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Most materials are changed by their history and show memory of things past. However, it is not clear
when a system can continually learn new memories in sequence, without interfering with or entirely
overwriting earlier memories. Here, we study the learning of multiple stable states in sequence by an elastic
material that undergoes plastic changes as it is held in different configurations. We show that an elastic
network with linear or nearly linear springs cannot learn continually without overwriting earlier states for a
broad class of plasticity rules. On the other hand, networks of sufficiently nonlinear springs can learn
continually, without erasing older states, using even simple plasticity rules. We trace this ability to cusped
energy contours caused by strong nonlinearities and thus show that elastic nonlinearities play the role of
Bayesian priors used in sparse statistical regression. Our model shows how specific material properties
allow continual learning of new functions through deployment of the material itself.
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I. INTRODUCTION

Multistability is an emergent nonlinear behavior found in
systems as diverse as electrical, neural, biochemical, and
mechanical networks [1]. In particular, multistability has
been sought in mechanical systems as a way to achieve
multifunctionality and has been engineered in sheets,
shells, and, more generally, elastic networks [2–13]. But
in all of these examples, the mechanical metamaterial or
elastic network is carefully constructed with a priori
knowledge of all the desired states. Hence, adding a new
stable state typically requires rewiring the entire network
from scratch.
In contrast, many networks in the natural world are

grown over time according to local rules and are thus
naturally shaped by the current geometry of the system
[14–16]. For example, actomyosin networks grow between
focal adhesion points of a cell; different focal adhesion
geometries naturally result in different networks with
different properties [17]. Examples of networks grown
according to local geometry are found on all scales, from
microtubules [18] and synthetic DNA nanotubes grown
between molecular landmarks [19,20] to tissues [21] and

even entire macroscopic organisms like Physarum [22].
Such organic growth of networks raises the possibility of a
mechanical network acquiring new stable states—and thus
new functionality—on the fly through incremental changes,
without rewiring from scratch to include each new state.
While such continual learning is appealing, a primary

challenge is that each learned behavior needs to survive
changes during learning of subsequent behaviors and not be
overwritten. The requirements for such continual learning
without erasure have been studied in neural networks since
Hopfield [23] and Gardner [24], and from an active area of
research [25], but the requirements for continual learning of
mechanical behaviors are not clear.
In this work we study the requirements for continual

learning of multiple stable states in a simple elastic net-
work. We first study a concrete model of continual learning,
motivated by networks grown over time in nature. In this
model, the material is placed in each of the desired states in
sequence for a period of time. During this time, elastic rods
or springs with a rest length grow between particles within
some distance in space, mimicking the seeded growth of
microtubules [18] or self-assembling DNA nanotubes [19].
Thus, this learning model is constrained by locality in space
and time—material parameters are modified only by the
local geometry of the current configuration being experi-
enced [26,27,48].
We find that continual learning of new states without

forgetting the old requires nonlinear elasticity of a specific
type. Parametrizing the elastic energy of springs in the
network as E ∼ sξ for large strain s, continual learning
requires 0 < ξ ≤ 1. Nonlinear springs 0 < ξ ≤ 1 have been
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demonstrated using metamaterials such as origami [28,29].
In contrast, if all desired states are known a priori and
continual learning is not desired, linear springs ξ ¼ 2
(Hooke’s law) are sufficient to stabilize multiple states.
We then generalize beyond our simple model of plas-

ticity; we show that such ξ < 1 mechanical nonlinearities
are in fact required of any model of continual learning in
which parameters are incrementally updated with knowl-
edge only of the current desired state and no knowledge of
future or past states. Our general results relate the dis-
tinction between ξ > 1 springs and ξ < 1 nonlinear springs
to smooth and cusped energy contours, respectively. We
show that, consequently, networks of linear springs share
strain democratically, but networks of ξ ≤ 1 nonlinear
springs show winner-take-all behavior; some springs can
be nearly unstrained while others are highly strained. In this
way, we argue that ξ ≤ 1mechanical nonlinearities play the
role of nonlinear Bayesian priors used in sparse regression.
Finally, we discuss natural and synthetic materials that

could form the basis for continually learning networks.
We hope our analysis of a simple mechanical model will
stimulate further work on the conditions under which
materials can learn new functionalities on the fly.

II. RESULTS

We seek to create an elastic network of springs connecting
N particles in two dimensions, such that the network hasM
desired stable states [Fig. 1(a)]. Each desired state m ¼
1;…;M is specified by the positions xðmÞ of the N particles
(up to rigid body translations and rotations).
In standard approaches, all desired stable states are

known in advance and used for constructing the network
[13]. As an example of such a framework, we connect

the N particles by Hookean (linear) springs and solve an
optimization problem for spring constants kij and rest
lengths lij that minimizes residual forces at each of the
desired configurations xðmÞ [Fig. 1(b)]; see the Appendix A
for details. Note that in this model, adding a single new
stable state requires a complete rewiring of the network
with new Hookean springs.
For continual learning, we first consider a particular

simple model of grown networks in which desired stable
states are acquired by sequentially placing thematerial in the
desired configurations [Fig. 1(c)]. We find that continual
learningwithout forgetting requires nonlinear springs. Later,
we show that such nonlinearities are in fact a requirement for
a broad class of continual models in which the spring
network is updated based on the current configuration alone,
without knowledge of future or past desired configurations.

A. Simplified growth model

In our incremental growth model for continual learning,
when thematerial is left in a configurationxð1Þ for a length of
time, unstretched elastic rods grow between every pair of
particles i, j at a rate fðrijÞ set by their separation rij; we
assume that f vanishes rapidly outside of a characteristic
length scale R, so only nodes within a distance less than R
are stabilized by such rods. Since the number of rods grows
with time, the effective spring constant for the set of rods
connecting two particles i, j grows with time and is given by

dkeffij
dt

¼ k0fðrijÞ: ð1Þ

Here, k0 is the spring constant of each rod, whose rest
length lij is assumed equal to the particle separation rij; i.e.,
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FIG. 1. Continually learned multistability. (a) We seek to create an elastic network with specific stable configurations (energy
minima). (b) In continual learning, the network grows incrementally; new bonds created in one epoch (e.g., purple) can only depend on
the configuration (e.g., state 3) during that epoch and have no information about states in the past and the future. For continual learning
of new states without forgetting older states, network changes due to learning state 3 should not interfere with the stability of state 1 and
2 or vice versa. (c) In contrast, in the usual approach, all desired states are specified beforehand and then network parameters (e.g.,
connectivity, spring constants) are optimized to simultaneously stabilize these states. Unlike with continual learning, adding more states
requires redesigning the network from scratch.
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rods are unstretched in the desired state. In simulations, we
pick f to be a step function of range R, fðr < RÞ ¼ 1,
fðr > RÞ ¼ 0. Our results below hold qualitatively for both
short-ranged and long-ranged choices ofR. Networks grown
in this manner are seen in living systems (e.g., microtubules
growing between centrosomes and centromeres [18,30]) and
in synthetic systems (e.g., self-assembling DNA nanotubes
[19] growingbetween seeds). To continually encodemultiple
stable states, we reshape the network into successive geo-
metric configurations, letting new rods grow according to
Eq. (1) in each one of the desired states. Note that since all
grown rods are unstrained in the concurrent geometric state,
only information about that current state is required to
continually grow the network.
We ran both the above continual learning (growth) model

