In the layered organic insulators [6], the interplane

exchange coupling is estimated to be 3 orders of magnitude
below the intraplane coupling [89], and therefore, it is likely
that phonons dominate the c-axis thermal transport at acces-
sible temperatures. Herbertsmithite [6] is believed to have a
gappedQSLground state [46], although the spin gap seems to
be quite small (Δgap ≲ 10 K [46,85]). An applied magnetic
field can induce a finite spinon density of states at zero energy,
opening the way to measure the spinon contribution to κc.
However, the in-plane exchange coupling J is about an order
ofmagnitude larger than in kapellasite, while the ratio J⊥=J is
comparable in the two systems [84]. Therefore, we expect T�
in Herbertsmithite to be smaller than in kapellasite.
Finally, we discuss a few techniques that can be used to

isolate the magnetic contribution to the thermal conduc-
tivity from that of phonons.

(i) In gapless spin-liquid candidates where the magnetic
contribution is a power law of the form Tθ with
θ < 3, one can isolate the magnetic contribution
from the phononic one (which scales as T3) since the
magnetic contribution is dominant at sufficiently
low temperature. Plotting a curve of κ=Tθ vs T3−θ,
the slope of the curve gives us the phonon contri-
bution, while the intercept gives us the magnetic
contribution to the thermal conductivity. This is
possible as long as the sample temperature is not
much higher than T�.

(ii) In addition, in some materials, an applied magnetic
field may be used to establish long-range order,
suppressing the spinon contribution to the thermal
conductivity while weakly affecting the phonon
contribution. Contrasting the measurements of the
c-axis thermal conductivity in the presence and
absence of such a field may enable us to isolate
the spinon contribution.

VI. CONCLUSIONS

We have studied the thermal conductivity in layered,
gapless QSLs. The key observation is that the mechanisms
of in-plane and out-of-plane thermal transport are qualita-
tively different: The former is carried by fractionalized
excitations, while the latter is carried by gauge-neutral,
nonfractionalized excitations. Thus, in all the cases we have
studied, κab and κc follow different power-law dependence
at low temperature; in particular, the anisotropy κab=κc
diverges in the limit T → 0. This property is a clear
hallmark of a fractionalized, layered system. A large
number of layered QSL candidates have been proposed
in the last few years, and interplane thermal conductivity
can serve as an unambiguous probe for fractionalization in
these experimental candidates.

ACKNOWLEDGMENTS

We thank S. Choi, J. Chalker, K. Michaeli, S. Kivelson, T.
Senthil, S. Trebst, and M. Yamashita for useful discussions.
E. B. and Y.W. were supported in part by the European
ResearchCouncil (ERC) under theEuropeanUnionsHorizon
2020 research and innovation program (Grant Agreement
No. 639172), and by the Deutsche Forschungsgemeinschaft
(CRC 183). S.M. acknowledges support from the NSF
through Grant No. PHY-1656234.

APPENDIX A: LAYERED KITAEV
HONEYCOMB MODEL

1. Intralayer Hamiltonian

We model the layered Z2 QSL system as layers of the
Kitaev honeycomb model, coupled by a weak interlayer
interaction. The Kitaev honeycomb model [16] is an
exactly solvable model of interacting spin-1=2 s. It is
composed of a honeycomb lattice of spins interacting
via direction-dependent exchange interactions,

H0 ¼ −J
X
hj;ki

S
αjk
j S

αjk
k ; ðA1Þ

where j, k are nearest neighbors on the hexago lattice, and
Sαjk are the x, y, or z component of the spin operator,
depending on the type of link between j and k. The links
are denoted x, y, or z, based on their orientation, as shown
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in Fig. 3. Each of the spins is represented in terms of
Majorana fermions bxi , b

y
i , b

z
i , ci as S

α
i ¼ ibαi ci; however,

the representation in terms of these fermions spans a larger
Fock space and must be restricted to the physical Hilbert
space of the spins by the gauge Di ¼ bxi b

y
i b

z
i ci ¼ 1. On

each α-direction link, uαij ¼ ibαi b
α
j is conserved, and a

theorem by Lieb [90] guarantees that the ground state is
in the sector where it is possible to set uαij ¼ 1 (the flux-free
sector). Thus, the ground-state manifold is described by the
free Majorana Hamiltonian

H0 ¼
1

2
iJ
X
i;δ

AiBiþδ; ðA2Þ

with Ai and Biþδ the ci Majorana on the A and B
sublattices, respectively. The δ s are the three-vectors
connecting the even and odd sublattices, as shown in
Fig. 3.
In order to probe the Z2 QSL with a Fermi surface, we

further consider two specific time-reversal breaking terms,
which result in a Fermi surface without creating vison
excitations that would take us out of the ground-state
manifold:

HTRB ¼ J1TRB
X

plaquettes

½Sz1Sy2Sx3 − Sx2S
z
3S

y
4 þ Sy3S

x
4S

z
5 − Sz4S

y
5S

x
6 þ Sx5S

z
6S

y
1 − Sy6S

x
1S

z
2�

þ J2TRB
X

plaquettes

½Sz1Sy2Sx3 þ Sx2S
z
3S

y
4 þ Sy3S

x
4S

z
5 þ Sz4S

y
5S

x
6 þ Sx5S

z
6S

y
1 þ Sy6S

x
1S

z
2�: ðA3Þ

Here, the sites labeled 1…6 on each plaquette are shown in Fig. 3.
In the ground-state manifold, these terms are given by

¼ −iJ1TRB
X

plaquettes

½A1A3 − B2B4 þ A3A5 − B4B6 þ A5A1 − B6B2�

− iJ2TRB
X

plaquettes

½A1A3 þ B2B4 þ A3A5 þ B4B6 þ A5A1 þ B6B2�: ðA4Þ

We comment that on different lattices, one can also
obtain a QSL with a spinon Fermi surface even in the
presence of TRS [64–69].
Lastly, we also consider the effect of disorder in the

system via a termHdis, the exact form of which will be given
later. Thus, the spin liquid we consider is described by

H ¼ H0 þHTRB þHdis; ðA5Þ
with HTRB ¼ 0 in the TR-invariant case.

2. Interlayer coupling

The most relevant interlayer coupling terms are those
that leave each layer in its ground state; that is, the
interlayer coupling must commute with all the uαijs.
A general form of such a tunneling term in the language
of the original spins will consist of spin operators from one
layer coupled to spin operators from another. In order to
maintain exact solvability, we consider the interlayer
coupling term

H⊥ ¼ J⊥
X

l;l0¼l�1

X
plaquettes

½Sz1;lSy2;lSx3;l − Sx2;lS
z
3;lS

y
4;l þ Sy3;lS

x
4;lS

z
5;l − Sz4;lS

y
5;lS

x
6;l þ Sx5;lS

z
6;lS

y
1;l − Sy6;lS

x
1;lS

z
2;l�

× ½Sz
1;l0S

y
2;l0S

x
3;l0 − Sx

2;l0S
z
3;l0S

y
4;l0 þ Sy

3;l0S
x
4;l0S

z
5;l0 − Sz

4;l0S
y
5;l0S

x
6;l0 þ Sx

5;l0S
z
6;l0S

y
1;l0 − Sy

6;l0S
x
1;l0S

z
2;l0 �: ðA6Þ

FIG. 3. The honeycomb lattice. Each unit cell is composed of
an A (blue) and B (red) atom. Each atom in the A sublattice is
connected to three B atoms via the vectors δ, and to six A atoms
via the n vectors. The interaction between neighbors is deter-
mined by the link they share. On each plaquette, the sites are
labeled as shown.
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In the Majorana representation, this term is given by (again setting ûj;δ ¼ 1)

H⊥ ¼ J⊥
X

l;l0¼l�1

X
plaquettes

½A1lA3;l − B2;lB4;l þ A3;lA5;l − B4;lB6;l þ A5;lA1;l − B6;lB2;l�

× ½A1;l0A3;l0 − B2;l0B4;l0 þ A3;l0A5;l0 − B4;l0B6;l0 þ A5;l0A1;l0 − B6;l0B2;l0 �: ðA7Þ

We have chosen this term as it allows for simple calculations, and in particular, it reduces to a “density-density” interlayer
interaction [the F0 term in Eq. (2)] in the continuum limit. We expect the exact form of the coupling term to be unimportant;
the important point is that it must have at least two spinon operators from each layer. This is because only a spinon pair
excitation can be transferred between different layers, and this requires at least two spinon operators from each. We
comment on the case of a more generic form of the interlayer Hamiltonian, having one spin operator in each layer, in
Appendix A 4 below.

