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Understanding mechanisms for rectifying stochastic fluctuations has been a long-standing problem in
nonequilibrium statistical mechanics. Here, we explore an opportunity provided by nonequilibrium parity-
violating metamaterials to uncover new mechanisms for rectification of energy and motion. Using a parity-
violating gyroscopic metamaterial that is allowed to interact with a bath of active particles as a model
system, we develop an analytic diagrammatic theory that compactly elucidates how the rectification results
from an interplay between gyroscopic forces, nonequilibrium activity, and network structure. Our active
metamaterial model can generate energy flows through an object in the absence of any temperature
gradient. The nonreciprocal microscopic fluctuations responsible for generating the energy flows can
further be used to power locomotion in, or exert forces on, a viscous fluid. Taken together, our analytical
and numerical results elucidate how the geometry and interparticle interactions of the parity-violating
material can couple with the nonequilibrium fluctuations of an active bath and enable rectification of energy
and motion.
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I. INTRODUCTION

Identifying mechanisms that rectify stochastic fluctua-
tions is a long-standing problem in nonequilibrium stat-
istical mechanics, with many biological, chemical, and
physical applications [1–5]. For instance, the Feynman’s
ratchet-and-pawl model [6] and its associated extensions
have provided a framework to explain how biological
molecular motors can convert the energy derived from
the hydrolysis of energy-rich molecules into mechanical
work [2–5,7–10]. Substantial advances have been made in
understanding the rectification of motion from unbiased
nonequilibrium fluctuations along with spatial or temporal
symmetry breaking [4,11,12]. In this article, we focus on
directed energy conduction in the absence of temperature
biases, which, despite pioneering works [13–25], remains
less well explored. Compared with directed motion whose
basic mechanism can be understood in the single-body
basis [4], conductive transport of energy is, by definition, a
many-body effect.

We exploit an opportunity provided by the combination of
parity-violating metamaterials and nonequilibrium fluctua-
tions to uncover new many-body principles for energy
rectification. In particular, we consider a class of spring-
mass networks that are subject toLorentz forces, immersed in
a bath of active particles [26–28]. Using numerical calcu-
lations and simulations, we reveal the presence of net energy
fluxes at the nonequilibrium steady state, whose origin we
study analytically. Our central analytical results, compactly
represented as a diagrammatic expansion for the energy
fluxes, show how nonequilibriummetamaterials with parity-
violating dynamics are able to rectify energy and motion
when allowed to interact with a bath of active particles.
The diagrammatic approach reveals a hierarchical pic-

ture of the energy transport, starting from lowest-order
diagrams that only depend on local structures of the
network to higher-order diagrams that involve more and
more nonlocal structures. Importantly, the leading-order
diagrams describe the many-body effect in a compact
analytic form, Eq. (12), that elucidates how a simple
interplay between the geometry, activity, and parity viola-
tion enable rectification. The diagrammatic expansion,
even at the lowest order, provides concrete design princi-
ples for controlling the rectification of energy by engineer-
ing the geometry of our metamaterials.
We note in passing that undamped variants of our active

parity-violating metamaterials were recently exploited to
generate chiral (topological) eigenmodes [29–32]. However,
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our energy flux is not related to the topological properties (if
any) of the undamped mechanical systems due to the strong
roles played by friction (damping) and broad excitation of the
modes by nonequilibrium fluctuations.
Unlike conventional energy flows, our energy flow does

not require a temperature gradient. This flux can be routed
through an otherwise isolated passive object, with the
active network acting as a current source. Finally, we show
that the microscopic mechanisms responsible for this
energy flow can, in principle, allow the passive object to
swim in or pump a viscous fluid. Taken together, our results
establish a new mechanism for rectification of energy and
motion in nonequilibrium parity-violating metamaterials.
Unlike existing prescriptions, our mechanism exploits
inherent asymmetries in the nonequilibrium fluctuations
of the active bath, parity-violating dynamics, and network
geometry to achieve rectification.
The remainder of this paper is organized as follows. In

Sec. II, we introduce our model parity-violating metama-
terial and provide a microscopic definition of the energy
flux. In Secs. III–V, we analytically identify the ingredients
for rectification of energy fluxes and construct a diagram-
matic approach that reveals a relationship between energy
flux and network geometries. Finally in Secs. VI and VII,
we show that when the particles transmitting the energy
flux are allowed to interact with a viscous low Reynolds
number fluid, the nonreciprocal motions responsible for the
energy flux can be utilized to pump the viscous fluid.

II. MODEL SYSTEMS AND ENERGY FLUX

Our model is a tethered spring-mass network in which
each particle is additionally subject to a Lorentz-like force
and stochastic forcing from an active bath [Fig. 1(a)]. The
linearized equation of motion is

m _vi ¼ −kgzi þ
X
j

Fji − B̂A1vi − γvi þ ηi: ð1Þ

Here, zi ≡ ð xi yi ÞT is a column vector that denotes the
displacement of particle i from its mechanical equilibrium
position, and similarly, vi and ηi describe the 2D velocity of
and noise on each particle. Note that −kgzi is the on-site
tethering force used to maintain the shape of the network,
and Fji ¼ kðeTijzi þ eTjizjÞð−eijÞ is the linearized spring
force from j to i, where eij is the unit vector that points
from the equilibrium position of i to that of j. In addition,
−B̂A1vi ¼ −B̂ð vi;y − vi;x ÞT is the Lorentz-like force,
where B̂ ¼ eB is the product of the electric charge e
and the magnetic field B, and the matrix

A1 ≡
�

0 1

−1 0

�
:

The last two terms describe the forcing from the active
bath, which consists of the friction −γvi and an Ornstein-

Uhlenbeck (OU) colored noise ηi [33]. The colored noise
has finite correlation time τ, with statistics

hηiðtÞηTj ðt0Þi ¼ Iδij
γTa

τ
e−ðjt−t0j=τÞ; ð2Þ

where, for fixed τ, the parameter Ta controls the variance of
the colorednoise, and I is the identitymatrixwith appropriate
dimensions. The time evolution of the OU noise can be
described according to the following equation [33],

τ_ηi ¼ −ηi þ
ffiffiffiffiffiffiffiffiffiffi
2γTa

p
ξi; ð3Þ

where ξi is a delta-function-correlated white noise with unit
variance. The friction −γvi and OU noise ηi break the
fluctuation-dissipation relation, thus driving the system
out of equilibrium. The active bath reduces to a thermal
equilibrium bath in the τ → 0 limit. The construction of our
model system is motivated by recently constructed topo-
logical gyroscopicmetamaterials [29], although the presence
of friction and active noise make the dynamics of our system
significantly different from those of undamped gyroscopic
metamaterials. In the linearized regime, the dynamics of
gyroscopes is mathematically equivalent to that of particles
subject to a Lorentz force and an on-site potential [31].
Since the particles in our model are tethered by on-site

potentials, rectification of fluctuations, if any, does not
result in any particle flows. Rather, rectified fluctuations
can affect the transport of energy. To study such phenom-
ena, the observable we mainly focus on is the time-
averaged energy flux between particles at the steady state.
For a system with pairwise interactions and on-site poten-
tials, the energy flux hJiji from particle i to j reads

hJiji ¼
�
1

2
ðvTj Fij − vTi FjiÞ

�
¼ hvTj Fiji: ð4Þ

To arrive at this formula, we first define the energy of a
particle as the sum of its kinetic energy, on-site potential
energy, and one-half of the bond energies [34]. Then, we
write down the energy balance relations using stochastic
energetics [35]. Finally, we identify the energy exchanged
due to particle-particle interactions as the energy flux hJiji
(derived in detail in the Appendix A). We note that the
energy flux can simply be interpreted as the rate at which
work is done on particle j by particle i. Since this
microscopic work is due to particles’ stochastic motions,
rather than due to an external control, the energy flux can
also be interpreted as a heat flux [34,35]. The averaged
energy fluxes, Eq. (4), are identically equal to zero for a
system at equilibrium with Boltzmann distribution.
Starting from the linear equations (1) and (3), the energy

fluxes can be solved numerically using methods introduced
in Ref. [36,37] (Appendix A). A collection of numerical
results are shown in Figs. 1(b)–1(d). We see that nonzero
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energy rectification or energy fluxes can be generated in
our chiral active system, and the flux direction or pattern
changes with the network geometry. Using a linear
response theory, we now develop analytical expressions
for the energy flux that reveal how a combination of
chirality, nonequilibrium activity, and network geometry
is responsible for generating energy fluxes.

III. LINEAR RESPONSE THEORY
FOR ENERGY FLUX

We begin by writing the equations of motion, Eq. (1), in
frequency space,

z̃ðωÞ ¼ GþðωÞη̃ðωÞ; ð5Þ

GþðωÞ≡ ½K þ iωðγI þ B̂AÞ −mω2I�−1: ð6Þ

Here, we have represented the displacement of all N
particles using a 2N-dimensional column vector z ¼P

i jii ⊗ zi, with jii denoting the 2D subspace correspond-
ing to particle i. Note that z̃ðωÞ and η̃ðωÞ denote the Fourier
transform of z and the OU noise η, respectively; Gþ is the
response matrix, in which matrix K encodes all on-site and
spring forces F according to F ¼ −Kz; and A is an

antisymmetric matrix A ¼ P
i jiihij ⊗ A1. Equation (5)

describes how the displacement responds to the noise.
Following the procedure in Ref. [38], the flux defined in

Eq. (4) can be expressed using Gþ as a spectral integral
(Appendix B),

hJi ¼
Z

∞

−∞
dωhðωÞJFTðωÞ; ð7Þ

JFTðωÞ≡ −
Tak
2π

Re trGþðωÞAas; ð8Þ

hðωÞ ¼ 1

1þ ω2τ2
; ð9Þ

where Aas is an antisymmetric matrix Aas ¼ −jiihjj ⊗
eijeTji þ jjihij ⊗ ejieTij. The response function GþðωÞ has
no pole in the lower-half of the complex plane, but the
colored noise introduces one pole at ω ¼ −i=τ. Using the
residue theorem, we get a compact expression for the
energy flux (Appendix B),

hJi
Ta=τ

¼ −
k
2
trGþ

�
−
i
τ

�
Aas: ð10Þ

Higher-order moments of the (integrated) energy flux can
also be calculated, which we present in Appendix B 3.
Equations (7) and (10) will serve as our starting point to

understand the energy flux. While they contain all the
information required to compute energy fluxes, they have
limited utility as design principles. Indeed, as written down,
they require that the flux be recomputed de novo for each
new network geometry and nonequilibrium bath activity. In
the next two sections, we show that it is possible to expand
Eqs. (7) and (10) in forms that reveal design principles for
controlling energy fluxes.
Interestingly, one important property that can be directly

obtained from a similar linear response analysis is that
the energy fluxes satisfy Kirchoff’s law,

P
ihJiji ¼ 0.