and standard simultaneous stabilization described earlier on
a pair of randomly generated desired state xð1Þ and xð2Þ of
10 particles. With linear Hookean springs (E ∼ ks2), the
simultaneous stabilization algorithm successfully stabilizes
both states; see Fig. 2. However, continual learning of the
same two states xð1Þ, xð2Þ fails. Rods grown to encode state
xð1Þ destabilize, or overwrite, state xð2Þ and vice versa.
We then considered springs with nonlinear energies,

EðsÞ ∼ k0
s2

ðσ2 þ s2Þ1−ð1=2Þξ ; ð2Þ

where k0 is the spring constant and sij ≡ ðrij − lijÞ is the
strain relative to rest length lij. ξ parametrizes the non-
linearity [Fig. 2(c)]; ξ ¼ 2 is a linear Hookean spring while
ξ < 2 springs have softer restoring forces at large distances,
E ∼ sξ. Finally, σ is a small length scale within which the
interaction is linear for any ξ and is introduced to reflect
practical realizations of nonlinear ξ < 2 springs [28,29];
our results continue to hold as σ → 0. See Appendix B for
details.
We repeated the same continual learning procedure on

the same states as earlier—but with nonlinear springs
ξ < 2. While the results for 1 < ξ < 2 are qualitatively
similar to Hookean ξ ¼ 2 springs, ξ < 1 shows qualita-
tively different results—multiple states are stabilized in
sequence [Figs. 2(b) and 2(d)].
The quality of learned states can be quantified by the

attractor size and barrier heights around stored states. Large
attractors and high energy barriers allow robust retrieval
of states from a larger range of initial conditions. These
measures have long been used to quantify quality of learning
in neural networks [31–33]. We find that quality of learned
and simultaneously stabilized states, as measured by barrier
heights, is highest at distinct ξ�; see Figs. 3(a) and 3(b). The
quality of the simultaneously stabilized states is optimal for
linear springs ξ� ≈ 2, relatively insensitive to the number of
desired states. However, the optimal ξ� for learned states is
0 < ξ� < 1 and varies with the number of learned states. We
find similar results by measuring attractor radius instead of

Simultaneous stabilization

Continual learning 

Continual learning
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(b)

(d)

(c) U
S

FIG. 2. Nonlinear interactions are essential for learning multi-
ple states in sequence. (a) Energy landscape of a simultaneously
stabilized network with linear (ξ ¼ 2) springs, successfully
stabilizing 2 desired states (black stars). (b) In the continually
learned network, linear (ξ ¼ 2) springs learned for each desired
state destabilize the other state, but nonlinear (ξ ¼ 0.5,
σ ¼ 5 × 10−3L) learned springs stabilize both desired states.
(c),(d) Repeating learning for nonlinear springs with E ∼ sξ,
we find that learned states overwrite each other for ξ > 1 but are
protected from each other with sufficiently nonlinear ξ ≤ 1
springs.

(a) (b)

(c) (d)

Continual
learning

Simultaneous
stabilization Simultaneous

stabilization

Continual
learning

FIG. 3. Optimal nonlinearity for continually learned states.
(a),(b) Barrier heights around learned states are highest at a
specific nonlinearity 0 < ξ� < 1. Further, learning more states
requires stronger nonlinearity ξ� (compared to simultaneously
stabilized sates that are most stable with for ξ� ≈ 2, or linear
springs). (c) We find similar results by quantifying learning
quality by attractor size around stable states. (d) Learning rules
that connect more distant nodes, i.e., larger range R for fðrÞ in
Eq. (1), lead to larger attractor basins (see Appendix D for
details). L is the system length, σ¼ 5×10−3L. Results averaged
over 45 simulations of N ¼ 100 particle networks.
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barrier heights [Fig. 3(c)]. These results average over
simulations of 45 systems with N ¼ 100 particles at every
value of ξ. As seen in Fig. 3(d), continual learning works for
a range of spring connection distance R relative to system
size L, though attractor size is larger for larger R=L. See
Appendixes C and D.

III. CONTINUAL LEARNING REQUIRES
NONLINEARITIES

Do our results hold beyond the simple growth model in
Eq. (1)? Here, we define continual learning more broadly to
include frameworks in which the spring network (e.g.,
spring constants, spring lengths) can change in any com-
plex manner based on the current configuration, but the
changes cannot depend on any knowledge of future or past
configurations. We argue that this broader class of models
also requires sufficiently nonlinear springs [ξ ≤ 1 in
Eq. (2)] for continual learning of multiple stable states.
For any kind of spring network, changes in the spring

parameters due to being held in, say, state xð2Þ will
generally create unbalanced net residual forces Ferase

2 ðxÞ
at any other configuration x. In particular, these forces will
not generically vanish at the previously stable configuration
xð1Þ since, by definition of continual learning, the spring
network modifications while being held in state xð2Þ cannot
be cognizant of past or future states. Hence the net forces
Ferase
2 ðxð1ÞÞ at state xð1Þ due to network changes to encode

state 2 will always be nonzero and tend to destabilize and
thus erase state 1.
However, we argue that these forces Ferase

2 ðxð1ÞÞ generi-
cally distort state 1, xð1Þ → xð1Þ þ δx, by a large amount δx
for ξ > 1 springs, but δx is only infinitesimal for ξ ≤ 1
springs because stable configurations are found at cusps of
energy contours for ξ ≤ 1.
To see this, consider the case of an unstrained spring in

1D, as in Fig. 4(a) (with σ → 0, a small core length of linear
response near the unstrained state). A spring with ξ > 1,
on which an external force Ferase is applied, will extend
by δx ∼ ðFeraseÞ1=ðξ−1Þ. In contrast, a ξ ≤ 1 spring would
extend by δx ≪ σ [Fig. 4(b)], provided Ferase < FT . We
find the threshold force to be FT ∼ σξ−1 [Fig. 4(c)].
Consequently, the perturbation of spring length due to a
perturbative force F is dramatically different for ξ > 1 and
ξ ≤ 1. See Appendix E for details.
Now we generalize this argument to spring networks.

