
THE UNIVERSITY OF CHICAGO

LARGE-SCALE TENSOR NETWORK QUANTUM ALGORITHM SIMULATOR

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES DIVISION

IN CANDIDACY FOR THE DEGREE OF

MASTERS

DEPARTMENT OF COMPUTER SCIENCE

BY

DANYLO LYKOV

CHICAGO, ILLINOIS

FEBRUARY 2024

Copyright © 2024 by Danylo Lykov

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . v

LIST OF TABLES . viii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Tensor networks introduction . 2

1.1.1 Tensors and quantum states . 2
1.1.2 Tensor networks . 4

1.2 Quantum computing introduction . 5
1.3 Structure . 7

2 TENSOR NETWORK SIMULATION OF QUANTUM CIRCUITS 9
2.1 Introduction . 9
2.2 Related work . 10
2.3 Quantum circuit simulation algorithm . 12

2.3.1 Tensor networks and graphical models 12
2.3.2 Simulation of quantum circuits . 16

2.4 Batch circuit simulation . 19
2.4.1 Simulation of multiple amplitudes 19
2.4.2 Node ordering and chordal graphs 21
2.4.3 Finding restricted elimination orders 24
2.4.4 Numerical examples . 27

2.5 Conclusion and comparison . 29

3 DIAGONAL GATES APPROACH FOR OPTIMIZING QUANTUM CIRCUIT SIM-
ULATION . 31
3.1 Abstract . 31
3.2 Introduction . 31
3.3 QAOA algorithm . 33
3.4 Methodology . 35

3.4.1 Tensor network approach . 35
3.4.2 Tensor network contraction . 36

3.5 Optimization techniques . 37
3.5.1 Optimization of QAOA circuit structure 37
3.5.2 Diagonal gate simplification . 37

3.6 Results . 40
3.7 Conclusions . 42

iii

4 PARALLEL COMPUTATION . 44
4.1 Introduction . 44
4.2 Related Work . 44
4.3 Methodology . 46

4.3.1 QAOA introduction . 46
4.3.2 Description of quantum circuits . 47

4.4 Overview of simulation algorithm . 48
4.4.1 Quantum circuit as tensor expression 48
4.4.2 Graph model of tensor expression . 49

4.5 Simulation of a single amplitude . 52
4.5.1 Ordering algorithm . 52

4.6 Parallelization algorithm . 54
4.6.1 Description of hardware and software 55
4.6.2 Single-node parallelization . 56
4.6.3 Multinode parallelization . 59
4.6.4 Step-dependent slicing . 62

4.7 Simulation of several amplitudes . 65
4.8 Results . 66
4.9 Conclusions . 67
4.10 Acknowledgements . 68

5 GPU ACCELERATION OF TENSOR NETWORK CONTRACTION 70
5.1 Introduction . 70
5.2 Methodology . 71

5.2.1 QAOA Overview . 71
5.2.2 Tensor Network Contractions . 73
5.2.3 Merged Indices Contraction . 74
5.2.4 CPU-GPU Hybrid Backend . 75
5.2.5 Datasets for Synthetic Benchmarks 76

5.3 Results . 79
5.3.1 Single CPU-GPU Backends . 79
5.3.2 Merged Backend Results . 81
5.3.3 Mix CPU-GPU Backend Results . 82
5.3.4 Mixed Merged Backend Results . 83
5.3.5 Synthetic Benchmarks . 84

5.4 Conclusions . 88

6 CONCLUSIONS AND OUTLOOK . 91

REFERENCES . 93

iv

LIST OF FIGURES

2.1 Example of quantum circuit drawn as a tensor network. The state of i-th qubit
at t-th clock cycle is denoted by {s}ti (only unique states are shown, e.g. s21 = s11
is omitted). The time flows from right to left. 14

2.2 The mapping between two graph-based notations of tensor networks. 15
2.3 Alternative representation (graphical model) of the circuit in Fig. 2.1. Gate

tensors are shown in red, self-loops are omitted. 16
2.4 Contraction of a tensor network from Eq. 2.5 in graphical form. The sequence of

contractions π is the same as in Eq. 2.6. Labels of tensors are shown in red. . . 17
2.5 Alternative contraction of a tensor network in Eq. 2.5. The maximal clique of

size 4 is highlighted in red. This sequence of contractions is not optimal. 18
2.6 Evaluation of amplitude subsets. Top - extended amplitude expression to evaluate

all amplitudes of qubits 2, 3, 4; Bottom - resulting amplitude tensor. 20
2.7 Building a chordal graph from the elimination order 22
2.8 Treewidth dependence on the size of a random quantum circuit. Left - dependence

of treewidth on the depth of a random circuit, Right - dependence of treewidth
on the number of qubits. 28

2.9 Total flop requirements for the simulation of a typical random circuit of varying
size. Estimated number of floating point operations for the simulation of the full
subset of amplitudes of |C| qubits (there are 2|C| amplitudes). In case of one
amplitude at a time simulation a combined cost of all tasks is drawn. 28

2.10 Minimal memory requirement for the simulation of a typical random circuit of
varying size . 29

2.11 Floating point to memory access ratio during the simulation of random circuits
of varying size . 30

3.1 Quantum circuit that generates QAOA ansatz state for MaxCut problem on a
4-node complete graph. This widely used decomposition of QAOA into common
set of basis gates is not optimal for the classical simulation of the output state. . 32

3.2 Line graphs of tensor networks for calculating QAOA ansatz state using differ-
ent optimizations. “Default" and “diagonal" show line graphs of tensor network
for the circuit shown in Figure 3.1, using a full-matrix gates and diagonal gates
approach, respectively. “ZZ gates + diagonal" is obtained by using the diagonal
gates approach on a simplified quantum circuit obtained by applying Equation
3.4. This figure demonstrates how improving the conversion of a quantum algo-
rithm to a tensor network can reduce the complexity of the network, providing
speedups for both finding contraction order and the contraction itself. 33

3.3 Number of FLOPs to calculate a single amplitude of QAOA ansatz state for Max-
Cut using a different number of QAOA iterations. Each line shows a combination
of optimization techniques, with “diagonal + ZZ gates" being the most advanced
one. The shaded region shows 1-σ interval over 5 random graphs. 39

v

3.4 Number of FLOPs to calculate a single amplitude of QAOA ansatz state with
p=1 for MaxCut on random 3-regular graphs with 160 nodes. The shaded region
shows 1-σ interval over 5 random graphs. 39

3.5 The number of FLOPs to calculate a single amplitude of QAOA ansatz state for
MaxCut on random 3-regular graphs of different sizes. The number of nodes in
the graph corresponds to the number of qubits in the quantum circuit. Each
line shows a combination of optimization techniques, with “diagonal + ZZ gates"
being the most advanced one. The shaded region shows 1-σ interval over 5
random graphs. 41

4.1 Correspondence of quantum gates and graphical representation. 49
4.2 Graph representation of tensor expression of the circuit in Fig. 3.1. Every vertex

corresponds to a tensor index of a quantum gate. Indices are labeled right to
left: 0-3 are indices of the output statevector, and 32-25 are indices of the input
statevector. Self-loop edges are not shown (in particular Z2γ , which is diagonal). 50

4.3 Cost of contraction for every vertex for a circuit with 150 qubits. Inset shows the
peak magnified and the number of neighbors of the vertex contracted at a given
step (right y-axis). 51

4.4 Comparison of different ordering algorithms for single amplitude simulation of
QAOA ansatz state . 52

4.5 Illustration of our two-level tensor parallelization approach. On the multinode
level MPI parallelization we use slicing of a partially contracted full expression.
On the lower level of a single node, we use thread-based parallelization with a
shared resulting tensor. 57

4.6 Sketch of the parallel bucket elimination algorithm. Part (a) and steps b2–b4
depend only on the structure of a task and can be executed only once for the
QAOA algorithm. Steps b1 and b5 are performed serially. The outer loop of
the blue region performs the elimination of the remaining buckets; the inner loop
corresponds to processing a single bucket. The summation operation at the end
of the bucket processing is omitted for simplicity. 60

4.7 Step-based slicing algorithm. The blue boxes are evaluated for each graph node
and are the main contributions to time. 64

4.8 Simulation cost for a batch of amplitudes. The calculations are done for 5 random
instances of degree-3 random regular graphs and the mean value is plotted. The
three plots are calculated for different number of qubits: 100, 150 and 200. . . . 65

4.9 Experimental data of simulation time with respect to the number of Theta nodes.
The circuit is for 210 qubits and 1,785 gates. 66

4.10 Distribution of the contraction width (maximum number of neighbors) c for dif-
ferent numbers of parallel indices n. While variance of c is present, showing that
it is sensible to the parallelization index s, we are interested in the minimal value
of s, which, in turn, generally gets smaller for bigger n. 69

vi

5.1 Breakdown of mean time to contract a single bucket by bucket width. The test is
performed for expectation value as described in 5.3.1. CPU backends are faster
for buckets of width ≤ 13 − 16, and GPU faster are better for larger buckets.
This picture also demonstrates that every contraction operation spends some
time on overhead which doesn’t depend on bucket width, and actual calculation
that scales exponentially with bucket width. 79

5.2 Distribution of bucket width in the contraction of QAOA full circuit simulation.
The y-axis is log scale; 82% of buckets have width ≤ 6, which have relatively
large overhead time. 80

5.3 Breakdown of total time spent on bucket of each size in full QAOA expectation
value simulation. The y-value on this plot is effectively one in Figure 5.1 multi-
plied by one in Figure 5.2. This figure is very useful for analyzing the bottlenecks
of the simulation. It shows that most of the time for CPU backend is spent on
large buckets, but for GPU backends the large number of small buckets results
in a slowdown. 80

5.4 Breakdown of total contraction time by bucket width in full expectation value
simulation of problem size 30. Lines with the same color use the same type of
backends. The solid lines represent the merged version of backends, and the
dashed lines denote the baseline backends. The merged GPU backends are better
for buckets of width ≥ 20. 82

5.5 Breakdown of sum contraction time by bucket width for merged backends. CPU
backends are better for buckets of width ≤ 15, and GPU backends are better
for larger buckets. The hybrid backend’s GPU backend spends outperforms the
regular GPU backend for buckets of width ≥ 15. 85

5.6 FLOPs vs. the number of operations for all tasks on the CuPy backend. “circuit
unmerged" and “circuit merged" are results of expectation value of the full circuit
simulation of QAOA MaxCut problem on a 3-regular graph of size 30 with depth
p = 4. “tncontract random” tests on tensors of many indices where each index has
a small size. “tncontract fixed" uses the contraction sequence “abcd,bcdf−→acf”
for all contractions. “matmul" performs matrix multiplication on square matrices.
All groups use complex128 tensors in the operation. We use the triangles to
denote the data at ∼ 100 million operations, which is shown in Table 5.3. . . . 88

5.7 FLOPs vs. the number of operations for all tasks on NumPy backend. Same
problem setting as Fig. 5.6. “tncontract random" outperforms “tncontract fixed"
as the ops value increases. Merged backend does not have an advantage on CPU
compared to the unmerged backend. We use the triangles to denote the data at
∼ 100 million operations, which is shown in Table 5.3. 89

vii

LIST OF TABLES

3.1 The maximum number of QAOA iterations p for which one can simulate a single
amplitude of ansatz state for MaxCut on a 40-node random regular graph. . . . 42

3.2 The maximum number of nodes of a 3-regular graph for which one can simulate
a single amplitude of the MaxCut QAOA ansatz state. 42

4.1 Comparison between different notations of quantum circuits 49
4.2 Hardware and software specifications . 56

5.1 Time for full QAOA expectation value simulation using backend that utilize GPUs or
CPUs. The expectation value is MaxCut on a 3-regular graph of size 30 and QAOA
depth p = 4. Speedup shows the overall runtime improvement compared with the
baseline CPU backend “NumPy". “Mixed" device means the backend uses both CPU
and GPU devices. 83

5.2 Time for full QAOA expectation value simulation using different Merged backends, as
described in Section 5.2.3. The expectation value is MaxCut on a 3-regular graph of
size 30 and QAOA depth p = 4. Speedup shows the overall runtime improvement
compared with the baseline CPU backend “NumPy". 84

5.3 Summary of GPU and CPU FLOPs for different tasks at around 100 million opera-
tions. Matrix Multiplication and Tensor Contraction tasks are described in Section
5.3.5. “Bucket Contraction" groups record the maximum number of FLOPs for a single
bucket. “Lightcone Contraction" groups contain the FLOPs data on a single lightcone
where the sum of operations is approximately 100 millions, small and large buckets
combined. 86

viii

ABSTRACT

As quantum computing field is starting to reach the realm of advantage over classical al-

gorithms, simulating quantum circuits becomes increasingly challenging as we design and

evaluate more complex quantum algorithms. In this context, tensor networks, which have

become a standard method for simulations in various areas of physics, from many-body quan-

tum physics to quantum gravity, offer a natural approach. Despite the availability of efficient

tools for physics simulations, simulating quantum circuits presents unique challenges, which

I address in this work, specifically using the Quantum Approximate Optimization Algorithm

as an example.

The main results of this work span several steps of the problem. For the step of creating

a tensor network, I demonstrate that applying the diagonal representation of quantum gates

leads to a complexity reduction in tensor network contraction by one to four orders of

magnitude.

For large-scale contraction of tensor networks, I propose a step-dependent parallelization

approach which performs slicing of partially contracted tensor network. Finally, I study

tensor network contractions on GPU and propose an algorithm of contraction which uses

both CPU and GPU to reduce GPU overhead. In our benchmarks, this algorithm reduces

time to solution from 6 seconds to 1.5-2 seconds.

ix

CHAPTER 1

INTRODUCTION

The science of classically simulating quantum many-body physics involves exponential scaling

of memory resources. The fact that quantum many-body systems are hard to simulate

classically is the basis for the idea of quantum computing as first suggested by Richard

Feynman [Feynman, 1982].

Growing interest in quantum computing in recent years led to the increase of size and

capabilities of experimental quantum computers. Promising physical realizations of quan-

tum computing devices were implemented in recent years [Intel, 2018; IBM, 2018], which

bolsters the expectations that a long thought quantum supremacy will be reached [Harrow

and Montanaro, 2017; Boixo et al., 2018; Neill et al., 2018].

Quantum information science has a tremendous potential to speed up calculations of

certain problems over classical calculations [Alexeev et al., 2021; Shor, 1994]. To continue

the advances in this field, however, often requires classically simulating quantum circuits.