Kirchoff’s law shows that, on average, there is no net energy
exchange between particles and the active bath. To derive
Kirchoff’s law, we calculate the average heat exchange
between particle i and the active bath hvTi ηi − γvTi vii, and
following the procedures in Ref. [38], this heat exchange can
be shown to be zero (Appendix C). Kirchoff’s law places a
strong constraint on possible energy flux patterns between
particles, and some corollaries immediately follow—such as
networkswith no cycles cannot have nonzero flux, and fluxes
of all bonds in a polygon network [as in Fig. 1(b)] are equal.
Finally,wenote that Eq. (7) is distinct fromaHarada-Sasa-

like relation [39] that connects the entropy production rate to
the extent of violation of the fluctuation dissipation theorem.
Indeed, when the B field is turned off, the energy flux
vanishes while the entropy production rate does not, on
account of the nonequilibrium active bath. For completeness,

(a)

(b) (c) (d)

FIG. 1. The model and the energy flux in example networks.
(a) Schematic of the model, a spring-mass network subject to a
Lorentz-like force and immersed in an active bath. (b)–(d)
Averaged energy flux from numerical calculations for example
networks. The flux direction and pattern can be controlled by the
network geometry. In these figures, gray lines and dots represent
the mechanical equilibrium structure of the network, and the
arrows represent the flux between particles, whose length is
proportional to the flux magnitude. An arrow is colored blue if it
is counterclockwise (CCW), red if clockwise (CW), and gray for
fluxes not on the boundary. The numerical calculations were
performed with all parameters set to 1.
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in Appendix D, we present a Harada-Sasa relation for
our system.

IV. INGREDIENTS FOR ENERGY
RECTIFICATION AND THEIR ROLES

Compared with an ordinary thermal spring-mass net-
work, which supports no energy fluxes in its equilibrium
state, our active gyroscopic network contains two extra
components—the Lorentz force and the correlation in the
noise. We now show that these two components provide
two necessary ingredients required to ensure energy rec-
tification in our model.

A. Lorentz force and nonequilibrium activity are
necessary for the generation of an energy flux

We begin with Eq. (7), which represents the averaged
flux in terms of functions JFTðωÞ, hðωÞ. In particular, we
note that the function JFTðωÞ is proportional to the energy
flux at Fourier frequency ω in an isolated damped variant of
our network, while the function hðωÞ is proportional to the
noise spectrum, hη̃ðωÞη̃ðωÞ�;Ti ¼ 2γTaIhðωÞ=t.
To generate a nonzero flux, or equivalently make the

integral nonzero in Eq. (7), we have two requirements
(Fig. 2). First, JFTðωÞ should not be zero everywhere. In
the absence of a magnetic field, B ¼ 0, it can be easily
shown that JFTðωÞ ¼ 0. Indeed, the response function Gþ
is symmetric or reciprocal when B is absent, and since

Aas is antisymmetric, the trace trGþðωÞAas ¼ 0 at all values
of ω. We note that the chirality of network geometry does
not affect the reciprocity of the response matrix; i.e., chiral
networks without a B field also lead to JFTðωÞ ¼ 0.
Nonzero B breaks the reciprocity of Gþ and can thus
generate a nonzero JFTðωÞ.
Nonzero JFTðωÞ alone does not, however, ensure a

nonzero averaged energy flux; in fact, we must further
require that hðωÞ is not constant. Indeed, noise charac-
terized by a constant hðωÞ function corresponds to fluc-
tuation dissipation preserving white noise. In such cases,
our model system would be in equilibrium even in the
presence of a magnetic field, according to the Bohr-van
Leeuwen theorem [40]. Mathematically, if hðωÞ is constant,
the integrand in Eq. (7) has no poles in the lower-half ω-
plane because GþðωÞ is a linear response function, which
satisfies causality. The absence of poles ensures that the
flux integral vanishes. A nonconstant hðωÞ function cor-
responding to a colored noise source can support a nonzero
average energy flux through its introduction of poles. In
this paper, we focus on a specific choice of the colored
noise, namely, the OU colored noise. The spectrum of OU
noise is a Lorentzian, hðωÞ ¼ 1=ð1þ ω2τ2Þ, which excites
lower frequency modes with larger weights.
In summary, we see that a B field and colored noise are

two necessary ingredients to generate energy fluxes in our
model chiral system. The role of the B field is to break the
reciprocity of response and generate Fourier modes such
that JFTðωÞ ≠ 0. The role of the colored noise is to excite
these modes in a weighted manner.

B. Comments on the relation to undamped
isolated gyroscopic metamaterials

The energy flux in our damped metamaterials driven by
nonequilibrium fluctuations cannot simply be related to the
eigenmodes of the isolated undamped variant [29,32]. This
idea is manifest when comparing energy transport in a
honeycomb lattice with that in a triangular lattice. The
undamped, topologically nontrivial, honeycomb lattice of
gyroscopes supports chiral edge transport, whereas the
topologically trivial triangular lattice of gyroscopes does
not [29]. By contrast, in the presence of damping and
nonequilibrium forcing, both honeycomb [Fig. 1(c)] and
triangular lattices generate chiral energy fluxes localized on
the boundary. This difference demonstrates that the exist-
ence of topology in the band structure of the isolated
undamped variant of the network is not a controlling factor
in establishing our energy fluxes.
The chiral eigenmodes in the undamped gyroscopic

metamaterials, however, can provide an intuition for how
JFTðωÞ can be chiral in the small damping regime.
Specifically, the weakly damped dynamics resonate near
the eigenfrequencies of the undamped metamaterials and
hence exhibit Fourier modes that resemble the eigenmodes
of the undamped system. In the regime of strong damping

FIG. 2. Necessary ingredients for generating nonzero energy
fluxes. Both the Lorentz-like force and colored noise are needed
to generate nonzero fluxes. The role of the Lorentz-like force is to
provide chiral Fourier modes (JFTðωÞ ≠ 0). If B ¼ 0, JFTðωÞ is
zero everywhere. The role of colored noise is to provide weighted
excitation hðωÞ ≠ const, which makes a nonvanishing averaged
flux hJi possible. The numerical calculations were performed
with m, kg, k, γ, Ta ¼ 1.
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or generic damping, an emergent connection can be built
between energy fluxes in the active system and all the
eigenmodes of a reference isolated system where the on-
site harmonic potential is modified (Appendix E). While
this emergent connection reveals contributions from each
modified eigenmode, it does not result in an intuitive
framework that reveals how the interplay between geom-
etry, Lorentz forces, and nonequilibrium activity controls
energy rectification. In the next section, we develop a
diagrammatic technique that achieves this result.

V. A DIAGRAMMATIC APPROACH
TO COMPUTE THE ENERGY FLUX

In this section, we develop a diagrammatic technique that
provides a simple intuitive method to compute energy fluxes
and elucidates the relationship between flux and network
geometry. The diagrammatic technique is constructed by
expanding the expressions for the energy flux, Eq. (10), in
the small-k regime, and it shows how the energy flux across
a bond can be expressed as a sum over paths traversed along
the network [Eq. (11)]. Our perturbation theory assigns a
geometry-dependent prefactor for each path, thus elucidating
the role played by network geometry in ensuring rectified
energy fluxes [Eq. (12)]. Together, the central results of this
section, summarized in Eqs. (11) and (12), provide compact
expressions that elucidate how geometry, the B field, and
correlation time τ of the colored noise can combine to
generate energy flows in networks with arbitrarily complex
geometry and topology. The lowest-order expansion in
Eq. (12) demonstrates, for instance, how the parameter α
that compactly captures the combined effect of activity, theB
field, couples with the geometry of the network to power
the flow of energy. The diagrammatic expansion, even at
the lowest order, hence results in a concrete design principle
for controlling the rectification of the energy by our
metamaterial.

A. Diagrammatic expansion, diagram rules,
and properties

The starting point of the diagrammatic approach is the
flux formula, Eq. (10). First, we expand matrix Gþð−i=τÞ
to different orders in the spring constant k; then, the block-
matrix structure in each term enables further decomposition
into paths, and the structure of matrix Aas closes these paths
into cycles (Appendix F 1). As a result, the flux is
decomposed into a series of terms,

hJi
Ta=τ

¼
X
l

Jpathl ; ð11Þ

where each term can be pictorially represented as a
closed path or a diagram as described in Fig. 3(a). The
full expression for Jpathl is lengthy and is detailed in
Appendix F 1. However, when restricted to leading order

polygon diagrams, its form simplifies significantly as
detailed in the next subsection.
The rule for constructing diagrams is as follows. For the

flux from site i to j, the valid paths are l∶i → j →
l3 → l4 → … → ln → i, where the consecutive sites have
to be either bonded or identical. The latter case is depicted
as a loop in the diagram. Paths that contain equal numbers
of i → j and j → i do not contribute (e.g., path i → j → i)
because either the path itself vanishes or it cancels with
another valid path. As a consequence, paths have to at least
traverse a polygon in the network.
Paths with length n are on the order of kn. In the small-k

regime, major contributions to fluxes come from shorter
paths. A useful property of the diagrams is that if there is no
loop on a node, then the diagram can be simplified by
removing all other branches on the node [Fig. 3(b),
Appendix F 2]. The diagrammatic expansion hence reveals
a hierarchical picture of the energy transport, starting from
lowest-order diagrams that only depend on local structures
of the network (nonlocal nodes are removed in simplified
diagrams), to higher-order diagrams that involve more and
more nonlocal structures.

(a)

(b) (c)

(d)

FIG. 3. Illustrations of our diagrammatic technique. (a) Flux
from site 1 to site 2 can be calculated by summing over diagrams.
Each diagram is a closed path, which pictorially represents one
term in the small-k expansion. Paths are depicted using green
arrows. The magnitude of the path of length n is on the order of
kn. (b) A useful property of the diagram is that if there is no loop
on a node, then the diagram can be simplified by removing all
other branches on the node. (c) Schematic of a polygon path and
its outer angles θ1; θ2;…; θn. The value of this diagram is written
in Eq. (12). (d) The lowest-order flux from 1 to 2 in complex
networks is the sum over the shortest cycles that contain 1 → 2,
which in this schematic are two pentagon diagrams (k5). If, for
instance, one of the pentagons is replaced by a triangle, then the
triangle diagram (k3) dominates the flux from 1 to 2.
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B. Diagrammatic approach reveals connections
between rectification and geometry, activity,

parity breaking

To illustrate how the diagrammatic approach clarifies the
connection between geometry, activity, parity breaking, and
rectification, we consider the generic, dominant, lowest-
order diagrams, which are polygonal cycles with no loops.
The expression for the flux of these polygon paths reduces
to a compact form (Appendix F 3)

Jpathpolygon ¼
1

2

�
k
k0

�
n
�Y

i

cosðθi − αÞ −
Y
i

cosðθi þ αÞ
�
;

ð12Þ
where n is the number of nodes and θi’s are outer angles of
the polygon [Fig. 3(c)]. Here, α is defined as

α≡ arcsin
B̂=τ
k0

; ð13Þ

where k0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkg þ γ=τ þm=τ2Þ2 þ ðB̂=τÞ2

q
sets a charac-

teristic scale for the interaction k. This single auxiliary
angle α encodes information from all the parameters,m, kg,
k, B̂, γ, τ (except for Ta, which simply sets the energy
scale), in a condensed manner.
The expression (12) illustrates how the flux results from

a combination of the geometry of the network, as charac-
terized by angles θi, together with the condensed parameter
α that encodes the nonreciprocity due to the B field and the
violation of fluctuation dissipation due to the colored noise.
It is surprising to see that the many-body effect can be
expressed in such a compact manner. As an example,
applying Eq. (12) to an arbitrary triangle results in
Jpathpolygon ∝ k3 sin α sin θ1 sin θ2 sin θ3, which is always
positive or CCW if α > 0. As a consistency check, the
flux from Eq. (12) should vanish in the limit of zero τ, to be
consistent with the expected equilibrium behavior. If m is
finite, as τ tends to zero, the parameter α → 0, and
consequently, hJi → 0. If we take m → 0 first, as τ reduces
to zero, α remains finite. However, we still get hJi → 0 due
to its vanishing prefactor, hJi ∝ 1=τkn0 ∼ τn−1.
For complex networks, lowest-order fluxes can be

viewed as a result of combining the flux of their constituent
polygons, as illustrated in Fig. 3(d). From the property
demonstrated in Fig. 3(b) or from Eq. (12), polygon
diagrams are not affected by any side chains on its nodes;
thus, Jpathpolygon for a polygon in a complex network is equal to
Jpathpolygon for the polygon by itself.
The diagrammatic approach, when applied to complex

networks, can explain the various emergent flux patterns
seen in numerical calculations. In the example of ordered
honeycomb networks [Fig. 1(c)], fluxes are localized at the
boundary of the network, which can be explained as
follows. The lowest-order diagram for a bond at the

boundary is one hexagon path, which contributes a flux
on the order of k6. In contrast, the lowest-order diagrams
for a bond in the bulk are two paths, each traversing the
hexagon on one side of the bond. The contributions from
these two diagrams cancel each other; thus, the flux on the
order of k6 is zero. However, contributions from higher-
order diagrams persist, and they show that the flux exhibits
an exponential decay into the bulk. The decay length can be
expressed analytically in the small-k limit using the
diagrammatic approach (Appendix F 4). We clarify that
such localization is not a general feature for all crystalline
networks. As a counterexample, the kagome lattice also
supports fluxes in its bulk in triangle units.
In the example of disordered networks [Fig. 1(d)], fluxes

are generated throughout the network because each unit
polygon is different; hence, there is no cancellation of
diagrams. The noncancellation effect is stronger when
neighboring polygon units have a different number of sides,
which would contribute to diagrams on different orders in k.
If one is able to sum over all the diagrams to all orders,

the exact result can be obtained. Such a result holds beyond
the small-k regime due to analytic continuation. One
example is the 1D network, where we can show that all
diagrams vanish in Appendix F 5. Another example is
shown in Sec. VII A.