The state xð1Þ is stabilized by a set of springs K1 whose net
force vanishes at that state. The net energy of this set K1 for
perturbations around xð1Þ can be written as

P
sξi , where si

is the strain in spring i, if all springs in K1 were unstrained
in state xð1Þ. For ξ > 1, with such an energy function, a
force of magnitude F will perturb xð1Þ by δx ∼ F1=ξ−1 that
grows with F. If the springs in K1 were strained to begin
with in state xð1Þ, the state is even more unstable.

On the other hand, with ξ ≤ 1 springs, the energy ∼
P

sξi
in the vicinity of xð1Þ is cusped (in the limit σ → 0);
consequently, the restoring force due to springs in K1 can
be arbitrarily large for small displacements away from xð1Þ.
A finite σ limits these restoring forces to a maximum value
FT ∼ σξ−1. Consequently, for erasure forces Ferase less than
FT , we find that the resulting displacement is small; see
Appendix E.
We conclude that forces Ferase

2 ðxð1ÞÞ are always nonzero
by definition of continual learning. While linear and ξ > 1
spring networks are too soft to protect their minima from
such destabilizing forces, unstrained nonlinear ξ ≤ 1
springs can exert strong restoring forces to counter
Ferase, up to a threshold FT . Forces larger than this
threshold will destabilize stored states even for ξ ≤ 1
springs; FT thus sets the capacity, i.e., the largest number
of memories that can be learned, since the total destabiliz-
ing force grows with the number of encoded states.

A. Nonlinear springs as Bayesian priors

We can see the wider applicability of nonlinear stabili-
zation through a mathematical connection between sparse
regression in statistics [34] and mechanical nonlinearities.
How does a frustrated network of nonlinear springs

decide which springs should be strained at stable configu-
rations? In Fig. 5, we consider two springs learned as part
of two different configurations xð1Þ (blue) and xð2Þ (red).
Spring a is unstrained at Awhile spring b is unstrained at B.
The total energy of the system shown is

E ¼ −Fextxþ k
X
q¼a;b

sξq ¼ −Fextxþ kkskξ; ð3Þ

where kskξ is the ξ-norm of the strain vector s for the red
and blue springs and Fext represents forces by other springs
not shown.

(a) (c)

(b)

FIG. 4. Nonlinear ξ ≤ 1 springs are essential for continual
learning. (a) An unstrained spring is extended by δx due to an
external force Ferase. (b) Net displacement δx of a previously
stable point xð1Þ due to forces Ferase arising from springs learned
for a new state xð2Þ. δx ≪ σ for ξ ≤ 1 springs, yet δx is extended
for ξ > 1 springs. (c) A threshold erasure force FT ∼ σξ−1 is
required to destabilize the stable state due to nonlinear ξ ≤ 1
springs. Small σ and ξ ≤ 1 springs are thus essential for
stabilizing previous states under continual learning of new states
(σ ¼ 10−4L).
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In Fig. 5(b), we find that contours of constant kskξ are
smooth for ξ > 1. But for ξ < 1, the contours are cusped; at
each cusp, one spring is completely unstrained while the
other is strained (σ ¼ 0 for simplicity). When combined
with other springs in the network (black energy contours),
the energy minima are overwhelmingly likely to be at
these cusps.
In fact, this result has been established more generally

in the context of sparse regression [34,35]. As an
example, consider an underdetermined problem As ¼ b
for a vector s. If we know a priori that an s exists which has
some components that are strictly zero and others nonzero,
we can find such “sparse” solutions s by adding a
“Bayesian prior” kskξ ¼ P

q s
ξ
q to the least-squares loss

function,

E ¼ kAs − bk2 þ kskξ; ð4Þ

and then minimizing E. If ξ ≤ 1, such a Bayesian prior kskξ
has been proven to bias the search toward solutions s in
which some elements of s are strictly zero while others are
nonzero (i.e., sparse solutions) [34,36].
Thus, nonlinear spring networks with ξ ≤ 1 are predicted

to be winner-take-all networks; in stable configurations,
one subset of springs is completely unstrained while others
are strained. In ξ > 1 networks, strain is democratically
shared and no springs are unstrained.

To test this analogy in larger elastic networks, we let a
N ¼ 100 particle network learn two distinct states, and
measured the strain in each spring after relaxing to one of
the states [Fig. 5(d)]. For nonlinear springs ξ ≤ 1, we find a
bimodal strain distribution—half of the springs are con-
siderably strained, while the other half are at (approxi-
mately) zero strain. This result is in stark contrast to the
simultaneously stabilized minima with linear springs
ξ ¼ 2, for which all springs are strained. Thus nonlinear
springs can be seen as sparse Bayesian priors.

B. Pattern recognition

Finally, we ask whether our learned network with large
robust attractors around the learned states can perform
pattern recognition. To do this, we turn to the MNIST
handwritten digits database [37] and attempt to teach an
elastic network to recognize the digits “0” and “1” from
examples of these digits (Fig. 6).
We trained the fully connected (R → ∞) elastic network

with 5000 samples of the digits 0 and 1 each from the
MNIST database in the following way: each 400 pixel
image was interpreted as a 1D configuration of 400
particles by interpreting each pixel’s gray scale value as
a particle’s position in the interval [0, 1]. The particles in
such a state are connected by elastic rods according to the
learning rule in Eq. (1). For ξ < 1, we find that the training
generally creates two distinct large attractors corresponding
to an idealized 0 and 1, respectively [Fig. 6(d)].
We then test the network by using novel unseen

examples of 0’s and 1’s from MNIST as initial conditions

(a)

(b) (c)

(d)

FIG. 5. Nonlinear springs act like a Bayesian prior that ensures
sparse strain distributions. (a) Red spring a stabilizes the ball
position at point A, while the blue spring b stabilizes the ball at
position B. (b) The energy of the red and blue springs is
represented by red contours, that of all other springs by black
contours. The system’s energy is minimized at a point where red
and black contours are tangent to each other. If ξ > 1, the
minimum is at a generic point with no special features. (c) If
ξ ≤ 1, the minimum is very likely to be at a red cusp,
corresponding to a configuration in which either the red or blue
springs is unstrained. (d) Typical stable states of a large N ¼ 100
network have many unstrained springs if and only if ξ ≤ 1.