3. Continuum Hamiltonian

Using fk ¼ P
δe

ik·δ, gk ¼ P
i sinðk · niÞ, ψA

l ðkÞ ¼ eiπ=4
P

jA
l
je

ik·Rj , ψB
l ðkÞ ¼ e−iπ=4

P
jB

l
je

ik·Rj , Δk ¼ 4J1TRBgk, and

mk ¼ 4J2TRBgk (where the vectors ni¼1;2;3 are defined in Fig. 3), the disorder free Hamiltonian of each layer is given by

Hl ≡Hl
0 þHl

TRB ¼ 1

4

Z
d2k
ð2πÞ2

�
ψA†
l ðkÞ ψB†

l ðkÞ
��Δk þmk Jfk

Jf�k Δk −mk

��
ψA
l ðkÞ

ψB
l ðkÞ

�

H⊥ ¼ 1

2
J⊥

X
l;l0¼l�1

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2 gkþk0 ½ψA†

l ðkÞψA
l ðkþ qÞ þ ψB†

l ðkÞψB
l ðkþ qÞ�

× ½ψA†
l0 ðk0ÞψA

l0 ðk0 − qÞ þ ψB†
l0 ðk0ÞψB

l0 ðk0 − qÞ�. ðA8Þ

The low-energy theory is centered near the Dirac points
K, K0 ¼ ½ð2πÞ=3�½�ð1= ffiffiffi

3
p Þ; 1�. Near these points,

Jfk ≈ vðkx� ikyÞ, with v ¼ 3J=2. The low-energy in-
plane Hamiltonian can thus be written as two Majorana
theories with a Dirac dispersion. It is convenient to consider
an equivalent system, of complex fermions that reside only
on half the Brillouin zone; this makes use of the equiv-
alence ψAðkÞ ¼ ψA†ð−kÞ. The low-energy theory of this
system is given by a single Dirac cone centered atK, and its
in-plane Hamiltonian is given by Hl ¼ R ½ðd2kÞ=
ð2πÞ2�ψ l†

kHðkÞψ l
k, with

HðkÞ ¼ vσ · kþmσz þ Δ: ðA9Þ

Here, ψ†l
k ¼ (ψA†

l ðkÞ;ψB†
l ðkÞ) is a spinor of complex

fermions, σ ¼ ðσx; σyÞ a vector of Pauli matrices,
Δ ¼ Δk¼K, and m ¼ mk¼K. This result is Eq. (1) in the
main text.
In terms of the continuum theory, the interplane term in

Eq. (A7) is given by (neglecting the variation of Δk around
the Dirac points)

H⊥¼1

2
J⊥

X
l;l0¼l�1

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2

×fgkþk0 ½ψA†
l ðkÞψA

l ðkþqÞþψB†
l ðkÞψB

l ðkþqÞ�½ψA†
l0 ðk0ÞψA

l0 ðk0−qÞþψB†
l0 ðk0ÞψB

l0 ðk0−qÞ�
þgk−k0 ½ψA

l ð−kÞψA
l ðkþqÞþψB

l ð−kÞψB
l ðkþqÞ�½ψA†

l0 ðk0ÞψA†
l0 ð−k0 þqÞþψB†

l0 ðk0ÞψB†
l0 ð−k0 þqÞ�þH:c:g. ðA10Þ

We expand the gk form factors for small deviations away
from the Dirac pointK; we set F0 ¼ g2K, while the lowest-
order term in the expansion of gk−k0 away from theK point
vanishes, introducing additional factors of momentum.
This method will introduce additional factors of temper-
ature T in the contribution to the thermal conductivity, and
we therefore neglect the pair hopping term.

We work in the basis of the eigenstates ofHl
0 þHl

TRB. In
the TR symmetric case, where Δ ¼ m ¼ 0, the eigenstates
are given by aλðkÞ ¼ ½ψAðkÞ þ eiϕkψBðkÞ�= ffiffiffi

2
p

, where ϕk
is the angle between kx and ky, and their energies are
ϵλk ¼ λvk. For simplicity, in the analysis of the Z2 QSLwith
a Fermi surface, we consider the regime Δ > m > 0,
m ≫ Δ −m. In this limit, the eigenstates with energy
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close to the Fermi surface are located almost entirely on
the A sublattice, and we may ignore the sublattice degree
of freedom; these eigenstates are denoted by aðkÞ∼
ψAðkÞ. In this basis, the single-layer Green’s functions
are Gðk; iνnÞ ¼ ½iνn − k2=2m� þ μ�−1, with μ ¼ Δ −m
and m� ¼ v2=m.

4. Generic interlayer Hamiltonian

The interlayer coupling term (A6) is designed to main-
tain the exact solvability of the model and for computa-
tional convenience. However, generically, we expect the
largest components of the interlayer coupling Hamiltonian
to be quadratic in the spin operators. Within the Kitaev
model, a quadratic interlayer coupling term (such as a
Heisenberg term, J0⊥

P
αS

α
l S

α
lþ1, with α ¼ x, y, z) does not

merely create a pair of spinon excitations in each layer.
Rather, it creates a pair of spinons and a pair of gapped
vison (flux) excitations. In order to annihilate the pair of
flux excitations and return to the low-energy subspace, we
have to apply the J0⊥ term again. Thus, it appears that the
effective interplane interaction in the low-energy effective
Hamiltonian (2) is proportional to J⊥ ∼ ðJ0⊥Þ2=Δv, where
J0⊥ is the “microscopic” strength of the interlayer coupling
and Δv is the vison gap. One may then worry that the
effective interplane interaction J⊥ is too small to contribute
significantly to the interlayer thermal conductivity.
However, we argue that for a generic intralayer

Hamiltonian that also contains non-Kitaev terms (such
that even the intralayer Hamiltonian is not exactly solv-
able), this is not the case; in fact, J⊥ ∝ J0⊥ because, in the
generic case, the vison excitations are not static, even
within the single-layer Hamiltonian. A pair of vison
excitations can annihilate each other without the need
for another application of the interlayer J0⊥ term.
To illustrate this idea, consider the case where there is an

additional intraplane interaction:

HΓ ¼
X

hi;ji;l;α;β
ΓαβSαi;lS

β
j;l; ðA11Þ

where hi; ji denotes two nearest-neighbor sites i, j on the
honeycomb lattice, and Γαβ is a 3 × 3 symmetric matrix.
Such terms are present in real “Kitaev materials” [91].
Consider a quadratic interplane coupling term of the

form J0⊥Sz1;lSz1;lþ1, where the position of site 1 is indicated
in Fig. 3. We can now derive the effective interplane
coupling J⊥ (that creates a pair of spinons in each layer and
does not create any visons) perturbatively in both J0⊥ and
Γαβ. One can check explicitly that using the following
sequence of operators,

Sz1;lðSx1;lSx2;lÞðSy1;lSx2;lÞ × ðl → lþ 1Þ; ðA12Þ
amounts, in a certain gauge, to using c1;lc2;lc1;lþ1c2;lþ1 and
not changing the number of visons in either layer. The
strength of this term is J⊥ ∼ f½J0⊥ðΓxxΓxyÞ2�=Δ4

vg. Thus, the

term in the effective Hamiltonian that creates a pair of
fermionic spinons in each of the adjacent layers l, lþ 1 is
proportional to J0⊥. Generically, there is no reason to expect
Γαβ to be much smaller in magnitude than Δv since both
energy scales characterize the intraplane Hamiltonian and
do not involve interlayer coupling. We conclude that in a
generic situation, J⊥ and J0⊥ are of the same order of
magnitude.