C. Generalization of the diagrammatic approach to
higher-dimensional networks, generic noise spectrum,

and heterogeneous parameters

We have seen how the diagrammatic approach reveals a
hierarchical picture of the energy transport [Eq. (11)] and
elucidates how the Lorentz force and activity, operating
through the condensed parameter α, interact with the
geometry to enable rectification [Eq. (12)]. Together, these
results make it possible to control energy fluxes in arbitrarily
complex networks.
We now show that the diagrammatic approach can enable

control in a wider variety of systems. Our results can
immediately be generalized to networks on 2D curved
surfaces or to 3D networks. For 2D curved surfaces, the
same diagrammatic expressions, Eqs. (11) and (12), can be
readily applied. Curvature simply modifies the allowed
geometry as characterized by the outer angles fθig and
the number of sides n. For 3D networks, the same dia-
grammatic approach applies, but the expression would be
modified due to the additional spatial dimension. Examples
of networkson2Dcurved surface or in 3Dspace are shown in
Appendix G 1.
The OU noise spectrum can be generalized to

hη̃ðωÞη̃ðωÞ�;Ti ¼ 2γTaIhðωÞ=t with a generic hðωÞ. The
diagrammatic approach still applies, except now the
real matrix Gþðω ¼ −i=τÞ is replaced by the complex
matrix GþðωÞ. As a result, the path rules remain
unchanged, but the mathematical expression corresponding
to each diagram is modified. In Appendix G 2, we show a
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diagrammatic expansion of JFTðωÞ. Consequently, the flux
can be expressed as a weighted integral of JFTðωÞ over ω or
JFTðωÞ evaluated at the poles.
The diagrammatic approach can be extended to calculate

energy fluxes in heterogeneous networks where all param-
eters except for those related to the colored noise, i.e., Ta
and τ, can be modulated as a function of the position of
nodes. In this case, the only modifications to the polygon
diagram, Eq. (12), are replacing kn with

Q
i ki and replacingQ

i cosðθi − αÞ with Q
i cosðθi − αiÞ. Similar replacements

can be performed for generic diagrams.

VI. ENERGY FLUX IN A PASSIVE SEGMENT
COUPLED TO AN ACTIVE NETWORK

A canonical setup for the study of energy transport is a
passive material bar placed between the heat reservoirs held
at constant temperature [Fig. 4(a)]. The generic result is that
energy flows from the “hot” reservoir to the “cold”
reservoir, and in the absence of a temperature difference,
there can be no net energy flux through the bar.
Placing a passive material bar—in this case, three masses

not influenced by any magnetic fields or active baths and
connected by springs in a linear geometry—across a gap in
our activated metamaterial, as illustrated in Fig. 4(a),
reveals a very different behavior: Despite the absence of
temperature gradients, a persistent energy flux is measured
through the passive material bar. From numerical calcu-
lations, the magnitude of the energy flux decays exponen-
tially with the bar length. In the small-k limit, the flux in a

bar with n sites reads hJin ¼ hJi1(k=ðkg þm=τ2Þ)ðn−1Þ ,
which is obtained using the diagrammatic techniques
developed in Sec. V. Using numerical simulations (the
method is described in Appendix H), we plot the instanta-
neous flux transmitted across the bonds on the passive
segment in Fig. 4(b). The instantaneous flux exhibits
stochastic fluctuations. Fluxes with large magnitudes are
transmitted across bonds sequentially in a wavelike man-
ner, which is reflected in the successive peaks in the
instantaneous flux profile across the bonds of the passive
segment [Fig. 4(b)]. The spacing between the peaks
matches the sound speed in the passive chain.
This result, in combination with the results of the

previous sections, shows how one can design active
gyroscopic metamaterials that can act as energy pumps
and support energy transport in passive materials even in
the absence of any temperature gradients. Crucially, these
results demonstrate how gyroscopic metamaterials can
rectify nonequilibrium fluctuations. In the following sec-
tion, we consider whether these rectified fluctuations, when
placed in contact with a viscous fluid, can act as low
Reynolds number (Re) swimmers or fluid pumps [41–43].

VII. NONRECIPROCAL MOTIONS RESPONSIBLE
FOR ENERGY FLUXES CAN BE USED TO

GENERATE FORCES

In this section, we show that it is possible to exploit the
energy flux to rectify motions when our model systems are
allowed to interact with a viscous fluid [Fig. 5(a)]. We begin
by considering the motion of the three masses in the passive
material bar discussed in Sec. VI and, in particular, consider
the effect that theirmotionwould have on a viscous fluid.We
first do so by taking their recorded trajectories and asking
whether three particles following these trajectories would
“swim” in an external fluid. This calculation ignores any
backaction from the fluid on the dynamics of the segment.
We consider the effect of these forces in Sec. VII B and
identify regimes in which this approximation is valid.

A. Nonreciprocal motion as a swimming protocol

A system of three spheres arranged in a linear configu-
ration [Fig. 5(a)iii] provides a minimal model for low Re
swimming or pumping action [43]. If the lengths of the two
linkages connecting the spheres, L1ðtÞ ¼ Lþ ΔL1ðtÞ;
L2ðtÞ ¼ Lþ ΔL2ðtÞ, are varied according to some pre-
scribed protocol, the time-averaged swim speed is
[Eq. (12) in Ref. [43]]

Vs ¼
7a
24L2

�
ΔL1

dΔL2

dt
−
dΔL1

dt
ΔL2

�
; ð14Þ

where a is the radius of the bead. Assumptions for this
equation are a=L ≪ 1, ΔLi=L ≪ 1, and the total external
force on the swimmer is zero.

(a) (b)

FIG. 4. Driving energy through a passive chain. (a) Conventional
energy transport in a passive material (boxed in gray) with
temperature differences at two ends. Similarly, the active gyro-
scopic network can also drive energy flows through a passive
segment. (b) Instantaneous energy flux J through bonds in the
passive segment from a simulation. Fluxes through different bonds
are colored differently. In general, J is stochastic; however, during
the period when J is large, J exhibits successive peaks in
accordance with the direction of the flux. In the simulation setup,
parameters for the active particles are as follows: m, kg, γ ¼ 0.1,
k ¼ 10, B̂, Ta, τ ¼ 1. Passive particles are constrained to 1D, and
their γ, Ta, kg are set to 0.
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If the protocol is set to coincide with the motion of the
three masses in the passive material bar that is coupled to
the chiral active network discussed in Sec. VI, we find a net
swim speed according to Eq. (14), proportional to the

energy flux. The proportionality constant between the swim
speed Vs and the energy flux hJi can be calculated using a
modified diagrammatic technique (Appendix I),

Vs

7a=24L2
¼ −

k0
k
hJi
k=2

; ð15Þ

where k0 ¼ kg þm=τ2 (B, γ ¼ 0 for the passive segment).
This result holds beyond the small-k regime because all
orders of diagrams are considered. Figure 5(b) and Eq. (15)
together establish that one can relate the swim speed to the
flux of energy in the active gyroscopic metamaterial.
Similar proportionality between Vs and hJi can be expected
for other types of three-sphere swimmers, such as one
where one sphere is much larger than the other two [44].
This is because the swim speed is generically proportional
to the area enclosed in the fΔL1;ΔL2g space [45].
This area is also proportional to the energy flux hJi
(Appendix I).
Thus, the nonreciprocal motion that is responsible for

energy fluxes can also be used as a protocol to generate
motion in a low Re fluid.

B. Force generation in a viscous medium using the
rectified energy fluxes

We now consider a scenario in which the passive
segment connected to the active network is immersed in
a fluid [Fig. 5(a)iv] and estimate the effect of the viscous
backaction. Since the passive segment is tethered in place
owing to the on-site potential, we focus on pumping as
opposed to swimming [46] and analyze the regime for
parameters where this pumping is possible. For Eq. (15) to
approximately represent the pump speed as a function of
the energy flux, we require that the fluid minimally perturbs
the dynamics of the passive segment. Such a regime
requires the dissipation rate due to the viscous fluid to
be much smaller than the energy flux through the segment.
This condition can be expressed as ηfav2 ≪ J, where v is
the characteristic velocity of a bead in the passive segment,
ηf is the dynamic viscosity of the fluid, and J is the energy
flux in the absence of the fluid. In addition, the constraint of
low Reynolds number requires that Re ¼ ρfav=ηf ≪ 1,
where ρf is the fluid’s density. Writing these two conditions
together, the requirement reads J ≫ ηfav2 ≫ ρfa2v3. We
note that throughout this treatment, we have ignored the
effect of hydrodynamic interactions between the beads on
their dynamics generated from springs because it is a
perturbation on the order of a=L.
We estimate the feasibility of our protocol using param-

eters at the colloidal scale, which is the scale usually
considered for low Re swimming. However, the magnitude
of the B field required to realize the above-described regime
using the current setup is impractically large. Thus, it is
unlikely that our metamaterials will find straightforward

(a)

(b)

FIG. 5. Utilization of nonequilibrium gyroscopic dynamics to
power swimming and pumping in low Re media. (a) The energy
flux in the active gyroscopic network is accompanied by
nonreciprocal motions of the particles (i,ii). The nonreciprocal
motion is a schematic for illustration purposes, and the real data
are much noisier. Using these nonreciprocal motions as input, a
three-bead linear object can be made to swim through a low Re
medium (iii). Finally, by immersing the passive segment into a
low Re fluid, the nonreciprocal motions can be used to pump the
fluid. In this manner, the energy fluxes can be rectified for
locomotion and force generation (iv). (b) Swim speed Vs is
proportional to the energy flux hJi in the active network. The
proportionality constant is −k0=k, which is independent of the
network geometry. The series of dots for each −k0=k are obtained
by varying the angles labeled by red disk sectors in pentagon
networks or “squareþ tail” networks. The parameters chosen for
the numerical calculations are m, kg ¼ 0.1, τ ¼ 1, k ¼ 5 for
k0=k ¼ 0.04 and k ¼ 10 for k0=k ¼ 0.02. For the active part,
γ ¼ 0.1, B̂, Ta ¼ 1. For the passive segment, γ, B̂, Ta ¼ 0.
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application as colloidal engines. Nonetheless, we establish
that the concept of using rectification of energy to exert
mechanical work is not physically impossible, motivating
the search for settings in which metamaterials might find
applications.