(a) (b) (c) (d)Training
examples

Initial
conditions springs springs

FIG. 6. Elastic networks learn to recognize handwritten digits.
(a) Images representing two particle configurations that we wish
to stabilize (adapted from MNIST). The 400 pixel gray scale
values in each image are interpreted as positions of 400 particles
in one dimension. We learned a nonlinear spring network using
5000 randomly drawn examples of 0’s and 1’s each. (b) Learned
networks are then tested by initializing at configurations corre-
sponding to new unseen examples of “0” and “1.” (c) Linear
networks fail to learn stereotyped states; initializing at each test
example results in n unique uninterpretable states. (d) In contrast,
nonlinear networks learn two stereotyped states corresponding to
0 and 1 that are reliably retrieved in response to unseen examples
of 0 and 1 from the MNIST database (ξ ¼ 0.5, σ ¼ 5 × 10−3L).
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for the particles. While these test images are not identical to
any particular 0 or 1 used in training, the elastic network
still retrieves the correct stored 0 or 1 state. Thus the
nonlinear ξ < 1 elastic network learns states 0 and 1 with
sufficiently large attractors to accommodate the typical
handwriting variations seen in the MNIST database.

IV. EXPERIMENTAL REALIZATIONS

In this work we propose growing networks as a potential
mechanical system that can continually learn stable states.
The essential requirement for such systems is the ability to
grow or adapt bonds up to a particular length when nodes
are held in position corresponding to one of the stored
states, as shown in Eq. (1). Formation of connections
between node points occurs naturally in cellular micro-
tubule networks, where filamentous networks grow to form
the mitotic spindle, allowing cells to divide with their
daughter cells sharing the chromosomes equally [18]. A
similar synthetic system where our framework can be tested
is DNA nanotubes [20]. Much as in our model, in the
experiments of Ref. [20], DNA nanotubes spontaneously
grow between different “nodes” (DNA origami seeds) that
can be placed at desired locations on a surface. The
probability of connecting up two nodes by a self-assembled
DNA nanotube drops off sharply as a function of the
distance between the nodes and the time allowed for
assembly [Fig. 7(a)]; such a system effectively implements
our learning rule Eq. (1) with fðrÞ chosen as a step
function. Further, using multiheaded DNA origami seeds,

one can allow for multiple nanotubes to grow from each
node, including multiple tubes between a pair of links,
creating a network with links of varying strength. In this
way, the highly controllable nature of DNA can implement
geometry-dependent growth rules that underlie this work
on the nanometer to micron scale.
Our framework can also be implemented on much larger

length scales using recent experimental demonstrations of
plasticity in EVA (Ethylene-vinyl acetate) foam [38]. Here,
learning involves continually changing the stiffness of
existing bonds, rather than growing new bonds every time.
Such a method was recently explored using a “holey sheet”
made of EVA foam. These sheets can be trained to have a
very different response by directed aging of the network
under strain [Fig. 7(b)]. During the aging process, different
bond stiffnesses are modified to different extents and the
geometry is altered as the EVA foam remodels. Using such
directed aging methods, the nonlinear elasticity of the sheet
is modified and it may be possible to train the sheet to be
multistable, with energy minima at specific strains. These
holey sheets can then be used as individual springs in our
network, instead of the growing springs studied here, with an
overall similar multistability obtained at the network level.
In this work we find that given such adaptive materials,

continual learning of stable states is possible if the
interactions between the nodes is sufficiently nonlinear.
Though most materials respond linearly to small strains,
nonlinear elasticity is quite common when larger strains are
considered [40]. Nonlinear elastic responses are typically
strain hardening (restoring force that grows superlinearly
with strain, ξ > 2) or irreversible strain softening (e.g.,
material failure). However, mechanical systems that sup-
port reversible strain softening do exist, with various
effective values of ξ. A synthetic system that clearly shows
the type of elasticity we require for continual learning is the
kirigami spring [28], where a nonlinear elastic regime (with
ξ ∼ 1) is observed when the kirigami structure buckles at a
finite strain [Fig. 7(d)]. If a growing network of protein
filaments could be engineered with such topology, it could
be ideal for testing our framework for continual learning.
Actin networks are known to soften at large strains [39].

At moderate strains the network hardens due to hardening
of individual fibers, but at larger strains fiber groups may
buckle, diminishing the restoring force [Fig. 7(c)]. In
addition, actin networks can also grow between target
points, as done naturally in focal adhesion, where actin
networks connect to focal complexes to facilitate cell
motility [41]. Such networks can be grown to stabilize
two distinct geometrical states, each of which is supported
by just a part of the network. When placed in one state, the
actin bundles corresponding to the second state may
weaken to the point where only the bundles supporting
the current state are important. Then, if the network is
transferred to the other state, the bundles associated with it
can heal and stabilize the second state.

FIG. 7. Experimental networks exhibiting components of
learning and nonlinear elasticity. (a) Synthetic DNA origami
nanotubes forming connections up to certain distance, as our
chosen fðrÞ (adapted from Ref. [20]). (b) EVA foam-based
network changes nonlinear elastic properties when aged under
strain (adapted from Ref. [38]). (c) Reversible stress softening in
actin networks, a natural form of elastic nonlinearity in grown
networks (adapted from Ref. [39]). (d) Kirigami structure with
ξ ≈ 1 nonlinear elasticity (adapted from Ref. [28]).
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V. DISCUSSION

In this work we demonstrated a continual learning
framework for creating multistable elastic networks. We
found that continually learning novel states without over-
writing existing ones requires a specific nonlinear elasticity
ξ ≤ 1. The specific learning model we study relies on
spontaneous growth of stabilizing rods between nearby
nodes, a behavior displayed by microtubules [18], DNA
nanotubes [19], and other such seeded self-assembling
tubes [42–44]. We believe that actomyosin networks [39]
may be an ideal system to test our ideas on continual
learning, as they exhibit nonlinear elasticity of a similar
form to the one studied here.
The nonlinearity ξ plays a unique role as a material design

parameter. Most material parameters (e.g., li, ki of springs)
encode information about desired states. The power para-
meter ξ encodes an assumption on how information about
desired states is distributed among parameters li, ki of
different springs. Continual learning requires localization
of information about each state to a subset of all springs.
Hence, stabilizing learned states requires ξ < 1, establishing
states in which some springs are fully relaxed even if others
are highly strained; i.e., the strain profile is sparse. In this
way, the nonlinearity ξ is mathematically analogous to
Bayesian priors in statistical regression that encode assump-
tions about the sparse nature of solutions. However, the
elastic network here goes beyond the classic sparsity
problem [Eq. (4)]; the network has 2D spatial geometry
absent in Eq. (4) and is more closely related to (unsolved)
sparse reconstruction of 2D maps from pairwise distances
between cities [45]. Consequently, we can explore how
physical parameters with no analog in Eq. (4), such as the
maximum range of learned interactions R [Fig. 3(d)] and
spatial correlations between stored states, affect the optimal
nonlinearity ξ (Appendix D).
The frameworks of simultaneous stabilization and con-

tinual learning have complementary strengths, as seen before
in neural networks and spin glasses. For example, Hopfield
[23] introduced neural networks that can continually learn
arbitrary novel memories using a biologically plausible
“Hebbian” learning rule. Gardner [24] showed that the same
model has a highermemory capacity ifwe assume an optimal
network construction. However, Gardner’s network con-
struction requires that all desired memories are known—
and must be remade from scratch to include new memories.
Similarly, in materials, standard approaches might be

sufficient if all desired states are known beforehand and
given unlimited computation power, as such frameworks
allow optimization over all network parameters. In contrast,
continual learning is a physically constrained exploration of
the same parameters. However, such constrained exploration
can be superior when the desired behaviors are not known
a priori and revealed only during use of the material itself.
Recent work has explored in situ supervised learning