APPENDIX B: EVALUATION OF THE
INTEGRAL IN EQ. (4)

The calculation proceeds similarly to the computation of
the lifetime of a quasiparticle in a Fermi liquid. We
integrate over k, k0 first, fixing q. Let us choose the axes
such that q is in the x direction. For q < 2kF, there are pairs
of points on the Fermi surface that are connected by q; we
denote these points by k0, k0 þ q. Then, we parametrize

k ¼ k0 þ δk;

k ¼ −k0 þ δk0: ðB1Þ
It is convenient to linearize the dispersion around the Fermi
surface; then, to leading order in δk,

ϵk ¼ vδkx sin θ þ vδky cos θ;

ϵkþq ¼ −vδkx sin θ þ vδky cos θ;

ϵk0 ¼ −vδkx sin θ − vδky cos θ;

ϵk0−q ¼ vδkx sin θ − vδky cos θ: ðB2Þ
Here, sin θ ¼ ½q=ð2kFÞ� (see Fig. 4), and v ¼ ½ðkFÞ=m�� is
the Fermi velocity. The integrals over δk, δk0 can now be
performed easily, giving

κc ¼ 2π
J2⊥
T2

Z
dϵ1dϵ2dϵ3(1 − nFðϵ1Þ)nFðϵ2Þ

× (1 − nFðϵ3Þ)nFðϵ1 − ϵ2 þ ϵ3Þ × ðϵ1 − ϵ2Þ2

×
Z

d2q
ð2πÞ6

1

v4Fcos
2θsin2θ

: ðB3Þ

FIG. 4. Choice of k0 for a given q when integrating over k, k0
in Eq. (4). The blue circle is the Fermi surface.
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The integral over ϵ1;2;3 can now be performed; by
scaling, this integral is proportional to T5. Substituting θ
with q, we get

κc ∝
J2⊥
v4F

T3

Z
2kF

0

dq
k2F

q½1 − q2=ð4k2FÞ�
: ðB4Þ

Using ν ¼ ½kF=ð2πvFÞ�, we arrive at Eq. (4) in the text. The
logarithmic divergence comes from small q scattering, as
well as from scattering with momentum transfer close to
q ¼ 2kF. The inelastic lifetime of the quasiparticles in each
layer, τ ∝ 1=T2, is needed in order to cut off this diver-
gence. There is another contribution from q > 2kF; this
contribution is parametrically the same as Eq. (B4).

APPENDIX C: DISORDERED Z2 QSL

1. Possible forms of disorder

In a TR-invariant system, we consider disorder in the
spin-spin couplings J:

Hdis ¼
X
hj;ki

δJjkS
αjk
j S

αjk
k ; ðC1Þ

where, again, j, k are nearest neighbors and αjk ¼ x, y, z,
according to the type of link. In the Majorana fermion
representation, this becomes

Hdis ¼ −
1

2
i
X
i

δJi;iþδAiBiþδ

¼ v
Z

d2kd2k0

ð2πÞ4 ψ†
kAk;k0 · σψk0 ; ðC2Þ

with Ak;k0x¼ð1=JÞPj;δRe½e−ik0δδJj;δeiðk−k0ÞRj �, Ak;k0y ¼
ð1=JÞPj;δℑ½e−ik0δδJj;δeiðk−k0ÞRj �; thus, the low-energy,
long-wavelength disorder is of the form of a random vector
potential.
Disorder that affects the next-nearest-neighbor hopping

results from three-spin interaction terms in the original spin
model; these terms break time-reversal symmetry.
Depending on the relative sign of the disorder between
the A and B sublattices, just as in Eq. (A4), these terms will
give rise to a scalar potential term

Hdis ¼
Z

d2kd2k0

ð2πÞ4 Vk;k0ψ†
kψk0 ; ðC3Þ

or a random mass term

Hdis ¼
Z

d2kd2k0

ð2πÞ4 ψ†
kMk;k0σzψk0 : ðC4Þ

2. Interlayer thermal conductivity

To compute the c-axis conductivity in a disordered,
layered Z2 QSL, we compute the rate at which pairs of
spinon excitations tunnel between planes. This computa-
tion can be done using the Fermi golden rule, analogously
to Eq. (4), replacing the momentum eigenstates with
eigenstates of the disordered intraplane Hamiltonian.
The general expression for the thermal conductivity is

κc ¼
2πJ2⊥
ZT2

X
i;f

X
l;l0

e−ðEi;l=TÞ−ðEi;l0=TÞðEi;l − Ef;lÞ2

× jhfjH⊥ðl; l0Þjiij2 × δðEi;l þ Ei;l0 − Ef;l − Ef;lÞ:
ðC5Þ

Here,H⊥ðl; l0Þ is the part of the interplane Hamiltonian that
couples layers l and l0, and ji; fi are the initial and final
many-body eigenstates of the system with J⊥ ¼ 0
(decoupled planes), with corresponding energies Ei;l and
Ef;l (at layer l). Since we neglect intraplane interactions, we
can expand the fermionic spinon operators in the basis of
the single-particle eigenstates of each layer (which include
the effects of disorder):

ψη
l ðxÞ ¼

X
λ

φl;λ;ηðxÞfλ;l; ðC6Þ

where η ¼ A, B labels the sublattice, and fλ;l annihilates an
eigenstate with energy ξλ;l, which has the wave func-
tion φl;λ;ηðxÞ.
As in the main text, we mostly work with an interlayer

Hamiltonian of the “density-density” form, H⊥ðl; l0Þ ¼P
η;η0

R
d2xψη†

l ðxÞψη
l ðxÞψη†

l0 ðxÞψη
l0 ðxÞ, commenting along

the way about other forms of H⊥. Using Eq. (C6), we
can write the disorder-averaged c-axis thermal conduc-
tivity as

κc ¼
2πJ2⊥
T2

X
λ1…4

X
η1…4

nFðξlλ1Þ½1 − nFðξlλ3Þ�nFðξl0λ2Þ½1 − nFðξl0λ4Þ�ðξlλ1 − ξlλ3Þ2δðξlλ1 þ ξl0λ2 − ξlλ3 − ξl0λ4Þ

×
Z

d2xd2x0hφ�
lλ1η1

ðxÞφlλ3η1ðxÞφlλ1η2ðx0Þφ�
lλ3η2

ðx0Þφ�
l0λ2η3

ðxÞφl0λ4η3ðxÞφl0λ2η4ðx0Þφ�
l0λ4η4

ðx0Þi
dis
; ðC7Þ

where h…idis represents disorder averaging.
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We denote

glðq; ε; ε0Þ ¼
X

λ1;2;η;η0

Z
d2xe−iq·xhφ�

lλ1η
ðxÞφlλ2ηðxÞφlλ1η0 ð0Þφ�

lλ2η0
ð0Þi

dis
δðε − ξl;λ1Þδðε0 − ξl;λ2Þ; ðC8Þ

such that the thermal conductivity is given by

κc ¼
2πJ2⊥
T2

Z
dϵ1dϵ2dωnFðϵ1Þ½1 − nFðϵ1 þ ωÞ�nFðϵ2Þ½1 − nFðϵ2 − ωÞ�ω2

×
Z

d2qglðq; ϵ1; ϵ1 þ ωÞglð−q; ϵ2; ϵ2 − ωÞ: ðC9Þ

The remaining task is to compute the function glðq; ε; ε0Þ
for a Z2 QSL with either a Dirac spectrum or a Fermi
surface.