Such simulation is done by using classical simulation algorithms that replicate the behavior

of executing quantum circuits on classical hardware such as personal computers or high-

performance computing (HPC) systems. These algorithms play an important role and can

be used to (1) verify the correctness of quantum hardware, (2) help the development of hy-

brid classical-quantum algorithms, (3) find optimal circuit parameters for hybrid variational

quantum algorithms, (4) validate the design of new quantum circuits, and (5) verify quantum

supremacy and advantage claims.

Tensor networks are an invaluable tool for the classical simulation of both quantum

computers and general physical systems. For example, in the domain of molecular quantum

dynamics the Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) [Wang

and Thoss, 2003] algorithm, which is an extension of MCTDH [Meyer et al., 1990] algorithm,

achieved significant recognition. This algorithm uses tensor networks to represent quantum

1

states and then solve the underlying dynamics equations.

Moreover, tensor networks can be used to exactly calculate the partition function of

quantum many-body systems [Vanderstraeten et al., 2018]. The partition function can then

be used to extract useful information about the system, such as energy or specific heat

capacity.

1.1 Tensor networks introduction

1.1.1 Tensors and quantum states

A vector is an entity with magnitude and direction, often used to represent physical quantities

such as velocity or force. In contrast, a covector (or one-form) is a linear map from vectors to

scalars. Both can be represented as an array of numbers in a given basis, but when the basis

is changed they transform oppositely to ensure that all scalars are invariant, a key principle

in physics and geometry.

Expanding to two dimensions, we distinguish between bilinear forms and linear maps

from one vector space to another. A bilinear form takes two vectors as input and returns

a scalar. Interestingly, a linear map can also be viewed as a bilinear map taking a covector

and a vector as input, producing a scalar. Similarly to vectors and covectors, both bilinear

forms and linear maps can be represented as matrices, and special rules are used to change

the representation when changing the basis.

A tensor generalizes these ideas further. A tensor of rank n is a n-linear map from

a mix of n vectors and covectors to a scalar. To specify a tensor, one has to provide a

representation in some basis and the rules for changing the representation under a change

of basis. Examples of tensors in physics include the electromagnetic tensor Fµν and the

Levi-Civita tensor, among many others.

In the context of quantum computing and computer science, the basis is often fixed

2

forever, and a tensor is just a representation: an array of numbers that is indexed by several

indices. The number of indices is called order or sometimes rank or mode of a tensor and

the index is sometimes called the dimension. The number of values that an index can have

is usually called the size of the index. For instance, a scalar, is a single number is labeled

by zero indices, so a scalar is considered to be a 0th-order tensor. A vector is a tensor of

first order and a matrix is a tensor of second order. In the case of quantum physics, tensors

can be used for the representation of states. For example, a first-order tensor can be used

to represent the state vector of a spin-12 particle in some basis:

|ψ1⟩ = C0 |0⟩+ C1 |1⟩ =
∑
s=0,1

Cs |s⟩ . (1.1)

The |0⟩ and |1⟩ are basis vectors that correspond to, for instance, spin-up and spin-down

states. The vector Cs is a first-rank tensor that represents this state given the basis |0⟩, |1⟩.

This approach can be extended to a tensor of two particles:

|ψ2⟩ = C00 |00⟩+ C01 |01⟩+ C10 |10⟩+ C11 |11⟩ =
1∑

s1,s2=0

Cs1,s2 |s1s2⟩ , (1.2)

where a common notation is used |ab⟩ = |a⟩ |b⟩= |a⟩ ⊗ |b⟩.

In quantum physics, it is common to use a state vector with a dimension of size 4 to

represent a state of such a system. The difference in representing it as a second-order tensor

as above is just the way of labeling the numbers, but such notation is the first step towards

impressive advantages for classical simulation of tensor networks.

As a natural extension for a system of N spins, one can use the following representation

of the state:

|ψN ⟩ =
1∑

s1...sN=0

Cs1...sN |s1 . . . sN ⟩ . (1.3)

Similarly, the tensor Cs1...sN can be reshaped into a vector of size 2N . The above ex-

3

amples were for spin-12 systems, but the approach is the same for collections of quantum

systems with larger state space.

It is important to note that since the basis is fixed, there is no classification of indices

into covariant and contravariant, e.g. there is no distinction between indices for bra- and

ket-states, which is a common distinction in tensors used in physics.

1.1.2 Tensor networks

As described above it may seem that tensors are not more useful than just vectors, after all

the difference lies only in labeling the numbers. It is when tensors are combined with each

other into a tensor network, that the true usefulness appears. A tensor network is a product

of tensors, which can share indices between each other. For example, the expression AijBjk

is a tensor network. This tensor network can be viewed as a tensor itself, which is indexed

by indices ijk. Each value of the tensor is a product of two elements from tensors A and B:

Tijk = AijBjk. (1.4)

Tensor networks are widely used to represent a linear mathematical model of the studied

system. The fact that the model is linear means that the values of interest are a sum of

products of numbers, which are input parameters to the model. For example, when modeling

rotation of a solid, to obtain coordinates of the rotated geometry, one uses a linear map on a

2-D vector space. The first component of resulting coordinates will be u0 = A00v0 +A01v1,

and the second u1 = A10v0 + A11v1, where vi are the initial coordinates and Aij are the

rotation parameters. The initial vi and rotated ui vectors and the matrix Aij are all tensors,

so we can use a summation over a tensor network to represent such a linear model:

ui =
∑
j=0,1

Aijvj =
∑
j=0,1

Kij . (1.5)

4

The example in the Equation (1.4) can be used to represent a matrix multiplication:

Cik =
∑
j=0,1

Tijk =
∑
j=0,1

AijBjk. (1.6)

In order to compute the values for the tensor C it is not required to store all the elements

of tensor T in memory at the same time. Instead it is possible to evaluate each element

Cij by evaluating corresponding entries Tijk, then performing the summation, and finally

discarding the used entries, thus saving memory. The process of evaluating a sum is called

a contraction of a tensor network. For example, in equation (1.6) the tensor network is

contracted over index j.

More complex tensor networks can have summation over many indices and have hundreds

or thousands of tensors and indices. They can be used to represent more complex models,

such as hidden Markov chains [Gillman et al., 2020] or probabilistic graphical models [Miller

et al., 2021; Carrasquilla et al., 2019]. They are also remarkably efficient at representing

quantum circuits and states of many-body quantum systems. In addition to exact repre-

sentations, tensor networks are widely used in algorithms for approximately calculating

quantum many-body systems of large size or infinite size. The most popular algorithm is

known as Density Matrix Renormalization Group (DMRG) [Schollwöck, 2011] which uses

the representation of Matrix Product State (MPS) in case of a chain of a quantum system

to approximately calculate the ground state or arbitrary observables of the systems [Orús,

2014].

1.2 Quantum computing introduction

Quantum computers are physical systems that allow the implementation of arbitrary trans-

formations of a quantum state. A quantum computer consists of several qubits, which can

interact with each other. In a classical computer, computation is performed by taking input

5

information represented as bits of data, then applying some operations to it to calculate some

useful output data. The operations are composed of elementary logic gates that calculate

some output value from input bits. Examples of classical logic gates are NOT(b0) which flips

the input bit, and AND(b0, b1) which outputs a binary sum of input bits.

Each qubit in a quantum computer is conceptually similar to a bit in a classical computer.

Usually, it is a two-level quantum system, analogous to spin-12 particle. In order to describe

computation on a quantum computer, we use quantum gates. Each quantum gate acts on

one or several qubits and transforms the corresponding state. For example, when a one-qubit

gate is applied to a single qubit in the state |0⟩, the transformation is described as

Û |s⟩ = U0s |0⟩+ U1s |1⟩ = |ψ⟩ , (1.7)

where s is a binary variable that labels the qubit basis. Examples of quantum gates are

Pauli rotations σ̂x, σ̂y, and σ̂z. Another widely used gate is called Hadamard gate:

Ĥ =
1√
2

1 1

1 −1

 (1.8)

If a quantum gate is applied to i-th qubit in a quantum computer with N qubits, the

change of state is following:

Û i |0001 . . . si . . . 0N ⟩ = c0s |0001 . . . 0i . . . 0N ⟩+ c1s |0001 . . . 1i . . . 0N ⟩ = |ψ⟩ . (1.9)

Now we can apply the framework of tensor networks to describe such operation:

6

Û i
1∑

s1...sN=0

Cs1...sN |s1 . . . sN ⟩ =
1∑

s1...sN=0

Cs1...sN Û
i |s1 . . . sN ⟩ (1.10)

=
1∑

s1...sN=0

Cs1...sN

∑
sN+1

UsN+1si |s1 . . . sN ⟩ (1.11)

=
1∑

sm=0, m∈{1...N+1}, m̸=i

Ds1...sN+1 |s1 . . . sN ⟩ . (1.12)

The last summation is performed over all indices si for i = 1 . . . N + 1 except index

si which was contracted. We can omit the basis kets and the summation over those and

concentrate on just the tensors that represent the states.

∑
sj

UsN+1sjCs0s1...sj ...sN = Ds0s1...sN+1...sN . (1.13)

In a case of a two-qubit gate, we can represent the resulting state in a similar way, using

a 4-th order tensor instead

∑
ijik

WiN+2iN+1ijikCs0s1...sj ...sk...sN = Ds0s1...iN+2...iN+1...sN . (1.14)

1.3 Structure

In this work, I start with Chapter 2 on using tensor networks for the classical simulation of

quantum circuits. I describe how a quantum circuit may be converted to a tensor network

and how its contraction is used to obtain different properties of the quantum circuit. In

particular, this chapter describes an efficient method for simulating a batch probability

amplitudes in one tensor network contraction.

The conversion of quantum circuit to a tensor network may be tweaked to produce sig-

nificant reductions in tensor network complexity and its computational cost. In Chapter 3 I

7

demonstrate a significant improvement when using the diagonal gates approach in applica-

tion to circuits for Quantum Approximate Optimization Algorithm (QAOA).

Next, in Chapter 4 I discuss how to efficiently contract a tensor network, given a set

of classical hardware resources. In particular, I explore various parallelization approaches

based on slicing the tensor networks that are crucial for large-scale simulations. In Chapter 5

I explore using GPU for tensor network contraction and propose an algorithm for dynamic

balancing of tensor contraction steps between CPU and GPU.

Finally, Chapter 6 summarizes the work in this thesis and provides possible avenues for

future research.

8

CHAPTER 2

TENSOR NETWORK SIMULATION OF QUANTUM CIRCUITS

This chapter is adapted from the publication by Schutski, Lykov, and Oseledets [2020].

2.1 Introduction

Substantial progress has been made in understanding quantum computation and developing

classical simulators of quantum circuits. Efficient simulators were developed for highly par-

allel computers, such as Sunway Taihulight [Li et al., 2018]. At the moment the simulation

software is aimed at either one of two tasks. The first one is predicting the probability of

measuring a particular binary string as the result of a quantum program, or single amplitude

simulation. The second is obtaining the full distribution of quantum circuit outputs, or full

state simulation. The first approach was found more economical in terms of memory a clas-

sical computer has to use, thus allowing the simulation of few amplitudes of larger quantum

circuits on up to 100 qubits [Chen et al., 2018b]. On the other hand, the second approach

may be preferred when the full state information is needed, such as in Shor’s algorithm [Shor,

1994].

In this chapter, we present a unified approach to quantum circuit simulation. The user can

choose the number of probabilities of bitstrings to simulate in a single pass. Our algorithm

allows one to balance between the amount of available computational resources and the

overall time of the simulation. We build our work on the connection between graphical

models and quantum circuits introduced by Markov and Shi [2008] and later developments by

[Boixo et al., 2017] and other authors. A relevant research work was presented by Pednault

et al. [2017]. We find that our approach is more straightforward, as it disentangles the

problem of multiple amplitude simulation from the parallelization. We defer a more detailed

comparison to a later section. An overview of the chapter is as follows.

9

In Section 2.2 we compare our approach to existing techniques. In Sec. 2.3, we review the

connection of quantum circuits, tensor diagrams, and statistical graphical models. We then

proceed by describing a basic algorithm for circuit simulation based on [Markov and Shi,

2008; Boixo et al., 2017]. In Sec. 2.4 we formulate the main problem solved in this work, which

is batch simulation of amplitudes. To solve it, we recall the tree decomposition of graphs and

its connection to the problem of ordering of graph nodes. We then propose a new algorithm

to transform graph orderings while preserving treewidth (which is the measure of quality)

of the given ordering. To achieve a proper transformation we use the connection of tree

decomposition and chordal graphs, as explained in 2.4.2 and 2.4.3. Numerical experiments

are listed in Sec. 2.4.4. Finally, we conclude in Sec. 2.5 with final remarks and outline possible

future research.

2.2 Related work

The problem of efficient tensor contraction was approached multiple times in the field of

many-body physics and quantum computing. Some older works are based on the sequential

application of sparse matrices to the state vector, such as in [De Raedt et al., 2007]. The

authors issued a follow-up paper recently [De Raedt et al., 2019]. Their simulator can

evaluate both full sets and subsets of amplitude tensor. This direct simulation procedure,

however, requires a lot of non-trivial techniques to make it efficient, especially if parallel

operation is considered. Another problem is that it is hard to analyze the effectiveness of

the algorithm compared to theoretical bounds on the numerical cost [Aaronson and Chen,

2016]. The latter fact has lead to the previously believed threshold of 50 qubits for “quantum

supremacy”.

The seminal work of Markov and Shi [2008] introduced tensor networks for quantum al-

gorithm simulations and showed that treewidth is a natural measure of simulation hardness.

The graph-based notation became standard in tensor network literature a decade ago [Bridge-

10

man and Chubb, 2017]. Following Markov and Shi, several groups developed highly efficient

algorithms for quantum circuit simulation based on this representation, see [Pfeifer et al.,

2014; Chen et al., 2018c; Pednault et al., 2017; Li et al., 2018] for more details. The previous

threshold of 50 qubits was raised, as is demonstrated by multiple authors [Chen et al., 2018c;

Pednault et al., 2017; Li et al., 2018]. Usually, these simulators are capable of evaluating full

state vectors as well as some subsets of the amplitudes. A similar program was created for

contraction of tensors emerging in the many-body physics community [Pfeifer et al., 2014].