[46] in mechanical systems. Our work here is more akin to

unsupervised learning (e.g., Hopfield models [23]); we
leave continual learning in the supervised context and
potential relationship to mechanical nonlinearities to future
work. We hope the mechanical model studied here will
stimulate further work on realistic learning rules that allow
materials to acquire new functionalities on the fly.
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APPENDIX A: SIMULTANEOUS
STABILIZATION OF STATES WITH LINEAR

AND NONLINEAR SPRINGS

As a simple model for weakly strained elastic materials,
linear (Hookean) springs are often used for theoretical
constructions of elastic networks. Each of the two nodes
connected by a linear spring of stiffness k and rest length l,
and separated by distance r, feels a force jFj ¼ kjr − lj.
The energy associated with the straining of the spring
is E ¼ 1

2
kðr − lÞ2.

Suppose we construct a network withN nodes embedded
in d-dimensional space. Each 2 nodes (located at xi, xj) are
connected by a linear spring of stiffness kij and rest length
lij. The energy of the elastic network is

EðfxgÞ ¼ 1

2

XN
i¼1

XN
j¼iþ1

kijðrij − lijÞ2; ðA1Þ

where rij ≡ kxi − xjk are the distances between nodes.
The stable configurations (minima) of this energy function
are found by equating the gradient of Eq. (A1) with respect
to node positions to zero:

0 ¼ ∂xaE ¼
XN
i¼1

XN
j¼iþ1

kijðrij − lijÞ
∂rij
∂xa

: ðA2Þ

This procedure gives Nd equations that have to be
satisfied simultaneously for the Nd node coordinates.
Note that Eq. (A2) is not linear in node coordinates, as

the distances in dimension d are computed by rij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
dðxi;d − xj;dÞ2

q
(manifestly nonlinear in xi for d > 1,

but even for d ¼ 1 → rij ¼ jxi − xjj). Because of the
nonlinear relation of rij to xi, xj, multiple solutions
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fx⋆g can satisfy Eq. (A2). Even though one still needs to
check the second derivative at the proposed configuration
fx⋆g to test if it is a stable minimum, in practice we find
that there indeed exist multiple stable points for two-
dimensional embeddings. Simulating small systems with
up to 12 nodes in 2D, we find that the number of minima
scales linearly with node number (Fig. 8).
These multiple minima in the potential energy landscape,

if moved around, could be utilized to encode the desired
stable configurations. This is possible by careful choice of
the stiffness values kij and rest lengths lij of all springs.
Note that even though Eq. (A2) is nonlinear in node
positions fxg, it is linear in both kij and aij ≡ kijlij.
Suppose we want to solve the system of equations (A2) for
M different node configurations denoted by fxgm, giving
rise to distance matrices rmij. A solution to such linear
systems of equations can generally be found if the number
of equations (NdM) is less than the number of variables
(N2d). To simultaneously stabilize multiple desired states,
we thus numerically solve Eq. (A2) for all the desired
configurations fxgm to get the values of kij, lij, and then
check that the obtained elastic network is indeed stable in
all of these configurations. Similar strategies for multi-
stability in elastic networks were recently studied [13] from
the point of view of spring length constraints.
The particular algorithm discussed above is only relevant

for linear springs with ξ ¼ 2. Still, a simultaneous stabi-
lization protocol for spring-node systems with any value of
nonlinearity ξ is possible. With nonlinear springs the force
balance of Eq. (A2) becomes

0 ¼ ∂xa
E ∼

XN
i¼1

XN
j¼iþ1

kijðrij − lijÞξ−1
∂rij
∂xa

; ðA3Þ

which is unfortunately nonlinear in the rest lengths lij. In
similar spirit to the above algorithm, we minimize the sum
squared of all NdM equations due to the set of Eq. (A3)

over the spring parameters kij, lij. If minimization succeeds
in finding perfect (zero) solutions, it gives sets kij, lij for
which the nodes feel very little force in all of the M stable
states. We can then numerically check whether these states
are stable.
The capacity of such simultaneously stabilized networks

to store multiple stable states MC is expected to scale
linearly with system size (number of nodes N). This idea
arises as stabilizing M states requires the simultaneous
satisfaction of NdM constraints using N2d parameters as
discussed above. These two numbers match for a critical
number of states MC ∼ N, and for M > MC no solution
exists in general. Unfortunately, this prediction is difficult
to corroborate numerically due to the computationally NP-
complete nature of such design problems.

APPENDIX B: ENERGY MODEL FOR
NONLINEAR SPRINGS

To enable the learning paradigm to store multiple stable
states in an elastic network, one needs to utilize nonlinear
springs with certain properties. Most importantly, if a
spring is to hold information about one configuration
associated to it, the spring should apply a strong force
only when the system is close to its associated configura-
tion. One simple way to parametrize such forcing is to use a
spring whose force when pulled away from the preferred
length is F ∼ ðr − lÞξ−1. Clearly, if one chooses ξ ¼ 2, the
limit of linear springs is obtained once more, where the
force gets stronger the further the spring is strained.
If one chooses 0 < ξ < 1, the spring’s response weakens

as it is strained. Unfortunately, such springs are nonphysi-
cally singular for r ¼ l. One way to counter this singularity
is to introduce a linear “core” spring, with some length
scale σ, such that the spring behaves like a linear spring
for jr − lj < σ, and nonlinearly otherwise. If we define a
nondimensional strain u≡ ðr − lÞσ−1, the energy of such a
spring can be written as

EðuÞ ¼ 1

2
kσξ

u2

ð1þ u2Þ1−ð1=2Þξ ; ðB1Þ

with r the spring length, k stiffness, and l, σ the rest length
and core size, respectively. The prefactor σξ is chosen so
that the long-range forces u → ∞ are independent of the
core size σ, and that the ξ ¼ 2 limit is the desired linear
spring. In this model, spring nonlinearity is controlled by
the exponent ξ, defined in a way to recapitulate the
behavior of regularizers in optimization problems. A choice
of ξ ¼ 2 gives rise to linear springs, akin to ridge
regularization, while ξ ¼ 1 gives long-range constant
forces E ∼ u, similar to LASSO (least absolute shrinkage
and selection operator; also Lasso or lasso) regularization.
The extreme limit ξ ¼ 0 defines springs whose energy is a
Lorentzian. Outside the core region, such springs exert