a. Disordered Dirac

The properties of two-dimensional Dirac fermions
coupled to a random vector potential, which corresponds
to a disordered Z2 Dirac QSL with time-reversal symmetry,
has been studied extensively in Ref. [73]. Here, we briefly
review some of the results of Ref. [73] and use them to
determine the scaling of the c-axis thermal conductivity
with temperature.
Since the problem is noninteracting, the actions for

different frequency modes decouple (before disorder aver-
aging). The ω ¼ 0 system is described by a fixed line of
interacting theories in d ¼ 1þ 1 dimensions [73]. The
frequency ω corresponds to a relevant operator with scaling
dimension 2 − z, where z ¼ 1þ ΔA=π is the dynamical

critical exponent, andΔA is the disorder strength, defined in
Eq. (11). In other words, under scaling, q → q0 ¼ q=b,
ω → ω0 ¼ ω=bz. The fixed line is characterized by ω=T
scaling.
The function glðq; ε; ε0Þ satisfies the scaling relation

glðq; ε1; ε2Þ ¼ b−yglðbq; bzε1; bzε2Þ; ðC10Þ
where y is a critical exponent related to the scaling
dimension of the fermion density operator, which we
compute below, and b is a rescaling factor. Choosing
b ¼ jε1j−1=z, we find that gl can be written as

glðq; ε1; ε2Þ ¼ jε1jy=zΦ
�

q

jε1j1=z
;
ε2
jε1j

�
; ðC11Þ

where Φ is a universal scaling function.
To determine y, we notice that gl is related to the density-

density correlator:

χðq;ωnÞ≡ hnðq;ωnÞnð−q;ωnÞi

¼
Z

d2xe−iq·x
X
η;η0

X
α;γ

nFðεαÞ − nFðεγÞ
iωn − εα þ εγ

hφ�
lαηðxÞφlγηðxÞφlαη0 ð0Þφ�

lγη0 ð0Þidis

¼
Z

dεdε0
nFðεÞ − nFðε0Þ
iωn − εþ ε0

glðq; ε; ε0Þ; ðC12Þ

where nFðεÞ is the Fermi function. Using Eq. (C11), this can be written as

χðq;ωnÞ ¼ T1þy=z

Z
dξdξ0

nFðTξÞ − nFðTξ0Þ
iωn − ξþ ξ0

jξjy=zΦ
�

q

Tjξj1=z ;
ξ0

jξj
�
: ðC13Þ

Here, we have used Eq. (C11) and performed a change of variables, ε ¼ Tξ, ε0 ¼ Tξ0. On the other hand, χðq;ωn ¼ 0Þ can
be expressed as

χðq;ωn ¼ 0; TÞ ¼
Z

β

0

dτ
Z

d2xe−iq·xhnlðx; τÞnlð0; 0Þi ¼ T
X
ν;ν0

Z
d2xe−iq·xhnl;νðxÞnl;ν0 ð0Þi

¼ T
X
ν;ν0

Z
d2xe−iq·xb−2ð2−zÞhnl;νðx=bÞnl;ν0 ð0Þi ¼ b2ðz−1ÞTχðbq;ω ¼ 0; bzTÞ: ðC14Þ
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Here, nl;νðxÞ is the Matsubara frequency ν component of
the density operator in layer l [92]. In the second to last
line, we have applied scaling to the correlation function
hnl;νðxÞnl;ν0 ð0Þi, using the fact that the scaling dimension of
nl;νðxÞ is 2 − z [73].
Choosing b ¼ T−1=z in Eq. (C14), we get

χðq;ωn ¼ 0; TÞ ¼ T ½ð2−zÞ=z�Ψðq=T1=zÞ, where Ψ is a scal-
ing function. Comparing this to Eq. (C12), we can extract
the exponent y:

y ¼ 2ð1 − zÞ: ðC15Þ

Now, we are in a position to find the scaling of the c-axis
thermal conductivity with temperature. Inserting Eq. (C11)
into Eq. (C9) results in

κc ¼
2πJ2⊥
T2

Z
dε1dε2dωnðε1Þ½1 − nðε1 þ ωÞ�nðε2Þ

× ½1 − nðε2 − ωÞ�ω2

Z
d2qjε1jy=zΦ

×
�

q

jε1j1=z
;
ε1 − ω

jε1j
�
jε2jy=zΦ

�
−

q

jε2j1=z
;
ε2 − ω

jε2j
�

ðC16Þ

Rescaling the integral, ω̃ ¼ ω=T, ε̃1;2 ¼ ε1;2=T, and
q̃ ¼ q=T1=z, we get

κc ∼
2πJ2⊥
T2

T2=zðT3ÞðT2ÞðT4ð1−zÞ=zÞ ∼ J2⊥Tð6−zÞ=z: ðC17Þ

This result coincides with that of the clean case in the limit
ΔA → 0 (i.e., z ¼ 1þ ΔA=π → 1).
The analysis above has been done for an interplane

interaction of the density-density form. A similar analysis
can be done for any quartic interplane interaction. The only
difference is the scaling dimension of the fermion bilinear
operator that appears in the interaction term, which can be
determined using the methods of Ref. [73]. It turns out,
however, that for any ΔA > 0, the density operator is the
fermion bilinear with the smallest scaling dimension.
Hence, a density-density interaction gives the dominant
contribution to κc at low temperatures.

b. Disordered FS

In the disordered FS case, we know that the density-
density correlation function takes a diffusive form at small
q;ωn:

χðq;ωnÞ ¼ ν
Dq2

jωnj þDq2
; ðC18Þ

where D is the diffusion constant, and ν is the density of
states at the Fermi level. Comparing this result to Eq. (C12),
we deduce that glðq; ε; ε0Þ should satisfy the following
scaling relation:

glðq; ε; ε0Þ ¼ b2glðbq; b2ε; b2ε0Þ: ðC19Þ

Hence, glðq; ε; ε0Þ can be written as

glðq; ε; ε0Þ ¼
ν

Dq2
Ω
�

ε

Dq2
;
ε0

Dq2

�
; ðC20Þ

where Ωðξ; ξ0Þ is a dimensionless scaling function.
We may now use this form in Eq. (C9) to get

κc ¼
2πJ2⊥
T2

Z
dε1dε2dωnðε1Þ½1 − nðε1 þ ωÞ�nðε2Þ

× ½1 − nðε2 − ωÞ�ω2

Z
d2q

ν2

D2q4
Ω
�

ε1
Dq2

;
ε1 − ω

Dq2

�

× Ω
�

ε2
Dq2

;
ε2 − ω

Dq2

�
: ðC21Þ

Changing variables to ε̃1;2 ¼ ε1;2=T, q̃ ¼ q=
ffiffiffiffiffiffiffi
DT

p
, we

obtain

κc ∼ J2⊥ν2
T2

D
: ðC22Þ

This result coincides with the result of the Kubo formula
calculation described in the main text.

