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The vast diversity of mammalian adaptive antigen receptors allows for robust and

efficient immune responses against a wide number of pathogens. The antigen

receptor repertoire is built during the recombination of B and T cell receptor

(BCR, TCR) loci and hypermutation of BCR loci. V(D)J recombination rearranges

these antigen receptor loci, which are organized as an array of separate V, (D),

and J gene segments. Transcription activation at the recombining locus leads to

changes in the local three-dimensional architecture, which subsequently

contributes to which gene segments are utilized for recombination. The

endogenous retrovirus (ERV) mouse mammary tumor provirus 8 (Mtv8) resides

onmouse chromosome 6 interposed within the large array of light chain kappa V

gene segments. As ERVs contribute to changes in genomic architecture by

driving high levels of transcription of neighboring genes, it was suggested that

Mtv8 could influence the BCR repertoire. We generated Mtv8-deficient mice to

determine if the ERV influences V(D)J recombination to test this possibility. We

find that Mtv8 does not influence the BCR repertoire.
KEYWORDS

endogenous retrovirus, immunoglobulin repertoire, V(D)J recombination, MTV, B cell
receptor (BCR) repertoire
Introduction

The extensive diversity of the jawed vertebrate adaptive immune response depends on

the programmed assembly and hypermutation of antigen receptor (AgR) genes (1). The

first stage of AgR assembly is V(D)J recombination, initiated by lymphocyte-specific

recombination activating genes 1 and 2 (RAG1 and RAG2), during which immunoglobulin

(Ig) and T cell receptor (TCR) genes are recombined from discrete variable (V), diversity

(D), and joining (J) gene segments (2).

AgR assembly is a sequential process during lymphocyte development. In B cells, the Ig

heavy-chain (Igh) locus recombines in early and pro B cells prior to the kappa and lambda

light chain (Igk, Igl) loci in pre B cells (2, 3). Igh recombines in two phases: first, DH-to-JH
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rearrangements occur in lymphoid progenitors; second, VH-to-DJH
rearrangements occur in pro-B cells (2, 4). After successful (i.e. in-

frame without premature stop codons) Igh recombination, Igk

undergoes VK-to-JK recombination (3). If neither Igk allele

successfully rearranges, the Igl locus recombines in a VL-to-JL
fashion. During V(D)J recombination, RAG (a heterotetramer

composed of RAG1 and RAG2 molecules) accumulates at

recombination centers (RCs) that encompass J or DJ gene

segments (for D-to-J/V-to-J and V-to-DJ recombination,

respectively) (4). In RCs, RAG binds to a recombination signal

sequences (RSS) that flanks the rearranging gene segment (4). Then,

a partner RSS of the second gene segment is brought into the RC for

synapsis and RAG-mediated cleavage.

V(D)J recombination determines the V, (D), and J gene

segments used in a particular AgR gene and is dependent on

three-dimensional chromosomal architecture. Specifically, V(D)J

recombination is constrained to AgR loci by chromatin loops, the

bases of which are defined by CCCTC-binding factor (CTCF)-

bound CTCF-Binding Elements (CBEs) (5–9). The number of loops

formed is dependent on the recombining locus (10). In addition to

chromatin loops defining the AgR, chromosomal architecture also

defines the mechanism by which recombining gene segments are

brought into the RC (11).

The Igk locus is comprised of 92 functional (163 total) VK and

four functional JK spread across 3.2 Mb (Figure 1A) and contracts

into a recombination-competent chromosomal structure in

developing pro- and pre-B cells (12, 13). Once contracted, the Igk

locus forms a rosette-like structure with five VK-containing loops

and one loop with JK and CK gene segments (10). Igk rearrangement

occurs predominantly through the collision of, and subsequent

recombination between, the JK-containing and a VK-containing

loop (10). While the Igk loops are thought to be predominantly

shaped by the CBEs throughout the locus, it is unknown whether

other factors are involved.