The drawback of the approaches based on tensor diagrams is the hardness of the develop-

ment of efficient codes and the theoretical performance analysis, especially if parallelization

is involved. To see why, let us note that classical tensor networks were developed to represent

pairwise contractions. Quantum circuits often involve multiple diagonal gates, which allows

for significant computational savings. The treewidth of classical diagram’s graphs is higher

than optimal (see Appendix in [Boixo et al., 2017]). Traditional network notation can be

understood as a hypergraph to eliminate this drawback, as was done in [Pednault et al.,

2017]. However, the theory of hypergraphs is less known to the general scientific community.

Recently Boixo et al. [2017] proposed to consider line graphs of the classical tensor net-

works, which has multiple benefits. First, it establishes the connection of quantum circuits

with probabilistic graphical models, allowing for knowledge transfer between the fields. Sec-

ond, these graphical models avoid the overhead of traditional diagrams for diagonal tensors.

Moreover, treewidth is a universal measure of complexity for these models, and links the

complexity of quantum states to the well-studied problems in graph theory, a topic we hope

to explore in future works. Additionally, simple parallelization of the simulator is possible,

as demonstrated in the work of Chen et al. [2018b]. The only disadvantage of the line graph

approach was that it is limited usability to simulate subtensors of amplitudes, which we are

going to address in this chapter.

Lastly, we have to mention that multiple approximate methods are currently being de-

11

veloped for circuit simulation. Very recent work of Carrasquilla et al. [2019] presents a

neural-network based approach. Pan et al. [2019] devised an approximate algorithms based

on tensor network transformation. Extension of our approach with approximation techniques

may be a prospective direction of research.

2.3 Quantum circuit simulation algorithm

In this section we describe a procedure for efficient quantum circuit evaluation. We first set

up the notation, and then review the current state of the art method for numerical simulation

of quantum circuits.

2.3.1 Tensor networks and graphical models

A quantum program describes an evolution of the initial state |0⟩ of a system of n qubits.

Any evolution of a physical system corresponds to a unitary operator. Thus, the result of a

quantum circuit is a state |ψ⟩, which is a linear transformation of the input state: |ψ⟩ = U|0⟩.

Usually, the transformation U is performed in several steps corresponding to clock cycles of

a quantum computer. Suppose the transformation is described by a depth d circuit. We

introduce the following notation:

U |0⟩ = Ud . . .U2U1 |0⟩

|st+1⟩ = U t |st⟩ , |s0⟩ = |0⟩
(2.1)

Here U t are unitary matrices acting at the t-th clock cycle and |st⟩ is the state vector.

In the simplest case the initial state is taken to be a product of single qubit states |0⟩ =

|00⟩ ⊗ · · · ⊗ |0n⟩. A naive simulation algorithm would take the initial vector |0⟩ and apply

matrices U t to it. This procedure lays behind full state circuit simulation. To calculate an

12

amplitude of a bit string x, one would evaluate a dot product ⟨x|sd⟩:

σ(x) = ⟨x|sd⟩ =
n∑

i=1

⟨xi|sd⟩ (2.2)

The probability of x is then the modulus squared of the amplitude. Note, however, that

it is hard to perform full state simulation efficiently. A naive algorithm would need to

operate on vectors of size 2n. Also, the matrices U t are highly sparse, at least if they

represent transformations achievable with single and two-qubit gates in modern experimental

hardware. Here and later in the chapter, we chose to work with the following universal set

of one and two-qubit gates: {X1/2, Y 1/2, CZ, T,H}; the same reasoning, however, applies

to any quantum gates.

An alternative to full state simulation would be the evaluation of one or several ampli-

tudes from Eq. 2.2 without explicitly forming |sd⟩. The latter approach provides several

benefits. First of all, we can avoid storing the high dimensional state vector |sd⟩ in computer

memory. Second, it may be easier to use the internal structure of the operators U t to perform

calculations efficiently. Let us introduce a set of variables to denote the state at different

cycles of the circuit.

{s}ti, s ∈ [0, 1], i ∈ [1, n], t ∈ [0, d] (2.3)

We slightly abuse notation here, as |sti⟩ denotes a state of the i-th qubit at t-th cycle, and sti

is a binary variable indexing this state. The same notation is used for the initial and final

states, e.g. |s0i ⟩ = |0i⟩ and |sdi ⟩ = |xi⟩. Consider a circuit shown in Fig. 2.1.

We start with a product state |0⟩ on the right. As the program proceeds the states of

individual qubits are changed by gates application. Note that the gates T and cZ do not

change the basis of the single-qubit subspaces they act on (they only multiply basis vectors

by constants), and hence |sti⟩ = |s
t+1
i ⟩ for those qubits. In contrast, non-diagonal gates

13

|0 ⟩

|0 ⟩

|0 ⟩

|0 ⟩

HX1 /2

Y 1 /2 T

H

H

HH

H

H

H

X1 /2

⟨ x1|

⟨ x2|

⟨ x3|

⟨ x4|

X1 /2

T
s1
0

s2
0

s3
0

s4
0

s1
3

s4
3

s3
2

s1
1

s2
1

s3
1

s4
1

s1
6

s2
6

s3
6

s4
6

s2
4

U1

Figure 2.1: Example of quantum circuit drawn as a tensor network. The state of i-th qubit
at t-th clock cycle is denoted by {s}ti (only unique states are shown, e.g. s21 = s11 is omitted).
The time flows from right to left.

{X1/2, Y 1/2, H} mix basis vectors of the appropriate qubit subspaces, and new variables

|st+1
i ⟩ have to be introduced for the resulting bases. On Fig. 2.1 only unique variables are

shown. The expression for the single amplitude in Eq. 2.2 can be rewritten as

σ(x) = ⟨x|U|0⟩ =∑
{sti}
⟨xi|Gdi |s

d−1
i ⟩ . . . ⟨st+1

i st+1
j |Gtij |s

t
is
t
j⟩ . . . ⟨s

1
i |G

1
i |0i⟩

Gti ∈ {X
1/2, Y 1/2,T,H}, Gtij = cZ

(2.4)

The Eq. 2.4 can be interpreted as a discrete Feynman path integral as it represents a sum

over all ‘paths’ to go from |0⟩ to |x⟩. On the other hand, one can easily see that the evaluation

of the amplitude σ(x) in Eq. 2.4 is equal to the contraction of a tensor network shown in

Fig. 2.1. For the introduction to the graphical notation used for tensor networks please

refer to [Cichocki et al., 2016]. It is well known, however, that the numerical cost of tensor

14

i ji j

ii i =

i i

j j

i

j

i j

k l

i

k

j

l

Figure 2.2: The mapping between two graph-based notations of tensor networks.

contractions dramatically depends on the order of operations. Following Markov and Shi

[2008] let us introduce another type of graphical models to denote quantum circuits, which

better suits for the estimation of numerical costs.

In traditional notation, a tensor network is represented by a graph with nodes standing

for tensors and edges denoting their indices. In the new notation, we use nodes to denote

unique indices, and tensors are denoted by cliques (fully connected subgraphs). Note that

tensors, which are diagonal along some of the axes and hence can be indexed with fewer

variables, are depicted by cliques of size lower than the dimension of the corresponding

tensor. For a special case of vectors or diagonal matrices, self-loop edges are used. Fig. 4.1

lists the notation for the gates used in this work.

A graphical model, which is equivalent to the circuit in Fig. 2.1, is shown in Fig. 2.3

(self loops are omitted for simplicity). As was pointed out by Boixo et al. [2017] this rep-

resentation of tensor contractions is traditional in Bayesian network literature. Notice that

provided a quantum circuit in a traditional form, one can easily build its probabilistic model

representation. To do that, one has to replace all edges carrying non-equivalent single-qubit

states with nodes, and all gates with cliques. The diagonal structure of CZ gate tensors

leads to significant simplification of the resulting graphs. This is discussed in more detail in

15

s1
0

s2
0

s3
0

s3
1

s3
6

s4
6

s2
4 s2

6

s4
0 s4

1

s1
1

s1
3

s1
6

s4
3

s3
2

s2
1

H

H

H

H

H

H
H

H

X1/2

X1/2

X1/2

Y1/2

cZ

cZ

cZ

cZ

Figure 2.3: Alternative representation (graphical model) of the circuit in Fig. 2.1. Gate
tensors are shown in red, self-loops are omitted.

Chapter 3

2.3.2 Simulation of quantum circuits

Having set up the notation, let us proceed with a description of a basic procedure for the

evaluation of tensor networks. This algorithm was developed in the context of probabilistic

models under the names of bucket elimination [Dechter, 2013] or the variable elimination

algorithms [Marsland, 2011].

As an example, let us consider the contraction of a simple tensor network:

∑
ijklmn

AijBjkCiklDkmElnFmn = σ (2.5)

The graphical model of this network is shown in Fig. 2.4. We choose the order of indices

as π =
(i j k l m n
1 2 3 4 5 6

)
, e.g. i is first, j is second etc. In the bucket elimination procedure the

indices are contracted one at a time in order fixed by π, until no indices is left. The sequence

16

k

i
A

lj

m n

B
C

D E

F

1)
k

j

l

m

B

D

T1
2)

3)

n

l
T3

m F

E

4)5)

n

D E

F

k l

m

D

T2

n

D E

F

n

m

T4 F
n

T5

6)

Figure 2.4: Contraction of a tensor network from Eq. 2.5 in graphical form. The sequence
of contractions π is the same as in Eq. 2.6. Labels of tensors are shown in red.

of the expressions evaluated in the algorithm is listed below. Assuming the dimensions of

all indices is L, we also list numerical costs of the operations.

1)
∑
i

AijCikl = T 1
jkl O(L

4)

2)
∑
j

BjkT
1
jkl = T 2

kl O(L
3)

3)
∑
k

DkmT
2
kl = T 3

ml O(L
3)

4)
∑
l

ElnT
3
ml = T 4

nm O(L3)

5)
∑
m

T 4
nm = T 5

n O(L2)

6)
∑
n

T 5
n = σ O(L)

(2.6)

The sequence of transformations of the graphical model corresponding to Eq. 2.6 is shown

in Fig. 2.4 2) - 6).

17

At each step, the contracted variable is removed from the graph, and all its neighbors

form a clique. This clique corresponds to the next intermediate in the sequence. Note that

the order of the cliques formed at each step corresponds to the exponent of the scaling of

numerical cost.

The computational cost of the tensor network contraction is highly dependent on the

order of operations. To illustrate this let us consider an alternative order π̃ =
(k j i l m n
1 2 3 4 5 6

)
for evaluating the Eq. 2.5. The corresponding sequence of graphical models is shown in

Fig. 2.5. Note that the size of the maximal clique corresponding to order π̃ is four, which

translates to the intermediate of order four and the overall scaling O(L5) of the numerical

effort.

k

i

lj

m n

n

l

mn

mn

i

lj

m n

i

l

m n

A

B
C

D E

F

O1

F

E

O2

F

E

F
EO3

O4

O5

F

Figure 2.5: Alternative contraction of a tensor network in Eq. 2.5. The maximal clique of
size 4 is highlighted in red. This sequence of contractions is not optimal.

Finding the elimination order of a graph is equivalent to the calculation of its tree decom-

position; the size of the maximum clique of an order π is treewidth+ 1. Tree decomposition

is NP-hard for general graphs [Bodlaender, 1994], and a similar hardness result is known for

the optimal tensor contraction problem [Chi-Chung et al., 1997]. However, several exact and

18

approximate algorithms for tree decomposition were developed in graph theory literature;

for references, please see [Gogate and Dechter, 2004; Bodlaender et al., 2006; Kloks, 1994;

Bodlaender, 1994; Kloks et al., 1993]. For our simulations, we used an exact algorithm of

V. Gogate[Gogate and Dechter, 2004]. Having reviewed the procedure for calculation of a

single amplitude, let us consider the case of multiple amplitudes, which is the main topic of

this chapter.

2.4 Batch circuit simulation

2.4.1 Simulation of multiple amplitudes

The procedure we used to calculate single amplitude can be easily extended to calculate

any subtensor of the full amplitude tensor. Suppose we are interested in amplitudes of

two bitstrings differing only in the value of the first qubit, e. g. x0 = (0, sd2, . . . , s
d
n) and

x1 = (1, sd2, . . . , s
d
n). Let us note that the expressions for the amplitudes of σ0 and σ1 differ

only by the value of the state vector of the first qubit, which is |0⟩ and |1⟩ respectively.

One could merge both expressions and introduce an additional variable sd+1
1 to index the

result σ(sd+1
1) (which is a vector of size two). The same procedure can be implemented

for any combination of output qubits; thus, any subtensor of the full amplitude tensor can

be encoded. A graphical representation of the extended amplitude expression is shown in

Fig. 2.6. We have to mention that the same procedure can be used not only to evaluate

the probabilities of multiple output states, but also the evolution of multiple input states.

This approach can be used to simulate the dynamics of mixed states, although we will not

elaborate on this in the current chapter.

In order to evaluate multiple amplitudes, the resulting extended expressions have to

be contracted only partially (the indices of the amplitude subtensors should not be summed

over). Partial contraction can be achieved by stopping the bucket elimination algorithm [Dechter,

19

s1
0

s2
0

s3
0

s3
1

s3
6

s4
6

s2
4 s2

6

s4
0 s4

1

s1
1

s1
3s1

6
s4
3

s3
2

s2
1

s4
7

s3
7

s2
7

s4
7

s3
7 s2

7

Figure 2.6: Evaluation of amplitude subsets.
Top - extended amplitude expression to evaluate all amplitudes of qubits 2, 3, 4; Bottom -
resulting amplitude tensor.

20

2013; Marsland, 2011] when all necessary indices are eliminated and (possibly) merging the

final set of tensors. Notice that the result of the evaluation of all amplitudes for c qubits

will result in a tensor with 2c elements, which will be mirrored by a clique (a fully connected

subgraph) with c nodes in our graphical notation (Fig. 2.6, bottom).

After selecting a subset of nodes to leave in the result, one still faces a problem of choosing

an optimal order of variable elimination to implement partial contractions. Let us turn to

the discussion of a possible solution.

2.4.2 Node ordering and chordal graphs

To properly introduce the procedure of finding elimination orders for partial contractions,

let us first highlight the connection of elimination orders and chordal graphs. Chordal

graphs (also called triangulated graphs) are the ones that do not have cycles of length higher

than 3. Many problems that are hard on general graphs can be solved on chordal graphs in

polynomial time (for example, the Maximum Clique problem[Gavril, 1972]). An extensive

introduction to the properties of chordal graphs and related algorithms can be found in [Blair

and Peyton, 1993].

