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Integrative cross-omics and cross-context
analysis elucidates molecular links
underlying genetic effects on complex traits

Yihao Lu 1, Meritxell Oliva 1,2, Brandon L. Pierce 1, Jin Liu 3 &
Lin S. Chen 1

Genetic effects on functionally related ‘omic’ traits often co-occur in relevant
cellular contexts, such as tissues. Motivated by the multi-tissue methylation
quantitative trait loci (mQTLs) and expression QTLs (eQTLs) analysis, we
propose X-ING (Cross-INtegrative Genomics) for cross-omics and cross-
context integrative analysis. X-ING takes as input multiple matrices of asso-
ciation statistics, each obtained from different omics data types across mul-
tiple cellular contexts. It models the latent binary association status of each
statistic, captures the major association patterns among omics data types and
contexts, and outputs the posterior mean and probability for each input sta-
tistic. X-ING enables the integration of effects from different omics data with
varying effect distributions. In the multi-tissue cis-association analysis, X-ING
shows improved detection and replication of mQTLs by integrating eQTL
maps. In the trans-association analysis, X-ING reveals an enrichment of trans-
associations in many disease/trait-relevant tissues.

Mappinggenetic variants to their associatedmolecular ‘omic’ traits has
emerged as an essential step in the functional annotation of genetic
variants1,2. Rich resources of genetic and genomic data are made
available for different molecular omic traits from various cellular
contexts (e.g., tissues, cell types)3–6. It has been reported that expres-
sion quantitative trait loci (eQTLs) and methylation QTLs (mQTLs)
often co-occur7. The detection of QTLs with cascading effects on
multiple omics traits allows the study of functional variants and shared
biological mechanisms, while also improving the power and precision
for identifying disease/trait-relevant genes influenced by susceptibility
loci8,9. To efficiently leverage the huge amount of existing data, sum-
mary statistics provide a convenient way with secured privacy in
sharing data fromawide range of studies1,10. The integrative analysis of
association summary statistics of genetic effects on multi-omics traits
could collectively provide a comprehensive view and offer new
insights into the dynamic mechanisms underlying human complex
diseases and traits11.

In a cross-omics integrative analysis, it is critical to consider the
effect-operating cellular contexts. The genetic effects on omic traits

depend on cellular contexts (e.g., tissues and cell types). Many disease-
associated genetic and genomic effects are highly context-specific5,12.
For example, studies of common-variant genetic results for schizo-
phrenia (SCZ) showed concerted effects in certain cell types13, while
many different cell types play distinct functions in disease etiology.
Moreover,most prior studies of genetic effects ofmolecular traits, i.e.,
QTL studies, are based on molecular trait measurements from bulk
tissues, and those measurements are averaged across many function-
ally divergent cell types5,14,15. There could be multiple tissue types
containing relevant cell types16. A joint analysis of many tissues, or
broadly relevant cellular contexts and conditions, may reveal other-
wise hidden and dynamicmechanisms underlying diseases of interest.
Previous work integrating and leveraging summary-level data from a
variety of cellular contexts17, cell/tissue types18,19, and conditions20,21

show improved estimation and detection of disease/trait-relevant
effects.

Recently, the enhancing GTEx (eGTEx) project sought to com-
plement existing multi-tissue human transcriptome data with addi-
tional molecular traits, including DNA methylation (DNAm)22. DNAm
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data from987GTEx samples representing nine tissue types weremade
available to further characterize the relationships among inherited
genetic variants, DNAm, gene expression and disease in a tissue-
specific manner. Motivated by the multi-tissue mQTL and eQTL ana-
lysis, we propose X-ING (Cross-INtegrative Genomics) for cross-omics
and cross-context integrative analysis. When integrating effects from
multi-omics data, those effects do not share the samemagnitudes and
effect distributions. Yet there could still be linked or concerted pat-
terns among true nonzero effects, e.g., co-occurring eQTLs and
mQTLs7. The proposed X-ING method is built on a Bayesian hier-
archical model capturing major patterns in the latent association sta-
tus. A unique feature of X-ING is its ability to simultaneously account
for omics-shared and omics-specific context/tissue-shared patterns in
the analysis, while also allowing for effect heterogeneity and different
levels of sparsity in each context and data type. Although X-ING is
motivated by and primarily focuses on multi-tissue eQTL and mQTL
analysis, it can be broadly applied to integrate multiple sets of sum-
mary statistics from different sources/domains to enhance cross-
feature cross-context learning.

In this work, X-ING is used to enhance the power for
detecting mQTLs by integrating eQTL statistics. Furthermore, we
apply X-ING to examine multi-tissue trans-association effects. Our
analysis reveals that associations identified by X-ING are enriched
in many known disease/trait-relevant tissue types. Additionally,
we illustrate how X-ING can integrate spatial differential expres-
sion statistics from spatial transcriptomic studies with multi-
tissue eQTL statistics from GTEx. The integrative analysis pro-
vides new insights into spatially defined molecular mechanisms
underlying diseases.

Results
An overview of the X-ING method for cross-omics and cross-
context integrative analysis of QTL statistics
Recently, the GTEx consortium released the single-tissue mQTL
summary statistics for nine selected tissue types from 424 GTEx
participants. Due to the limited tissue-specific sample sizes, the
detection ofmQTLs is underpowered comparedwith existing eQTL
maps. Moreover, a large majority of mQTLs lack functionality23. It
has been reported that eQTLs often co-occur with mQTLs7. The
joint analysis of associations of a genetic variant to a cis-gene and a
cis-CpG site (a tested trio) could enhance the power and precision
in detecting mQTLs, and facilitate the functional interpretations.
We develop an integrative association method, X-ING, to jointly
analyze multi-tissue mQTL and eQTL statistics, as illustrated in
Fig. 1a–c. The X-ING method takes as input the association statistic
matrices of M-tested units from L types of omics studies, where
each type of omics study has Kℓ (ℓ = 1,…,L) cellular contexts, i.e., L
matrices each of dimension M × Kℓ. The outputs of X-ING are the
posterior mean and the posterior probability of nonzero effect for
each input statistic (Fig. 1d). The posterior probabilities allow for
flexible inference. For example, we may identify mQTLs with multi-
tissue effects (i.e., having effects in two or more DNAm tissues with
posterior probabilities >80%), or mQTLs with co-occurring asso-
ciations to cis-expression (i.e., also with effects in at least one
expression tissue) at the 80% posterior probability cutoffs. One
may also calculate false discovery rates (FDRs) based on the pos-
terior probabilities24,25.