The endogenous retrovirus (ERV) mouse mammary tumor

virus (MMTV), Mtv8 was mapped to the Igk locus on

chromosome 6 (Figure 1A) (14–16). Mtv8 is a provirus with all

open-reading frames (ORFs) intact, namely, gag, pro, pol, env, and
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superantigen (SAg) (Figure 1B). The provirus does not produce

infectious virions and is silent in the mammary glands, the targeted

tissue of all MMTVs, potentially due to hypermethylation of its

promoter region (17–19). The Mtv8 SAg has a specificity for Vb11
and Vb12 (20). Mice strains harboringMtv8 lack Vb11+ and Vb12+

T cells (21), indicating that Mtv8 is expressed in antigen presenting

cells, such as dendritic cells and B cells which present SAg to

cognate T cells (22). AsMtv8 is mapped within the Igk locus, it was

hypothesized that it may contribute to Igk recombination by driving

high levels of transcription in its vicinity (23). It was suggested that

recombination to the first VK gene segment downstream of Mtv8

(VK14-111, formerly VK9M) could allow for enhancer activation of

the Mtv8 promoter (23). To identify whether Mtv8 affects the Igk

repertoire, the frequency of recombination of the JK gene segments

to VK14-111 was analyzed in inbred mouse strains with [BALB/c,

C58.C, A/J, and C57BL/6J (B6J)] and without (C58, C.C58, NZB,

and PERA/Ei) Mtv8 (23). These experiments demonstrated that

mice inheriting Mtv8 have higher recombination between VK14-

111 and all JK gene segments compared to strains without Mtv8.

While these analyses suggested differences in the usage of VK14-

111, Ig repertoire comparisons between inbred mouse lines is not an

ideal approach, as polymorphisms within the loci other than Mtv8

could also influence the repertoires.

To address whetherMtv8 shapes the repertoire of mice with this

ERV, we used CRISPR/Cas9 technology to generate B6J mice

lacking Mtv8 and compared their Ig repertoire to that of wild-

type (WT) B6J mice. We found that the absence of Mtv8 had no

significant effects on the Igh, Igk, and Igl gene segment usage. Thus,

contribution ofMtv8 to the mouse Ig repertoires can be definitively

ruled out.
Methods

Mice

Mice utilized in this study were bred and maintained at the

animal facility of The University of Chicago. The studies described
B

C
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FIGURE 1

Generation of Mtv8KO mice. (A) Schematic of B6J murine Igk locus on chromosome 6. Location of Mtv8 is highlighted in green. (B) Schematic of
Mtv8 and guides used for CRISPR/Cas9 targeting of Mtv8 to generate Mtv8KO mice. LTR, long-terminal repeat; gag, group-specific antigen; pro,
protease; pol, polymerase; env, envelope. Red arrows: genotyping primers (K: KOF, W: WTF, C: CommonR). (C) Genomic sequence of WT and KO
Mtv8 alleles. Only the flanking sequnces are shown for the WT allele. For (B, C), underlined text indicates guide sequence, bold text indicates PAM
sequence, arrows indicate Cas9-cut site. (D) Gel image of genotyping representative WT and homozygous Mtv8KO mice. Mice were genotyped using
a three-primer PCR with the KOF, WTF, and CommonR primers. WT product: 479 bp, KO product: 419 bp.
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herein have been reviewed and approved by the Animal Care and

Use Committee at the University of Chicago, which is accredited by

the Association for Assessment and Accreditation of Laboratory

Animal Care (AAALAC International).

C57BL/6J (B6J) mice were purchased from The Jackson

Laboratory. Mtv8KO B6J mice were generated using CRISPR/Cas9

technology. Two guide RNAs targeting the flanking up- and

downstream sequences of Mtv8 (5’ guide: 5’-GTCAAGTCC

TGCTCGTTTCC; 3’ guide: 5’- TTCCTATTCAAAGGATTCAA)

were co-injected into a single cell B6J embryos along with Cas9

(Figure 1B). Founder mice and subsequent offspring in whichMtv8

was eliminated were identified using PCR with primers flanking the

guide cut sites (KOF: 5 ’-GAATTTGGGTGCTCTTGCAT;

CommonR: 5’-AACACAAATGGAGGCAAAGC; KO product

size: 419 bp). To identify mice with the WT allele, a separate PCR

was used using the CommonR primer and a WT-specific reverse

primer that lies in the excited region (WTF: 5’- CAGTC

CTAACATTCACCTCT; WT product size: 479 bp). A founder

line was established in which Mtv8 was eliminated with a 10,688

bp deletion (Figure 1C). The founder mouse was bred to a WT B6J

mouse and the resulting F1 offspring were intercrossed to generate a

homozygous KO line (Figure 1D). The deletion was confirmed at

the DNA level by sequencing the KO allele using the KO-specific

PCR primers.
RNA isolation from splenic B cells

CD19+ splenocytes were isolated from threeWT and threeMtv8KO

10.5-week-old B6J female mice. Red blood cell lysed splenocytes were

labeled with microbeads conjugated to monoclonal anti-mouse CD19

antibodies (Miltenyi Biotec, Bergisch Gladbach, Germany) and

positively sorted as detailed by the manufacturer. RNA was isolated

from sorted cells using guanidine thiocyanate extraction and CsCl

gradient centrifugation (24).
Library preparation

Immunoglobulin libraries were generated from 1 mg of RNA

using the NEBNext Immune Sequencing Kit (New England Biolabs,

Ipswich, Massachusetts, USA) according to manufacturer’s

instructions, specifically enriching for B cell receptor (BCR)

chains during the first PCR step using the mouse NEBNext IS

BCR primers included in the kit (Mus-IgGb: 5’-GATGGG

GCTGTTGTTKTRGC; Mus-IgGa: 5’-GTGTCGTTTTGGCCTG;