APPENDIX D: KUBO FORMULA
FOR THERMAL CONDUCTIVITY

1. Thermal current operator

The systems we consider consist of layers of quasi-2D
QSLs, described by the in-plane Hamiltonian Hl and
coupled by interplane hopping terms, which may be written
as sums of terms of the form H⊥ ¼ J⊥OlOlþ1, where Ol is
composed of operators of the l level only. The energy
density of a single layer l is thus (for a single term H⊥; the
extension to a sum of terms is straightforward)

El ¼ Hl þ 1

2
J⊥fOlOl−1 þOlOlþ1g: ðD1Þ

Its time derivative is then
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_El ¼ iJ⊥
�
½Ol;Hl�Ol−1 þ ½Ol;Hl�Olþ1 þ 1

2
½Hl;Ol�Ol−1

þ 1

2
½Hl;Ol�Olþ1 þ 1

2
½Hl−1; Ol−1�Ol

þ 1

2
½Hlþ1; Olþ1�Ol

�
þOðJ2⊥Þ ðD2Þ

¼ 1

2
iJ⊥f½Hl−1; Ol−1�Ol − ½Hl;Ol�Ol−1

þ ½Hlþ1; Olþ1�Ol − ½Hl;Ol�Olþ1g þOðJ2⊥Þ ðD3Þ

¼ 1

2
J⊥f _Ol−1Ol − _OlOl−1 þ _Olþ1Ol − _OlOlþ1g

þOðJ2⊥Þ; ðD4Þ

where in the last equality, we use the fact that to lowest
order in J⊥, _Ol ¼ i½Hl;Ol�.
The thermal current operator is given by [93]

JQ ¼
X
l

l _El; ðD5Þ

and therefore,

JQ ¼ 1

2
J⊥

X
l

fðlþ 1Þ _OlOlþ1 − l _OlOl−1

þ ðl − 1Þ _OlOl−1 − l _OlOlþ1g þOðJ2⊥Þ
¼

X
l

JQl;lþ1 þOðJ2⊥Þ ðD6Þ

with JQl;lþ1 ¼ 1
2
J⊥ð _OlOlþ1 −Ol _Olþ1Þ. This formula satis-

fies the continuity equation JQl;lþ1 − JQl−1;l ¼ _El.

2. Interlayer thermal current for layered Kitaev
honeycomb model

For the Z2 system, the coupling term is given by
Eq. (A8),

H⊥ ¼ 1

2
J⊥F0

X
l;l0¼l�1

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2

× ½ψA†
l ðkÞψA

l ðkþ qÞψA†
l0 ðk0ÞψA

l0 ðk0 − qÞ þ ðAl → BlÞ þ ðAl0 → Bl0 Þ þ ðAl → Bl & Al0 → Bl0 Þ�; ðD7Þ

and therefore,

JQ ¼ 1

2
J⊥F0

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2

X
l

∂t½ψA†
l ðkÞψA

l ðkþ qÞ�

× ½(ψA†
lþ1ðk0ÞψA

lþ1ðk0 − qÞ − ψA†
l−1ðk0ÞψA

l−1ðk0 − qÞ)þ ðAl → BlÞ þ ðAl0 → Bl0 Þ þ ðAl → Bl & Al0 → Bl0 Þ�. ðD8Þ

Fourier transforming with respect to imaginary time results in

JQðiωnÞ ¼
1

2
J⊥F0

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2

1

β3
X

νn;νm;Ωn

Ωn

X
l

½ψA†
l ðk; iνnÞψA

l ðkþ q; iνn þ iΩnÞ�

× ½(ψA†
lþ1ðk0; iνmÞψA

lþ1ðk0 − q; iνm − iΩn þ iωnÞ − ðlþ 1Þ → ðl − 1Þ)
þ ðAl → BlÞ þ ðAl0 → Bl0 Þ þ ðAl → Bl & Al0 → Bl0 Þ�. ðD9Þ

We again revert to the complex fermion representation and consider states only near the Dirac pointK. Transforming to the
eigenstates of H yields, for m ¼ 0,

JQðiωnÞ ¼
1

25
J⊥

X
l;η¼�1

η

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2

X
λ1…λ4¼�1

1

β3
X

νn;νm;Ωn

Ωn

× Fλ1…λ4
k;k0;qa

l†
λ1
ðk; iνnÞalλ2ðkþ q; iνn þ iΩn þ iωnÞalþη†

λ3
ðk0; iνmÞalþη

λ4
ðk0 − q; iνm − iΩnÞ; ðD10Þ

where Fλ1…λ4
k;k0;q corresponds to the transformation of F0 from the sublattice to the eigenstate basis, while for the case

Δ > m > 0, m ≫ Δ −m, we neglect the contribution of the B sublattice and get a simpler expression,
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JQðiωnÞ ¼
1

25
J⊥F0

X
l;η¼�1

η

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2

1

β3
X

νn;νm;Ωn

Ωn

× al†ðk; iνnÞalðkþ q; iνn þ iΩn þ iωnÞalþη†ðk0; iνmÞalþηðk0 − q; iνm − iΩnÞ: ðD11Þ

3. Thermal conductivity

The thermal conductivity is given by [74–76]

κ ¼ −1
T

lim
ω→0

Im½ΠðωÞ�
ω

; ðD12Þ

whereΠðωÞ is the retarded thermal current-thermal current correlation function. Using Eq. (14), and an extended definition of
the four-point correlation function in Eq. (15) (in the TRbroken case, there is only a single band λ that crosses the Fermi surface)

ϒλ1;λ2ðk1;k1
0;q; iνn; iνmÞ ¼ ha†λ1ðk1; iνnÞaλ2ðk1 þ q; iνmÞa†λ2ðk0

1 þ q; iνmÞaλ1ðk1
0; iνnÞi; ðD13Þ

we get

ΠðiωnÞ ¼
1

64
J2⊥

1

β

X
Ωn

Ω2
n

Z
d2q
ð2πÞ2

1

β

X
νn

Z
d2k1d2k2
ð2πÞ4

1

β

X
νm

Z
d2k01d

2k02
ð2πÞ4

×
X
λ1…λ4

Fλ1;λ2;λ3;λ4
k1;k0

1;q
Fλ2;λ1;λ4;λ3
k2;k0

2;−q
ϒλ2;λ1ðk1;k2;q;−iνn − iΩn − iωn;−iνnÞϒλ3;λ4ðk0

1;k
0
2;−q; iνm; iνm − iΩnÞ. ðD14Þ

The function ϒkðz; zþ iΩnÞ (suppressing the momentum and λ dependence for clarity) has branch cuts for
Im½z� ¼ 0; Im½z� ¼ −iΩn; using the usual contour integration method, as explained in Ref. [93], for example, it can be
shown that

1

β

X
νn

ϒðz; zþ iΩnÞ

¼
Z

dϵ1
2πi

nFðϵ1Þ½ϒkðϵþ1 ; ϵ1 þ iΩnÞ −ϒkðϵ−1 ; ϵ1 þ iΩnÞ� þ
Z

dϵ1
2πi

nFðϵ1Þ½ϒkðϵ1 − iΩn; ϵ
þ
1 Þ −ϒkðϵ1 − iΩn; ϵ−1 Þ�;

ðD15Þ
where ϵ� ¼ ϵ� iδ, with δ a positive infinitesimal. By first performing the summations over νn and νm, which result in
integrations over ϵ1, ϵ3, the summation over the bosonic frequenciesΩn gives (again integrating along the branch cuts of the
ϒ functions).