In the motivating multi-tissue e/mQTL analysis (L = 2), a tested
unit i (=1,…,M) is a trio consisting of a single nucleotide polymorphism
(SNP), a cis-gene, and a cis-CpG site from different human tissues, and
Kℓ is the number of tissue types in the ℓ-th e/mQTL data. The input
association summary statistics are Z-statistics obtained from single-
tissue e/mQTL analysis. X-INGmodels the joint association patterns of
Z-statistics (as Z-scores) for tested trios across omics data types and
tissues. X-ING assumes those Z-scores from Kℓ tissues, zi⋅,ℓ, following a

multivariate normal distribution as follows

zi�,‘ ∼N ezi�,‘ � γi�,‘,R‘

� �
, ð1Þ

where ezi�,‘ is a vector of latent genetic association Z-scores (or effect
sizes), with ezij,‘ ∼N ðezij,‘j0,σ2

j,‘Þ in each of the j-th cellular context
(j = 1,…,Kℓ), ∘ denotes the element-wise product of two vectors, γi�,‘ 2
RK‘ is a vector of latent binary association status, with one denoting
the presence of a nonzero effect, and R‘ 2 RK‘ ×K‘ is a tissue-tissue
correlation matrix (or covariance matrix if effect sizes instead of Z-
scores being modeled) among all Kℓ tissues due to potential sample
overlap. The correlation matrix Rℓ due to sample overlapping (under
the null, not of interest) is estimated a priori and is taken as known8,21.
The latent association status indicator γij,ℓ models sparsity in true
nonzero effects. Similar modeling of latent indicators has been used
in previous works to model the presence of nonzero Z-scores from
multi-tissue eQTL analysis21,26, and Z-scores from GWAS27 among
others. For different omics data types, effect size distributions are
different. Some true nonzero effects are of opposite directions but
are co-occurring. The joint modeling of latent indicators for nonzero
effects captures shared effect co-occurrence patterns across data
types despite different effect distributions – a major innovation of
the proposed model. It should be noted that for inference purposes
(i.e., detecting nonzero effects being the main goal), the modeling of
Z-scores is similar to the modeling of effect sizes and their standard
errors21 and we use Z-scores as an illustration. Each of the L latent Z-
score matrices (ez��,‘) captures the multivariate Gaussian distributions
of latent Z-score values from multivariate contexts/tissues within
each data type, while the L latent binary matrices (γ⋅⋅,ℓ) further
capture the major (low-rank) effect-sharing patterns across omics
data types and contexts.

A key innovation of X-ING is that it models the patterns of latent
binary association status together with effect sizes. This allows the
integration of two or more statistic matrices from different data types
of various effect distributions and arbitrary structures. In modeling of
the latent binary association status γij,ℓ, X-ING links (with a logit link) it
to a latent low-rank continuous matrix U ‘ 2 RM ×K‘ to capture the
major effect-sharing patterns across omics and across contexts
(Fig. 1d)27,

log
p γij,‘ = 1

���U ‘,u0,‘

� �
p γij,‘ =0

���U ‘,u0,‘

� � =Uij,‘ +u0j,‘, ð2Þ

where u0j,ℓ is the context-specific intercept, controlling the sparsity of
nonzero effects in the j-th context of the ℓ-th omics data. The latent
matrix Uℓ captures the desired patterns in the data and modulates the
latent probability of nonzero associations. When Uℓ =0, there is no
borrowing information across contexts/data. Here we propose to
capture omics-shared and data-specific context-shared patterns via
latent low-rank approximated modulation matrices, Uℓ =UℓO +
UℓC,∀ ℓ∈ {1,…, L}, where UℓO represents the major (i.e., low-rank
with rank pℓ) omics-shared data structures for data ℓ, and UℓC

represents the major (rank qℓ) data-specific context-shared struc-
tures for data ℓ. With a computationally efficient expectation-
maximization (EM) algorithm using variational inference, in each
iteration, X-ING applies (generalized) canonical correlation analysis
(CCA) on the logit-transformed latent probability matrices and
retains the top pℓ canonical coefficients to obtain UℓO. The number of
retained components pℓ is determined using parallel analysis28,29. It
then applies principal component analysis (PCA) on each residual
matrix after subtracting the UℓO matrix to estimate the data-specific
context-shared matrix UℓC. The number of retained principal
components is also determined using parallel analysis. The sequen-
tial estimation of UℓO and UℓC not only facilitates the computation
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and also enhances the interpretability of the obtained CCs and PCs
within the data context. See SupplementaryMaterials Algorithm 1 for
details. The performance of X-ING is robust to the choices of pℓ and
qℓ within a reasonable range. X-ING enables the integration of a
broader class of test statistic matrices across different (L) data types
while capturing themajor structures of effects of similar nature from
multiple (Kℓ) contexts (see “Methods” section).

X-ING improves power by borrowing information across differ-
ent data types and contexts
We conducted simulation studies to evaluate the performance of
X-ING in comparison with existing methods in a variety of scenarios.
We first simulated individual-level data across L omics data, with Kℓ

contexts for each data ℓ, under various combinations of between- and
within-data correlations that represent variations in data-shared and
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-specific association patterns on M-tested units (see “Methods” sec-
tion). Each set of data has a sample size of Nℓ, and the proportion of
variation in the simulated response variables that can be explained by
the predictors is θℓ. By performing a simple linear regression on each
response-predictor pair, we obtained L matrices of M ×Kℓ association
statistics as input for the following analyses.

We comparedX-INGwith three existingmethods: themultivariate
adaptive shrinkage (mash)21, multi-tissue eQTL (MT-eQTL)26, and
Metasoft30. Some of the existing methods were proposed for different
purposes, and those methods can be adapted to the integrative ana-
lysis of summary data from multiple contexts for comparison pur-
poses. We also included two variations of the X-ING models,
X-INGstarting and X-INGsingle−omics, for comparison and illustration pur-
poses. The X-INGstarting is a starting model without the modeling of

major data-shared patterns. It imposed the same prior for γ⋅j,ℓ for all
tested units in the j-th tissue fromdata ℓ, i.e., noborrowing information
across context and omics. The X-INGsingle−omics applies to only one
omics data type. It considers shared patterns across contexts but does
not allow the joint modeling of two or more omics data of different
effect size distributions.

We first evaluated the selection performance (the predicted pre-
sence of nonzero effects) using the area under the curve (AUC) of the
receiver operating characteristic (ROC) for all methods. We varied the
sample size, within-data across-context correlation, between-data
correlation, and proportion of tested units that do not have context-
shared information. In all scenarios, X-ING outperformed other
methods in terms of AUC. Not surprisingly, with increasing sample
sizes, AUCof all sixmethods increased (Fig. 2a). Allmethods except for

Fig. 1 | Illustrations of the integrative analysis ofmulti-tissue e/mQTLs and the
X-ING algorithm. a An illustration of the multi-tissue e/mQTL integrative analysis.
A total of M trios are tested, each consisting a SNP, a cis-gene, and a cis-CpG site.
eQTLdata are fromK1 tissues andmQTLdata are fromK2 tissues.bAn illustrationof
existing multi-tissue QTL methods which analyze each omics data type separately
or study the co-occurring patterns of associations tissue by tissue. The P-values in
the figure only serve for illustration purposes. In practice, they can be obtained
from QTL analyses. c The X-ING integrative analysis jointly analyzes multi-tissue
eQTL and mQTL association statistics, borrows strengths across omics and tissue

types, and captures association patterns that are omics-shared or tissue-shared.
d An illustration of the X-ING algorithm via themulti-tissue e/mQTL analysis: X-ING
takes as input L = 2 matrices of Z-statistics from eQTL andmQTL studies. It models
the latent association status for each input statistic. Via a logit function, X-ING links
the latent association status with a continuous modulation matrix for each data
type. By performing CCA and PCA on the modulation matrices for e/mQTL data,
X-ING captures the low-rank data-shared and data-specific major patterns. X-ING
outputs the posterior probability (posterior prob. in the figure) and the posterior
mean of association for each input statistic, accounting for those major patterns.