Mus- IgE : 5 ’ -GGTTCCTGATAGAGGC; Mus- IgD: 5 ’ -

GTTCCTTTTTATCACC ; Mus - I gM : 5 ’ -TGACTCTC

CTGMRGARAC; Mus-IgA: 5’-GTGGGTAGATGGTGGG; Mus-

IgK : 5 ’ -RCATCAGCCMGGTWT; Mus- IgL : 5 ’ -ATGG

HGWRGMCTTGGG). The libraries generated from the six

individual mice were pooled in equimolar amounts and

sequenced by paired-end 300 bp sequencing on an Illumina

MiSeq by The University of Chicago Genomics Facility.
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B cell receptor sequence processing
and analysis

Preprocessing of BCR sequences was performed using the open-

source workflow pRESTO NEBNext Immune Sequencing Kit

Workflow (v3.2.0) on Galaxy (25). Reads with a Phred quality score

<20 were removed for quality control. Reads that did not match to the

constant region primer (maximum error rate 0.2) were removed. Reads

that did not match to the template switch sequence (maximum error

rate 0.5) were removed. The first 17 bp following the template switch

site were a unique molecular identifier (UMI) on each read. Sequences

with identical UMIs were collapsed into consensus sequences with

sequences found in less than 60% of reads removed. Positions with

more than 50% gap sequences were removed. Mate-pairs were

assembled with a minimum of 8 bp overlap (maximum error rate of

0.3). Assembled reads were assigned isotype-constant region identities

based on local alignment of the 3’ ends of the reads (maximum error

rate of 0.3). Using the Mus musculus reference C57BL/6J genome

(GRCm38/mm10), V, (D), and J gene segments were assigned using

MiGMAP mapper (Galaxy Version 1.0.3+galaxy2). Subsequent

analyses were done using R Studio. Statistically significance was

calculated using unpaired Welch’s t test with Bonferroni correction.

Graphing was done using GraphPad Prism version 10.0.1 for Mac

(GraphPad Software, Boston, Massachusetts, USA).
Results

Generation of Mtv8-deficient B6J mice

Mtv8 knockout (KO) B6J mice were generated using a CRISPR/

Cas9 approach. To target Mtv8 without disturbing the VK gene

segments in its vicinity, we designed two guides to precisely delete

the ERV: one 645 bp upstream of the 5’ LTR and one 79 bp

downstream of the 3’ LTR (Figure 1B). A founder was identified

using PCR with primers flanking the predicted deleted region and it

was determined that a 10,688 bp deletion occurred, resulting in the

elimination of the entire Mtv8 locus (Figures 1C, D). The founder

was crossed to a wildtype (WT) B6J mouse and heterozygous,

mutant allele-carrying progeny were interbred to generate a

homozygous Mtv8-deficient line (Figure 1D).
Mtv8 does not contribute to light and
heavy chain recombination

To investigate whether Mtv8 alters Ig gene segment usage, we

analyzed the Ig repertoires of WT andMtv8KO B6J mice (Figures 2-4,

Supplementary Table 1). Accordingly, RNA isolated from CD19+

splenocytes was used to prepare Ig heavy and light chain-specific 5’-

RACE libraries, which were analyzed to determine the BCR repertoire

using the pRESTO toolkit using the Mus musculus reference C57BL/

6J genome (GRCm38/mm10) (25). The repertoire of productive

transcripts was analyzed. Productive transcripts were defined as in-
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frame without premature stop codons and are likely those transcripts

that are translated into expressed Ig proteins.

To determine whether Mtv8 influences Igk recombination, we

examined the JK and VK usage in productive Igk transcripts from

CD19+ splenocytes (Figure 2). There was no difference in JK usage

(Figure 2A). Furthermore, the loss of Mtv8 led to no alterations in

the total VK repertoire (Figure 2B). Notably, there was no change in

usage of VK gene segments mapped in the close proximity of Mtv8

(dotted line; Figure 2B). An increased usage of the VK gene segment,

VK14-111 (formerly called VK9M) directly downstream of Mtv8 in

Mtv8+ mouse strains compared to Mtv8- strains was previously

reported (23). We observed no difference in frequency of VK14-111

usage in Igk transcripts between WT and Mtv8KO B6J mice

(Figure 2C). Thus, the previously observed disparities in VK14-

111 usage between Mtv8+ and Mtv8- mice from distinct genetic

backgrounds are independent of Mtv8.