FIG. 8. Number of stable configurations in a network of linear
springs grows linearly with the size of the system.
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forces that diminish quickly as F ∼ u−1. In general, the
force due to the nonlinear springs is

FðuÞ ¼ kσξ−1u
1þ 1

2
ξu2

ð1þ u2Þ2−ð1=2Þξ : ðB2Þ

The crucial property of this family of spring potentials is
the force behavior at large strains, far beyond the core
u ≫ 1. At large strains the force applied by the springs is
F ∼ uξ−1, a form which goes through an important tran-
sition at ξ ¼ 1. For springs with ξ > 1, the restoring force
grows with strain, while for ξ < 1 the force diminishes.
This transition causes an important change of behavior
when such spring potentials are summed together, as shown
in Fig. 9. The minima of individual springs are preserved
for ξ < 1, while these minima are overwritten for springs
with ξ > 1. We conclude that only springs with ξ < 1 (or
more generally, springs whose force diminishes with range)
enable continual learning. In continual learning, we would
like the information about each stored state to be localized
to a subset of springs, and that adding more springs for new
states does not overwrite the previously stored information.
Figure 9 clarifies that springs whose force grows with strain
are unfit for this purpose.

APPENDIX C: NUMERICAL EXPLORATION OF
MECHANICAL NETWORKS

Testing predictions about learning elastic networks
requires the numerical construction of such networks
and the ability to explore their potential energy landscape.
This Appendix describes some of the technical aspects

involved in simulating these networks and deducing their
properties. The codes to produce and study the elastic
networks are implemented in PYTHON and available upon
request.

1. Network construction

The elastic networks simulated for this work consist ofN
nodes embedded in a 2D box of size 1 × 1. For each desired
system configuration (stored state), node positions are
sampled uniformly at random within the boundary of the
box. Each multistable system of this type with M states is
thus described by M × N × 2 positions in the range [0, 1].
Springs are attached between pairs of nodes according to
the paradigm studied (simultaneous stabilization, continual
learning).
For the simultaneous stabilization model, we fully

connect all pairs of nodes in the system with linear springs
(ξ ¼ 2). These springs are chosen to take into account all of
the desired states simultaneously. The choice of springs
(stiffness and rest length values) is made by solving the set
of equations (A2) in Appendix A. Construction of fully
connected, simultaneously stabilized networks with non-
linear springs (ξ ≠ 2) is facilitated by optimizing forces at
the desired stored states (Appendix A).
Systems with learned states are constructed by attaching

a set of springs between pairs of nodes for each stored state.
We generally do not fully connect the nodes, instead opting
to connect a spring between nodes within a certain chosen
distance R. All springs in this paradigm have the same
spring stiffness k, core size σ, and nonlinearity parameter ξ.
The springs only differ in their rest length, chosen so that
the springs are relaxed in their respective state. Thus,
learning is “easy” in the sense that no computation is
required to choose the new set of springs in new stored
states. This suggests learning can be performed by a rather
simple, physically passive system, whose time evolution
depends only on its current configuration.

2. Estimation of attractor size and barrier height

When M > 1 states are encoded into a network, it is of
immediate interest to check whether these states are stable
at all. We define a stable state X⃗ðmÞ (N × 2 spatial vector) by
the following requirement: when the system is released
from X⃗ðmÞ and allowed to relax to a nearby stable minimum
of the potential energy landscape, the relaxed configuration
X⃗ðmÞ
� is close in configuration space to X⃗ðmÞ. We consider

states to be preserved if the average displacement per
degree of freedom after relaxation is much smaller than the
size of the box. The potential core size σ is used as this
stability cutoff ½ðkX⃗ðmÞ

� − X⃗ðmÞkÞ=2N� < σ, where the typ-
ical core size is ∼1% of the box size. If the different
encoded states pass this test, we say that the states are
stable, and the encoding was successful. See Appendix D
for more details on the stability of stored states.

FIG. 9. The sum energy of two springs goes through a transition
at ξ ¼ 1. The energy minimum of each spring is preserved for
ξ < 1, while these minima are overwritten for ξ > 1. In essence,
the information on minima of ξ < 1 springs is stored with each
individual spring. (Black dotted lines correspond to the individual
potentials of two nonlinear springs with given ξ, bold blue lines
show the sum of the two potentials, shifted up for clarity).
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In an effort to find optimal schemes for storing stable
states in elastic networks, basic stability does not suffice,
and we require additional measures of merit. A natural
approach is to study the attractor basins of the encoded
states, specifically their spatial extent and the energetic
barriers surrounding them. The larger the attractor basin,
the configuration can more reliably be retrieved when the
system is released farther away from its minimum. High
energy barriers surrounding the state basins improve their
stability when the system is subjected to finite temperatures
or other types of noise.
Unfortunately both attractor size and energy barrier are

nonlocal properties of the attractor, requiring many high-
dimensional measurements away from the stable state.
Rather than exhaustively studying the attractor basin shape
and height, we employ a procedure as follows. At the stable
state, choose a random direction and take the system a
small amount in that direction. Relax the system from the
new position and verify whether it relaxed into the same
stable state. If so, repeat the last step, but take the system
slightly farther away in the same direction as before. Repeat
these steps until the system no longer relaxes to the initial
state, but instead reaches another stable point of the
landscape. Measuring the distance required to move the
system in order to escape the attractor, and the energy at
that distance, furnishes an estimate of both the attractor size
and the energy barriers around it. We repeat the above
process to average the results over many different random
directions in configuration space.
An important correction is needed for the above esti-

mation, in particular for the flatter spring potentials ξ ≪ 1.
Attractors arising from these potentials tend to be very flat
far from the core region σ surrounding each stored state.
Although flat regions mathematically belong to some
attractor basin, releasing the system in these regions will
require long relaxation times, and relaxation dynamics are
highly unstable to external noise. We therefore define a
“useful” attractor, such that the gradient that leads relax-
ation toward the stable point is large enough. In practice,
we cut off the attractor defined by the previous algorithm
when the relaxation force is smaller than a fraction (∼0.5)
of the typical force within the core distance σ. The inclusion
of this force (gradient) requirement gives rise to an optimal
nonlinearity value 0 < ξ < 1 for learned states.

APPENDIX D: STABILITY OF LEARNED
STATES

We established the necessity of nonlinear springs as a
means of continually learning multiple stable states in an
elastic network. In this Appendix, we discuss some
limitations of this idea, such as the finite capacity of
node-spring networks, and the effect of connectivity within
a state and correlations between states on the quality of
learning.