QðiωnÞ≡ 1

β3
X

νn;νm;Ωn

Ω2
nϒkðiνn; iνn þ iΩnÞϒk0 ðiνm; iνm − iΩn þ iωnÞ

¼
Z

dϵ1
2πi

Z
dϵ3
2πi

nFðϵ1ÞnFðϵ3Þ
Z

dϵ2
2πi

nBðxÞx2½ϒkðϵþ1 ; ϵþ2 Þ −ϒkðϵþ1 ; ϵ−2 Þ −ϒkðϵ−1 ; ϵþ2 Þ

þϒkðϵ−1 ; ϵ−2 Þ�½ϒk0 ðϵþ3 ;−xþ ϵ3 þ iωnÞ −ϒk0 ðϵ−3 ;−xþ ϵ3 þ iωnÞ þϒk0 ðxþ ϵ3 − iωn; ϵ
þ
3 Þ

−ϒk0 ðxþ ϵ3 − iωn; ϵ−3 Þ� − nBð−xÞx2½ϒkðϵþ2 ; ϵþ1 Þ −ϒkðϵþ2 ; ϵ−1 Þ −ϒkðϵ−2 ; ϵþ1 Þ
þϒkðϵ−2 ; ϵ−1 Þ�½ϒk0 ðϵþ3 ; xþ ϵ3 þ iωnÞ −ϒk0 ðϵ−3 ; xþ ϵ3 þ iωnÞ þϒk0 ð−xþ ϵ3 − iωn; ϵ

þ
3 Þ

−ϒk0 ð−xþ ϵ3 − iωn; ϵ−3 Þ� þ nBðyÞðyþ iωnÞ2½ϒk0 ðϵþ2 ; ϵþ3 Þ −ϒk0 ðϵþ2 ; ϵ−3 Þ −ϒk0 ðϵ−2 ; ϵþ3 Þ
þϒk0 ðϵ−2 ; ϵ−3 Þ�½ϒkðϵþ1 ; ϵ1 þ yþ iωnÞ −ϒkðϵ−1 ; ϵ1 þ yþ iωnÞ þϒkðϵ1 − y − iωn; ϵ

þ
1 Þ

−ϒkðϵ1 − y − iωn; ϵ−1 Þ� − nBð−yÞð−yþ iωnÞ2½ϒk0 ðϵþ3 ; ϵþ2 Þ −ϒk0 ðϵþ3 ; ϵ−2 Þ −ϒk0 ðϵ−3 ; ϵþ2 Þ
þϒk0 ðϵ−3 ; ϵ−2 Þ�½ϒkðϵþ1 ; ϵ1 − yþ iωnÞ −ϒkðϵ−1 ; ϵ1 − yþ iωnÞ þϒkðϵ1 þ y − iωn; ϵ

þ
1 Þ

−ϒkðϵ1 þ y − iωn; ϵ−1 Þ�; ðD16Þ
with x ¼ ϵ2 − ϵ1, y ¼ ϵ2 − ϵ3.
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Performing the analytical continuation by replacing iωn → ωþ iδ and a few further manipulations result in

QðωÞ ¼
Z

dϵ1
2πi

Z
dϵ3
2πi

Z
dϵ2
2πi

nBðxÞx2½nFðϵ1Þ − nFðϵ2Þ�½ϒkðϵþ1 ; ϵþ2 Þ −ϒkðϵþ1 ; ϵ−2 Þ þ c:c:�½nFðϵ3Þ(ϒk0 ðϵþ3 ; ϵþ3 − xþ ωÞ

−ϒk0 ðϵ−3 ; ϵþ3 − xþ ωÞ)þ nFðϵ3 − xþ ωÞ(ϒk0 ðϵ−3 ; ϵþ3 − xþ ωÞ −ϒk0 ðϵ−3 ; ϵ−3 − xþ ωÞ)�
− nBðyÞð−yþ ωÞ2½nFðϵ3Þ − nFðϵ2Þ�½ϒk0 ðϵþ3 ; ϵþ2 Þ −ϒk0 ðϵ−3 ; ϵþ2 Þ − c:c�½nFðϵ1Þ(ϒkðϵþ1 ; ϵþ1 − yþ ωÞ
−ϒkðϵ−1 ; ϵ1 − yþ ωÞ)þ nFðϵ1 − yþ ωÞ(ϒkðϵ−1 ; ϵþ1 − yþ ωÞ −ϒkðϵ−1 ; ϵ−1 − yþ ωÞ)�.

The imaginary part of the above expression is [using the fact that ϒkðϵþ1 ; ϵþ2 Þ ¼ ϒkðϵ−1 ; ϵ−2 Þ� and ϒkðϵþ1 ; ϵ−2 Þ ¼
ϒkðϵ−1 ; ϵþ2 Þ�]

ℑ½QðωÞ� ¼
Z

dϵ1
2πi

Z
dϵ3
2πi

Z
dϵ2
2πi

2Re½ϒkðϵþ1 ; ϵþ2 Þ −ϒkðϵþ1 ; ϵ−2 Þ� × Re½ϒk0 ðϵþ3 ; ϵþ3 − xþ ωÞ

−ϒk0 ðϵ−3 ; ϵþ3 − xþ ωÞ�½nFðϵ3Þ − nFðϵ3 − xþ ωÞ� × ½nFðϵ1Þ − nFðϵ2Þ�nBðxÞx2
− 2Re½ϒk0 ðϵþ3 ; ϵþ2 Þ −ϒk0 ðϵ−3 ; ϵþ2 Þ� × Re½ϒkðϵþ1 ; ϵþ1 − yþ ωÞ
−ϒkðϵ−1 ; ϵþ1 − yþ ωÞ�½nFðϵ1Þ − nFðϵ1 − yþ ωÞ�½nFðϵ1Þ − nFðϵ2Þ�nBð−yÞð−yþ ωÞ2.

In the second line, we replace ϵ2 → ϵ1 − ϵ2 þ ϵ3 þ ω to get

ℑ½QðωÞ� ¼
Z

dϵ1
2πi

Z
dϵ3
2πi

Z
dϵ2
2πi

2Re½ϒkðϵþ1 ; ϵþ2 Þ −ϒkðϵþ1 ; ϵ−2 Þ� × Re½ϒk0 ðϵþ3 ; ϵ1 − ϵ2 þ ϵþ3 þ ωÞ

−ϒk0 ðϵ−3 ; ϵ1 − ϵ2 þ ϵþ3 þ ωÞ�ðϵ2 − ϵ1Þ2½nFðϵ1Þ − nFðϵ2Þ�½nFðϵ3Þ − nFðϵ3 − ϵ2 þ ϵ1 þ ωÞ�½nBðϵ2 − ϵ1Þ
− nBðϵ2 − ϵ1 − ωÞ�. ðD17Þ

Therefore, using the identity

½nFðϵ1Þ − nFðϵ2Þ�½nFðϵ3Þ − nFðϵ3 − ϵ2 þ ϵ1Þ�
∂
∂ϵ nBðϵ2 − ϵ1Þ ¼

1

T
ð1 − nFðϵ1ÞÞnFðϵ2Þð1 − nFðϵ3ÞÞnFðϵ1 − ϵ2 þ ϵ3Þ;

ðD18Þ
we get

lim
ω→0

Im½QðωÞ�
ω

¼ 1

T

Z
dϵ1
2πi

Z
dϵ3
2πi

Z
dϵ2
2πi

2Re½ϒkðϵþ1 ; ϵþ2 Þ −ϒkðϵþ1 ; ϵ−2 Þ� × Re½ϒk0 ðϵþ3 ; ϵ1 − ϵ2 þ ϵþ3 þ ωÞ

−ϒk0 ðϵ−3 ; ϵ1 − ϵ2 þ ϵþ3 þ ωÞ�ðϵ2 − ϵ1Þ2 × (1 − nFðϵ1Þ)nFðϵ2Þ(1 − nFðϵ3Þ)nFðϵ1 − ϵ2 þ ϵ3Þ: ðD19Þ
Inserting this into the formula for κ, Eq. (12), and writing the momentum and band dependence explicitly, results in