VIII. CONCLUSION

In conclusion, we have established a general set of
design principles for rectifying energy and motion in
nonequilibrium parity-violating metamaterials. In particu-
lar, our central results show how a combination of time-
reversal symmetry violation due to the geometry, inter-
actions, and Lorentz forces in the metamaterial, and due to
the nonequilibrium fluctuations of the active bath, can
result in a general strategy for rectification of energy and
motion. The class of tethered spring-mass network we have
considered can be generalized to untethered overcoordi-
nated elastic materials with generic interactions, which can
fluctuate around its potential minimum while maintaining
its shape. We note that for nonlinear models, which we do
not consider in this work, it might be possible to achieve
rectification without the requirement of Lorentz forces.
Such extensions will be considered in future work.
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APPENDIX A: DERIVATION OF ENERGY
FLUX FORMULA

In this section, we derive the formula for energy flux,
Eq. (4) in the main text. The force F in this section is a
generic conservative force, which does not need to be
linear. We use the following strategy to determine the
energy flux. First, we define the energy Ei of particle i.
Then, we write down an energy balance relation that
expresses the infinitesimal energy change dEi using sto-
chastic calculus. Finally, we collect terms in dEi that couple
neighboring particles together and identify them as the
energy transfer between particles.
The energy of particle i is defined as

Ei ¼
1

2
mivTi vi þ Uii þ

1

2

X
j≠i

Uij; ðA1Þ

where the first term is the kinetic energy, the second term
denotes the on-site potential, and the last term is the shared
spring energy between the particle and its neighbors.

We use Ito’s formula to calculate dEi. Ito’s calculus
provides the advantage that the stochastic terms in dEi
vanish under time averaging. For a stochastic differential
equation (SDE) of variable X (vector) with drift μ (vector)
and diffusion σ (matrix),

dX ¼ μdtþ σdW; ðA2Þ

where dW is a vector consisting of standard Wiener
processes, Ito’s formula gives the SDE of function fðXÞ,

dfðXÞ ¼
�
ð∇T

XfÞμþ
1

2
tr½σσT∇X∇T

Xf�
�
dtþ ð∇T

XfÞσdW;

ðA3Þ

where ∇X denotes the gradient with respect to X, the
superscript T denotes the transpose, and tr denotes the trace.
We begin by writing the equation of motion of our

system, Eq. (1), in the form of a stochastic differential
equation, Eq. (A2). We representN particles’ positions by a
column vector z ¼ P

N
i¼1 jii ⊗ zi, where jii denotes the 2D

subspace of particle i. Similar representations are also
applied to v and η. Then, we get

X ¼ ð z v η ÞT; ðA4Þ

μ ¼

0
B@

v
1
m ð−∇zU − B̂Av − γvþ ηÞ

− 1
τ η

1
CA; ðA5Þ

σ ¼ diag

�
0 0

ffiffiffiffiffiffiffi
2γTa

p
τ I

�
; ðA6Þ

where U is the total energy of the system, A is an
antisymmetric matrix A ¼ P

i jiihij ⊗ A1, and diagð·Þ
means a block-diagonal matrix.
Now, we apply Ito’s formula, Eq. (A3), to our system by

associating with the function fðXÞ the energy of particle i,
EiðXÞ. The nonzero terms in the gradient of Ei are

∇ziEi ¼ −
�
Fii þ

1

2

X
j

Fji

�
; ðA7Þ

∇zjEi ¼ −
1

2
Fij; ðA8Þ

∇viEi ¼ mivi: ðA9Þ

The term ð∇T
XEiÞμ reads

ð∇T
XEiÞμ ¼ −

X
j

1

2
ðvi þ vjÞTFij − γvTi vi þ vTi ηi; ðA10Þ
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where we used Fji ¼ −Fij and vTi Avi ¼ 0 in its derivation.
The terms 1

2
tr½σσT∇X∇T

Xf� and ∇T
Xf are zero.

Finally, the energy change can be written as

dEi ¼ −
X
j

Jijdtþ hidt; ðA11Þ

Jij ¼
1

2
ðvi þ vjÞTFij; ðA12Þ

hi ¼ −γivTi vi þ vTi ηi: ðA13Þ

Here, Jij is identified as the energy transferred per unit time
from particle i to j, and hi is identified as the energy
transferred from the bath to particle i.
As for the steady-state average of Jij, we use

hdUij=dt ¼ 0i and the chain rule to simplify Eq. (A12),

0 ¼ vTi Fji þ vTj Fij ¼ −vTi Fij þ vTj Fij; ðA14Þ

and arrive at the expression

hJiji ¼ hvTj Fiji: ðA15Þ

One straightforward numerical method to compute the
flux J is as follows. Our system is determined by the
network geometry and parameters m, kg, k, B̂, γ, τ, Ta.
Given the equations of motion, Eqs. (A2) and (A4)–(A6),
one can numerically solve for the covariance C ¼ hXXTi
from the matrix equation ð−μÞCþ Cð−μTÞ ¼ σσT [36,37].
Finally, the flux equation (A12), which is bilinear in x and
v, can be extracted from the covariance C. Numerical
calculations of hJi are performed usingMathematicawith a
custom code [47].

APPENDIX B: LINEAR RESPONSE
THEORY FOR ENERGY FLUX

Following Ref. [38], we derive the expression of the
energy flux [Eqs. (7) and (10) in the main text] using a
spectral linear response theory.

1. Fourier modes for energy flux

We define the Fourier transform (FT) of a function fðtÞ
as

f̃ðωÞ ¼ 1

t

Z
t

0

dt0 fðt0Þe−iωt0 ; ω ¼ 2πn
t

; ðB1Þ

fðtÞ ¼
X∞
ω¼−∞

f̃ðωÞeiωt; ðB2Þ

where n ¼ −∞;…;−1; 0; 1; 2;…;∞.
The FT of the equations of motion, Eqs. (A2) and (A4)–

(A6), reads

ṽðωÞ ¼ iωz̃ðωÞ; ðB3Þ

z̃ðωÞ ¼ GþðωÞη̃ðωÞ; ðB4Þ

η̃ðωÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2γTa

p
1þ iωτ

ξ̃ðωÞ; ðB5Þ

where Gþ is the response function,

G�ðωÞ ¼ ½K � iωðγI þ B̂AÞ −mω2I�−1: ðB6Þ

To make our results more general, we consider a generic
noise when possible and describe it by the noise spectrum

hη̃ðωÞη̃ðω0ÞTi ¼ 2γTa

t
hðωÞIδωþω0;0; ðB7Þ

where hðωÞ is a function that describes the shape of the
spectrum. For white noise, hðωÞ ¼ 1. For OU colored
noise, hðωÞ ¼ 1=ð1þ ω2τ2Þ.
The energy flux Jij from Eq. (A12) can be expressed as a

bilinear function in z and v, by writing the linearized force
F in terms of z,

Jij ¼ kvTAJz; ðB8Þ

AJ ≡ 1

2
(jiihij ⊗ eijeTij þ jiihjj ⊗ eijeTji

þ jjihij ⊗ ð−ejieTijÞ þ jjihjj ⊗ ð−ejieTjiÞ): ðB9Þ

This bilinear form enables us to write the time integral of
the energy flux Q ¼ R

t
0 dt

0Jðt0Þ as a sum of Fourier modes
q̃ω using Parseval’s theorem,

Q ¼ t
X∞
ω¼−∞

q̃ω; ðB10Þ

qω ¼ kṽTAJz̃� ¼ iωkη̃TGþTAJG−η̃�; ðB11Þ

where the superscript � denotes the complex conjugate.
Pairing q̃ω and its conjugate q̃−ω gives a real function,

which would be beneficial for subsequent derivations:

Q ¼ t
X∞

ω¼2π=t

ðq̃ω þ q̃−ωÞ; ðB12Þ

q̃ω þ q̃−ω ¼ η̃ðωÞTAq
ωη̃ðωÞ� ðB13Þ

Aq
ω ¼ −iωkGþðωÞTAasG−ðωÞ; ðB14Þ

Aas ¼ −ðAJ − AJTÞ ðB15Þ

¼ −jiihjj ⊗ eijeTji þ jjihij ⊗ ejieTij: ðB16Þ
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Averaging q̃ω þ q̃−ω over the noise η̃ðωÞ, we get

hq̃ω þ q̃−ωi ¼
2γTa

t
hðωÞtrAq

ω: ðB17Þ

2. Integrating over the Fourier modes

In a long time limit, the sum can be approximated by an
integral

1

t

X∞
ω¼2π=t

¼ 1

2t

X∞
ω¼−∞

tΔω
2π

≈
1

4π

Z
∞

−∞
dω: ðB18Þ

Equations (B12) and (B17) can then be turned to an integral
expression of the flux,

hJi ¼ lim
t→∞

hQi
t

¼ γTa

2π

Z
∞

−∞
dωhðωÞtrAq

ω: ðB19Þ

In the next steps, we simplify this integral with the help
of the property from Ref. [38],

G−ðωÞ − GþðωÞT ¼ 2iωγG−ðωÞGþðωÞT: ðB20Þ

Using this property, the trace of Aq
ω becomes

trAq
ω ¼ −iωktrGþTAasG−

¼ −iωk
1

2iωγ
tr ðG− −GþTÞAas

¼ −
k
γ
Re trGþAas: ðB21Þ

Plugging this trace into Eq. (B19), we get the integral
form for the flux equation (7),

hJi ¼ −
Tak
2π

Z
∞

−∞
dωhðωÞRe trGþAas: ðB22Þ

Since ImGþð−ωÞ ¼ −ImGþðωÞ, hðωÞIm trGþAas is an
odd function of ω, and its line integral vanishes,

hJi ¼ −
Tak
2π

Z
∞

−∞
dωhðωÞtrGþAas: ðB23Þ

The difference between this expression and Eq. (B22) is
that the integrand of Eq. (B22) is real at all ω’s, whereas the
integrand of Eq. (B22) is complex. We adopt Eq. (B22) in
the main text, so its integrand can be interpreted as the flux
of Fourier modes.
We now consider the specific OU colored noise,

hðωÞ ¼ 1=ð1þ ω2τ2Þ. In this case, the integral in
Eq. (B23) can be calculated using the residue theorem.
The integrand vanishes at ω → ∞, so the line integral can
be converted to a contour integral along the counterclock-
wise semicircle R in the lower half-plane,

hJi ¼ Tak
2π

I
R
dω

trGþAas

1þ ω2τ2
: ðB24Þ

The trGþAas part in the integrand has no pole in the lower
half-plane because Gþ is a linear response function, and it
satisfies causality. However, the noise correlation τ intro-
duces one pole at ω ¼ −i=τ; thus, the contour integral can
be evaluated as

hJi ¼ −
Tak
2τ

trGþ
�
−
i
τ

�
Aas; ðB25Þ

and the response function at ω ¼ −i=τ reads

Gþ
�
−
i
τ

�
¼

�
K þ

�
γ

τ
þ m
τ2

�
I þ B̂

τ
A

�
−1
: ðB26Þ

In theory, Eq. (B25) provides the analytical solution of
the flux because the inverse matrix, Eq. (B26), can be
expressed analytically. In practice, analytical solutions can
be easily calculated for small networks but are impractical
for large networks.
Nevertheless, some general properties of the flux can be

obtained from Eq. (B25) after some algebra. For a network
with only horizontal and vertical bonds [Fig. 1(b)], all fluxes
are zero. For two networks whose slanted bonds have
opposite angles [top and bottom hexagons in Fig. 1(b)],
their fluxes are opposite. Changing B to −B would change
the flux J to −J.