We will employ chordal graphs because of their relation to node orderings. Consider the

bucket elimination procedure described before, but without node removal. Specifically, given

a graph G and a node order π, one would loop over the nodes according to π and for each

node connect all of its neighbors who have higher order in π. It can be shown[Blair and

Peyton, 1993] that this procedure will always produce a chordal graph. Indeed, if the initial

graph had any cycle with four or more nodes, connecting the neighbors of any node in the

cycle will introduce a chord (a link between nodes in the cycle), thus breaking a cycle into

smaller, three node cycles. The resulting chordal graph is also called a fill-in graph in this

context.

A formal algorithm for building a fill-in graph H given an initial graph G and an elimina-

21

3

1

42

5 6

3

1

4

2

5 6

3

1

4

2

5 6

3

1

4

2

5 6

3

1

4

2

5 6

3

1

4

2

5 6

Figure 2.7: Building a chordal graph from the elimination order
The graph corresponds to the tensor network in Eq. 2.5. The nodes are labeled according

to their order.

tion order π is listed in Alg. 1. A corresponding graphical representation of the algorithm is

provided in Fig. 2.7. An important remark has to be made here. Any elimination order π will

produce a chordal graph, but this does not imply that there is a one-to-one correspondence.

Multiple orders can result in the same fill-in graph [Tarjan and Yannakakis, 1984]; we will

employ this fact in the next section.

22

Algorithm 1 Building chordal graph from the elimination order

Input: G = (V,E), π : V → N , π = {(vi, i)}
|V |
i=1

Output: H = (V, Ẽ), H is chordal

1: function Build_chordal_graph(G, π)

2: Ẽ ← E

3: for i ∈ [1, . . . , |V |] do

4: v ← π−1(i)

5: U = ∅

6: for w in neighbors(v) do

7: if π(w) > i then

8: U ← U ∪ w

9: end if

10: end for

11: for x, y in pairs(U) do

12: Ẽ ← Ẽ ∪ (x, y)

13: end for

14: end for

15: end function

The size of the maximum clique in the fill-in graph equals treewidth by construction

[Bodlaender et al., 2006]. The problem of searching the best elimination order for a graph

G thus can be formulated in terms of the search of an optimal fill-in graph. Formally, given

a graph G = (V,E) the task of finding an elimination order π with minimal treewidth is

equivalent to finding a chordal graph H = (V, Ẽ), Ẽ ∈ E, such that the size of its maximum

clique is minimized.

Provided a chordal graph H is found, any of its elimination orders that does not introduce

23

additional edges, and hence does not change the graph H, will have the same treewidth.

Chordal graphs thus provide means of building equivalent (in terms of treewidth) elimination

orders. In contrast with arbitrary graphs, finding elimination orders of chordal graphs can

be done in linear time [Tarjan and Yannakakis, 1984]. We now turn to the description of the

procedure of building of equivalent elimination orders of chordal graphs.

2.4.3 Finding restricted elimination orders

Let us now find an optimal elimination order for multiple amplitude evaluation, as described

in Sec. 2.4.1. In essence, we want to find an order with minimal treewidth, such that some

set of nodes will be at the end of this order. Putting it formally, for a graph G = (V,E) and

a subset of nodes C ∈ V we want to find an order π with minimal treewidth, such that for

any nodes v ∈ C and w ∈ V \ C the order of v is higher than the order of w: π(v) > π(w).

Our idea is to calculate an optimal unrestricted elimination order π̃ (not necessary having

C at the end), and then to use the connection between the elimination orders and chordal

graphs to transform it to the desired order π. Essentially, we employ the result of Bodlaen-

der [Bodlaender et al., 2006], to devise a procedure for building π. Our approach is outlined

below:

1. Check if C induces a clique in G. If G[C] is not a clique, turn G[C] into a fully

connected subgraph. This step ensures that the condition stated in (Ref. [Bodlaender

et al., 2006], Lemma 10) is satisfied: if C is a clique, then there always exists an

elimination order with C at the end. A graph G̃ is produced as a result of (possibly)

turning C into a clique.

2. Find an elimination order π̃ of G̃ using an exact (NP-hard) or a heuristic algorithm.

We use the branch and bound algorithm of Gogate[Gogate and Dechter, 2004] with

the time limit of 60 seconds (to obtain an exact solution the algorithm has to be given

a very long time).
24

3. Build a chordal graph H using Alg. 1.

4. Provided with a set C and a chordal graph H, construct a new order π with the help of

the Restricted Maximum Cardinality Search (MCS) algorithm. The order π has same

treewidth as the order π̃ and nodes in C are placed at the end in π.

Essentially, in our approach, we transform an arbitrary solution to the Tree decomposition

problem to the one that satisfies our restrictions (places all nodes in C to the end) and

has the same quality (same treewidth). The last ingredient to complete the procedure

is the Restricted Cardinality Search algorithm. We modified the original algorithm from

Ref. [Tarjan and Yannakakis, 1984]. The resulting pseudocode is provided in Alg. 2.

25

Algorithm 2 Computing an elimination order with a set of nodes C at the end
Input: H = (V,E), H is chordal, C ∈ V, C is clique

Output: π : V → N , π = {(vi, i)}
|V |
i=1

1: function Restricted-MCS(H,C)

2: for v ∈ V do

3: cardinality(v) ← 0

4: end for

5: for i ∈ [|V |, |V | − 1, . . . , 1] do

6: if C ̸= ∅ then

7: pick v ∈ C, C ← C \ {v}

8: else

9: pick v ∈ V with maximum cardinality

10: V ← V \ {v}

11: end if

12: π ← π ∪ (v, i)

13: for w ∈ neighbors(v), w /∈ π do

14: cardinality(w) ← cardinality(w) + 1

15: end for

16: end for

17: end function

In the Alg. 2 each node v of the graph H is assigned a counter "cardinality", which holds

the number of labeled neighbors of v. At each step, we label the next node with maximal

cardinality, breaking ties arbitrarily. The order is built in a reversed form. In the beginning,

nodes in C are labeled (to be last), and then the rule stated before is applied. Note that if

at step i a node v is selected, then in the next steps all neighbors of v, which belong to the

26

maximal clique K, v ∈ K will be labeled. Overall, the procedure in Alg. 2 is polynomial in

the number of nodes |V |.

Let us now demonstrate the benefits of the proposed approach with numerical examples.

2.4.4 Numerical examples

The methods developed in previous sections were used to implement a quantum circuit

simulator. As numerical examples we use the simulation of random quantum circuits from

the work of Boixo et al. The qubits are arranged in a square grid of size k × k and a set

of gates {X1/2, Y 1/2, cZ, T,H} is applied in a predefined pattern. This circuit choice can

be implemented in superconducting quantum processors. [Chen et al., 2014] The reader is

referred to [Boixo et al., 2017] to learn more details about the motivation of these random

circuits. The dataset with random circuits of Boixo et al., which we used in this work, is

available online [Boixo, 2019]. Here we are interested only in the numerical cost and the

memory usage to evaluate amplitudes.

In Fig. 2.8, the dependence of treewidth ν on the size and depth of the random circuits

is shown. Let us recall that the number of floating-point operations scales as O(2ν+1) and

the required memory as O(2ν). The complexity of simulation grows exponentially with the

volume of random quantum programs, which was the original motivation for considering

them as a test bench for demonstrations of quantum supremacy [Boixo et al., 2018].

In Fig. 2.9, the advantage of batch simulation comparing to single amplitude at a time is

shown. The steep growth of the flop cost is significantly ameliorated. We recall that a clique

C is introduced into the computational graph when the evaluation of all amplitudes of |C|

qubits is performed. While this clique is less than the treewidth of the computational graph,

there is only a negligible increase in the computational cost. Batch simulation, however,

requires copious amounts of memory, as shown in Fig. 2.10. The results we obtain illustrate

a usual CPU/memory trade-off seen in numerical algorithms. Notice also that the curves for

27

20 24 28 32 36
depth of 8x8 circuit

24

30

36

42

48

54

tre
ew

id
th

4 6 8 10 12
lateral size of 25 layer circuit

16

24

32

40

48

tre
ew

id
th

Figure 2.8: Treewidth dependence on the size of a random quantum circuit. Left - depen-
dence of treewidth on the depth of a random circuit, Right - dependence of treewidth on the
number of qubits.

total amount of memory and flop are almost indistinguishable. This result is caused by the

fact that during the evaluation of the amplitudes one needs to contract high order tensors

over an index of size 2: the flop cost of the most expensive contraction equals the size of the

largest tensor times 2.

0 8 16 24 32 40 48
size of the qubit group |C|

1010

1012

1014

1016

1018

1020

1022

1024

to
ta

l f
lo

ps
 (a

ll
ta

sk
s)

7x7 depth 25
batches of amplitudes
1 amplitude at a time

0 10 20 30 40 50 60
size of the qubit group |C|

1012

1015

1018

1021

1024

1027

1030

to
ta

l f
lo

ps
 (a

ll
ta

sk
s)

8x8 depth 25
batches of amplitudes
1 amplitude at a time

0 15 30 45 60 75
size of the qubit group |C|

1014

1018

1022

1026

1030

1034

1038

to
ta

l f
lo

ps
 (a

ll
ta

sk
s)

9x9 depth 25
batches of amplitudes
1 amplitude at a time

Figure 2.9: Total flop requirements for the simulation of a typical random circuit of varying
size. Estimated number of floating point operations for the simulation of the full subset of
amplitudes of |C| qubits (there are 2|C| amplitudes). In case of one amplitude at a time
simulation a combined cost of all tasks is drawn.

Lastly, we provide the dependence of the number of operations per memory access for

circuits of different sizes in Fig. 2.11. In all cases, the values are in the range of O(L), where

28

0 8 16 24 32 40 48
size of the qubit group |C|

1010

1012

1014

1016

1018

m
em

or
y

pe
r t

as
k

(in
 fl

oa
ts

)
7x7 depth 25

batches of amplitudes
1 amplitude at a time

0 10 20 30 40 50 60
size of the qubit group |C|

1010

1012

1014

1016

1018

1020

1022

1024

m
em

or
y

pe
r t

as
k

(in
 fl

oa
ts

)

8x8 depth 25
batches of amplitudes
1 amplitude at a time

0 15 30 45 60 75
size of the qubit group |C|

1013

1016

1019

1022

1025

1028

m
em

or
y

pe
r t

as
k

(in
 fl

oa
ts

)

9x9 depth 25
batches of amplitudes
1 amplitude at a time

Figure 2.10: Minimal memory requirement for the simulation of a typical random circuit of
varying size
Shown is the predicted number of memory in floating point units per single task (simulation
of either 1 amplitude or a batch of amplitudes). Notice the high similarity with Fig. 2.9: the
ratio of flop to memory access is almost constant in logarithmic scale.

L = 2 for qubits. This dependence demonstrates that despite a potential for massive paral-

lelism [Chen et al., 2018b], the problem of tensor contraction is essentially memory bound,

and an efficient algorithm has to very carefully overlap data transmission and computations.

Comparing to the contraction of matrices, where extremely efficient algorithms were devel-

oped [Dongarra et al., 1988] using CPU cache and vectorized operations, a general tensor

contraction is more challenging for optimization.

2.5 Conclusion and comparison

We introduced a novel way to optimize graphical model algorithms for quantum circuits

simulation. Our approach allows the user to select between the amount of memory consumed

and the speed of the calculation; thus, the code can be adapted to the available hardware.

We emphasize that our approach is not restricted to quantum circuit simulation, but can be

used to evaluate partial contractions of general tensor networks. To our best knowledge, this

is a first of a kind method which evaluates partial contractions efficiently, e.g., its resource

requirements depend only on the treewidth of the expression’s graph.

29

0 10 20 30 40 50 60 70 80
number of full qubits

2.40

2.45

2.50

2.55

flo
ps

 p
er

 m
em

or
y

ac
ce

ss

7x7 depth 25
8x8 depth 25
9x9 depth 25

Figure 2.11: Floating point to memory access ratio during the simulation of random circuits
of varying size

Many more improvements to the tensor contraction strategy can be proposed. Here we

explicitly avoided the discussion of parallel simulation, and defer it to a future work. Also,

since the structure of modern computer memories combines devices with varying latency and

size, some research is needed on the proper scheduling of the operations, especially in the

parallel case.

30

CHAPTER 3

DIAGONAL GATES APPROACH FOR OPTIMIZING

QUANTUM CIRCUIT SIMULATION

This chapter is adapted from Lykov and Alexeev [2021].

3.1 Abstract

In this work we present two techniques that increase the performance of tensor-network based

quantum circuit simulations. The techniques are implemented in the QTensor package and

benchmarked using Quantum Approximate Optimization Algorithm (QAOA) circuits. The

techniques allowed us to increase the depth and size of QAOA circuits that can be simulated.

In particular, we increased the QAOA depth from 2 to 5 and the size of a QAOA circuit

from 180 to 244 qubits. Moreover, we increased the speed of simulations by up to 10 million

times. Our work provides important insights into how various techniques can dramatically

speed up the simulations of circuits.

3.2 Introduction

Several approaches have been employed to simulate quantum circuits. The major types

include the state-vector evolution approach [De Raedt et al., 2007; Smelyanskiy et al., 2016;

Häner and Steiger, 2017; Wu et al., 2019, 2018b,a], linear algebra open system simulation

[Otten, 2020], and tensor network contractions [Markov and Shi, 2008; Pednault et al., 2017;

Boixo et al., 2017; Lykov et al., 2020b]. All these simulators have various advantages and

disadvantages. For example, the state-vector evolution approach, while being relatively

easy to implement, has an exponential memory requirement with respect to the number of

qubits in the circuit, which is a major bottleneck preventing quantum simulations beyond

approximately 46 qubits on modern supercomputers.
31

0 H • • • • • • H Z2β H

1 H Z2γ • • • • H Z2β H

2 H Z2γ Z2γ • • H Z2β H

3 H Z2γ Z2γ Z2γ H Z2β H

Figure 3.1: Quantum circuit that generates QAOA ansatz state for MaxCut problem on a
4-node complete graph. This widely used decomposition of QAOA into common set of basis
gates is not optimal for the classical simulation of the output state.

In our opinion the most promising type of simulator is the tensor network contraction

approach. It is especially efficient for simulating shallow-depth circuits. This approach can

be sensitive to the connectivity of a quantum circuit and the types of gates. In this chapter we

describe the tensor network simulator implementation and show two optimization techniques

that enable dramatic speedup of simulations. We use quantum circuits from the Quantum

Approximate Optimization Algorithm (QAOA) algorithm since it is a promising candidate

for demonstrating quantum advantage and benchmarking quantum devices.