κ ∼
J2⊥
T2

Z
d2k1
ð2πÞ2

d2k2
ð2πÞ2

d2k01
ð2πÞ2

d2k02
ð2πÞ2

d2q
ð2πÞ2

Z
dϵ1
2π

Z
dϵ2
2π

Z
dϵ3
2π

X
λ1…4

Fλ1;λ2;λ3;λ4
k1;k0

1;q
Fλ2;λ1;λ4;λ3
k2;k0

2;−q
Re½ϒλ1λ2ðk1;k2;q; ϵ

þ
1 ; ϵ

þ
2 Þ

−ϒλ1λ2ðk1;k2;q; ϵ
þ
1 ; ϵ

−
2 Þ�Re½ϒλ3λ4ðk0

1;k
0
2;−q; ϵ

þ
3 ; ϵ1 − ϵ2 þ ϵþ3 Þ

−ϒλ3λ4ðk0
1;k

0
2;−q; ϵ−3 ; ϵ1 − ϵ2 þ ϵþ3 Þ�(1 − nFðϵ1Þ)nFðϵ2Þ(1 − nFðϵ3Þ)nFðϵ1 − ϵ2 þ ϵ3Þ × ðϵ1 − ϵ2Þ2: ðD20Þ

4. Clean case

In this case, as ϒλ1;λ2ðk1;k2;q; ϵ�1 ; ϵ
þ
2 Þ ¼ δðk1 − k2ÞGR=A

λ1
ðk1; ϵ1ÞGR

λ2
ðk1 þ q; ϵ2Þ, the formula for the thermal

conductivity is

κ ¼ J2⊥
T2

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2
d2q
ð2πÞ2

Z
dϵ1
2π

Z
dϵ2
2π

Z
dϵ3
2π

ðϵ1 − ϵ2Þ2
X
λ1…4

jFλ1;λ2;λ3;λ4
k;k0;q j2

× Aλ1ðk; ϵ1ÞAλ2ðkþ q; ϵ2ÞAλ3ðk0; ϵ3ÞAλ4ðk0 − q; ϵ1 − ϵ2 þ ϵ3Þ(1 − nFðϵ1Þ)nFðϵ2Þ(1 − nFðϵ3Þ)nFðϵ1 − ϵ2 þ ϵ3Þ;
ðD21Þ
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with Aλðk; ϵÞ ¼ −2Im½GR
λ ðk; ϵÞ� the spinon spectral

function, which is Aλðk; ϵ1Þ ¼ 2πδðϵ − ϵλkÞ in the clean
case. This results in the formula derived in the main
text, Eq. (4).

5. Effects of potential disorder

For a Z2 QSL with a Fermi surface, we consider the
effects of potential disorder. In the self-consistent Born
approximation (SCBA), which is valid for weak disorder
such that kFl ≫ 1, the dressed Green’s function has the
form

GR
λ ðk;ωÞ ¼ GA�

λ ðk;ωÞ ¼ 1

ω − ϵλk þ i=2τ
; ðD22Þ

where τ ¼ l=vF is the disorder-induced lifetime.

In calculating the four-point correlation function

ϒðk;k0;q; iνn; iνmÞ ¼ hψ†
l ðk; iνnÞψ lðkþ q; iνmÞψ†

l

×ðk0 þ q; iνmÞψ lðk0; iνnÞidis;
ðD23Þ

we define the vertex function Γqðiνn; iνmÞ such that

ϒðk;k0;q; iνn; iνmÞ ¼ δðk − k0ÞGðk; iνnÞGðkþ q; iνmÞ þ Γqðiνn; iνmÞGðk; iνnÞGðkþ q; iνmÞGðk0; iνnÞGðk0 þ q; iνmÞ.
ðD24Þ

In the SCBA, the vertex function is given by the set of ladder diagrams, which are schematically shown in Fig. 5. The sum of
all ladder diagrams results in the following self-consistent equation for Γqðiνn; iνmÞ:

Γλ;λðk;kþ q; iνn; iνmÞ ¼
1

2πντ
þ 1

2πντ
Γqðiνn; iνmÞ

Z
d2k
ð2πÞ2Gðk; iνnÞGðkþ q; iνmÞ

¼ 1

2πντ

1

1 − 1
2πντ

R
d2k
ð2πÞ2 Gðk; iνnÞGðkþ q; iνmÞ

. ðD25Þ

The important contribution to the thermal conductivity comes from the region of small q and small frequencies
(ϵ; vFq < T, with vF the Fermi velocity). In this region,

Γðq; ϵþ1 ; ϵ−2 Þ ≈
1

2πντ2
1

−iðϵ2 − ϵ1Þ þDq2
; Γðq; ϵþ1 ; ϵþ2 Þ ≈ 0 ðD26Þ

with D ¼ vlmfp=2 the diffusion constant.
Starting from Eq. (D20), we perform the Sommerfeld expansion with respect to ϵ1. The first nonvanishing contribution,

in powers of T, occurs for the term

κ ∼ J2⊥
Z

d2k1
ð2πÞ2

d2k2
ð2πÞ2

d2k01
ð2πÞ2

d2k02
ð2πÞ2

d2q
ð2πÞ2

Z
dϵ2
2π

Z
dϵ3
2π

Re½ϒðk1;k2;q; 0þ; ϵþ2 Þ −ϒðk1;k2;q; 0þ; ϵ−2 Þ�

× Re½ϒðk0
1;k

0
2;−q; ϵ

þ
3 ;−ϵ2 þ ϵþ3 Þ −ϒðk0

1;k
0
2;−q; ϵ−3 ;−ϵ2 þ ϵþ3 Þ�nFðϵ2Þð1 − nFðϵ3ÞÞ∂ϵnFð−ϵ2 þ ϵ3Þ × ϵ22;

where, at T ≪ EF, the last line becomes nFðϵ2Þ(1 − nFðϵ3Þ)δð−ϵ2 þ ϵ3Þ × ϵ22 ¼ δð−ϵ2 þ ϵ3ÞT½∂=ð∂ϵ2Þ�nFðϵ2Þϵ22. Here, we
have again set the form factor Fk;k0;q ¼ 1 as we are dealing with a single band that crosses the Fermi energy, which is
localized on the A sublattice.

FIG. 5. In the self-consistent Born approximation, which is
valid when kFlmfp ≫ 1, only ladder diagrams without crossed
disorder lines contribute to the vertex function. In this figure, the
solid lines are renormalized electron propagators, and dashed
lines represent the effects of disorder.
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After substituting the SCBA result, Eq. (D25), we are left with (neglecting terms with all poles on the same side of the
real axis, as these give subleading contributions, and the vertexless terms, which give a T3 result)

κ ∼ J2⊥T
Z

d2k1
ð2πÞ2

d2k2
ð2πÞ2

d2k01
ð2πÞ2

d2k02
ð2πÞ2

d2q
ð2πÞ2

Z
dϵ
2π

Γqð0þ; ϵ−ÞGRðk1; 0ÞGAðk1; ϵÞGRðk2; 0ÞGAðk2; ϵÞ

× Γqðϵþ; 0−ÞGRðk1; ϵÞGAðk1; 0ÞGRðk2; ϵÞGAðk2; 0Þ
∂
∂ϵ nFðϵÞϵ

2.

We are interested in the contribution at small q, which has the potential to be singular; we therefore set q → 0 and ϵ → 0

in the Green’s functions, which results in [using the relation GRðk; ϵÞGAðk; ϵÞ ¼ A2ðk; ϵÞ ≈ τδðϵk − ϵÞ, and thereforeR
d2k=ð2πÞ2GRðk; 0ÞGAðk; 0Þ ¼ ντ, where ν is the density of states at the Fermi energy]

κ ∼ J2⊥T
Z

dϵ
2π

Z
d2q
ð2πÞ2 Re

�
ν

−iϵþDq2

�
Re

�
ν

iϵþDq2

� ∂
∂ϵ nFðϵÞϵ

2

¼ J2⊥ν2T
Z

dϵ
2π

Z
d2q
ð2πÞ2

�
Dq2

ϵ2 þD2q4

�
2 ∂
∂ϵ nFðϵÞϵ

2

¼ J2⊥
ν2

D
T
Z

dϵ
2π

∂
∂ϵ nFðϵÞjϵj ∼ J2⊥

ν2

D
T2.