Fig. 2 | Comparison of methods on simulated data. a AUC for detecting the
presence of nonzero effects onData 1 with a sample size of Data 1 varying from 400
to 1200. We set ρ1 = ρ2 = 0.5, r =0.3 and θ1 = θ2 = 0.3. b AUC on Data 1 with within-
omics cross-context/tissue correlation, ρ1, varying from 0.3 to 0.65. N1 =N2 = 800,

r =0.2 andθ1 = θ2 = 0.3.cAUConData 1with cross-omics tissue-tissue correlation, r,
varying from 0.1 to 0.3. N1 =N2 = 400, ρ1 = ρ2 = 0.4. d AUC on Data 1 with the pro-
portion of tested units that do not have context-shared information varying from0
to 0.5. N1 =N2 = 400, ρ1 = ρ2 = 0.4, r =0.2 and θ1 = θ2 = 0.3.
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X-INGstarting (no borrowing information) could gradually gain power as
within-data correlation in Data 1 increased (Fig. 2b), suggesting mul-
tivariate integrative methods could improve power by borrowing
information across contexts. The performance of the single-omics
variation, X-INGsingle−omics, was similar to that of the existing method
for single-omics data, mash21. Mash and X-INGsingle−omics both allow
only cross-context/tissue integration but no borrowing information
across data types. The formermodels effect sizes and the lattermodels
the latent association status, and their performances are similar. When
considering two omics data types, Fig. 2c showed that only X-ING
could gain power as the between-data correlation increases. This is
because X-ING borrows information across multi-omics data types.
Allowing for multi-omics data integration is a major innovation of
X-ING comparing with other methods. When the proportion of tested
units without context-shared information increased, Fig. 2d showed
that X-ING had higher AUC than other methods, and the AUC of mash
and Metasoft reduced substantially.

Since many disease/trait-relevant effects are context-specific and
cell-type-specific12, we also evaluated the selection performance of
detecting associations that were shared across two to five contexts
(Table 1, see “Methods” section). X-ING achieved the highest overall
and context-specific AUC compared to other methods. In the simula-
tions of sparse associations (i.e., when there are many zero effects in
the data), X-ING outperformed competing methods (Supplementary
Fig. 1).Whenwithin- andbetween-data correlationswereboth zeros, all
methods achieved similar performance as there was no shared infor-
mation across contexts or data types (Supplementary Fig. 2). Supple-
mentary Fig. 3 showed that by increasing the number of contexts,
X-ING gained improved AUC due to more shared information across
contexts. Moreover, X-ING performed better in data with varying
percentages of variance explained by the predictors (Supplementary
Fig. 4). We then evaluated the estimation of effect sizes using the root-
mean-square error (RMSE) for both X-ING and mash, since only these
two methods provided the posterior mean estimates. As sample size
increases, both X-ING andmash gained improved RMSEs. The RMSE of
X-ING was smaller than that of mash for data with different sample
sizes (Supplementary Fig. 5).

The estimation of X-ING relies on parallelizable estimation of the
posterior mean and probability for each test unit, as well as highly
efficient algorithms (CCA and PCA) in capturing effect-sharing pat-
terns. Supplementary Figs. 6 and 7 showed the comparison of the
computation time of X-ING versus other methods. X-ING is computa-
tionally efficient. In addition, Supplementary Fig. 8 showed that X-ING
was robust toweak correlations amongpredictors for tested units (i.e.,
when tested units have moderately dependent effects). We also
showed that the performance of X-ING is robust to the choices of
retained CCs and PCs in the CCA and PCA analysis within a certain
range (Supplementary Fig. 9). When setting Uℓ =0, the algorithm does
not borrow information across data types nor tissue types. When set-
ting pℓ or qℓ to full ranks, the model is over-parameterized. The low-

rank approximation is useful in capturing major patterns in the data
and borrowing information across omics data types and contexts.

A multi-tissue cis-mQTL analysis integrating eQTL maps
The eGTEx project22 generates DNA methylome data on subsets of
GTEx samples from nine tissue types to study the genetic regulation of
DNAm and expression across human tissues. Due to the limited DNAm
tissue sample sizes, the detection of mQTLs is underpowered com-
pared with existing eQTL maps. Moreover, a large majority of mQTLs
lack functionality. To examine the genetic association patterns on
DNAm together with expression variation in a tissue-specific manner
while improving the functionality of the detected mQTLs, we applied
X-ING to the cis-mQTL association statistics integrating eQTL maps
(L = 2) generated on nine tissues representing N = 367 and 829 sam-
ples, respectively, from the GTEx project (v8)5,23. The list of tissues and
tissue-specific sample sizes for mQTLs and eQTLs are provided in
Supplementary Tables 1–2.

We obtained the sets of mQTLs from single-tissue mQTL analysis
of eGTEx23 including both lead and secondary mQTL variants for each
CpG sitewithin a 500KB cis-window size.We included 93,681 CpG sites
and 159,186 unique mQTL variants, forming 204,220 unique SNP-CpG
pairs. Each CpG site was assigned to a proximal gene with the nearest
transcription start site (TSS)31,32, forming 204,220 SNP-CpG-gene trios
(M = 204, 220). We applied X-ING to the cis-eQTL and mQTL associa-
tion statistics generated on 28 and nine tissues (K1 = 28, K2 = 9). In
Supplementary Fig. 10, we showed that the major patterns/eigenvec-
tors captured by X-ING can be interpreted as the surrogate variables
for tissue-tissue dependence due to similar cell-type compositions.

At the 80% posterior probability cutoff (FDR24,25 = 0.031), among
the 204,220 analyzed SNP-CpG pairs, we identified a total of 143,801
pairs with nonzero mQTL effects in at least two tissues. Among those
143,801 SNP-CpG pairs (corresponding to 112,162 unique mQTL var-
iants), 79,454 (58,158 unique variants) also exhibited nonzero asso-
ciation effect to its cis-gene expression in at least one tissue. In other
words, more than half of the reported mQTLs also have nonzero
associations to their cis-genes, suggesting joint genetic associations to
both cis-DNAm and gene expression.