All simulations in our work used QTensor [Lykov, 2021], developed at Argonne National

Laboratory. It is a quantum circuit simulator that uses a tensor network contraction ap-

proach with a special focus on the simulation of QAOA circuits. It supports simulating both

probability amplitudes and energy expectation values.

In the following section we introduce the tensor network contraction approach and de-

scribe the QAOA quantum circuits. In particular, we show how the usage of the Feynman

path formalism provides the possibility for optimization. We then describe the optimiza-

tion techniques and the resulting speedup of simulations. The final section contains our

conclusions and further directions of research.

32

default diagonal ZZ gates + diagonal

Figure 3.2: Line graphs of tensor networks for calculating QAOA ansatz state using different
optimizations. “Default" and “diagonal" show line graphs of tensor network for the circuit
shown in Figure 3.1, using a full-matrix gates and diagonal gates approach, respectively. “ZZ
gates + diagonal" is obtained by using the diagonal gates approach on a simplified quantum
circuit obtained by applying Equation 3.4. This figure demonstrates how improving the
conversion of a quantum algorithm to a tensor network can reduce the complexity of the
network, providing speedups for both finding contraction order and the contraction itself.

3.3 QAOA algorithm

The QAOA algorithm, introduced by Farhi and Goldstone in 2016 [Farhi and Harrow, 2016],

is a seminal hybrid quantum-classical algorithm for approximate optimization. The algo-

rithm can be used to find approximate solutions to NP-complete combinatorial optimization

problems. Here we will demonstrate how it works to solve the MaxCut problem and all

benchmarking simulations are performed for MaxCut, but this work also applies to other

types of tensor network simulations.

The goal of the MaxCut problem is to color all vertices of a given graph G = (V,E), such

that the number of edges between the two resulting parts of the graph is maximized. The

cost function for MaxCut is C = 1
2

∑
<jk>∈E −ZjZk +1, where Zi is a label of each vertex.

To solve this problem using QAOA, one has to find optimal parameters for the parametrized

ansatz state |γβ⟩ such that the expectation value of the Hamiltonian cost function ⟨γβ|Ĥ|γβ⟩

is maximized. The ansatz state depends on two parameter vectors γ and β. The length of

the parameter vector, denoted p, is an important parameter that defines the quality of the

solution. For a QAOA depth p with MaxCut on graph G = (V,E), the ansatz state is equal

33

to

|γβ⟩p =

p∏
k=1

UC(γk)UB(βk) |+⟩ , (3.1)

where UB(β) = e−ıβ
∑

j∈V Xj and UC(γ) = e
−ıγ2

∑
(i,j)∈E(I−ZiZj). Substituting UB and UC

into (3.1) and discarding the global phase, we obtain

|γβ⟩p =

p∏
q=1

[
∏

ij∈E,k∈V
eıγqZiZje−ıβqXk]|+⟩. (3.2)

A quantum circuit that generates the ansatz state for MaxCut on a fully connected 4-node

graph is shown in Figure 3.1. For a more detailed description of QAOA see [Farhi and

Harrow, 2016].

The optimal γ, β parameters correspond to the minimum of the Hamiltonian cost function

expectation value, which can be calculated as E = ⟨γβ|C |γβ⟩. Note that C is a sum of

|E| elements, where each element corresponds to an edge of the original graph on which we

solve MaxCut. Hence, the expectation value is E =
∑

k Ek, where each element is a matrix

element of a local operator that acts on two qubits. This locality gives room for efficient

optimization by canceling all the conjugate gates that commute through that local operator.

This optimization, called lightcone optimization, was introduced by Farhi and Goldstone in

[Farhi and Harrow, 2016].

The energy calculation is an important part of the QAOA method, since one can use

a classical computer to optimize the γ, β parameters without having to use noisy quantum

devices. In this work, however, we focus on simulating a single amplitude of the ansatz state

as a benchmark for demonstrating the optimizations. The results for energy simulations will

be discussed in future works.

34

3.4 Methodology

3.4.1 Tensor network approach

Quantum computers operate by applying gates to a quantum state that describes a quantum

system consisting of N subsystems (qubits). One way to describe the evolution of the

quantum system is to apply quantum gates in matrix form on the wavefunction in the form

of a state vector. With the state-vector evolution approach, each gate action should be

described as an operator that acts on the whole system, even if the gate is local to a certain

subsystem of qubits. As a result, the whole state vector needs to be stored, which is extremely

inefficient in terms of computational resources and memory.

The tensor network approach associates a state vector of the system with a tensor of N

indices. Each index in this tensor labels the state of a particular subsystem. That is, the

dimension of the index is equal to number of states of the subsystem, which is always 2 in our

case. Each gate that acts on a subsystem can then be described as a tensor. The amplitudes

of the resulting state can be calculated by summing the product of the state tensor and the

operator tensor over the index of the subsystem.

For example, given a system of two qubits and operator X̂0 acting on the first qubit, the

resulting state in the state-vector formalism would be |ϕ⟩ = X̂0 ⊗ Î1 |ψ⟩. In tensor network

representation, this equation is ϕi′j = Xi′iψij .

If the system is in a product state, then the corresponding state-tensor is a product of

smaller tensors representing each subsystem state. In particular, a 2-qubit system in a state

|0⟩ is represented by ψij =

1

0


i

1

0


j

. Note that the size of this object is 2N compared

with that of 2N in the state-vector notation. More details on tensor network formalism are

available in [Cichocki et al., 2016].

35

3.4.2 Tensor network contraction

Simulation of probability amplitudes of a quantum state can be done by contracting a tensor

network that represents the quantum circuit that generates the state.

The contraction of a general tensor network can be written by using a line graph approach

as following:

Ri1,...,ip =
∑

j1,...,jq

∏
ei∈F

W i
ei , (3.3)

where tensor indices i..., j... ∈ U are represented by vertices of a hypergraph L = (U, F),

e ∈ F is a hyperedge of L, edges are tuples of indices ei = (v1, v2, . . . , vd),∀k vk ∈ U , and

tensors W i
ei have the number of dimensions d , the same as the number of vertices in a

corresponding edge. For two-level quantum systems, where each tensor dimension has size

2, the sum (3.3) has 2q elements, and each element corresponds to assignment of 0, 1 to each

variable.

Instead of calculating every element of this sum, one can merge tensors with each other,

producing an intermediary tensor after each merge operation. One way to do this is by

selecting some vertices ji from all contracted vertices {jk}
q
k=1 and evaluating values of a

new intermediary tensor by summing over ji a product of only those tensors that have ji as

their index. The order in which the ji are selected determines the size of the largest tensor

that needs to be stored as an intermediate step in the contraction. Thus the total contraction

speed and memory requirements are determined by this intermediate largest tensor, which

can reach a very large number of dimensions. More information on ordering tensor networks

is available in [Schutski et al., 2020], [Lykov et al., 2020b], [Dechter, 2013].

36

3.5 Optimization techniques

To speed up and reduce memory requirements of tensor network contraction, we applied two

techniques, which we describe in detail in this section. In the first technique we combined

gates, and in the second technique we took advantage of the diagonal properties of the gates.

3.5.1 Optimization of QAOA circuit structure

A typical 4-qubit QAOA circuit is shown in Figure 3.1. We note that Pauli-Z gates are

enclosed by two CNOT gates or by Hadamard gates. One can merge these gates in a

specialized 2-qubit gate with a parameter γ or parameter β respectively, as shown in the

equations below.

• • H Z2β H

Z2γ H Z2β H
= ZZ

X2β

X2β

(3.4)

ẐZ = eiγẐiẐj (3.5)

This gate optimization technique reduces the complexity of the tensor network line graph,

as shown in Figure 3.2. It also makes finding an optimal tensor contraction sequence easier

since the line graph has fewer vertices.

3.5.2 Diagonal gate simplification

A certain property of tensors W i
ei can provide an opportunity for optimization in terms of

how these tensors are stored and computed. Each index of sum (3.3) can have a value 0 or

1 for an N -qubit system, and each assignment of values to indices corresponds to a single

Feynman path which evaluates to an element of the sum (3.3). Since the value of each

37

Feynman path is a product of values of different tensors, we know in advance that if for

some assignment the value of any tensor is 0, the whole contribution is 0 as well.

In particular, if a tensor W i0 from Equation 3.3 is diagonal, in other words W i0
lm = αlδlm,

then for any assignment of indices (l,m) = ei0 , l,m ∈ U from sum (3.3) in which values of

the diagonal tensor indices match, the corresponding element in the sum will be equal to

zero. The tensor W i0 can then be safely removed from the tensor network and replaced by

αl without changing the result.

Here is a 2-gate example demonstrating how our diagonalization technique is applied.

|ϕ⟩ = ÛD̂|ψ⟩ϕi =
∑
jk

UijDjkψk

=
∑
jk

Uijαjδjkψk =
∑
j

Uijαjψj

(3.6)

We note that QAOA circuits have only one type of a 2-qubit gate: ẐZ = eiγẐiẐj . The

Ẑ gate is diagonal, as is ẐiẐj ; therefore, the matrix of the ẐZ gate in the 2-qubit basis will

be diagonal.

ˆZZ(γ) = eiγẐiẐj = diag(eiγ , e−iγ , e−iγ , eiγ) (3.7)

We can use this fact to replace the 4-index tensor Uijkl representing a generic 2-qubit gate

with a 2-index tensor Uij = (ρ ρ
ρ ρ), ρ = eiγ that represents a diagonal gate. This significantly

reduces the computational cost for tensor contraction and the memory requirements to store

these tensors.

38

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of QAOA iterations p

105

108

1011

1014

1017

1020

FL
OP

s

diagonal + ZZ gates
ZZ gates
diagonal
default

Figure 3.3: Number of FLOPs to calculate a single amplitude of QAOA ansatz state for
MaxCut using a different number of QAOA iterations. Each line shows a combination of
optimization techniques, with “diagonal + ZZ gates" being the most advanced one. The
shaded region shows 1-σ interval over 5 random graphs.

0.1 0.5 1 1.5 2 3 10 30
Time spent on ordering, seconds

108

109

1010

1011

1012

1013

1014

1015

FL
OP

s

diagonal + ZZ gates
ZZ gates
diagonal
default

Figure 3.4: Number of FLOPs to calculate a single amplitude of QAOA ansatz state with
p=1 for MaxCut on random 3-regular graphs with 160 nodes. The shaded region shows
1-σ interval over 5 random graphs.

39

3.6 Results

In this section we evaluate the simulation complexity of different combinations of quantum

circuits. For this work we used the number of FLOPs required for contraction as the main

metric of simulation complexity. We used only the FLOPs metric because it is easy to use

and FLOPs and memory requirements are highly correlated. The number of FLOPs can be

estimated as 2C , where C is a contraction width, or the number of dimensions of the largest

intermediary tensor. Thus, one can safely assume that the maximum memory in bytes for

the contraction will be 16 ∗ 2C , positing the size of a single complex number to be 16 bytes.

First, we selected 5 random 3-regular graphs, for which we formulated the MaxCut prob-

lem by using QAOA. Then, each graph was used to generate quantum circuits that produce

QAOA ansatz. There are two types of circuits: one using ordinary decomposition of 2-qubit

gates into three gates and another using the ẐZ gate simplification, as described in Sec-

tion 3.5.1, where the complexity of the circuit is reduced. For each quantum circuit, we

constructed a tensor network using two approaches: with diagonal simplification and with-

out it, as described in Section 3.5.2. The tensor network was then sliced to produce the

first amplitude of the ansatz state when all its indices are contracted. We then used the

rgreedy algorithm from the QTensor package with n_repeats=10 and temp=0.02 to obtain

a contraction sequence, which we used to estimate the number of FLOPs required for the

contraction. Dependence of the contraction complexity from the contraction ordering time

is shown in Figure 3.4. The experiments in this chapter aim to demonstrate the difference

between simulation of quantum circuits optimized using different techniques, rather than

absolute values of the simulation cost. Hence, we pick relatively modest ordering algorithm

parameters that result in 1 second of ordering time.

Further analysis of contraction complexity is shown in Figure 3.3. In this figure, the num-

ber of FLOPs for simulating a single amplitude of QAOA ansatz circuit versus the number

of QAOA iterations p is shown. The data in the plot is evaluated for five random 3-regular

40

50 75 100 125 150 175 200 225
Number of qubits N

104

106

108

1010

1012

1014

1016

1018

FL
OP

s

diagonal + ZZ gates
ZZ gates
diagonal
default

Figure 3.5: The number of FLOPs to calculate a single amplitude of QAOA ansatz state for
MaxCut on random 3-regular graphs of different sizes. The number of nodes in the graph
corresponds to the number of qubits in the quantum circuit. Each line shows a combination
of optimization techniques, with “diagonal + ZZ gates" being the most advanced one. The
shaded region shows 1-σ interval over 5 random graphs.

graphs. From the figure one can see that diagonal gates and ẐZ gate optimization techniques

dramatically reduce the number of FLOPs compared with the original unoptimized tensor

network graphs.

We also analyzed how the number of FLOPs is correlated with the size of the circuit

in terms of the number of qubits N . Figure 3.5 shows the number of FLOPs for ansatz

simulation of QAOA MaxCut on 3-regular graphs of different sizes and fixed p=1. We

note that improvement in performance grows with the size of a circuit, showing that the

diagonal gate simplification proportionally reduces the contraction width C, while the ẐZ

gates simplification produces a similar amount of improvement for all sizes.

From the analysis of Figures 3.3, 3.4, and 3.5, it is surprising to find out that using only

ẐZ gate optimization is not enough to get significant computational and memory savings.

We note that using the diagonal gates is what really provides dramatically better results,

especially when combined with gate optimization.

41

Default With diagonal With ZZ gates and diagonal
Laptop 2 3 3
Supercomputer 2 4 5

Table 3.1: The maximum number of QAOA iterations p for which one can simulate a single
amplitude of ansatz state for MaxCut on a 40-node random regular graph.

Default With diagonal With ZZ gates and diagonal
Laptop 118 156 160
Supercomputer 180 240 244

Table 3.2: The maximum number of nodes of a 3-regular graph for which one can simulate
a single amplitude of the MaxCut QAOA ansatz state.

The simulation of quantum circuits is usually a memory-bound task because of memory

requirements to store an intermediate tensor. The optimization techniques described in this

chapter allow simplification of a tensor network structure with ẐZ and diagonal gates, which

in turn helped us find the optimal tensor contraction sequence. As a result, we extended the

depth p and the number of qubits N of the largest circuits that is feasible to simulate using

a laptop or a supercomputer, as shown in Tables 3.1 and 3.2. A laptop is assumed to have

4 GB of memory, and a supercomputer is assumed to have 800 TB of aggregated memory.

Our optimization techniques also can be applied to the simulation of the QAOA energy

expectation value. Thus, it would allow us to find parameters for even larger circuits with

higher depth.