1. Storing capacity

Nonlinear spring networks (with ξ < 1) can stabilize
multiple states through sparsity—springs associated with a
certain state dominate the response of the network when it
is situated close to that state. Springs associated with other
states are highly stretched, yet apply small forces that
further diminish at high strains. Still, force contributions of
springs unrelated to the desired state are finite and act to
destabilize that state.
The learned networks studied in this work exhibit

destabilization of learned states due to the effect of springs
associated with other stored states. Figure 10(a) shows a
typical scenario observed in these networks, where a
desired state is stable when the overall number of learned
states is low. Then, an abrupt threshold (capacity) is passed
after which the state destabilizes completely and the system
relaxes into a configuration that looks completely different
from the desired stored state. Generically, all learned states
fail in this way at a similar capacity value [Fig. 10(b)]. This
capacity is well defined and observed to depend on the
parameters of the system, such as size N and nonlinearity ξ.
Let us now argue for a scaling relation of the storing

capacity. Suppose a system of N nodes is used to learn
M þ 1 states. In configurations close to state 1, N springs
will apply a stabilizing force FS, while the rest N ×M
springs will act to destabilize the state with force FDS. All
stabilizing springs provide a force in the same stabilizing
direction such that F ∼ N. If we assume the N ×M
destabilizing forces due to unrelated springs are randomly
oriented and similar in magnitude, the total destabilizing
force would behave like a random walk and have a
magnitude FDS ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ×M

p
. The capacity of the system

is reached when the magnitude of the destabilizing force is
equal to that of the stabilizing force, so that

FDSðMCÞ ∼ FS → MC ∼ N: ðD1Þ
The capacity of a learning network is expected to scale

linearly with system size, similarly to other Hopfield-
inspired learning models [23]. This prediction was tested
in networks of sizes N ¼ 6–26 and for several values of the
nonlinearity ξ. Results shown in Fig. 10(c) are consistent
with the linear scaling suggested above. Theoretical argu-
ments of a similar nature suggest another scaling relation
MC ∼ expð−ξÞ, also in agreement with numerical data.
However, we regard the capacity dependence on non-
linearity to be of lesser interest, as other metrics for quality
of encoding (barrier height and attractor size) are more
important for the robustness of learning.

2. Connectivity of nodes

It is well known that the rigidity of elastic networks
strongly depends on node coordination—the number of
springs connected to the different nodes. Rigid networks
are characterized by coordination numbers exceeding the
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Maxwell condition [47]. A stable state of the overcon-
strained network can be understood as a minimum point of
the energy landscape constructed of the spring potentials.
Further increasing the coordination of nodes—or their
connectivity to other nodes—results in stable states sur-
rounded by higher energy barriers.
This argument suggests an intriguing possibility, that

increasing connectivity in a learned network may improve
the stability and quality of the state storage. Such an
outcome is possible as the act of adding more nonlinear
(ξ < 1) springs associated with a certain stored state is not
expected to significantly alter the state itself, since the rest
lengths are chosen to stabilize this state. On the other hand,
the extra springs may increase the height of energy barriers
surrounding the state, making it more stable against
temperature and noise. Furthermore, increasing connectiv-
ity may also enlarge the attractor regions of stored states, as
the extra constraints induced by the new springs may
suppress “distractor” states (spurious energy minima due to
partial satisfaction of the frustrated interactions).
In the context of our learning paradigm, connectivity is

controlled by the effective radius of rod growth R. If states
are constructed by randomly placing N nodes in a d-
dimensional square box of length L, it is easy to see that the
average connectivity scales as hZi ∼ NRd while R ≪ L.
We use N ¼ 100, ξ < 1 networks to test the effect of node
connectivity on the attractor size of stored states. Results
presented in Figs. 11(a)–11(c) verify that the quality of
state storage, as measured by the attractor size of states,
improves with their connectivity.

3. State similarity

In most of this work we considered stored states that
are completely uncorrelated between themselves; i.e., the

position of a node in each stored state is independent of its
position in other states. In practice, it might be easier to
conceive of elastic networks whose different stable states
are not too different from one another, in which neighbor-
ing nodes in one configuration will remain neighbors in
other configurations. Furthermore, some applications (e.g.,
classification of similar objects) may require different
stored states to be correlated to differing extents. In general,
encoding correlated (i.e., similar) states is expected to
negatively affect the stability of these states and their
quality (as measured by attractor properties as size and
barrier heights).
To test the impact of similarity between states, we

embedded a N ¼ 100 network with states in which the
average displacement of nodes in successive states was
controlled. Figures 11(d)–11(f) show that the larger the
difference between states, the larger their respective attrac-
tor sizes. In addition, larger differences between states
allows their stabilization at higher ξ values, which is
expected to improve the heights of energy barriers sur-
rounding them and further suppress distractor states. Still,
we show that it is possible to encode multiple states in
elastic networks, even when the average difference between
stored states is a small multiple of σ (the potential core size,
within which states are indistinguishable).

APPENDIX E: CONTINUAL LEARNING
REQUIRES NONLINEAR, UNSTRAINED

SPRINGS

In the main text we laid out arguments for the necessity
of nonlinear ξ < 1 springs for continual learning. Here, we
expand on these considerations, specifically showing
that continual learning always results in deformation of
learned states. Thus, nonlinear ξ < 1 springs, causing such

(a) (b) (c)

FIG. 10. Programming stored states using the learning paradigm exhibits finite capacity. (a) Each stored state is affected by springs
associated with other states. Initially the new springs have a small effect and the state remains a stable attractor. However, eventually
states destabilize due to the forces exerted by the other stored states (blue squares denote a certain stored state, black circles show the
nearby stable configuration). This state fails when 13 states are simultaneously encoded (N ¼ 100, ξ ¼ 0.6, σ ¼ 10−2L). (b) When node
displacement is averaged over stored states, we observe a sharp failure of all states at a specific load, defined as the capacity (12–13
states in this case). (c) Capacity scales linearly with system size N.
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deformations to be small, are essential for continual learning.
We also discuss why the nonlinear springs need to be
unstrained in their respective states to stabilize them.

1. Continual learning always deforms learned states

Suppose we have M sets of linear ξ ¼ 2 springs, chosen
such that a state xð1Þ is stable. These spring sets are defined
so that one such set can be modified to accommodate a
single new stable state in the system. In this setting, we can
write a force balance equation similar to Eq. (A2):

0¼ ∂xaEðxð1ÞÞ

¼
XM
m¼1

XN
i¼1

XN
j¼iþ1

kmijðrmijðxð1ÞÞ− lmijÞ
∂rmijðxð1ÞÞ

∂xa
: ðE1Þ

Continually learning a new state xð2Þ is only allowed
through the modification of the springs of set no. 2.