The same Igk locus can undergo multiple rounds of

recombination. While Mtv8 does not affect the overall frequency
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of VK usage, we wanted to test the possibility that it might affect

either the first or subsequent recombination in distinct ways.

Recombination of any VK to JK1 can only occur during a primary

recombination event, as recombination to any other JK gene

segment would remove JK1 from the Igk locus. Recombination to

JK2, JK4, or JK5 can either occur during a primary or secondary

recombination event. As such, we calculated the frequency of VK

gene segment usage in total recombination events with each JK gene

segment. We found that, in line with globally unaffected JK gene

segment usage, frequency of any particular VK gene segment

recombining to JK1, JK2, JK4, and JK5 was unchanged with the

loss of Mtv8 (Figures 2D–G). Taken together, these data show that

the Igk repertoire of Mtv8KO B6J mice does not differ from WT B6J

and that Mtv8 does not influence the Igk recombination.

We also found no difference in the JL and VL usage among

productive Igl transcripts between WT and Mtv8KO B6J mice

(Figure 3). Similarly, we found no alterations in JH, DH, and VH

gene segment usage between WT and Mtv8KO mice (Figure 4).
B C
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A

FIGURE 2

Igk repertoire of CD19+ splenocytes of Mtv8KO mice. Frequency of JK (A) and VK (B) gene segments in productive Igk transcripts from CD19+

splenocytes. Productive recombination events are in-frame without premature stop codons. (C) Frequency of VK14-111 (previously termed VK9M) in
and productive Igk transcripts. (D-G) Frequency of VK gene segments in total Igk transcripts recombined to JK1 (D), JK2 (E), JK4 (F), and JK5 (G).
(B, D-G) VK gene segments are arranged from 5’ distal to 3’ proximal to JK gene segments and the vertical dotted line represents chromosomal
location of Mtv8. n=3 mice per group. Data presented as mean with error bars indicated SD. Statistical significance was determined by unpaired
Welch’s t test with Bonferroni correction (numbers above bars indicate adjusted P value).
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Discussion

It is now accepted that the collisions of the rosette-like loops of

the Igk locus are the major mechanism of VK-to-JK recombination

(10). However, the identification of an ERV, Mtv8, in the middle of

the VK array on the Igk locus led to the hypothesis that it may

influence the Ig repertoire (14–16). Differences in VK usage in

mouse strains with and without Mtv8 initially supported this
Frontiers in Immunology 05
hypothesis (23). Now, advancements in genome-editing

technologies allow us to definitely address whether a genetic loss

ofMtv8 can change the Ig repertoire within a mouse line. We show

thatMtv8 has no effect on the Ig repertoire by analyzing the Igh, Igk,

and Igl transcriptional repertoires of B cells isolated from WT and

Mtv8KO B6J mice. These data demonstrate that while Mtv8 is an

intact ERV at the Igk locus, i t has no influence on

Igk recombination.
BA

FIGURE 3

Igl repertoire of CD19+ splenocytes of Mtv8KO mice. Frequency of JL (A) and VL (B) gene segments in and productive Igl transcripts from CD19+

splenocytes. Productive recombination events are in-frame without premature stop codons. n=3 mice per group. Data presented as mean with error
bars indicated SD. Statistical significance was determined by unpaired Welch’s t test with Bonferroni correction (numbers above bars indicate
adjusted P value). No P value is indicated for JL4 as values for all samples are 0.
B
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FIGURE 4

Igh repertoire of CD19+ splenocytes of Mtv8KO mice. Frequency of JH (A), DH (B), and VH (C) gene segments in productive Igh transcripts from
CD19+ splenocytes. Productive recombination events are in-frame without premature stop codons. (B) DH gene segments are arranged from 5’
distal to 3’ proximal to JH gene segments. (C) Frequency of VH gene segments in productive Igh transcripts that are statistically different between WT
and Mtv8KO mice. VH gene segments are arranged from 5’ distal to 3’ proximal to DH gene segments. n=3 mice per group. Data presented as mean
with error bars indicated SD. Statistical significance was determined by unpaired Welch’s t test with Bonferroni correction (numbers above bars
indicate adjusted P value).
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