6. Pair hopping term

We have ignored the pair hopping term in the previous sections. This is because its contribution is similar to that of the
spinon-hole hopping term. Performing the Matsubara summation for the pair hopping term results in

J2⊥
T2

Z
d2k1
ð2πÞ2

d2k2
ð2πÞ2

d2k01
ð2πÞ2

d2k02
ð2πÞ2

d2q
ð2πÞ2

Z
dϵ1
2π

Z
dϵ2
2π

Z
dϵ3
2π

X
λ1…4

× Re½ϒ̃λ1λ2ðk1;k2;q;−ϵþ1 ; ϵ
þ
2 Þ − ϒ̃λ1λ2ðk1;k2;q;−ϵþ1 ; ϵ−2 Þ�

× Re½ϒ̃λ3λ4ðk0
1;k

0
2;−q;−ϵ

þ
3 ; ϵ1 − ϵ2 þ ϵþ3 Þ − ϒ̃λ3λ4ðk0

1;k
0
2;−q;−ϵ−3 ; ϵ1 − ϵ2 þ ϵþ3 Þ�

× (1 − nFðϵ1Þ)nFðϵ2Þ(1 − nFðϵ3Þ)nFðϵ1 − ϵ2 þ ϵ3Þ × ðϵ1 − ϵ2Þ2; ðD27Þ

where ϒ̃λ1λ2ðk1;k2;q; iνn; iνmÞ ¼ haλ1ð−k1;−iνnÞaλ2ðk1 þ q; iνmÞa†λ2ðk2 þ q; iνmÞa†λ1ð−k2; iνnÞi.
An analysis similar to that following Eq. (D23) shows that

ϒ̃λ1λ2ðk1;k2;q;−ϵþ1 ; ϵ−2 Þ ¼ δðk1 − k2ÞGR
λ1
ð−k1; ϵ1ÞGA

λ2
ðk1 þ q; ϵ2Þ

þ Γqðϵþ1 ; ϵ−2 ÞGR
λ1
ð−k1; ϵ1ÞGA

λ2
ðk1 þ q; ϵ2ÞGR

λ1
ð−k2; ϵ1ÞGA

λ2
ðk2 þ q; ϵ2Þ

ϒ̃λ1λ2ðk1; k2;q;−ϵþ1 ; ϵ
þ
2 Þ ¼ δðk1 − k2ÞGR

λ1
ð−k1; ϵ1ÞGR

λ2
ðk1 þ q; ϵ2Þ; ðD28Þ

with Γqðϵþ1 ; ϵ−2 Þ ¼ ½1=ð2πντ2Þ�f1=½−iðϵ2 − ϵ1Þ þDq2�g as before; this term therefore contributes the same as the spinon-
hole hopping term.

APPENDIX E: Uð1Þ QUANTUM SPIN LIQUID

1. Clean spinon thermal conductivity

In this case, the interlayer coupling is given by Eq. (2),

H⊥;sp ¼ Jsp⊥
Z

d2kd2k0d2q
ð2πÞ6 ψ�

l ðkÞψ lðkþ qÞψ�
l0 ðk0Þψ l0 ðk0 − qÞ. ðE1Þ

Plugging this into the formula for the thermal current operator Eq. (D6), and using the Kubo formula just as in Eq. (D14),
results in
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κsp ¼
Jsp2⊥
T2

Z
d2kd2k0d2q

ð2πÞ6
Z

dϵ1dϵ2dϵ3
ð2πÞ3 Aðk; ϵ1ÞAðkþ q; ϵ2ÞAðk0; ϵ3ÞAðk0 − q; ϵ1 − ϵ2 þ ϵ3Þ

× ðϵ1 − ϵ2Þ2nFð−ϵ1ÞnFðϵ2ÞnFð−ϵ3ÞnFðϵ1 − ϵ2 þ ϵ3Þ; ðE2Þ

with Aðk; ϵÞ the spinon spectral function,

Aðk; ϵÞ ¼ 2cϵ2=3

ðϵk − μÞ2 þ c2ϵ4=3
; Aðk; ϵ ¼ 0Þ ¼ 2πδðϵk − μÞ; ðE3Þ

and c ¼ ðkF=mÞχ−2=3D k−1=30 [20–26]. We consider the contribution of q ≪ kF, expanding ϵkþq ≈ vFjkþ qj; we then apply
the Sommerfeld expansion according to ϵ1, and the largest contribution at low T comes from the term where the derivative is
applied to nFðϵ1 − ϵ2 þ ϵ3Þ,

κsp ≈ Jsp2⊥
Z

d2kd2k0d2q
ð2πÞ6

Z
dϵ2dϵ3
ð2πÞ2 Aðk; 0ÞAðkþ q; ϵ2ÞAðk0; ϵ3ÞAðk0 − q;−ϵ2 þ ϵ3Þϵ22nFðϵ2ÞnFð−ϵ3Þ∂ϵnFð−ϵ2 þ ϵ3Þ;

ðE4Þ

which, at low temperatures, becomes

κsp ≈ Jsp2⊥ T
Z

d2kd2k0d2q
ð2πÞ6

Z
dϵ2
2π

Aðk; 0ÞAðkþ q; ϵ2ÞAðk0; ϵ2ÞAðk0 − q; 0Þ ∂nFðϵ2Þ∂ϵ2 ϵ22: ðE5Þ

Using

Z
d2k
ð2πÞ2 Aðk; 0ÞAðkþ q; ϵÞ ¼ ν

Z
dθ

cϵ2=3

v2Fq
2cos2θ þ c2ϵ4=3

¼ νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fq

2 þ c2ϵ4=3
q ; ðE6Þ

we find that

κsp ≈ Jsp2⊥ ν2T
Z

dϵ
2π

∂nFðϵÞ
∂ϵ

Z
d2q
ð2πÞ2

ϵ2

v2Fq
2 þ c2ϵ4=3

≈
Jsp2⊥ ν2

v2F
T3 log

�
T

ðW=cÞ3=2
�
; ðE7Þ

where W is a UV cutoff.

2. Clean gauge photon thermal conductivity

In the case of a U(1) QSL, the coupling of the interlayer gauge fields is given by Eq. (22),

H⊥;ph ¼ Jph⊥
Z

d2k
ð2πÞ2 k

2aTl ðkÞaTl0 ðk0Þ. ðE8Þ

The c-axis thermal conductivity in the clean case is

ðJph⊥ Þ2
T

Z
d2k
ð2πÞ2 k

4

Z
∞

0

dϵA2
phðk; ϵÞϵ2∂ϵnBðϵÞ; ðE9Þ

where Aphðk; ϵÞ ¼ γ½jωjk=ðχ2k6 þ γ2ω2Þ� is the photon spectral function. This results in
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κc ¼
γ2ðJph⊥ Þ2

T

Z
d2k
ð2πÞ2 k

6

Z
∞

0

dϵ
ϵ4

ðχ2k6 þ γ2ϵ2Þ2 ∂ϵnBðϵÞ

∼
γ2ðJph⊥ Þ2

T

�
γ

χ

�
−4=3 Z ∞

0

dϵϵ8=3∂ϵnBðϵÞ

∼ ðJph⊥ Þ2γ2=3χ4=3T5=3: ðE10Þ

In our calculation of the interlayer thermal conductivity,
we have neglected processes that transfer a larger number
of gauge-invariant excitations between the layers (for
example, two spinons and a photon) because their con-
tribution to κc has a higher power of T and is therefore
negligible in the limit of low temperature.
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