Trans-association enrichment informs disease/trait-relevant
tissues
To examine the trans-association enrichment patterns among diseases
and traits, we conducted an integrative analysis using multi-tissue
inter-chromosomal trans-e/mQTL association statistics (L = 2). We first
selected 80 diseases/traits from a total of 216 diseases/traits and
restricted the analysis to 40,466 GWAS SNPs associated (P < 5 × 10−8)
with at least one of those 80diseases/traits. Those SNPswere generally
in weak linkage disequilibrium (LD) (Supplementary Fig. 11). We cal-
culated the trans-eQTL association statistics in 28 GTEx tissues (N≥73;
Supplementary Tables 1–2) and trans-mQTLs statistics in nine GTEx
tissues (Supplementary Table 1) using FastQTL33. For each of the

Table 1 | Comparison of methods on three sets of simulated data

Method Overall AUC AUC on associations true in two to five contexts

N1 = 400 N2 = 800 N3 = 1200 N1 = 400 N2 = 800 N3 = 1200

X-ING 0.823 0.881 0.904 0.856 0.914 0.933

X-INGsingle−omics 0.797 0.850 0.873 0.819 0.871 0.891

mash 0.787 0.827 0.844 0.792 0.814 0.821

MT-eQTL 0.760 0.816 0.851 0.755 0.808 0.843

X-INGstarting 0.769 0.829 0.856 0.769 0.827 0.854

Metasoft 0.702 0.772 0.802 0.745 0.833 0.864

Weevaluate the AUCof X-ING andcompetingmethods in the analysis of three sets of statistics (L = 3). The overall AUC is calculated based on the true association status for all tested effects.We also
compare the AUC for context-specific effects that have true nonzero effects in two to five cellular contexts/tissues.
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80 selected diseases/traits, we applied X-ING to integrate the multi-
tissue trans-association statistics for expression (K1 = 28) and DNAm
(K2 = 9). At the 80% posterior probability cutoff, there were 644 to
15,490 SNP-gene-CpG site trios out of the examined trios for each
selected disease/trait having nonzero trans-expression associations in
at least one out of the 28 examined eQTL tissues, or having nonzero
trans-methylation associations in at least one out of the nine examined
mQTL tissues. We further identified trans-QTL hotspots with nonzero
trans-effects on at least five genes/CpG sites. Further analysis showed
that disease-associated hotspot regions explained more phenotypic
variation comparedwith trait-associated ones (Supplementary Fig. 12).

We examined the enrichment of trans-expression associations
across 28 tissue types by evaluating the scaled proportion of SNP-
trans-gene pairs with trans-effects. Figure 3a showed the heatmap of
the scaled proportion of SNP-trans-gene pairs identified with trans-
associations for disease/trait-associated SNPs among the 28 tissues. As
a comparison, Fig. 3b showed the corresponding heatmap of the
scaledproportion for cis-expression associations.Weobservedamuch
stronger enrichment of trans-associations in many known disease/
trait-relevant tissue types. For example, we identified the brain amyg-
dala and prostate tissues as being enriched with trans-associations for
Alzheimer’s disease and prostate cancer, respectively34,35. The strong
enrichment for trans-associations in many disease/trait-relevant tis-
sues and the complementary patterns to cis highlight the potential of
leveraging trans-expression associations together with cis in further
identifying relevant tissues and cell types. It is consistent with the
higher enrichment for heritability in regions surrounding genes with
highly tissue-specific expression in disease-relevant tissue36.

Replication of cis- and trans-associations identified by X-ING
We evaluated the replication rates of SNP-CpG pairs with nonzero
effects identified by X-ING. 119,401 out of 204,220 analyzed lead/sec-
ondary SNP-CpG pairs were also included in the replication data from
FUSION (Finland-United States Investigation of NIDDM Genetics)

skeletal muscle study37. Among those 119,401 SNP-CpG pairs, 84,255
have nonzero effects in at least two tissues (posterior probability >0.8)
in GTEx data. At the P-value threshold of 6 × 10−7 (with Bonferroni
correction)38–40, 45.04% (53,780 out of 119,401) of the input SNP-CpG
pairs were replicated in the FUSION data (without applying X-ING). In
contrast, 55.79% (47,010 out of 84,255) of the SNP-CpG pairs identified
by X-ING with multi-tissue effects (in two or more tissues) were repli-
cated in FUSION. Moreover, we further categorized the examined
mQTLs as (1) single-tissue mQTLs only, (2) single-tissue mQTLs with co-
occurring expression associations, (3) multi-tissue mQTLs only, and (4)
multi-tissue mQTLs with co-occurring expression associations. Table 2
shows the replication rates by tissue type for those four types ofmQTLs.
Not surprisingly, multi-tissue mQTLs are more likely to be replicated. It
is worth noting that mQTLs with co-occurring expression associations
have much higher replication rates than those without. Similar replica-
tion results were observed in GoDMC data (Table 2). The replication
results demonstrate that by integrating multi-omics association studies
and borrowing information across data types, X-ING improves the
detection, replication, and functional interpretation of mQTLs.

We also evaluated the replication rates for trans-e/m associations
identified by X-ING among the nine tissues with both expression and
DNAm data, using eQTLGen15 and GoDMC39, respectively, as the
replication studies. Among the 282 trans-expression associations
identified by X-ING in the whole-blood tissue from GTEx, 56 of them
(19.9%) were replicated at the 5% FDR level in the whole-blood-sample-
based eQTLGen study. In contrast, the proportion of significant trans-
expression associations among randomly selected SNP-trans-gene
pairs in eQTLGen was 0.04%. Twenty-four of the 282 trans-eSNPs were
trans-eSNPs in at least one another tissue besides blood and they were
all replicated in eQTLGen. Moreover, 139 out of the 282 were also cis-
eQTLs in at least one tissue, of which 44 were replicated in eQTLGen.
The replication rate showed a 3.8-fold enrichment compared to trans-
eSNPs that were not cis-eQTL (P = 1 × 10−6; two-sided Fisher’s exact
test). We observed similar patterns for trans-methylation associations.

Fig. 3 | Enrichment of cis- and trans-associations. The heatmaps show the scaled
proportions of a pairs of SNP and trans-gene with trans-association effects and
b pairs of SNP and cis-gene with cis-association effects identified by X-ING among
disease/trait-associated SNPs for 35 selected diseases/traits (y-axis). Red represents

an enrichment and blue indicates a depletion of associations. We label the tissue
with the highest level of trans-association enrichment for each disease/trait using
solid lines. The tissue with the second and third highest enrichment in trans-
association is labeled with dashed lines.
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At the P-value threshold of 3 × 10−9 (by Bonferroni correction)39,41, 71
trans-methylation associations identified by X-ING were replicated in
GoDMC, with a 7.4-fold enrichment (P < 1 × 10−16; two-sided Fisher’s
exact test) compared to randomly selected SNP-trans-CpG pairs.
Among the 71 replicated trans-methylation associations, 44 of them
were identified in at least two tissues in GTEx. Moreover, all 71 repli-
cated trans-mSNPs were also cis-mQTLs in GTEx. Consistent with
existing studies for cis-mediated mechanism of trans-associations42–44,
our results suggest that trans-e/massociationswith joint trans- and cis-
e/mQTL effects are more likely to be replicated.

Tissue-sharing patterns of trans-association and cis-mediated
trans-association effects
To further characterize the tissue-sharing patterns of trans-effects
mediated by cis-gene/CpG sites, we analyzed the cis- and trans-e/m
associationeffects identifiedbyX-ING in thenine shared tissues.Out of
the 19,003 SNP-trans-gene pairs with trans-associations in at least one
tissue, we first selected the pairs with cis-eQTLs. There were 7479
analyzed trios of SNP, cis-gene and trans-gene. Similarly, we selected
13,952 trios of SNP, cis-CpG site and trans-CpG site out of 14,433 SNP-
trans-CpGpairs. For each trio, we estimated the indirect effect of a SNP
on its trans-gene/CpG site via cis-gene/CpG site and the direct effect.