Suppose we devise a learning rule that after a short
application, infinitesimally changes the properties of spring
set no. 2:

k2ij → k2ij þ Δk2ij;

l2ij → l2ij þ Δl2ij:

Reevaluating the force equation, we note that state xð1Þ
remains stable only if the force balance is maintained given
this spring modification:

0 ¼ ∂xaEðxð1Þ; k2 þ Δk2; l2 þ Δl2Þ − ∂xaEðxð1Þ; k2; l2Þ:

Maintaining first-order contributions in Δk2, Δl2, we
obtain

(a) (b) (c)

(d) (e) (f)

FIG. 11. Effects of node connectivity and state similarity on the quality of encoding the stored states. (a)–(c) Connectivity between
nodes hZi increases with the effective connection radius R. We find that the more internally connected a state is, the larger its attractor
size, and higher the optimal value of the nonlinearity parameter ξ (N ¼ 100, σ ¼ 5 × 10−3L). (d)–(f) Trying to store similar states is
more difficult than random states. When the mean distance between nodes in successive states is small, attractor’s basin is also small, and
successful encoding requires small values of ξ and flat potentials (N ¼ 100, σ ¼ 5 × 10−3L). Results averaged over six simulations of
random continual learning networks.
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0 ¼
XN
i¼1

XN
j¼iþ1

�
Δk2ij
k2ij

−
Δl2ij

r2ijðxð1ÞÞ − l2ij

�

× ðr2ijðxð1ÞÞ − lmijÞ
∂r2ijðxð1ÞÞ

∂xa
: ðE2Þ

This is a set of linear equations in Δk2, Δl2. The number
of variables is the number of spring parameters, which in
overconstrained networks is larger than the number of
equations (locations of the nodes). Finding solutions to
these equations is possible only if information of state xð1Þ
is available. This condition prohibits any generic local
learning rule that does not have information about previous
states. In other words, a generic change to the parameters of
the springs of set no. 2, ignorant of state no. 1, will give rise
to finite residual forces in state no. 1, deforming it from the
original state.
While we cannot generically solve the force balance

equations for networks of ξ ≠ 2 springs, the above argu-
ments still hold: a generic change of the spring parameter of
any set (ignorant of previous encoded states) will deform
the encoded states [e.g., as in Fig. 10(a)].

2. Nonlinear, ξ < 1 springs support continual learning

Suppose a state xð1Þ is encoded by a single unstrained
spring with nonlinearity ξ and core size σ. Now, we apply
an external force on the spring Ferase to extend it by some
length δx, as shown in Fig. 4(a). The extension can be
computed by considering the force balance on the spring
(u ¼ δx=σ):

Fspring ¼ kσξ−1u
1þ 1

2
ξu2

ð1þ u2Þ2−ð1=2Þξ ¼ Ferase:

If the deformation is large (u ≫ 1), this expression
simplifies to

Ferase ≈
1

2
kξσξ−1uξ−1 ¼ 1

2
kξδxξ−1;

δx ≈
�
2Ferase

kξ

�
1=ξ−1

: ðE3Þ

Instead, if the deformation is small (u ≪ 1), we may
perform a Taylor expansion of the spring force around
u ¼ 0 to find

δx
σ
≈
Ferase

k
σ1−ξ: ðE4Þ

If we assume that the erasure force Ferase is caused by a
second spring with the same parameters ξ, σ, but which is
highly strained δxð2Þ ≡ R ≫ σ, we can use Eq. (E3) to see
that Ferase ≈ 0.5kξRξ−1. Putting this force back in Eq. (E4),
we finally obtain

δx
σ
≈
ξ

2

�
R
σ

�
1−ξ

: ðE5Þ

Since we assume R ≫ σ, we see that for ξ < 1, the
deformation δx=σ → 0, which is consistent with our initial
assumption. On the other hand, for ξ > 1, the deformation
diverges and our approximation fails. Fortunately, we may
instead plug the erasure force in Eq. (E3), to find that for
ξ > 1 springs, the extension is δx ≈ R ≫ σ (as observed in
Fig. 9). There is thus a transition in the spring extension due
to the erasure force of another spring, at ξ ¼ 1. Nonlinear
springs with ξ < 1 will show a very small deformation
δx ≪ σ, while springs with ξ > 1 will exhibit δx ≫ σ.
For finite values of the core size σ, the aforementioned

considerations are valid for small enough erasure forces. If
the erasure force is large, Eq. (E4) becomes inconsistent
with the assumption that δx=σ ≪ 1, and the argument fails.
For ξ < 1 springs, this happens if the erasure force
surpasses a threshold, Ferase > FT , the largest restoring
force afforded by the spring. The threshold force can be
found by computing the second derivative of the spring
energy and equating to zero:

d2E
du2

∼
ð1þ 3

2
ξu2Þð1þ u2Þ þ ðξ − 4Þu2ð1þ 1

2
ξu2Þ

ð1þ u2Þ3−0.5ξ ¼ 0:

This equation can be solved as a function of the non-
linearity ξ to find a deformation that maximizes the
restoring force:

u� ¼ δx�

σ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17ξ2 − 52ξþ 36

p
− 5ξþ 6

2ðξ2 − ξÞ

s
∼ oð1Þ:

Note that this result does not depend on σ, so that the
maximum restoring force, or threshold force, is

FT ∼ kσξ−1: ðE6Þ

Thus, for unstrained nonlinear springs with ξ < 1 and
small cores σ → 0, the external force required for
deforming an encoded state is large. Such encoded states
are expected to be robust to the interference of other states
and sources of noise (e.g., temperature).

3. Continual learning fails in prestrained networks

Our learning rule involves addition of unstrained non-
linear springs in every new (geometric) state to be encoded
in the network. Here we show that using prestrained springs
cannot facilitate continual learning. Essentially, we argue
that applying external forces on prestrained springs always
destabilizes the state.
Consider a spring with stiffness k and rest length l.

Suppose the spring is strained to an extent r ≠ l in a stable
(desired) state of the network. We say this spring is
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prestrained, with strain s ¼ r − l. The magnitude of the
force exerted by the spring (given nonlinearity parameter ξ
and σ ≪ r − l) in that stable state is F ¼ kjsjξ−1. Now, we
apply some constant external force Ferase parallel to the axis
of the spring. The new equilibrium position of the spring
will be such that F þ Ferase ¼ 0, so that the new strain is
s� ∼ ðFeraseÞ1=ðξ−1Þ. For 1 < ξ < 2 springs, the state will
deform at least in proportion to

ffiffiffiffiffiffiffiffiffiffiffi
Ferase

p
. For the strongly

nonlinear springs ξ < 1, the result is in fact much worse,
and s� tends to �∞ for any magnitude of Ferase. Thus, for
ξ < 1 springs, we conclude that the original prestrained
state was an unstable equilibrium. Continual learning
networks, which by definition must be stable to “external”
forces due to competing states, can only be realized by
using unstrained springs with s ≪ σ to encode stable states.
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