3.7 Conclusions

Here, we implemented ẐZ gate optimization and diagonal gate techniques and demonstrated

that can lead to dramatic savings in terms of memory and computation requirements. As

a result, we were able to simulate much larger QAOA circuits both in size and in depth, as

shown in Tables 3.1 and 3.2.

We were able to increase p from 2 to 5 and the size of a QAOA circuit N from 180 to

244 qubits on a supercomputer. These numbers were estimated without actually running on

42

a supercomputer, but the laptop results have been actually verified.

The tensor network contraction method for simulation of quantum circuits is a powerful

approach that has the potential to simulate very large quantum circuits. At the same

time, however, a lot of improvements, simplifications, and approximations can be used to

improve the simulations and dramatically decrease memory and computational requirements.

For example, in this work we sped up quantum simulations by up to 10 million times,

as can be seen in Figure 3.3 in the “diagonal+ZZ gates" curve versus “default" curve for

p = 5. Moreover, there is room to speed up simulations by an even larger factor. This

work underscores how one needs to be careful when comparing tensor network simulations

against classical solvers and quantum hardware for demonstration of quantum supremacy and

advantage. Our work provides important insights into how various optimization techniques

can speed up tensor network simulations and what other techniques can be used to achieve

this goal.

43

CHAPTER 4

PARALLEL COMPUTATION

This chapter is adapted from Lykov, Schutski, Galda, Vinokur, and Alexeev [2020b].

4.1 Introduction

In this chapter, we explore the limits of classical computing using a supercomputer to sim-

ulate large QAOA circuits, which in turn helps to define the requirements for a quantum

computer to beat existing classical computers.

Our main contribution is the development of a novel slicing algorithm and an ordering

algorithm. These improvements allowed us to increase the size of simulated circuits from

120 qubits to 210 qubits on a distributed computing system, while maintaining the same

time-to-solution.

In Section 4.2 we start by discussing related work. In Section 4.4 we describe tensor

networks and the bucket elimination algorithm. Simulations of a single amplitude of QAOA

ansatz state are described in Section 4.5. We introduce a novel approach step-dependent slic-

ing to finding the slicing variables, inspired by the tensor network structure. Our algorithm

allows simulating several amplitudes with little cost overhead, which is described in Section

4.7.

We then show the experimental results of our algorithm running on 64-1,024 nodes of

Argonne’s Theta supercomputer. All these results are described in Section 3.6. In Section

4.9 we summarize our results and draw conclusions.

4.2 Related Work

In recent years, much progress has been made in parallelizing state vector [Häner and Steiger,

2017; Smelyanskiy et al., 2016; Wu et al., 2019] and linear algebra simulators [Otten, 2020].

44

Very large quantum circuit simulations were performed on the most powerful supercomputers

in the world, such as Summit [Villalonga et al., 2020], Cori [Häner and Steiger, 2017], Theta

[Wu et al., 2019], and Sunway Taihulight [Li et al., 2018]. All these simulators have various

advantages and disadvantages. Some of them are general-purpose simulators, while others

are more geared toward short-depth circuits.

One of the most promising types of simulators is based on the tensor network contraction

technique. This idea was introduced by Markov and Shi [2008] and was later developed

by Boixo et al. [2017] and other authors [Schutski et al., 2020]. Our simulator is based on

representing quantum circuits as tensor networks.

Boixo et al. [2017] proposed using the line graphs of the classical tensor networks, an

approach that has multiple benefits. First, it establishes the connection of quantum circuits

with probabilistic graphical models, allowing knowledge transfer between the fields. Sec-

ond, these graphical models avoid the overhead of traditional diagrams for diagonal tensors.

Third, the treewidth is shown to be a universal measure of complexity for these models. It

links the complexity of quantum states to the well-studied problems in graph theory, a topic

we hope to explore in future works. Fourth, straightforward parallelization of the simulator

is possible, as demonstrated in the work of Chen et al. [Chen et al., 2018b]. The only disad-

vantage of the line graph approach is that it has limited usability to simulate subtensors of

amplitudes, which was resolved in the work by Schutski et al. [Schutski et al., 2020]. The

approach has been studied in numerous efficient parallel simulations relevant to this work

[Chen et al., 2018b; Li et al., 2018; Pednault et al., 2017; Schutski et al., 2020].

45

4.3 Methodology

4.3.1 QAOA introduction

The combinatorial optimization algorithms aim at solving a number of important problems.

The solution is represented by an N -bit binary string z = z1. . . zN . The goal is to determine

a string that maximizes a given classical objective function C(z) : {+1,−1}N . The QAOA

goal is to find a string z that achieves the desired approximation ratio:

C(z)

Cmax
≥ r

where Cmax = maxzC(z).

To solve such problems, QAOA was originally developed by Farhi et al. [2014]. In this

paper, QAOA has been applied to solve MaxCut problem. It was done by reformulating

the classical objective function to quantum problem with replacing binary variables z by

quantum spin σz resulting in the problem Hamiltonian HC :

HC = C(σz1 , σ
z
2 , . . .), σ

z
N

After initialization of a quantum state |ψ0⟩, the HC and a mixing Hamiltonian HB :

HB =
N∑
j=1

σ
j
x

is then used as to evolve the initial state p times. It results in the variational wavefunction,

which is parametirized by 2p variational parameters β and γ. The ansatz state obtained after

p layers of the QAOA is:

|ψp(β, γ)⟩ =
p∏

k=1

e−iβpHBe−iγpHC |ψ0⟩

46

To compute the best possible QAOA solution corresponding to the best objective function

value, we need to sample the probability distribution of 2N measurement outcomes in state

|γβ⟩. The noise in actual quantum computers hinders the accuracy of sampling, resulting

in the need of even a larger number of measurements. At the same time, sampling is an

expensive process that needs to be controlled. Only a targeted subset of amplitudes need

to be computed because sampling all amplitudes will be very computationally expensive

and memory footprint prohibitive. As a result, the ability of a simulator like QTensor to

effectively sample certain amplitudes is a key advantage over other simulators.

The important conclusion by Farhi et al. [2014] was that to compute an expectation

value, the complexity of the problem depends on the number of iterations p rather than the

size of the graph. This is a result of what is known as lightcone optimization. It has a major

implication to the speed of a quantum simulator computing QAOA energy, but this type of

optimizaiton is not applicable for simulating ansatz state, which is the type of simulation we

focus in this paper. A more detailed MaxCut formulation for QAOA was provided by Wang

et al.[Wang et al., 2018]. It is worth mentioning that there is a direct relationship between

QAOA and adiabatic quantum computing, meaning that QAOA is a Trotterized adiabatic

quantum algorithm. As a result, for large p both approaches are the same.

4.3.2 Description of quantum circuits

A classical application of QAOA for benchmarking and code development is to apply it to

Max-Cut problem for random 3-regular graphs. A representative circuit for a single-depth

QAOA circuit for a fully connected graph with 4 nodes, is shown in Fig. 3.1. The generated

circuit were converted to tensor networks as described in Section 4.4.1. The resulting tensor

network for the circuit in 3.1 is shown in Fig. 4.2. Every vertex corresponds to an index of

a tensor of the quantum gate. Indices are labeled right to left: 0 − 3 are indices of output

statevector, and 32 − 25 are indices of input statevector. Self-loop edges are not shown

47

(in particular Z2γ , which is diagonal). We simulated one amplitude of state |γ⃗, β⃗⟩ from

the QAOA algorithm with depth p = 1, which is used to compute the energy function.

The full energy function is defined by ⟨γ⃗, β⃗| Ĉ |γ⃗, β⃗⟩ and is essentially a duplicated tensor

expression with a few additional gates from Ĉ. The full energy computation corresponds to

the simulation of a single amplitude of such duplicated tensor expression.

4.4 Overview of simulation algorithm

In this section, we briefly introduce the reader to the tensor network contraction algorithm.

It is described in much more detail in the paper by Boixo et al. Boixo et al. [2017], and

the interested reader can refer to work by Detcher et al. [Dechter, 2013] and Marsland et

al. [Marsland, 2011] to gain an understanding of this algorithm in the original context of

probabilistic models.

4.4.1 Quantum circuit as tensor expression

A quantum circuit is a set of gates that operate on qubits. Each gate acts as a linear operator

that is usually applied to a small subspace of the full space of states of the system. State

vector |ψ⟩ of a system contains probability amplitudes for every possible configuration of the

system. A system that consists of n two-state systems will have 2n possible states and is

usually represented by a vector from C2n .

However, when simulating action of local operators on large systems, it is more useful

to represent state as a tensor from (C2)⊗n In tensor notation, an operator is represented

as a tensor with input and output indices for each qubit it acts upon.. The input indices

are equated with output indices of previous operator. The resulting state is computed by

summation over all joined indices. The comparison between Tensor Network notation and

Dirac notation is shown in Table 4.1.

Following tensor notations we drop the summation sign over any repeated indices, that

48

|i⟩ U |i⟩ i

|i1⟩
U

|i1⟩
|i2⟩ |i2⟩ i1

i2

(a) Diagonal gates

|i⟩ U |j⟩ i j

|i1⟩
U

|j1⟩
|i2⟩ |j2⟩

i1 i2

j1

j2

(b) Non-diagonal gates

Figure 4.1: Correspondence of quantum gates and graphical representation.

is, aibij =
∑

i aibij . For more details on tensor expressions, see [Cichocki et al., 2016].

4.4.2 Graph model of tensor expression

Evaluation of a tensor expression depends heavily on the order in which one picks indices to

sum over [Schutski et al., 2020; Markov and Shi, 2008]. The most widely used representation

of a tensor expression is a “tensor network,”, where vertices stand for tensors and tensor

indices stand for edges. For finding the best order of contraction for the expression, we use

a line graph representation of a tensor network. In this notation, we use vertices to denote

unique indices, and we denote tensors by cliques (fully connected subgraphs). Note that

tensors, which are diagonal along some of the axes and hence can be indexed with fewer

indices, are depicted by cliques that are smaller than the dimension of the corresponding

tensor. For a special case of vectors or diagonal matrices, self-loop edges are used. Figure 4.1

shows the notation for the gates used in this work. For a more detailed description of graph

representation, see [Schutski et al., 2020].

Dirac notation Tensor notation
general |ϕ⟩ = X̂0 ⊗ Î1 |ψ⟩ ϕi′j = Xi′iψij

product state |ψ⟩ = |a⟩ |b⟩ ψij = aiaj
with Bell state |ϕ⟩ = X̂0 ⊗ Î1(|00⟩+ |11⟩) ϕi′j = Xi′iδij

Table 4.1: Comparison between different notations of quantum circuits

49

0

4

1

5

2

6

3

7

14

12

10
8

9

11
16

17
13

18

19
20

2115 26

22
23

24
25

27

28

31

30

29

32

33

34

35

Figure 4.2: Graph representation of tensor expression of the circuit in Fig. 3.1. Every vertex
corresponds to a tensor index of a quantum gate. Indices are labeled right to left: 0-3 are
indices of the output statevector, and 32-25 are indices of the input statevector. Self-loop
edges are not shown (in particular Z2γ , which is diagonal).

Having built this representation, one has to determine the index elimination order. The

tensor network is contracted by sequential elimination of its indices.

The tensor after each index elimination will be indexed by a union of sets of indices of ten-

sors in the contraction operation. In the line graph representation, the index contraction re-

moves the corresponding vertices from the graph. Adding the intermediate tensor afterwards

corresponds to adding a clique to all neighbors of index i. We call this step elimination of ver-

tex (index) i. An interactive demo of this process can be found at https://lykov.tech/qg

(works for cZ_v2 circuits from “Files to use”— link).

The memory and time required for the new tensor after elimination of a vertex v from

G depends exponentially on the number of its neighbors NG(v). Figure 4.3 shows the

dependence of the elimination cost with respect to the number of vertices (steps) of a typical

QAOA quantum circuit. The inset also shows for comparison the number of neighbors for

every vertex at the elimination step.

50

https://lykov.tech/qg

0 200 400 600 800 1000 1200 1400
Elimination step

102

104

106

108

1010

St
ep

 c
os

t

Memory
FLOP

1250 1275 1300 1325 1350

103

106

109

0

20

40

60

Number of neighbours

Figure 4.3: Cost of contraction for every vertex for a circuit with 150 qubits. Inset shows
the peak magnified and the number of neighbors of the vertex contracted at a given step
(right y-axis).

Note that the majority of contraction is very cheap, which corresponds to the low-degree

nodes from Figure 4.2. This observation serves as a basis for our step-dependent slicing

algorithm.

The main factor that determines the computation cost is the maximumNG(v) throughout

the process of sequential elimination of vertices. In other words, for the computation cost C

the following is true:

C ∝ 2c; c ≡ max
i=1...N

NGi
(vi),

where Gi is obtained by contracting i − 1 vertices and c is referred to as the contraction

width. We later use shorter notation for the number of neighbors Ni(v) ≡ NGi(vi)
.

The problem of finding a path of graph vertex elimination that minimizes c is connected

to finding the tree decomposition. In fact, the treewidth of the expression graph is equal to

c − 1. Tree decomposition is NP-hard for general graphs [Bodlaender, 1994], and a similar

hardness result is known for the optimal tensor contraction problem [Chi-Chung et al., 1997].

However, several exact and approximate algorithms for tree decomposition were developed

51

Figure 4.4: Comparison of different ordering algorithms for single amplitude simulation of
QAOA ansatz state

in graph theory literature; for references, see [Gogate and Dechter, 2004; Bodlaender et al.,

2006; Kloks, 1994; Bodlaender, 1994; Kloks et al., 1993].

4.5 Simulation of a single amplitude

The simulation of a single amplitude is a simple benchmark to use to evaluate the complexity

of quantum circuits and simulation performance. We start with N -qubit zero state |0⊗N ⟩

and calculate a probability to measure the same state.

σ = ⟨0⊗N | Û |0⊗N ⟩ = ⟨0⊗N |γ⃗, β⃗⟩

4.5.1 Ordering algorithm

The ordering algorithm is a dominating part of efficient tensor network contraction. Linear

improvement in contraction width results in an exponential speedup of contraction.

52

There are several ordering algorithms that we use in our simulations. The major criterion

to choose one is to maintain a balance between ordering improvement and run time of the

algorithm itself.