Figure 4 a showed that the total effects of 5934 (31.2%) SNP-trans-
gene pairs and the indirect trans-expression association effects
through cis-gene of 2160 (28.8%) SNP-cis-trans trios were shared by
magnitude in at least two tissues. Here effects shared by magnitude
refer to the effects with the same sign and within a factor of two of the
strongest effect across tissues. Our findings are consistent with pre-
vious reports of the tissue-sharing patterns of indirect trans-
association effects through cis-gene expression42. Moreover, we

found similar effect-sharing patterns for trans-methylation associa-
tions (Fig. 4b). There were 4705 (32.6%) SNP-trans-CpG site pairs with
shared trans-methylation association effects in at least two tissues.
3436 (24.7%) SNP-cis-trans trios shared similar indirect trans-mQTL
effects via cis-CpG site in at least two tissues. Our results suggest that
many trans-associations and cis-mediated trans-association effects are
shared in some but not all tissue types. Proper multi-tissue analysis
may enhance the power to detect them.

We plotted the negative log base 10 of the mediation P-values
versus the percentage of reduction in trans-effects after accounting for
putative cis-mediators (Supplementary Figs. 13–14). The percentage of
reduction in trans-effects is also the ratio of indirect effect to total
effect and is expected to be in the range of 0–1. A negative reduction in
trans-effects with a significant mediation P-value suggests a potential
false discovery of cis-mediation (see Supplementary Materials for
details). Among trios with significant cis-mediated trans-effects
(FDR <0.05), trios identified as having multi-tissue trans-effects are
less likely to have negative reductions in trans-effects, compared to
trios identified as having single-tissue trans-effects in both e- and
mQTL analyses. Those results suggest that multi-tissue analyses may
reduce false discoveries of cis-mediated trans-association effects
compared with single-tissue e/mQTL analyses.

Integrating spatial transcriptomic data with multi-tissue eQTLs
reveals spatially defined molecular links underlying SCZ
genetics
The X-ING method could also be applied to integrate broader and
complementary sets of summary statistics to enhance cross-omics
cross-feature learning. Here we apply X-ING to integrate differential
expression statistics from spatial transcriptomic data withmulti-tissue

Table 2 | Replication rates in the FUSION and GoDMC data for SNP-CpG associations identified by X-ING (posterior prob-
ability >0.8)

Replication
study

Tissue of
discovery

Sample size Total # identified
SNP-CpG
pairs (PP >0.8)

Type of effects

Single-tissue, no
expression
association

Single-tissue, with
expression
association

Multi-tissue, no
expression
association

Multi-tissue, with
expression
association

FUSION Breast mam-
mary tissue

49 13,870 0.08 (18/233) 0.38 (18/47) 0.74 (3259/4399) 0.83 (7619/9191)

Colon
transverse

189 83,803 0.17 (1013/6047) 0.26 (955/3710) 0.53 (16,532/31,140) 0.63 (26,949/42,906)

Kidney cortex 47 13,690 0.39 (11/28) 0.40 (6/15) 0.64 (3489/5445) 0.76 (6251/8202)

Lung 190 74,282 0.09 (427/4819) 0.19 (464/2506) 0.54 (14,957/27,733) 0.63 (24,746/39,224)

Muscle skeletal 42 11,313 0.44 (24/54) 0.75 (24/32) 0.82 (3193/3881) 0.91 (6672/7346)

Ovary 140 61,840 0.14 (922/6,431) 0.24 (1067/4047) 0.30 (11,658/21,215) 0.40 (19,660/30,147)

Prostate 105 51,125 0.12 (258/1900) 0.27 (273/906) 0.32 (11,386/19,172) 0.42 (20,081/29,147)

Testis 47 9631 0.11 (47/501) 0.16 (28/179) 0.33 (2182/3272) 0.41 (4102/5679)

Whole blood 47 29,719 0.08 (34/442) 0.30 (33/114) 0.34 (6327/10,869) 0.48 (12,638/18,294)

GoDMC Breast mam-
mary tissue

49 24,583 0.07 (31/431) 0.26 (20/78) 0.31 (2474/8026) 0.45 (7259/16,048)

Colon
transverse

189 143,566 0.18 (1993/10,792) 0.31 (1836/5960) 0.31 (17,060/55,019) 0.41 (29,614/71,795)

Kidney cortex 47 24,475 0.18 (10/55) 0.56 (14/25) 0.33 (3088/9412) 0.42 (6255/14,983)

Lung 190 127,370 0.13 (1182/8820) 0.26 (1003/3836) 0.31 (15,359/48,930) 0.42 (27,524/65,784)

Muscle skeletal 42 19,516 0.21 (16/77) 0.29 (14/48) 0.30 (2020/6837) 0.36 (4572/12,554)

Ovary 140 105,088 0.13 (1476/11,079) 0.23 (1482/6381) 0.30 (10,895/36,923) 0.40 (20,207/50,705)

Prostate 105 88,689 0.11 (388/3421) 0.26 (394/1513) 0.31 (10,751/34,421) 0.42 (20,708/49,334)

Testis 47 18,767 0.09 (86/962) 0.30 (96/323) 0.33 (2123/6495) 0.41 (4475/10,987)

Whole blood 47 52,558 0.09 (70/767) 0.29 (60/205) 0.34 (6762/19,717) 0.47 (15,118/31,869)

Proportions and numbers of SNP-CpG pairs identified in GTEx that are also significant in FUSION/GoDMC under P-value threshold of 6 × 10−7 are listed. Those SNP-CpG pairs are divided into four
groups based on the number of tissues and the presence of associations with cis-genes.
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eQTL statistics from GTEx. We detect the genes in cis-association with
SCZ risk loci and also show laminar-specific expression (i.e., differ-
ential expression across different brain layers), accounting for the
shared and data-specific patterns of the two sets of summary
statistics45. Additionally, our results reveal the enrichment of laminar-
specific expression of these genes in certain brain layers, offering
valuable insights into spatially defined mechanisms underlying SCZ
genetics.