3. Moments of the energy transport

Higher-order moments of the integrated energy fluxQ ¼R
t
0 dt

0Jðt0Þ can also be calculated following methods in
Ref. [38]. We define the moment-generating function of Q
as ZðλÞ ¼ heλQi. In the long time limit, ZðλÞ can be
expressed in the large-deviation form [38], ZðλÞ ¼ etμðλÞ,
where μðλÞ is called the rate function. For our system, ZðλÞ
can be calculated through Gaussian integrals. The resulting
μðλÞ reads

μðλÞ ¼ −
1

4π

Z
∞

−∞
dω tr ln½I þ λ2γTahðωÞAqðωÞ�; ðB27Þ

where AqðωÞ is defined in Eq. (B14).
The first moment hQi reads

hQi ¼ ∂ZðλÞ
∂ð−λÞ

				
λ→0

¼ −t∂λμðλÞ ðB28Þ

¼ tγTa

2π

Z
∞

−∞
dω hðωÞtr AqðωÞ; ðB29Þ

which is consistent with the expression in the main
text, Eq. (7).
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The fluctuation hðδQÞ2i ¼ hQ2i − hQi2 reads

hðδQÞ2i ¼ ∂2ZðλÞ
∂ð−λÞ2

				
λ→0

− hQi2 ¼ t∂2
λμðλÞ ðB30Þ

¼ tðγTaÞ2
π

Z
∞

−∞
dω hðωÞ2tr ðAqðωÞ2Þ: ðB31Þ

Plugging in the expression for AqðωÞ, Eq. (B14), and
using the property in Eq. (B20), hðδQÞ2i simplifies to

hðδQÞ2i ¼ tðTakÞ2
4π

Z
∞

−∞
dωhðωÞ2trf

ðG− −GþTÞAasðG− −GþTÞAasg: ðB32Þ

In the noninteracting (k → 0) limit, the following quan-
tity tends to a nonvanishing constant,

lim
k→0

hðδQÞ2i
k2

¼ −
tT2

a

2π

Z
∞

−∞
dω hðωÞ2(gðωÞ − gð−ωÞ)2;

ðB33Þ

gðωÞ ¼ kg þ iωγ −mω2

ðkg þ iωγ −mω2Þ2 − ðωB̂Þ2 : ðB34Þ

This limiting value is independent of the network geometry
and thus reflects inherent fluctuations for energy fluxes
between two bonded sites regardless of the rest of the
network.

APPENDIX C: DERIVATION
OF KIRCHOFF’S LAW

The derivation of Kirchoff’s law is similar to the
derivation of the energy flux, except that we use the energy
from the bath to the particle hi in Eq. (A13) instead of Jij
in Eq. (A12).
Following the procedure in Appendix B from

Eqs. (B12)–(B19), we arrive at an integral expression for
hhii with a different Aq

ω,

hhii ¼
γTa

2π

Z
∞

−∞
dωhðωÞtr Aq

ω; ðC1Þ

Aq
ω ¼ iωðGþTρi − ρiG−Þ − 2γω2GþTρiG−; ðC2Þ

ρi ≡ jiihij: ðC3Þ

Here, the noise is kept generic.
Using the property of G� in Eq. (B20), we get

trðGþTρi − ρiG−Þ ¼ −2iωγtrGþTρiG−: ðC4Þ

The trace of Aq
ω then vanishes,

trAq
ω ¼ iωtrðGþTρi − ρiG−Þ − tr 2γω2GþTρiG− ¼ 0:

ðC5Þ

From Eq. (C1), hhii is also zero, so on average there is no
net energy exchange between the particle and the bath.
Because the average change of Ei is zero, and h _Eii ¼
−
P

jhJiji þ hhii, we obtain Kirchoff’s law,

−
X
j

hJiji ¼
X
j

hJjii ¼ 0: ðC6Þ

APPENDIX D: A HARADA-SASA RELATION

We present a Harada-Sasa relation [39] for our active
gyroscopic networks, which shows a connection between
the fluctuation-response breaking and an entropy produc-
tion rate. For the calculation of the entropy production rate,
there have been debates in the literature on what the reverse
process should be, especially for systems in the presence
of Lorentz-like forces and systems with active particles
[48–51]. Here, we simply choose some prescriptions for the
reverse process and show that such a choice is consistent
with the Harada-Sasa relation.
In this section, our system is slightly modified by adding

additional white noise ξw with correlation hξwðtÞξwðt0ÞTi ¼
2γTaIδðt − t0Þ, and the white noise is uncorrelated with the
color noise η. The additional white noise simplifies the
discussion of the entropy production rate; at the same time, it
does not affect the energy flux. In order to directly compare
our result with the Harada-Sasa relation, we define the
Fourier transform as f̃ðωÞ ¼ R

∞
−∞ dtfðtÞe−iωt. This defini-

tion is slightly different from the rest of the paper, and it is
restricted to this section. We also keep the colored noise
generic, hη̃ðωÞη̃ðω0Þ�Ti ¼ 4πγTahðωÞδðωþ ω0Þ.
The resulting Harada-Sasa relation reads

_s ¼ γ

Ta

Z
dω
2π

tr½C̃ðωÞ − 2TaRe R̃ðωÞ�; ðD1Þ

where _s is the entropy production rate, C̃ðωÞ is the velocity
correlation, and R̃ðωÞ is the velocity response.

1. Fluctuation-response breaking

The equation of motion with additional white noise reads

m_v ¼ −Kz − B̂Av − γvþ ηþ ξw: ðD2Þ

The FT of the equation of motion leads to

ṽ ¼ iωGþðωÞðη̃þ ξ̃wÞ; ðD3Þ

where GþðωÞ is the same as in Eq. (6).
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The response matrix for the velocity reads

R̃ðωÞ ¼ iωGþðωÞ: ðD4Þ

The velocity correlation in the time domain is defined as
CðtÞ ¼ hvðtÞvð0ÞTi. To extract a simplified C̃, we use the
Fourier transform ṽ [Eq. (D3)], plug in the noise correla-
tion, and utilize the property of Gþ [Eq. (B20)]; then, we
get

C̃ðωÞ ¼ −2ωTa(1þ hðωÞ)ImGþ: ðD5Þ

Combining Eqs. (D4) and (D5), the breaking of the
fluctuation response reads

tr½C̃ − 2TaRe R̃� ¼ 2iωTahðωÞtr iImGþ: ðD6Þ

To simplify its integral, we use the property that
ReGþðωÞ ¼ ReGþð−ωÞ, and ωhðωÞReGþðωÞ is an odd
function in ω. So

R
dωωhðωÞiImGþ ¼ R

dωωhðωÞGþ,
and the result reads

Z
dω
2π

tr½C̃ − 2TaRe R̃� ¼
Z

dω
2π

2iωTahðωÞtrGþ: ðD7Þ

2. Entropy production rate

Following the framework of stochastic thermodynamics
[1], the entropy production rate is given by

_s ¼ lim
t→∞

1

t
log

P
P† ; ðD8Þ

where P and P† are the probabilities of the forward
trajectory and the reverse trajectory.
The probability of the trajectory is given by the Onsager-

Machlup path integral [52],

P ∝ e−A
Y
t0
δð∂t0z − vÞ; ðD9Þ

A ¼
Z

t

0

dt0
m2

4γTa

				∂t0vþ
γ

m
v −

1

m
Fp

				
2

; ðD10Þ

Fp ≡ −Kz − B̂Avþ η: ðD11Þ

For the conjugation trajectory, we choose the prescription
that the B field flips sign, B† ¼ −B [49], and η† ¼ η for the
colored noise. With these prescriptions, P†, and conse-
quently _s from Eq. (D8), can be calculated,

_s ¼ −
1

Ta
hvTðm _v − FpÞi: ðD12Þ

We plug in the expression for Fp, find that many terms
vanish, and get

_s ¼ 1

Ta
hvTηi ¼ 1

Ta
trhvηTi: ðD13Þ

Expressing v in terms of the response function,

_s ¼ 1

Ta

Z
dω
2π

tr iωGþðωÞ2γTahðωÞ: ðD14Þ

Compare the entropy production rate, Eq. (D14), and the
fluctuation-response breaking, Eq. (D7). We arrive at a
Harada-Sasa relation, Eq. (D1).
Note that if we choose the prescription B† ¼ B, the

calculated _s would be different; consequently, there would
be no Harada-Sasa-like relation. The discrepancy between
prescriptions B† ¼ −B and B† ¼ B seems to suggest that
flipping the B field should give the appropriate prescription
from the perspective of relating the fluctuation-response
breaking to an entropy production rate.

APPENDIX E: CONNECTION OF ENERGY FLUX
IN ACTIVE NETWORKS TO EIGENMODES IN

ISOLATED GYROSCOPIC NETWORKS

1. The connection and its application
to honeycomb lattices

If excluding the active bath, our model is identical to the
isolated systems studied in Refs. [29–32]. We would like to
build a connection between our energy flux in the active
system and eigenmodes in those studies. In this subsection,
we show that the energy flux in active gyroscopic networks
can be expanded as a weighted sum over eigenmodes of a
reference isolated system, Eq. (E2). Then, we apply this
result to the honeycomb lattice as an example.
The Fourier analysis from Sec. IV in the main text is not

suitable for this connection because Fourier modes and
eigenmodes are related only at small γ’s [Figs. 6(a)
and 6(b)], but they become dissimilar at larger γ’s
[Figs. 6(a) and 6(c)]. The underlying discrepancy between
Fourier modes and eigenmodes comes from the fact that
eigenmodes are a natural basis for the isolated network,
whereas Fourier modes contain an extra factor of friction or
damping. In addition to this extra factor γ, the active system
also has extra factors of m and τ. The factor m comes from
the order of dynamics: The active system is second order in
time, while the gyroscopic dynamics in Ref. [29] is first
order, which corresponds to the m → 0 limit.
Our starting point is Eq. (10). The key observation is

that, in the functionGþð−i=τÞ from the equation, γ,m, τ are
not independent factors. Rather, they act collectively
through

kg;τ ≡ kg þ
γ

τ
þ m
τ2
: ðE1Þ

In effect, the extra factorsm, γ, τ only add a modification to
kg. Following these ideas, we imagine a reference isolated
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system with modified on-site spring constant kg;τ. The flux
hJi in the active system can be written as a weighted sum of
the flux of each eigenmode Jeigωe in the reference system (see
Appendix E 2 for the derivation),

hJi ¼
X
ωe

1

1þ ω2
eτ

2
Jeigωe : ðE2Þ

Here, ωe is the discrete eigenfrequency of the reference
system, not to be confused with the continuous Fourier
frequency ω. The amplitude of the eigenmode is set such
that its energy is Ta, and Jeigωe is the time-averaged
energy flux.
A related result is a “sum rule”; namely, the unweighted

sum of all modes is zero,X
ωe

Jeigωe ¼ 0: ðE3Þ

This sum rule can be derived from direct calculations (see
Appendix E 2).
From this eigenmode decomposition, the discussion of

time-reversal symmetry in the isolated system [29] immedi-
ately carries over to the active system. For network
geometries that satisfy time-reversal symmetries, the
energy flux of eigenmodes is zero. Thus, through
Eq. (E2), the flux in an active system is also zero. This
result can alternatively be obtained from Eq. (10) through
some linear algebra.
As an application, we analyze the flux in the honeycomb

network using the eigenmode decomposition, Eq. (E2), and
the sum rule, Eq. (E3). The flux pattern in the active
honeycomb network displays CCW flux localized on the
boundary [Fig. 1(b)]. This localization is reminiscent of the
edge mode in Ref. [29] [Fig. 6(b)]; however, their directions
are opposite. From the decomposition, Eq. (E2), the edge

modes should contribute a large CW flux in the active
system, but somewhat surprisingly, the net flux is CCW. To
better analyze the contribution from each eigenmode,
we look at a simple honeycomb lattice with only one layer
[Fig. 7(a)]. This lattice has four bands [Fig. 7(b)], two bulk
bands (blue, red) and two edge bands (green, yellow). The
weighted flux of each band is plotted in Fig. 7(c).We see that
the CWedge band contributes a large CW flux [green curve
in Fig. 7(c)]; however, due to the sum rule, the unweighted
sumof other bands has to be CCW. In the honeycomb lattice,
many of theCCWfluxes are contained in the lower bulk band
[blue curve in Fig. 7(c) and examplemode inFig. 7(f)].When
the flux gets weighted, the CCW flux from the lower bulk
band outweighs the CW flux from the edge modes; the other
two bands [yellow and red curves in Fig. 7(c)] also contribute
to the CCW flux, although the contribution is relatively
small. As a result, the net flux is CCW, which is opposite to
the flux of the edge mode.