Greedy algorithm

The greedy algorithm contracts the lowest-degree vertex in the graph. This algorithm is

commonly used as a baseline since it provides a reasonable result given a short run-time

budget.

Randomized greedy algorithm

The contraction width is very sensitive to small changes in the contraction order. Gray

and Kourtis [2020] used this fact in a randomized ordering algorithm, which provided con-

traction width improvement without prolonging the run time. We use a similar approach

in the rgreedy algorithm. Instead of choosing the smallest-degree vertex, rgreedy assigns

probabilities for each vertex using Boltzmann’s distribution:

p(v) = exp(−1

τ
NG(v))

The contraction is then repeated q times, and the best ordering is selected. The τ and q

parameters are specified after the name of the rgreedy algorithm.

Heuristic solvers

The attempt to use some global information in the ordering problem gives rise to several

heuristic algorithms.

QuickBB [Gogate and Dechter, 2004] is a widely-used branch-and-bound algorithm. We

found that it does not provide significant improvement in the contraction width in addition

53

to being much slower than greedy algorithms.

Tamaki’s heuristic solver [Tamaki, 2017] is a dynamic programming approach that pro-

vides great results. This is also an “anytime“ algorithm, meaning that it provides a solution

after it is stopped at any time. The improvements from this algorithm are noticeable when it

runs from tens of seconds to minutes. We denote time (in seconds) allocated to this ordering

algorithm after its name.

4.6 Parallelization algorithm

We use a two-level parallelization architecture to couple the simulation structure and hard-

ware constraints. Our approach is shown at Fig. 4.5. Multinode-level parallelization uses

MPI to share tasks. We slice the partially contracted full expression over n indexes and dis-

tribute the slices to 2n MPI ranks. We use a novel algorithm for determining the slice vertex

and step at which to perform slicing, which results in massive expression simplification. This

is described in Section 4.6.3. A high-level picture of our algorithm is shown in Fig. 4.6.

Node-level parallelisation over CPU cores uses system threads. For every tensor multi-

plication and summation we slice the input and output tensors over t indices. Contraction

is then performed by 2t threads writing results to a shared result tensor. This process is

described in Section 4.6.2.

To illustrate the two approaches used, we consider a simple expression Ci = AijBj .

There are two obvious ways of parallelization:

1. Parallelization over elements of sum, index j. Every worker computes its version of Ci

for some value of j, and the results then are summed.

2. Parallelization over the indices of the result, i. Every worker computes part of the

result, Ci, for some value of i.

These two options are intrinsically similar: every worker is assigned a simplified version of

54

the expression, which is obtained by applying a slicing operation over some indices to every

tensor. The difference between the two is that while performing computation using the first

option, one must store copies of the result for every worker, which results in higher memory

usage that scales linearly with the number of workers. This is not an issue in the second

option, where different workers write to different parts of the shared result. The second

option is less flexible, however. Usually one has a complex expression on the right-hand side,

and the result has a smaller number of dimensions. The crucial part is that one can reduce

treewidth of a complex expression using parallelization, which is discussed in Section 4.6.3.

4.6.1 Description of hardware and software

The benchmarks reported in this paper were performed on the Intel Xeon Phi HPC systems

in the Joint Laboratory for System Evaluation (JLSE) and the Theta supercomputer at the

Argonne Leadership Computing Facility (ALCF) [alc, 2017]. Theta is an 12-petaflop Cray

XC40 supercomputer consisting of 4,392 Intel Xeon Phi 7230 processors. Hardware details

for the JLSE and Theta HPC systems are shown in Table 4.2.

The Intel Xeon Phi processors used in this work have 64 cores. The cores operate at 1.3

GHz frequency. Besides the L1 and L2 caches, all the cores in the Intel Xeon Phi processors

share 16 GBytes of MCDRAM (another name is High Bandwidth Memory) and 192 GBytes

of DDR4 memory. The bandwidth of MCDRAM is approximately 400 GBytes/s, while the

bandwidth of DDR4 is approximately 100 GBytes/s.

The memory on Xeon Phi processors can be configured in the following modes: flat mode,

cache mode, and hybrid mode. In the flat mode, the two levels of memory are treated as

separate entities. One can run entirely in MCDRAM or entirely in DDR4 memory. In the

cache mode, the MCDRAM is treated as a direct-mapped L3 cache to the DDR4 layer. In

the hybrid mode, a part of the MCDRAM is L3 cache and the rest is directly addressable

fast MCDRAM, but it does not become part of the (lower bandwidth) DDR4 memory.

55

Table 4.2: Hardware and software specifications

Intel Xeon Phi node characteristics

Intel Xeon Phi models 7210 and 7230 (64 cores, 1.3 GHz, 2,622
GFLOPs)

Memory per node 16 GB MCDRAM,
192 GB DDR4 RAM

JLSE Xeon Phi cluster (26.2 TFLOPS peak)

of Intel Xeon Phi nodes 10
Interconnect type Intel Omni-PathTM

Theta supercomputer (11.69 PFLOPS peak)

of Intel Xeon Phi nodes 4,392
Interconnect type Aries interconnect with

Dragonfly topology
Cray environment loaded modules PrgEnv-intel/ 6.0.5, intel/ 19.0.5.281, cray-

mpich/ 7.7.10

Besides memory modes, the Intel Xeon Phi processors support five cluster modes: all-to-

all, quadrant/hemisphere, and sub-NUMA cluster SNC-4/SNC-2 modes of cache operation.

The main idea behind these modes is how to optimally maintain cache coherency depending

on data locality.

For the types of problems we are computing here, there is not much difference between

various memory configurations [Mironov et al., 2017]. In the calculations presented in this

paper, we used the quadrant clustering mode for all quantum circuit simulations on Intel

Xeon Phi nodes. We explored the use of different affinity modes and found that there is not

much difference in performance between them. For our benchmarks, we used the default

affinity, which is set to scatter.

4.6.2 Single-node parallelization

Simulation of quantum circuits is an example of a memory-bound task: the main bottleneck

of simulation is the storage of intermediate results of a simulation. In a simplistic approach

56

Full	expression

Node	2

Node	2n

Sliced expressions

i	=	0
j	=	0
...

n

i	=	0
j	=	1
...

i	=	1
j	=	1
...

i	=	0

i	=	1

k	=	0 k	=	1

An	intermediate	tensor

thread	0 thread	1

thread	2 therad	2k -	1

Figure 4.5: Illustration of our two-level tensor parallelization approach. On the multinode
level MPI parallelization we use slicing of a partially contracted full expression. On the lower
level of a single node, we use thread-based parallelization with a shared resulting tensor.

called the state-vector evolution scheme, the full vector of size 2n is stored in memory.

Thus a circuit containing only 300 qubits will require more memory than there are atoms in

the universe. A much more efficient algorithm is the tensor network contraction algorithm

described here. But as we show below, it requires use of a complicated parallelization scheme

compared with the straightforward linear algebra parallelization scheme used in the state-

vector simulators.

Modern high-performance computing (HPC) systems have nodes with a large number

of CPU cores. An efficient calculation has to utilize all available CPU cores, using many

threads to execute code. The major problem in using MPI-only code is that all of the data

structures are replicated across MPI ranks, which results in increased memory usage linearly

with respect to the number of MPI ranks. The largest data object in our simulation is the

tensor, which is a result of the contraction step. Memory requirements to store such tensor

are exponential with respect to its size.

Moreover, every code will inevitably have a part that can be executed only serially. As

the number of OpenMP threads or MPI increases, the parallelization becomes less efficient

according to Amdahl’s law. Thus, following this logic, smaller computations require less

time, and the portion of the program that benefits from parallelization will be smaller for

57

small tensors. As a result, according to Amdahl’s law, this means that for small tensors, we

need to use fewer threads.

To address these problems, we share the resulting tensor between 2t threads. We also use

an adaptive thread count determined from task size (Eq. 4.1). A usual approach of splitting

matrices in the code is to split into 2t rows, or columns. This approach is not applicable in

our case since tensors have size 2 over each dimension, and it would require reshaping the

tensor, so it would be indexed with a multi-index. We choose a similar but more elegant

approach. To slice into 2t parts, we first choose indices that will be our slice dimensions.

The slicing operation fixes the value of the index and reduces the number of dimensions by

one. We then use a binary form of the thread index (the id of the thread) as a point in space

{0, 1}⊗t that defines the slice index values.

Every contraction in the bucket elimination step can be represented by the permutation

of indices as

Cijk = AijBik

,

where index i contains indices that A and B have in common and j, k contain indices

specific to A,B, respectively. For our simulation, we slice the tensor over the first t indexes

of the resulting tensor because this approach results in consistent blocks of resulting tensors

assigned to each thread, thereby reducing the memory access time. This part of the algorithm

is shown in green in Fig 4.6.

To determine an optimal number of threads to use, we run a series of experiments to

estimate the overhead time. We use these experimental results as the basis for an empirical

formula for optimal thread count:

t = max(⌊r − 22

2
⌋, 1), (4.1)

58

where r is rank of the resulting tensor.

4.6.3 Multinode parallelization

Every computational node has RAM and a pool of CPU cores. Parallelization over nodes

(compared with threads) increases the size of aggregated distributed memory. Thus storing

duplicates of tensors is not an issue. For this reason, we use every node to compute a version

of a tensor expression evaluated at some values of the tensor indices.

In graph representation, the contraction of the full expression is done by consecutive

elimination of graph vertices. The elimination of a vertex removes it from the graph and

connects all neighbors. An interactive demo of this process can be found at %link to personal

webapp, hidden for double-blind review, will be displayed in the final article% (works for

cZ_v2 circuits from “Files to use”— link).

The slice of a tensor over an index can be viewed as the function of many variables

evaluated at some value of one variable

f(x1, x2, . . . xn)|x1=a = f̃(x2, . . . xn)

, where variables can have integer values vi ∈ [0, d−1]. Slicing reduces the number of indices

of the tensor by one, Moreover, in graph representation, this operation results in the removal

of the corresponding vertex from the expression graph. Since all sizes of indices we use are

equal to 2, removal of n vertices allows us to split the expression into 2n parts.

This operation is equivalent to decomposition of the full expression into the following

form: ∑
m1...mn

(
∑

V \{mi}
T 1T 2 . . . TN), (4.2)

where mi are indices that we slice over and the parts of the expression correspond to the

expression in parentheses.

59

1. Generate circuit graph
2. Find elimination order
3. Find optimal parallelization index s
4. Form buckets

1. Simulate first s buckets
2. Find optimal parallelization vertices
3. Remove vertices
4. Find new elimination order
5. Slice remaining buckets

For every remaining
bucket B

For every tensor
T in B[1:]

R	=	B[0]

rank r higher
 than 22?

R	=	R*T

No

No

Put R into appropriate
remaining bucket

n nodes

Q = shared_tensor()Yes

R	=	Q

Slice(Q) =
Slice(R)*Slice(T)

t = (r-22)/2 threads

Finished
bucket?

Return R

No buckets left

(a)

(b)

Figure 4.6: Sketch of the parallel bucket elimination algorithm. Part (a) and steps b2–
b4 depend only on the structure of a task and can be executed only once for the QAOA
algorithm. Steps b1 and b5 are performed serially.
The outer loop of the blue region performs the elimination of the remaining buckets; the
inner loop corresponds to processing a single bucket. The summation operation at the end
of the bucket processing is omitted for simplicity.

60

Each part is represented by a graph with lower connectivity than the original one. This

dramatically affects optimal elimination path and, respectively, the cost of contraction. De-

pending on the expression, we observed that using only two computational nodes can allow

for speedups of an order of 25.

The QAOA circuit tensor expression results in a graph that has many low-degree vertices,

as demonstrated in Fig. 4.2 for a small circuit. As can be seen in Fig. 4.3, most contraction

steps are computationally cheap, and connectivity of a graph is low. Vertices can be removed

at any step of contraction, giving rise to a completely new problem of finding an optimal step

for slicing the expression. We use a simple brute-force algorithm to determine the optimal

step at which to perform parallelization. First, we find the ordering for the full graph and

analyze the number of neighbors in the contraction path at each step. Any step after the

step with the peak number of neighbors is out of consideration since our goal is to lower this

peak, and we have to contract the initial expression before parallelizing. For every step of

K steps before the peak, we remove from the graph n vertices with the biggest number of

neighbors and rerun the ordering algorithm to determine the new contraction width. The

vertices could be any vertices in the graph, including “free” (nonrepeated) indices. Since the

removed vertices have the biggest number of neighbors, they usually index several tensors,

and the expression includes a sum over them. We found that this new width can be lower

than the original by more than n, providing freedom for massive reduction in the contraction

cost, as discussed in Section 4.8. Step s at which the width is minimal is to be used in the

main run of the simulation.

To the best of our knowledge, this approach of late parallelization was never described

in previous work of this field.

In the first part of the full simulation, labeled (a) in Figure 4.6, we read the circuit, create

the expression graph, find the elimination order, and form buckets. We also find the best

parallelization step s and the corresponding index used in the parallel bucket elimination.

61

The simulation starts with contracting the first s buckets, which is computationally cheap.

After this we have some other tensor expression network, which also is represented by a

partially contracted graph. This expression is conceptually no different from the one we

started with; however, its graph representation has much higher connectivity.

The pseudo-code for the next stage, parallel bucket elimination, is listed in Algorithm 3.

We first select n vertices with the most number of neighbors and use corresponding indices

to slice the remaining expression over. To determine values for slices, we use the binary

representation of the MPI rank of the current node. We find a new ordering for the sliced

expression to identify a better elimination path with removed vertices taken into account.

After reordering the sliced buckets, we run our bucket elimination algorithm with parallel

tensor contraction. For every pair of tensors in the bucket, we determine the size of the

resulting tensor as a union of the set of indices of both tensors. We then determine whether

it is reasonable to use parallel contraction by checking that t calculated by Eq. 4.1 is greater

than 0. To run multiplication or summation in parallel, we first allocate a shared tensor,

then perform the computation for slices of input and output tensors. The final result is

obtained by summing the results from different nodes.

4.6.4 Step-dependent slicing

The QAOA circuit tensor expression results in a graph that has many low-degree vertices,

as demonstrated in Fig. 4.2 for a small circuit. As can be seen in Fig. 4.3, most contraction

steps are computationally cheap, and the connectivity of a graph is low.