To examine the laminar-specific variations for genes in cis with
SCZ loci, we performed an integrative analysis of spatial differential
transcriptomic statistics with multi-tissue eQTL statistics from GTEx
brain tissues5 (L = 2). We first performed spatial differential expression
analysis46 to obtain test statistics across six layers and white matter
(WM) for each of the 12 samples (K1 = 7) from Lieber Institute for Brain
Development (LIBD) in human dorsolateral prefrontal cortex (DLPFC).
Here we tested whether the expression of a gene in one layer differs
from the other layers46. We obtained the set of brain eQTL statistics
from 13 GTEx brain tissues (K2 = 13). In total, we jointly analyzed over
1.6 million SNP-gene pairs (M = 1.6 million) matched in the spatial data
from LIBD and the GTEx data. For SCZ, we included 8,962 SNP-gene
pairs involving 527 SCZ risk SNPs and 3,184 genes in cis (1 MB) with a
SCZ SNP. We performed X-ING analysis for each of the 12 samples. At
the 90%posterior probability cutoff (FDR =0.035), we identified genes
differentially expressed in each specific layer in each sample and also
associated with SCZ risk loci in at least two GTEx brain tissues. Among
the 229 genes in cis-association with SCZ loci, a range of 9 to 41 genes
exhibited laminar-specific expression for each pair of sample and brain
layer. Further examination of these genes revealed that the laminar-
specific expression of these SCZ-associated genes was enriched in
layer 2 (L2; P =0.026), layer 5 (L5; P =0.025) and WM (P =0.070)
(Fig. 5). The significant enrichment in L2 and L5 were reported by
existing studies45, which demonstrated that SCZ risk genes in L2 and
L5 showed decreased expression in SCZ patients. Here we also iden-
tified WM being enriched with genes that show spatially differential
expression. By performing additional spatial registration of snRNA-seq
datasets, Maynard et al.45 reported preferential expression of oligo-
dendrocyte subtypes in WM, where oligodendrocyte has been repor-
ted to contribute to neuropsychiatric disorders such as SCZ and
autism spectrum disorder47,48. Supplementary Fig. 15 showed the sig-
nificance of layer enrichment for differentially expressed genes asso-
ciated with autism spectrum disorder (ASD) risk loci in at least two
GTEx brain tissues. There was an enrichment of differentially

expressed genes in L2 (P =0.009), L5 (P =0.030), L6 (P =0.028), and
WM (P = 0.020) for cis-genes associated with ASD risk loci.

Discussion
In this work, we propose X-ING as a general framework for the cross-
integration of summary statistics from multi-omics data each with
multiple cellular contexts. X-ING takes as input the summary statistic
matrices from Ldata types andmodels each input statistic as a product
of Gaussian and latent binary association status. The modeling of L
latent binary matrices allows the cross-integration of different data
types of different effect distributions, and X-ING captures omics-
shared and context-shared association patterns. This is a major inno-
vation comparedwith existingmulti-context/tissuemethods analyzing
only one data type at a time. Additionally, X-ING allows for different
levels of sparsity in each context, potential sample overlapping, and
effect heterogeneity. With simulation studies, we demonstrate that
X-ING improves the estimation of association probabilities and effect
sizes in various simulated settings by borrowing strengths across dif-
ferent data types and contexts.

We applied X-ING to detect multi-tissue cis-mQTLs integrating
eQTLmaps, with a focus on cis-mQTLs with co-occurring associations
in other omics data and contexts. We examined trans-e/m association
patterns across multiple tissues from GTEx, with a focus on the dis-
ease/trait-associated SNPs. The cis-mQTLs and trans-e/m associations
identified by X-ING were replicable, especially for those with effects
identified in multiple tissues or omics data types. The enrichment of
trans-associations in tissue types is informative in suggesting the dis-
ease/trait relevanceof tissues.We also characterized the tissue-sharing
patterns of total effects and indirect effects of trans-association
through cis-mediators. In another analysis, we illustrate the broader
application of X-ING by integrating spatially differential expression
statistics from spatial transcriptomic data with multi-tissue eQTL sta-
tistics from 13 GTEx brain tissues. We highlighted the spatial hetero-
geneity in expression variation of many SCZ risk-associated genes and
provided new insights into studying the spatially defined mechanisms
underlying SCZ genetics.

There are some limitations and caveats of current work. First, the
detected joint associations across multi-omics data or in multiple cel-
lular contexts are not evidence of causation. X-ING does not perform
colocalization analysis. Though the findings of X-ING may provide
insights of potential connected relationships andmechanisms, it should
be interpreted as associations. Second, the cross-integrative methods

Fig. 4 | Tissue-sharing patterns of trans-association effects and cis-mediated
trans-association effects. a Among the 19,003 selected SNP-trans-gene pairs, the
total trans-eQTL effects of 5934 (31.2%; purple) pairs are shared in at least two
tissues. Among the 7479 analyzed trios of SNP, cis-gene and trans-gene, the indirect
trans-eQTL effects through cis-gene of 2160 (28.8%; blue) trios are shared in at least
two tissues. b Among the 14,433 SNP-trans-CpG pairs, 4705 (32.6%; purple) pairs

have shared trans-mQTL effects in at least two tissues. Among the 13,952 trios of
SNP, cis-CpG site, and trans-CpG site, 3436 (24.7%; blue) trios share similar indirect
trans-mQTL effects via cis-CpG site in at least two tissues. Note that tissue-shared
total/indirect effects refer to the effects with the same sign and within a factor of
two of the strongest effect across tissues. The gradient color in each bar represents
the number of tissues with shared effects.
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are not powerful in detecting effects and associations that are specific to
only one omics data type in only one context. For those omics- and
context-specific effects, existingmultivariatemethodsmay not improve
power and context-specific sample size is still the major limiting factor.
Third, X-ING treats theM-tested units as independent in the estimation.
When analyzing published disease/trait-associated SNPs or single-tissue
QTLs, most of them are uncorrelated or in weak LD. In general, we
recommend applying X-ING to tested units with at most moderate
dependence. Last but not least, X-ING does not allowmissingness in the
input statistics, and a naive imputation may facilitate the analysis but
may induce biases if there is substantial missingness.

In future work, X-ING can be improved with a more efficient and
selective data integration, when the number of available sets of sum-
mary statistics is high, e.g., L ≥ 5 and some Kℓ ≥ 50. Another potential
area of future development is the integration of association statistics
with mediation and causal estimates from multiple studies to reduce
confounding and spurious associations.

Methods
A starting Bayesian model without the modeling of shared data
patterns
Assuming independence among allM-tested units/trios, for each trio i
(i = 1,…,M) in omics data ℓ, we assume its Z-scores fromKℓ tissues, zi⋅,ℓ,
following a multivariate normal distribution as Eqn. (1). We further
assume that each latent genetic association Z-score ezij,‘ takes a

Gaussian prior, N ðezij,‘j0,σ2
j,‘Þ, and each γij,ℓ takes a Bernoulli distribu-

tion with success probability πj,ℓ, which controls the sparsity of non-
zero effects in tissue j for data ℓ. This specification is equivalent to
assuming a spike-slab prior for the product, denoted as ηi⋅,ℓ, of ezi�,‘ and
γi⋅,ℓ

49,50, with each ηij,ℓ distributed as

ηij,‘ ∼
N ηij,‘j0,σ2

j,‘

� �
, if γij,‘ = 1,

δ0ðηij,‘Þ, if γij,‘ =0:

8<: ð3Þ

where δ0 is a Dirac delta function at zero. To promote computational
efficiency, we utilize the specification in Eqn. (1) (see Supplementary
Materials). The complete-data likelihood can be written as

p z,ez, γ;Θ1

� �
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whereΘ1 = fR‘,σ

2
j,‘,πj,‘,‘= 1, . . . ,L, j = 1, . . . ,K‘g is the collection ofmodel

parameters and ∘ denotes element-wise product of two vectors. In
practice, the tissue-tissue correlation matrix Rℓ due to sample
overlap is often pre-estimated and treated as known21. Existing
literature often estimates it using a subset of the input Z-statistics
that are likely to be from the null distributions (for example, using
only SNPs with ∣Z∣ < 5 in all tissues to estimate the tissue-tissue
correlation matrix)8,21. Note that in the starting model (4) without
modeling shared data patterns, the prior for γ⋅j,ℓ is the same for all
tested units in the j-th tissue from data ℓ.