2. Derivation of the connection

To derive the eigenmode decomposition, Eq. (E2), we
first look at the reference isolated system and write down its

(a) (b) (c)

FIG. 6. Comparison between a boundary-localized eigenmode
of the undamped isolated network and the Fourier modes of the
damped network at the same frequency. First-order dynamics (by
setting m ¼ 0) are used. Numerical calculations are performed
with all other parameters set to 1. (a) Eigenmode of undamped
gyroscopic system. For the frequency chosen, the eigenmode is
localized on the boundary. Blue disks represent the orbit of
particles. (b) The Fourier mode of the damped variant of our
model at small γ (γ ¼ 0.001) resembles the eigenmode. (c) The
Fourier mode at larger γ (γ ¼ 1) is no longer close to the
eigenmode.

(a)

(d)

(e)

(f)

(b)

(c)

FIG. 7. Using the eigenmode decomposition, we explain how
the flux in the honeycomb network is CCW, even though its edge
modes contribute to CW fluxes. (a) Network used for calculation,
which consists of one row of hexagons (51 unit cells) and has a
periodic boundary in the x direction. The parameters are kg;τ ¼ 1,
k ¼ 10, with others being 1. (b) Band structure of the network
(marked with different colors). The yellow or green band contains
CW flux localized on the top or bottom edge [an example mode is
shown in panel (d) or (e)]. The blue band contains bulk modes
with CCW flux [also see panel (f)]. (c) Weighted flux Jeigωe from 1
to 2 [marked in panel (a)] of the four bands. The total flux in the
green band with CW edge modes and that in the blue band with
CCW bulk modes are −0.106 and 0.115, respectively. As a result,
the net flux is CCW.
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eigenmodes and time-averaged energy flux, Eq. (E10).
Then, we turn to the active system and decompose the flux
using the eigenmodes to get Eq. (E13). Finally, we show
that the fluxes from these two sides are actually related in
Eq. (E17). Lastly, we also derive the sum rule, Eq. (E19).

a. Energy flux in the reference isolated system

The reference isolated system has first-order gyroscopic
dynamics as in Ref. [29]. In the setup with Lorentz force, the
dynamical equation can be obtained by setting the mass to
zero and replacing the force matrix K by Kτ ≡ K þ
½ðγ=τÞ þ ðm=τ2ÞI,

_z ¼ 1

B̂
AKτz: ðE4Þ

Following Ref. [29], we convert to a complex representation
with zc ≡ ð xþ iy x − iy ÞT ,

i_zc ¼ Ωzc; Kτ ¼ iB̂AO−1ΩO; ðE5Þ

where O, O−1 are the transformations between z and
zc zc ¼ Oz, z ¼ O−1zc.
Writing the eigenvalue problem as

Ωuωe
¼ ωeuωe

; ðE6Þ

the eigenmode with eigenfrequency ωe reads

zcωe
ðtÞ ¼ ðuωe

e−iωet þ u−ωe
eiωetÞz0; ðE7Þ

where z0 is the amplitude, which will be specified shortly.
The eigenmode needs a combination of ωe and −ωe to
ensure that the motion of x and y is real-valued.
Mathematically, this combination is possible because of
a symmetry in this eigenvalue problem; when there is ωe,
there is also a solution −ωe with

u−ωe
¼

�
0 I

I 0

�
u�ωe

:

A related property we will need later is that the left
eigenvector vωe

can be expressed as

vωe
¼ cωe

�−I 0

0 I

�
uωe

;

where cωe
is a real prefactor, to ensure normalization

vTωe
uωe

¼ 1. If there are degenerate eigenvectors (like
v1ωe

; v2ωe
;…), we choose an orthonormal basis set, i.e.,

vi;Tωe u
j
ωe ¼ 0 for i ≠ j. With the introduction of cωe

, we now
set the amplitude to z20 ¼ −2cωe

Ta=ωeB̂, such that the
energy of the eigenmode is Ta.

The instantaneous energy flux Jωe
of mode zcωe

reads

Jωe
¼ ðO−1vcωe

ÞTAJO−1zcωe

¼ trO−1;TAJO−1zcωe
vcTωe

; ðE8Þ

where AJ has been defined in Eq. (B9). The factor zcωe
vcTωe

can be computed using Eq. (E7). When averaging over
periods of oscillation, terms containing e�2iωet vanish, and
we get

zcωe
vcTωe

¼ iωeðuωe
uT−ωe

− u−ωe
uTωe

Þz20: ðE9Þ

Plugging in z20 ¼ −2cωe
Ta=ωeB̂, the time-averaged flux of

the eigenmode Jeigωe reads

Jeigωe ¼ −
2Tak

B̂
icωe

trO−1;TAJO−1ðuωe
uT−ωe

− u−ωe
uTωe

Þ:
ðE10Þ

b. Energy flux of the active system

Now, we turn to the active system, and the starting point
is Eq. (10). We need to decompose Gτ ≡Gþð−i=τÞ into
modes as below. We use uωe

and vωe
to denote the right and

left eigenvectors for matrix Ω at eigenfrequency ωe,
respectively:

Gτ ¼ i

B̂
O−1

�
Ω −

i
τ
I

�
−1
OA; ðE11Þ

�
Ω−

i
τ
I

�
−1

¼
X
ωe>0

iτ
1þω2

eτ
2
ðuωe

vTωe
þu−ωe

vT−ωe
Þ

þ
X
ωe>0

ωeτ
2

1þω2
eτ

2
ðuωe

vTωe
−u−ωe

vT−ωe
Þ: ðE12Þ

When plugging Gτ into Eq. (10), the contribution from the
second term in ½Ω − ði=τÞI�−1 vanishes, trOAAasO−1×
ðuωe

vTωe
− u−ωe

vT−ωe
Þ ¼ 0. We arrive at a decomposition

of the flux in active system into eigenmodes in a reference
isolated system,

hJi ¼
X
ωe

hJiωe
; ðE13Þ

hJiωe
≡ Tak=2B̂
1þω2

eτ
2
trOAAasO−1ðuωe

vTωe
þu−ωe

vT−ωe
Þ: ðE14Þ

c. Connection between isolated system
and active system

Now, we need to find the connection between these two
fluxes, hJiωe

in Eq. (E14) and Jeigωe in Eq. (E10). We write
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Jeigωe in a form that looks similar to hJiωe
. Converting AJ to

Aas using Aas ¼ −ðAJ − AJTÞ [Eq. (B15)], and uωe
to vωe

using

vωe
¼ cωe

�−I 0

0 I

�
uωe

;

we get

Jeigωe ¼ −
iTak

B̂
trAO−1;TAasO−1ðuωe

vTωe
þ u−ωe

vT−ωe
Þ:
ðE15Þ

From direct calculation, AO−1;T ¼ ði=2ÞOA, and Jeigωe

becomes the same as hJiωe
apart from a factor

Jeigωe ¼ Tak

2B̂
trOAAasO−1ðuωe

vTωe
þ u−ωe

vT−ωe
Þ: ðE16Þ

Comparing Eq. (E16) with Eq. (E14), we arrive at the
connection between the flux from the active system and that
from the reference isolated system,

hJiωe
¼ 1

1þ ωe
2τ2

Jeigωe : ðE17Þ

Additionally, the unweighted sum reads

X
ωe

Jeigωe ¼ Tak

2B̂
tr½OAAasO−1UVT �; ðE18Þ

where U is the collection of all right eigenvectors
U ¼ ð uωe;1 uωe;2 � � � Þ, and likewise for V. Since UVT ¼
I from orthonormality, the unweighted sum vanishes,

X
ωe

Jeigωe ¼ Tak

2B̂
tr AAas ¼ 0: ðE19Þ

APPENDIX F: FORMULATION OF THE
DIAGRAMMATIC APPROACH TO

CALCULATING THE ENERGY FLUX

We provide the mathematical formulation of the dia-
grammatic approach in Appendixes F 1 and F 2 and its
application to typical networks in Appendixes F 3 and F 5.

1. Derivation of diagrammatic expansion

The central object in the diagrammatic approach is
Gτ ≡Gþð−i=τÞ. In the noninteracting case (k ¼ 0), Gτ

is analytically solvable. We denote Gτjk¼0 ¼ Gτ
0. The

inverse ðGτ
0Þ−1 has a block-diagonal form,

ðGτ
0Þ−1 ¼ kg;τI þ

B̂
τ
A ðF1Þ

¼
X
i

jiihij ⊗
�
kg;τI þ

B̂
τ
A1

�
; ðF2Þ

where kg;τ ≡ kg þ ðγ=τÞ þ ðm=τ2Þ. Then, Gτ
0 is also block

diagonal, with each block the inverse of the blocks above,

Gτ
0 ¼

X
i

jiihij ⊗ 1

ðkg;τÞ2 þ ðB̂=τÞ2
�
kg;τI −

B̂
τ
A1

�
ðF3Þ

¼
X
i

jiihij ⊗ 1

k0
Rα; ðF4Þ

where k0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkg;τÞ2 þ ðB̂=τÞ2

q
, and Rα is the rotation

matrix with angle α≡ arcsin½ðB̂=τÞ=k0�,

Rα ¼
�
cos α − sin α

sin α cos α

�
:

We now turn on k. We denote the interparticle part of the
force matrix K as kKs, where the factor k is extracted so
that the matrix Ks is dimensionless. The 2 × 2 blocks of Ks
read

hijKsjii ¼
X
i0≠i

eii0eTii0 ; hijKsjji ¼ eijeTji: ðF5Þ

Then, Gτ reads

Gτ ¼ 1

ðGτ
0Þ−1 þ kKs

¼ 1

k0

�
ðk0Gτ

0Þ−1 þ
k
k0

Ks

�
−1
: ðF6Þ

In the small-k=k0 regime, this matrix inversion can be
expanded as

Gτ ¼ 1

k0

�
ðk0Gτ

0Þ þ
k
k0

ðk0Gτ
0Þð−KsÞðk0Gτ

0Þ

þ
�
k
k0

�
2

ðk0Gτ
0Þð−KsÞðk0Gτ

0Þð−KsÞðk0Gτ
0Þ þ…

�

¼ 1

k0
ðk0Gτ

0Þ
X∞
n¼0

�
k
k0

ð−KsÞðk0Gτ
0Þ
�
n
: ðF7Þ

To find the convergence radius, we can write the eigende-
composition of the matrix ð−KsÞðk0Gτ