To obtain the estimates of parameters in model (4), we need to
compute the conditional density of latent variables given the observed
Z-scores,

pðez,γjz;Θ1Þ=
pðz,ez,γ;Θ1Þ
pðz;Θ1Þ

, ð5Þ

where z, ez and γ are the collections of zℓ’s, ez‘’s and γℓ’s, respectively. To
facilitate computation, we could apply an empirical Bayes approach to
estimate the conditional density with specification of distributions for
hyperparameters. EM algorithms are usually used to obtain the esti-
mates for models with latent variables. Here, the difficulty of
employing standard EM algorithms comes from two folds. First, due to
the curse of dimensionality, it would be computationally intensive to
evaluate the expectation of high-dimensional latent variables. Second,
it would be computationally intractable to integrate out the latent
variables with spike-slab priors. To efficiently estimate the parameters
in model (4), we use an EM algorithm with variational inference
(see Supplementary Materials).

A Bayesian hierarchical model for the X-ING method
When jointly analyzing summary statistics frommulti-omics data each
with multivariate cellular contexts, some association patterns are
shared between omics data types. For example, eQTLs and mQTLs
often co-occur. Some cellular contexts are more correlated than oth-
ers. The proposed cross-integrative genomics method, X-ING,
accounts for those omics-shared and context-shared association pat-
terns. In contrast to existing single-omics methods modeling effect
sizes from multiple contexts, the proposed X-ING method jointly
analyzes L matrices of Z-statistics and models the latent binary asso-
ciation status, {γℓ}, to facilitate the modeling of effect co-occurring
patterns from multi-omics data of different nature and distributions.
X-ING enables a broader class of integrative analyses across different
(L) data types while also allowing the integration of statistics of
similar nature across different (Kℓ) contexts – a major advantage of

Fig. 5 | Laminar-specific expressionofSCZ-associatedgenes.Theheatmapshows
the enrichment of layer-specific differentially expressed genes among disease risk-
associated genes, compared with the proportions of layer-specific differentially
expressed genes across the genome. The color in each cell indicates the difference
between the two proportions for each sample and layer. Red represents an
enrichment of differentially expressed genes in a specific sample and layer, and
white represents a depletion of differentially expressed genes. Gray cells indicate
missing values (no distinct layer information). There is an enrichment of differen-
tially expressed genes in layer 2 (P =0.026) with t(7) = 2.34, layer 5 (P =0.025) with
t(11) = 2.20, and white matter (P =0.070) with t(11) = 1.59 for cis-genes associated
with SCZ risk loci. P-values were calculated by paired one-sided t-test without
multiple testing adjustment, based on the listed t-statistics anddegrees of freedom.
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X-ING. We develop an EM algorithm with variational inference
(see Supplementary Materials) for the model. In each E-step, we eval-
uate the posterior distribution of latent variables and obtain the var-
iational parameters. In the M-step, we extract the common features
shared amongmatrices of logit-transformed posterior probabilities of
latent binary status by performing a CCA and PCA.

In detail, we build a Bayesian hierarchical framework tomodel the
structured major patterns in the latent association status, γij,ℓ. To
promote sparsity andmodelmajor data patterns acrossmultiple omics
and contexts, we modulate the prior probability of the latent status
and link it with a latent low-rank matrix U ‘ 2 RM ×K‘ that captures
omics-shared and context-shared major patterns via a logit link, as
Eqn. (2).

Via the above modeling, our method efficiently allows the prior
probability being specific for each tested unit (pair, trio, etc.) without
over-parametrization, p(γij,ℓ = 1∣Uℓ, u0,ℓ) =πij,ℓ. Moreover, the joint esti-
mation of low-rank matrix Uℓ across L data types also allows us to
capture the shared information across different data types with an
unknown extent of information sharing. Combining the prior prob-
ability in (2) and the Gaussian prior for ez with the multivariate normal
distribution for Z-scores in (1), the complete-data likelihood for X-ING
can be written as

p z,ez,γ� �
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� �
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� �1�γij,‘

 !
:

ð6Þ

Comparing with the starting model (4), the X-ING model (6) allows
each tested unit to have a specific prior that is modulated via a low-
rank term, Uij,ℓ, based on a logit transformation of the latent
association indicator, γij,ℓ.

When considering an M × Kℓ matrix of statistics from a single-
omics data (L = 1), there exists no data-shared structure and we may
regularize the rank of Uℓ using the nuclear norm27. If association
pattern sharing is limited across Kℓ tissues or when a larger regular-
ization is imposed, the low-rank matrix Uℓ may become a zero matrix
and the prior model (2) reduces to a Bernoulli random variable with a
shared probability parameter as in model (4), i.e., p(γij,ℓ = 1∣u0,ℓ) = πj,ℓ,
indicating only tissue-specific sparse priors being imposed. When
jointly estimating the low-rankmatrices across L data types, we could
estimate the latent low-rank matrix Uℓ as Uℓ =UℓO +UℓC, where UℓO

captures the omics-shared major patterns across L omics data types,
and UℓC captures data-specific context-shared patterns within-data
type ℓ across Kℓ contexts. In detail, we could extract the common
latent features, UℓO’s, shared among two ormore omics data types by
performing a CCA or a generalized canonical correlation analysis
(GCCA) on the logit-transformed latent probability matrices using
the R package RGCCA51. The number of retained components pℓ is
determined using parallel analysis28,29. Additionally, X-ING further
models the major sharing patterns, UℓC, across tissues/contexts
within each omics data type by performing PCA on each residual
matrix after subtracting the UℓO matrix. The number of retained
principal components is also determined using parallel analysis. The
modeling of omics-shared and data-specific patterns may not be
uniquely identifiable and they do not need to be. That is, UℓO and UℓC

do not need to be orthogonal, and their sum Uℓ could still be a good
approximation of the logit-transformed probabilities of latent indi-
cators. X-ING performs CCA and PCA sequentially within each itera-
tion, and simultaneously accounts for omics-shared and omics-
specific context-shared association patterns across data types and
contexts. It outputs the posterior mean and probability of nonzero
for each input statistic. Additionally, it provides the eigenvectors
from PCA and the canonical coefficients from CCA at the final
iteration, and these outputs may facilitate the interpretations of the
major patterns in the data.

Generation of summary statistics in the simulation studies
Wegenerated Lmatrices ofM ×Kℓ association summary statistics using
simulated individual-level data. We first simulated predictor variables
Xℓ, with M omics-specific predictors and a sample size of Nℓ. Each
element of Xℓ was generated independently from a standard normal
distribution. Here, we simulated binary association status, γij,ℓ with
given correlation structure using the R package bindata. By simulating
effect size, βij,‘ ∼N ð0,σ2

‘ Þ, for each data type ℓ, we then considered the
following equation to generate response variables,

yj,‘ =X ‘ðβ�j,‘ � γ�j,‘Þ+ ϵ�j,‘, ð7Þ

where ϵ⋅j,ℓ was the error term following N ð0,σ2
ϵ Þ. In the simulation

studies, we controlled the proportion of variation in the response
variable, yj,ℓ, that can be explained by the predictors,

θj,‘ =
var X ‘ β�j,‘�γ�j,‘ð Þð Þ

var yj,‘ð Þ , wherewe assumed the same θℓ for all θj,ℓ’s in data ℓ.

In the simulation of two omics data types, i.e., L = 2, each row of
the corresponding association status matrices γ1 2 RM ×K1 and γ2 2
RM ×K2 was jointly simulated52 with the correlation matrix Ω being:

Ω=
W 1 C

C> W 2

� �
, ð8Þ

and probability of being 1 as τℓ (ℓ = 1, 2). HereW ‘ 2 RK‘ ×K‘ (ℓ = 1, 2) was
the within-data correlation structure across contexts for the ℓ-th data
type, and C 2 RK1 ×K2 was the between-data correlation matrix. Within
each omics data type ℓ, all Kℓ contexts can be partitioned into two
groups, with K ð1Þ

‘ and K ð2Þ
‘ contexts, respectively, where K ð1Þ

‘ +K ð2Þ
‘ =K ‘.

We also considered nonzero within-group context-context correla-
tions for each group of contexts. The correlation matrices Wℓ’s and C
were specified as

W ‘ =
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where 1K ð1Þ
‘

and 1K ð2Þ
‘

were column vectors of ones with length K ð1Þ
‘ and

K ð2Þ
‘ , respectively, ρℓ was the pair-wise correlation coefficient for any

two contexts within the ℓ-th data type, and r was the parameter
controlling the strength of cross-omics/between-data correlations
among shared/similar contexts.

After simulating the individual-level data, we obtained all Z-scores
{zij,ℓ}’s by performing a simple linear regression for each predictor and
its simulated response variable. A similar simulation framework could
be used to generate Z-scores for three or more data types (L ≥ 3).

Cis-e/mQTL input association statistics
We obtained the single-tissue cis-mQTL and cis-eQTL association sta-
tistics from GTEx portal5,23. Those QTL statistics were obtained using
FastQTL33, adjusting for top five genotypic principal components,
biological gender, Sequencing platform (IlluminaHiSeq 2000orHiSeq
X), Sequencing protocol (polymerase chain reaction, PCR; PCR-based
or PCR-free), and a set of variables generated using the method of
probabilistic estimation of expression residuals (PEER)53. For cis-mQTL
analysis integrating eQTL maps, we included both lead and secondary
mQTL variants for each CpG site within a 500KB cis-window size. Each
CpG site was assigned to a proximal gene with the nearest TSS31,32. We
analyzed 204,220 SNP-CpG-gene trios, consisting of 93,681 unique
CpG sites and 159,186 unique mQTL variants.
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Trans-e/mQTL input association statistics
In our integrative analysis of trans-e/mQTL associations, we obtained
the test statistics for GWAS SNPs associated with at least one out of
80 selected diseases/traits (P < 5 × 10−8). In detail, we selected 80 dis-
eases/traits that have more than 100 risk loci. Those diseases/traits
were related to brain function (e.g., Alzheimer’s disease), artery tissues
(e.g., coronary artery disease), heart function (e.g., atrial fibrillation) or
cancers (e.g., prostate cancer). The full list of diseases and traits used
was provided in Supplementary Data 1. Similar to cis-eQTL and cis-
mQTL analyses, we adjusted for the same set of covariates when per-
forming trans-eQTL and trans-mQTL analyses, respectively. We tested
trans-association for SNP-gene pairs from different chromosomes54,55

and obtained the association statistics for trans-eQTLs and trans-
mQTLs in 28 and nine GTEx tissues, respectively. The list of tissues and
sample sizes was given in Supplementary Tables 1–2.

Differential expression analysis of disease-relevant genes in
brain layers
In the integrative analysis of spatial transcriptomics data with multi-
tissue eQTLs, we used LIBD DLPFC data generated using 10× Visium45

that contained 12 samples from three adult donors. The original study
provided manual annotations for the tissue layers based on the
cytoarchitecture. For each of 12 samples, we performed differential
expression analysis using beta-PossionGLMmodel46 to obtain Z-scores
of each gene. We compared the expression profiles of spots in a layer
with those from the rest of spots in other layers for each gene, and
obtained 12matrices of differential expression statistics with each row
being a gene and each column corresponding to a layer. Additionally,
we obtained the summary statistics for cis-eQTLs from 13 GTEx brain
tissues. For each sample, the two sets of summary statistics were
matched through gene names.We conducted a X-ING analysis for each
sample. In each analysis, we integrate the spatially differential
expression statistics of the sample with 13 sets of GTEx brain eQTL
statistics, and obtained the posterior probabilities of having cis-
association and spatially differential expression.

More specifically, we analyzed 85,944 GWAS SNPs (P < 5 × 10−8)
associatedwith diseases/traits that havemore than 100 risk loci. There
were 15,244 cis-genes available inGTEx data for those examined GWAS
SNPs23. For the 85,944 examined GWAS SNPs, we analyzed a total of 1.6
million SNP-gene pairs matched in 13 GTEx brain tissues and differ-
ential expression test statistics for genes among 12 DLPFC samples. In
analyzing each of the 12 LIBD samples, we applied X-ING on a 1.6M
(SNP-gene pairs) by 7 (layers)matrix of Z-scores, and a 1.6M× 13matrix
of Z-scores for 13 GTEx brain tissues. Note that 4 of the 12 samples
contained only fivemanually annotated layers (i.e., a 1.6M× 5matrix of
Z-scores). At the 90% posterior probability cutoff, we obtained the
genes with brain-layer-specific expression levels (≥1 nonzero spatial
differential statistic) and also being in cis-association with disease risk
loci (≥1 nonzero brain eQTL statistic) in the examined sample (Sup-
plementary Data 2–3). We studied the concerted association and
enrichment patterns across 12 samples to minimize the potential
confounding effects due to unknown sample heterogeneity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GTEx data (v8) used in this study are available in dbGaP under
accession number phs000424.v8.p2. DNAm normalized data is avail-
able at GEO (GSE213478). Summary statistics of cis-mQTLs are avail-
able at the eGTEx Portal (https://gtexportal.org/home/downloads/
egtex/methylation). The GTEx SNPs from GWAS Catalog are available
at https://www.ebi.ac.uk/gwas/. The eQTLGen data released by eQTL-
Gen Consortium are available at https://www.eqtlgen.org. The GoDMC

data released by the Genetics of DNA Methylation Consortium are
available at http://www.godmc.org.uk. The FUSION data are available
through FUSION Skeletal Muscle Study portal: https://www.ebi.ac.uk/
birney-srv/FUSION/. The DLPFC data released by LIBD are available at
https://research.libd.org/spatialLIBD/. The CommonMind Consortium
data are available via access request to the CommonMind Consortium
Knowledge Portal: https://doi.org/10.7303/syn2759792. Data to gen-
erate figures is available at https://github.com/ylustat/XING-Analysis/
tree/main/Data.

Code availability
The code for X-ING is available at https://github.com/ylustat/X.ING56.
The code to reproduce the analysis can be found at https://github.
com/ylustat/XING-Analysis/tree/main/Code.
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