0Þ as ð−KsÞðk0Gτ
0Þ ¼

WΛW−1, where Λ is the diagonal matrix that contains all
eigenvalues λi’s; then, the flux becomes
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hJi ∝ trGτAas ∝
X∞
n¼0

trðk0Gτ
0Þ
�
k
k0

WΛW−1
�
n
Aas

¼
X
i

½W−1Aasðk0Gτ
0ÞW�ii

X
n

�
k
k0

λi

�
n
: ðF8Þ

For terms in the series to be convergent, k=k0 should satisfy

k
k0

<
1

maxijλij
: ðF9Þ

The interval of convergence depends on the geometry of the
whole network, as well as the condensed parameter α. The
values of the upper bound of k=k0 for many networks range
between 0.3 and 0.6.
We note that the matrix Aas andKs have common blocks,

Aas ¼ −jiihjj ⊗ eijeTji þ jjihij ⊗ ejieTij and hijKsjji ¼

eijeTji, so Aas can merge with terms in the expansion
of Gτ:

hJi
Ta=τ

¼ −
k
2
ðtr GτAasÞ

¼ −
k
2
ðtrhijGτjjiejieTij − trhjjGτjiieijeTjiÞ

¼ k
2
ðtrhijGτjjihjj − Ksjii − trhjjGτjiihij − KsjjiÞ:

ðF10Þ
Now, we use the expansion in Eq. (F7) and insert

its (n − 1)th-order term into the first component in
Eq. (F10), which gives ktrhijð1=k0Þðk0Gτ

0Þ½ðk=k0Þð−KsÞ×
ðk0Gτ

0Þ�n−1jjihjj − Ksjii. If n − 1 ¼ 0, this term vanishes,
so we only need to consider the n − 1 ≥ 1 case. Insert the
n − 1 resolution of the identity I ¼ P

N
la¼1 jlaihlaj, and plug

in k0Gτ
0 [Eq. (F3)]; we get

k
k0

trhijðk0Gτ
0Þ
�
k
k0

ð−KsÞðk0Gτ
0Þ
�
n−1

jjihjj − Ksjii

¼
�
k
k0

�
n X
l1;l2;…;ln−1

trhijðk0Gτ
0Þjln−1ihln−1jð−KsÞðk0Gτ

0Þ � � � jl1ihl1jð−KsÞðk0Gτ
0Þjjihjj − Ksjii

¼
�
k
k0

�
n X
l1;l2;…;ln−2

trRαð−KsÞiln−2Rα � � � ð−KsÞl1jRαð−KsÞji; ðF11Þ

where ð−KsÞlbla ≡ hlbj − Ksjlai. We denote the path
l∶i → j → l1 → l2 → … → ln−2 → i, and its correspond-
ing term in the above summation as Sl,

Sl¼
�
k
k0

�
n
trRαð−KsÞiln−2Rα ���ð−KsÞl1jRαð−KsÞji: ðF12Þ

The second term of the flux in Eq. (F10) can be treated
similarly, and it results in S−l, where −l means path l in
reverse order. Combining Eqs. (F12) and (F10), we get the
diagrammatic expansion of the flux,

hJi
Ta=τ

¼
X
l

Jpathl ¼
X
l

1

2
ðSl − S−lÞ: ðF13Þ

2. Path rules and properties

The path rules can be extracted from the expression of Sl
and Jpath. From the element ð−KÞlbla in Sl, we see that
either la, lb are bonded or la ¼ lb; otherwise ð−KÞlbla ¼ 0.
So the path has to be a closed walk along the edges of the
network. From Jpathl for the flux from i to j, we see that if
the path contains equal numbers of i → j and j → i, the net

contribution is zero. Either −l ¼ l (so Jpathl ∝ Sl − S−l ¼ 0)
or −l ¼ l0 is another path in the summation, and
Jpathl þ Jpathl0 ¼ 0.
To calculate S−l, there is a convenient way, given that Sl

is known. Based on the transformation below, S−l can
be obtained by taking the result of Sl and then replacing α
by −α:

S−l
ð kk0Þn

¼ trðRαð−KsÞijRαð−KsÞjl1 � � �Rαð−KsÞln−2iÞT

¼ trR−αð−KsÞiln−2R−α � � � ð−KsÞl1jR−αð−KsÞji: ðF14Þ

To interpret Sl in a more heuristic way, we insert I ¼
eijeTij þ eij;⊥eTij;⊥ into the trace in Eq. (F12), where eij;⊥
denotes the unit direction perpendicular to eij. Because
ð−KsÞjieij;⊥ ¼ 0, the trace reduces to a matrix product

Sl
ð kk0Þn

¼ eTijRαð−KsÞiln−2Rα � � �ð−KsÞl1jRαð−KsÞjieij: ðF15Þ

This expression can be interpreted as the following
sequence of operations: Starting from a unit displacement
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of i along eij, j would be displaced according to the force
ð−KsÞjieij, after which j is rotated by angle α; then, we
start from j and perform similar operations for ð−KsÞl1j and
Rα; finally, the transmission goes back to i. We project the
displacement onto eij, and this value is Sl [apart from the
prefactor ðk=k0Þn].
The paths can be pictorially represented bydiagrams, from

which the flux Jpathl can be calculated easily. For instance, the
first diagram inFig. 3(a) represents the path 1 → 2 → 3 → 1.
To calculate Sl, we write down ð−KsÞlbla for each arrow
la → lb,Rα for each node la; we thenmultiply thesematrices
in the reverse order and calculate the trace, e.g.,
S1→2→3→1 ¼ ðk=k0Þ3trRαð−KsÞ13Rαð−KsÞ32Rαð−KsÞ21.
To get S−l, we take the result of Sl and replace α by −α.
Finally,Jpathl canbe calculated from the difference betweenSl
and S−l.
A useful property of the diagrams can be seen from

Eq. (F12) and the form of ð−KsÞji in Eq. (F5). If a diagram
contains no loops (e.g., la → la) on a node, then the
diagram is equal to a simplified one where we remove
the node’s other neighbors that do not form arrows with
the node.

3. Flux of polygon diagrams

Here, we write down the flux formula for a polygon path
without loops. It is easier to work in local coordinates,
where each node has its own coordinate system. Note that
now the force Fij in the flux definition, Eq. (4), does not
necessarily equal −Fji because these two vectors are
expressed under different coordinates or bases. However,
it can be proven that the expression for energy flux is still
given by Eq. (10), and diagrammatic techniques yield the
same result, Eq. (11).
For each node i in the path, we establish a local

coordinate such that the angle from i to i − 1 is π, and
the angle from i to iþ 1 is θi. Then, the matrix ð−KsÞiþ1;i

reads

ð−KsÞiþ1;i¼−eiþ1;ieTi;iþ1 ¼
�
1

0

�
ðcosθi sinθi Þ: ðF16Þ

The trace in Sl becomes

Sl
ð kk0Þn

¼ tr
Y
i

ð−KsÞiþ1;iRα

¼ tr
Y
i

�
1

0

�
ð cos θi sin θi ÞRα

¼
Y
i

ð cos θi sin θi ÞRα

�
1

0

�
: ðF17Þ

So the flux for this path without loops can be written

Jpathpolygon ¼
1

2

�
k
k0

�
n
�Y

i

cosðθi − αÞ −
Y
i

cosðθi þ αÞ
�
:

ðF18Þ

4. Contribution from higher-order diagrams

In some situations, the contribution of polygon diagrams
vanishes, and higher-order paths involving loops become
dominant. Unlike the polygon paths, paths with loops are
affected by side chains.
One situation is when the polygon path itself vanishes.

In Fig. 8(a), the flux of the lowest-order path, square
[Fig. 8(b)], is zero, so the main contribution comes from the
path with length 5 [Fig. 8(b)]. Through the loop in this path,
the orientation of the side chain controls the flux direction
in the main square, without changing the geometry of the
main cycle [as seen in Fig. 1(b)].
Another situation is where two polygon diagrams cancel

each other, which happens in honeycomblike networks
away from the boundary [Fig. 9(a)]. With careful calcu-
lations, the fluxes for nl ≥ 1 are not exactly zero; rather,
they appear as an exponential decay [Fig. 9(b)]. By
changing the geometric angle θ, the decay length varies
nonmonotonically and has a cusp at θ ¼ α [Fig. 9(c)]. This
decay and its relationship with θ can be explained by
considering the diagrams. While the hexagon path con-
stitutes the lowest-order diagram at the boundary, it
vanishes for nl ≥ 1 due to cancellations. The first non-
vanishing pair of diagrams for nl ¼ 1 is shown in Fig. 9(d),
in which the loop exploits the asymmetry between the bulk
side (with a vertical bond at the blue loop) and the boundary
side (with no vertical bonds at the red loop). For every
increment of one layer, the length of the paths increases by 4.
So, the flux at layer nl is on the order of k4nlþ3, which
exhibits an exponential decay e−ðnl−1Þ=dl. Through the
calculation of these paths, we get the decay length
dl ¼ −1= log½4ðk=k0Þ4(sinðθ þ αÞ sinðθ − αÞ)2�. From this

(b)

(a)

FIG. 8. Higher-order diagrams in a tailed-square network.
(a) Direction of the flux can be controlled by the orientation
of the side chain. (b) From the diagrammatic approach, the flux of
the lowest-order diagram (square) vanishes, and the first non-
vanishing diagram is affected by the side chain.
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result, we see that the cusp at θ ¼ α in Fig. 9(c) is due to the
term sinðθ − αÞ. In fact, at the special point θ ¼ α, paths like
Fig. 9(d) vanish, and we need to consider even higher-
order paths.

5. Exact flux for 1D networks

We show below that the flux of the 1D network is exactly
zero. For simplicity, we align all sites on the x axis.
We first consider cases where only nearest-neighbor

connections are allowed. The 1D chain effectively has C2
symmetry (bond lengths are irrelevant for the dynamics), so
the flux should also obey C2 symmetry, which means that
the flux can only be zero.
Now, we consider more general cases, where bondings

between non-neighboring sites are allowed. In such cases,
the 1D system does not necessarily obey C2 symmetry, and
the symmetry argument above cannot be applied. However,
we can use the diagrammatic approach formulated in
Eqs. (11) and (F12).
For an arbitrary diagram, we look at terms in the

expression S�l,

ð−KsÞlala ¼ −
X
lb≠la

�
λlalb
0

��
λlalb 0

�
; ðF19Þ

ð−KsÞlalb;ðla≠lbÞ ¼ −
�
λlalb
0

��
λlbla 0

�
; ðF20Þ

where λlalb ≡ cos θla→lb equals 1 if the bond from la to lb
lies in the þx direction, and it equals −1 if the bond lies in
the −x direction.
We plug ð−KsÞlalb into the expression for Sl and get

Sl ¼
�
−k
k0

�
n
��

λij 0

�
Rα

�
λiln
0

��
λlni 0

�
ðF21Þ

� � �Rα

�
λl3j

0

��
λjl3 0

�
Rα

�
λji

0

��
: ðF22Þ

Terms from ð−KsÞlala can be similarly considered.
We see that Sl is a product of terms like

ð λlalb 0 ÞRαð λlcld0
Þ ¼ λlalbλlcld cos α, which is an even

function of α; thus, S−l ¼ Slð−αÞ ¼ SlðαÞ. The flux for
path l vanishes, Jpathl ∝

P
lðSl − S−lÞ ¼ 0.

This equality holds for any diagram l, so the exact flux as
a sum over all the diagrams vanishes. The result is exact
beyond the small-k regime due to analytic continuation.
The brief message extracted from the derivation is that,
although the particles are allowed to move in 2D, the
“statistical” effect of the B field has to be projected onto
and transmitted through the bonds, but if all bonds are 1D
collinear, the projection does not distinguish B from −B;
thus, the effect of the B field is nullified.

APPENDIX G: GENERALIZATION
OF THE DIAGRAMMATIC APPROACH
TO A BROADER RANGE OF SYSTEMS

The system we started with is a class of 2D linearized
spring-mass networks, where each particle also experiences
a Lorentz force, a friction, and an OU colored noise. Here,
we show that the diagrammatic approach originally devel-
oped for this class of systems, can be generalized in its
embedding space and in the spectrum of its noise.

1. Generalization of 2D planar space

The 2D space can be generalized to a 2D curved surface
or 3D space.
For a 2D curved surface, we assume linearized dynam-

ics, where each site moves on its local tangent plane, and
the B field aligns with the normal at each site. The same
diagrammatic expansion as formulated in Eqs. (11) and
(12) can be readily applied. The reason is that we adopted a
local coordinate system (Appendix F 3), which holds both
for the planar surface and for the curved surface. Curvature
can affect the relation between outer angles θi and the
number of sides n in a polygon path. For instance, consider
a polygon with all θi ¼ π=2; then, Eq. (12) dictates

(c) (d)

(b)(a)

FIG. 9. Decay of fluxes away from the boundary of honeycomb
networks, and explanation using the diagrammatic technique.
(a) Schematic of a honeycomb network that is periodic in the
x direction. Layers from the boundary are indexed as nl.
(b) Semilog plot of flux hJi at layer nl. The flux starting from
layer nl ¼ 1 shows exponential decay, with decay length dl.
Parameters used for numerical calculations are θ ¼ π=6,
k=k0 ¼ 0.01, α ¼ π=4. (c) Decay length dl, which changes with
the network angle θ nonmonotonically, and the curve, which has
a cusp at θ ¼ α ¼ π=4. At small k=k0, perturbation theory results
agree with numerical calculations. (d) The first nonvanishing
diagram pair for nl ¼ 1 with length 7. The two diagrams do not
cancel because the loop in the bulk and that at the boundary have
different values.
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Jpathpolygon ∝ sinn α − sinnð−αÞ. On a planar surface, such a

polygon is a rectangle (n ¼ 4), Jpathpolygon ¼ 0, whereas for a
curved surface, such a polygon can be a spherical triangle
(n ¼ 3), Jpathpolygon ∝ sin3 α ≠ 0.
For 3D space, we assume that the B field remains the

same as in the 2D planar case. The same diagrammatic
approach applies, but the expressions get modified by the
additional spatial dimension. We use local spherical coor-
dinates and denote the angle with the z axis as ϕ. The
noninteracting part of the response matrix, Eq. (4), is
modified to

ðGτ
0Þ3D ¼

X
i

jiihij ⊗ 1

k0

0
B@

cos α − sin α 0

sin α cos α 0

0 0 1
cos α

1
CA: ðG1Þ

For a polygon path, the bond vectors read

ðeiþ1;iÞ3D ¼ ð−1 0 0 ÞT; ðG2Þ
ðei;iþ1Þ3D ¼ ð sinϕi cos θi sinϕi sin θi cosϕi ÞT: ðG3Þ

Plugging these modified expressions into Sl, Eq. (F12),
we get the flux for 3D,

ðJpathpolygonÞ3D
Ta=τ

¼ 1

2

�
k
k0

�
n
�Y

i

cosðθi − αÞ sinϕi

−
Y
i

cosðθi þ αÞ sinϕi

�
; ðG4Þ

which effectively calculates a projection onto the xy plane.

2. Generalization of OU color noise

The OU colored noise can be generalize to any noise
with a spectrum hη̃ðωÞη̃ðω0ÞTi ¼ 2γTahðωÞIδωþω0;0=t. The
procedure in deriving the diagrammatic expansion in
Appendix F 1 still applies, except now the noninteracting
part of Gþðω ¼ −i=τÞ is replaced by GþðωÞ at the general
ω. As a result, the path rules remain unchanged, but the
mathematical expressions for the diagrams are modified.
We first define an auxiliary function JauxðωÞ,

JauxðωÞ ¼ −ktrGþðωÞAas: ðG5Þ

Following Appendix F 1, we apply a diagrammatic
expansion to JauxðωÞ and get

JauxðωÞ ¼
X
l

Jaux;pathl ðωÞ ¼
X
l

ðSω;l − Sω;−lÞ; ðG6Þ

Sω;l ¼
�

k
k0;ω

�
n
ftrRαωð−KsÞiln−2Rαω

� � � ð−KsÞl1jRαωð−KsÞjig; ðG7Þ

where the symbols are defined as

k0;ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkg þ iωγ −mω2Þ2 − ðωB̂Þ2

q
; ðG8Þ

Rαω ¼
�
cos αω − sin αω
sin αω cos αω

�
; ðG9Þ

cos αω ¼ 1

k0;ω
ðkg þ iωγ −mω2Þ; ðG10Þ

sin αω ¼ 1

k0;ω
iωB̂: ðG11Þ

Note that the condensed parameters k0;ω; αω are complex, as
opposed to the real k0; α for the case with OU noise
[Eq. (13)].
For polygon paths with outer angles θi’s, Sω;�l

simplifies to

Sω;�l ¼
�

k
k0;ω

�
nY

i

cosðθi ∓ αωÞ; ðG12Þ

which is formally similar to Sl for the OU noise case
[Eq. (12)].
Based on the spectral expression, Eq. (7), the flux hJi

can be calculated in two ways. One way is to write JFTðωÞ
in terms of JauxðωÞ,

JFTðωÞ ¼ Ta

4π
(JauxðωÞ þ Jauxð−ωÞ); ðG13Þ

and then express hJi as an integral, hJi ¼R
dωhðωÞJFTðωÞ.
Another way is to first integrate Eq. (7) using the residue

theorem and then express hJi in terms of JauxðωÞ evaluated
at the poles,

hJi ¼ −Tai
X
i

Resω¼ωi
½hðωÞJauxðωÞ�: ðG14Þ

APPENDIX H: SIMULATION PROTOCOL FOR
ACTIVE GYROSCOPIC SYSTEMS

The simulation is performed using LAMMPS [53] with the
MOLTEMPLATE toolkit [54] and custom code. We use a
Trotter splitting method [55,56] to simulate the under-
damped Langevin dynamics. The integrator combines the
integrator for colored noise [37] and that for Lorentz force
[57]. We did not simulate the commonly used overdamped
Langevin dynamics because some intricacy arises when the
system also experiences a Lorentz force [58]. Below, we
first define each step in the integrator and then present the
combined result.
The velocity-Verlet step Uvv is the integrator when both

the Lorentz force and the colored noise are absent. It is
defined as
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UvvðΔtÞ∶v ← vþ FðxÞΔt=ð2mÞ ðH1Þ

x ← xþ vΔt ðH2Þ

v ← vþ FðxÞΔt=ð2mÞ; ðH3Þ

where FðxÞ is the conservative force, including on-site and
interparticle potentials.
Writing the Lorentz force part as

_v ¼ −
�

0 B̂=m

−B̂=m 0

��
vx
vy

�
≡ −apv; ðH4Þ

its integrator UL is a rotation of the velocity

ULðΔtÞ∶v ← e−Δtapv: ðH5Þ

Writing the colored noise part as

d
dt

�
v

η

�
¼ −Ap

�
v

η

�
þ Bp

�
ξw

ξa

�
; ðH6Þ

Ap ¼
� γ

m − 1
m

0 1
τ

�
; Bp ¼

� 0 0

0

ffiffiffiffiffiffiffi
2γTa

p
τ

�
; ðH7Þ

its integrator UOUP reads

UOUPðΔtÞ∶
�
v

η

�
← TðΔtÞ

�
v

η

�
þ SðΔtÞ

�
0

Na

�
; ðH8Þ

where Na is the standard Gaussian random variable, and

TðΔtÞ ¼ e−ΔtAp ; ðH9Þ

SðΔtÞSðΔtÞT ¼ Cp − TðΔtÞCpTðΔtÞT: ðH10Þ

Here, Cp is the solution of ApCp þ CpAT
p ¼ BpBT

p, and
SðΔtÞ can be solved as an upper-triangle matrix.
Combining these steps together, the integrator for one

time step Δt reads

UðΔtÞ ¼ UOUP

�
Δt
2

�
UL

�
Δt
2

�
UvvðΔtÞUL

×

�
Δt
2

�
UOUP

�
Δt
2

�
; ðH11Þ

where the order of operations is from right to left.

APPENDIX I: RELATIONSHIP BETWEEN
SWIMMER’S SPEED AND ENERGY FLUX

To understand the proportionality between Vs and hJi,
we turn to the diagrammatic technique. Different from

previous cases, this path sum can be computed exactly, so
the result holds beyond the small-k regime.
First, we rewrite Vs as follows:

Vs

7a=24L2
¼ hJs12i þ hJs23i þ hJs31i; ðI1Þ

where we have defined hJsiji≡ hðxi − xjÞðvi þ vjÞi. Note
that hJsiji is proportional to the energy flux via hJiji ¼
kijhJsiji=2, where k12 ¼ k23 ¼ k and k31 ¼ 0 (because
hJ31i ¼ 0, there is no energy flux from 3 to 1). We see
that both hJs12i and hJs23i are proportional to the flux hJi
apart from a factor k, so the remaining task is to find the
relationship between hJs31i and hJi or hJs12i.
We use a diagrammatic technique with the modification

that the paths should contain only one 3 → 1 segment. This
modification is a consequence of the fact that particles 3
and 1 are not bonded. We now illustrate the correspondence
between the diagrams for hJs31i and for hJs12i. For each path
l for hJs31i, we can construct n paths for hJs12i by reversing l
and then replacing 1 → 3 by 1 → 2ð→ 2Þn → 3, where
n ¼ 0; 1;…. An example construction of paths is shown in
Fig. 10. For hJs12i, all of its paths can be constructed in this
way. As a result, there is a 1-to-n correspondence between
the paths for hJs31i and for hJs12i, which leads to the
relationship

hJs12i ¼
k
k0

X∞
n¼0

�
−2

k
k0

�
n
ð−hJs31iÞ ðI2Þ

¼ k=k0
1 − ð−2k=k0Þ

ð−hJs31iÞ; ðI3Þ

where k0 ¼ kg þm=τ2 (B̂, γ ¼ 0 for the passive part), and
the factor −2ðk=k0Þ comes from the loop 2 → 2. Plugging
Eq. (I3) into the expression of Vs in Eq. (I1), we obtain the
proportionality

FIG. 10. An example of the hJs31i diagram (red) and the hJs12i
diagram (blue). Passive particles are boxed in gray, and the active
ones are boxed in red.
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Vs

7a=24L2
¼ −

k0
k
hJi
k=2

; ðI4Þ

which is Eq. (15) in the main text. Since we have
considered all of the diagrams, this result can be analyti-
cally continued to arbitrarily large k.
From this diagrammatic technique, we also see that the

proportionality constant is independent of the geometry of
the active part of the network because the paths through the
active part for hJs31i and for hJs12i are identical.
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