Each partially-contracted tensor network is a perfectly valid tensor network and can be

sliced as well. From a line graph representation perspective, vertices can be removed at any

step of contraction, giving rise to a completely new problem of finding an optimal step for

slicing the expression. We propose a step-dependent slicing algorithm that uses this fact and

determines the best index to perform slicing operation, shown in Fig. 4.7.

62

Algorithm 3 Parallel bucket elimination
Input: Ordered buckets Bi containing tensors, parallelization step s, number of parallel

vertices n vertex ordering π : V → N , π = {(vi, i)}
|V |
i=1

Output:

1: contract_first(s, Bi) ▷ Serial part: contract first s buckets
2: for i = 0, n do ▷ Find best index to slice along
3: pi = max_degree_vertex(G)
4: remove_vertex(G, pi)
5: end for
6: v⃗ ← binary_repr(mpi_get_rank())
7: for j = 0, n do ▷ Slice the expression
8: Bi ← Bi|pj=vj
9: end for

10: for i = s, |V | do
11: v ← π−1(i)
12: R← Bi[0]
13: for T ∈ Bi[1 :] do ▷ Process next bucket
14: r ← |T.indexes ∪R.indexes| ▷ Determine resulting size
15: t← floor(r−222)
16: if t>0 then ▷ Contract in thread pool
17: Q← shared_tensor(r)
18: w⃗ ← binary_repr(get_thread_num())

19: k⃗ ← indices_of(Q)[: t]
20: Qv...|kj=wj

← (Qv...Tv...)|kj=wj
21: R← Q ▷ R now points to shared memory tensor
22: else
23: R← RT
24: end if
25: end for
26: R←

∑
v R ▷ Parallel sum can be implemented in same fashion as contraction above

27: if R is scalar then
28: result← result ·R
29: else
30: k = π(w), w is the earliest index of R w.r.t π
31: Bk ← Bk ∪R
32: end if
33: end for
34: result ← mpi_reduce_sum(result) ▷ Gather the results
35: return result

63

Figure 4.7: Step-based slicing algorithm. The blue boxes are evaluated for each graph node
and are the main contributions to time.

We start with finding the ordering for the full graph. Our algorithm then selects con-

sideration only those steps that come before the peak. For every such contraction step s,

we remove r vertices with the biggest number of neighbors from the graph and re-run the

ordering algorithm to determine the contraction after slicing. The distribution of contraction

width is shown on Fig. 4.10.

The step s at which slicing produces best contraction width and contraction order before

that is then added to a contraction schedule. This process can be repeated several times until

n indices in total are selected - each r of them having their optimal step s. This algorithm

requires n
2rN runs of an ordering algorithm, where N is the number of nodes in the graph,

which is usually of the order of 1000. Only greedy algorithms are used in this procedure due

to its short run time.

The value of r can be used to slightly tweak the quality of the results. If r = n, all the

n variables are sliced at a single step. If r = 1, each slice variable can have has its own slice

64

Figure 4.8: Simulation cost for a batch of amplitudes. The calculations are done for 5 random
instances of degree-3 random regular graphs and the mean value is plotted. The three plots
are calculated for different number of qubits: 100, 150 and 200.

step s, which gives better results for larger n.

We observed that using n = 1 already provides contraction width reduction by 3, which

converts to 8x speedup in simulation.

To the best of our knowledge, this approach of step-dependent parallelization was never

described in previous work in this field.

4.7 Simulation of several amplitudes

The QAOA algorithm in its quantum part requires sampling of bit-strings that are potential

solutions to a Max-Cut problem. It is possible to emulate sampling on a classical computer

without calculating all the probability amplitudes. To obtain such samples, one can use frugal

rejection sampling [Villalonga et al., 2019] which requires calculating several amplitudes.

Our tensor network approach can be extended to simulate a batch of variables. If we

contract all indices of a tensor network, the result will be scalar - a probability amplitude.

If we decide to leave out some indices, the result will be a tensor indexed by those indices.

This tensor corresponds to a clique on left-out indices. If a graph contains a clique of size

65

26 27 28 29 210

Nodes count

25

26

27
Ti

m
e

of
 si

m
ul

at
io

n,
 se

co
nd

s

parallel part time
simulation time

Figure 4.9: Experimental data of simulation time with respect to the number of Theta nodes.
The circuit is for 210 qubits and 1,785 gates.

a, its treewidth is not smaller than a. And if we found a contraction order with contraction

width c, during the contraction procedure we will have a clique of size c. If a < c then

adding a clique to the original graph does not increase contraction width . This opens a

possibility to simulate a batch of 2a amplitudes for the same cost as a single amplitude. This

is discussed in great detail in [Schutski et al., 2020].

Figure 4.8 shows contraction width for simulation of batch of amplitudes for different

values of a, ordering algorithms and graph sizes.

4.8 Results

We used the Argonne’s Cray XC40 supercomputer called Theta that consists of 4,392 compu-

tational nodes. Each node has 64 Intel Xeon Phi cores and 208 GB of RAM. The combined

computational power of this supercomputer is about 12 PFLOP/sec. The aggregated amount

of RAM across nodes is approximately 900,000 GB.

For our main test case, a circuit with 210 qubits, the initial contraction was calculated

66

using a greedy algorithm and resulted in contraction width 44. This means that the cost

of simulation would be ≥70 TFLOPS and 281 TB, respectively. Using our step-dependent

slicing algorithm with r = n on 64 computational nodes allows us to remove 6 vertices and

split the expression into smaller parts that have a contraction width of 32, which easily fits

into RAM of one node. The whole simulation, in this case, uses 60% of 13 TB cumulative

memory of 64 nodes, more than 35x less than a serial approach uses.

Figure 4.10 shows how the contraction width c of the sliced tensor expression depends

on step s for several values of numbers of sliced indices n. The notable feature is the high

variance of c with respect to s—the difference between the smallest and the largest values

goes up to 9, which translates to a 512x cost difference. However, the general pattern for

different QAOA circuits remains similar: increasing n by one reduces mins(c(s)) by one.

Computational speedup provided by 64 nodes is on the order of 4096 = 244−32 which is

more than the theoretical limit of 64x for any kind of straightforward parallelization. Using

512 nodes drops the contraction width to 29 and reduces the simulation time 3x compared

with that when using 64 nodes.

The experimental results for 64–1,024 nodes are shown in Fig. 4.9. Simulation time

includes serial simulation of the first small steps before step s, which takes 40 s for a 210-

qubit circuit, or 25–50% of total simulation time, depending on the number of nodes.

4.9 Conclusions

We have presented a novel approach for simulating large-scale quantum circuits represented

by tensor network expressions. It allowed us to simulate large QAOA quantum circuits up

to 210 qubit circuits with a depth of 1,785 gates on 1,024 nodes and 213 TB of memory on

the Theta supercomputer.

As a demonstration, we applied our algorithm to simulate quantum circuits for QAOA

ansatz state with p = 1, but our algorithm also works for higher p also. To reduce memory

67

footprint, we developed a step-dependent slicing algorithm that contracts part of an expres-

sion in advance and reduces the expensive task of finding an elimination order. Using this

approach, we found an ordering that produces speedups up to 512x, when compared with

other parallelization steps s for the same expression.

The unmodified tensor network contraction algorithm is able to simulate 120-140 qubit

circuits, depending on the problem graph. By using a randomized greedy ordering algorithm,

we were able to raise this number to 175 qubits. Furthermore, using a parallelization based on

step-dependent slicing allows us to simulate 210 qubits on the supercomputer Theta. Another

way to obtain samples from the QAOA ansatz state is to use density matrix simulation, but

it is prohibitively computationally expensive and memory demanding. The largest density

matrix simulators known to us can compute 100 qubit problems [Fried et al., 2018] and 120

qubit problems [Zhao et al., 2020] using high-performance computing.

The important feature of our algorithm is applicability to the QAOA algorithm: the

contraction order has to be generated only once and then can be reused for additional

simulations with different circuit parameters. As a result, it can be used to simulate a large

variety of QAOA circuits.

We conclude that this work presents a significant development in the field of quantum

simulators. To the best of our knowledge, the presented results are the largest QAOA

quantum circuit simulations reported to date.

4.10 Acknowledgements

This research used the resources of the Argonne Leadership Computing Facility, which is

a U.S. Department of Energy (DOE) Office of Science User Facility supported under Con-

tract DE-AC02-06CH11357. We gratefully acknowledge the computing resources provided

and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne National

Laboratory. This research was also supported by the U.S. Department of Energy, Office of

68

30 32 34 36 38 40
Maximum number of neighbours, c

0

5

10

15

20

25

Distribution of c over steps s
n = 5 parallel indices
n = 6 parallel indices
n = 7 parallel indices

Figure 4.10: Distribution of the contraction width (maximum number of neighbors) c for
different numbers of parallel indices n. While variance of c is present, showing that it is
sensible to the parallelization index s, we are interested in the minimal value of s, which, in
turn, generally gets smaller for bigger n.

Science, Basic Energy Sciences, Materials Sciences and Engineering Division, and by the Ex-

ascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s

Office of Science and National Nuclear Security Administration, responsible for delivering

a capable exascale ecosystem, including software, applications, and hardware technology, to

support the nation’s exascale computing imperative.

69

CHAPTER 5

GPU ACCELERATION OF TENSOR NETWORK

CONTRACTION

This chapter is adapted from Lykov, Chen, Chen, Keipert, Zhang, Gibbs, and Alexeev [2021].

5.1 Introduction

Quantum information science (QIS) has a great potential to speed up certain computing

problems such as combinatorial optimization and quantum simulations [Alexeev et al., 2021].

The development of fast and resource-efficient quantum simulators to classically simulate

quantum circuits is the key to the advancement of the QIS field. For example, simulators

allow researchers to evaluate the complexity of new quantum algorithms and to develop and

validate the design of new quantum circuits. Another important application is to validate

quantum supremacy and advantage claims.

One can simulate quantum circuits on classical computers in many ways. The major

types of simulation approaches are full amplitude-vector evolution [De Raedt et al., 2007;

Smelyanskiy et al., 2016; Häner and Steiger, 2017; Wu et al., 2019], the Feynman paths

approach [Bernstein and Vazirani, 1997], linear algebra open system simulation [Otten, 2020],

and tensor network contractions [Markov and Shi, 2008; Pednault et al., 2017; Boixo et al.,

2017]. These techniques have advantages and disadvantages. Some are better suited for small

numbers of qubits and high-depth quantum circuits, while others are better for circuits with

a large number of qubits but small depth. Some are also tailored toward the accuracy of

simulation of noise in quantum computers.

For shallow quantum circuits the state-of-the-art technique to simulate quantum circuits

is currently arguably the tensor network contraction method because of the memory effi-

ciency for the method relative to state vector methods that scale by 2N , where N is the

70

number of qubits. This effectively limits the state vector methods to quantum circuits with

less than 50 qubits. The challenge with the tensor network methods is determining the op-

timal contraction order, which is known to be an NP-complete problem [Markov and Shi,

2008]. We choose to focus on the simulation of the Quantum Approximate Optimization Al-

gorithm (QAOA) [Farhi and Harrow, 2016] given its importance to machine learning and its

suitability for the current state of the art with noisy intermediate state quantum computers

that generally work with circuits of short depth.

In this work we ported and optimized the tensor network quantum simulator QTensor

to run efficiently on GPUs, with the eventual goal to simulate large quantum circuits on

the modern and upcoming supercomputers. In particular, we benchmarked QTensor on a

NVIDIA DGX-2 server with a V100 accelerator using the CUDA version 11.0. The perfor-

mance is shown for the full expectation value simulation of the QAOA MaxCut problem on

a 3-regular graph of size 30 with depth p = 4.

5.2 Methodology

5.2.1 QAOA Overview

The Quantum Approximate Optimization Algorithm is a variational quantum algorithm that

combines a parameterized ansatz state preparation with a classical outer-loop algorithm

that optimizes the ansatz parameters. QAOA is used for approximate solution of binary

optimization problems [Farhi et al., 2014]. A solution to the optimization problem is obtained

by measuring the ansatz state on a quantum device. The quality of the QAOA solution

depends on the depth of the quantum circuit that generated the ansatz and the quality of

parameters for the ansatz state.

A binary combinatorial optimization problem is defined on a space of binary strings of

length N and has m clauses. Each clause is a constraint satisfied by some assignment of

71

the bit string. QAOA maps the combinatorial optimization problem onto a 2N -dimensional

Hilbert space with computational basis vectors |z⟩ and encodes C(z) as a quantum operator Ĉ

diagonal in the computational basis. One of the most widely used benchmark combinatorial

optimization problems is MaxCut, which is defined on an undirected unweighted graph.

The goal of the MaxCut problem is to find a partition of the graph’s vertices into two

complementary sets such that the number of edges between the sets is maximized. It has

been shown in [Farhi et al., 2014] that on a 3-regular graph, QAOA with p = 1 produces a

solution with an approximation ratio of at least 0.6924.

A graph G = (V,E) of N = |V | vertices and m = |E| edges can be encoded into a

MaxCut cost operator over N qubits by using m two-qubit gates.

Ĉ =
1

2

∑
(ij)∈E

1− σ̂ziσ̂zj (5.1)

The QAOA ansatz state |γ⃗, β⃗⟩ is prepared by applying p layers of evolution unitaries that

correspond to the cost operator Ĉ and a mixing operator B̂ =
∑

i∈V σ̂
x
i . The initial state is

the equally weighted superposition state and maximal eigenstate of B̂.

|γ⃗, β⃗⟩p =

p∏
k=1

e−iβkB̂e−iγkĈ |+⟩ (5.2)

The parameterized quantum circuit (5.2) is called the QAOA ansatz. We refer to the number

of alternating operator pairs p as the QAOA depth.

The solution to the combinatorial optimization problem is obtained by measuring the

QAOA ansatz. The expected quality of this solution is an expectation value of the cost

operator in this state.

⟨C⟩p = ⟨γ⃗, β⃗|pC |γ⃗, β⃗⟩p

72

The expectation value can be minimized with respect to parameters γ⃗, β⃗. The optimization

of γ⃗, β⃗ can be performed by using classical computation or by varying the parameters and

sampling many bitstrings from a quantum computer to estimate the expectation value. Ac-

celeration of the optimal parameters search for a given QAOA depth p is the focus of many

approaches aimed at demonstrating the quantum advantage. Examples include such methods

as warm- and multistart optimization [Egger et al., 2021; Shaydulin et al., 2019a], problem

decomposition [Shaydulin et al., 2019b], instance structure analysis [Shaydulin et al., 2020],

and parameter learning [Khairy et al., 2020].

In this paper we focus on application of a classical quantum circuit simulator QTensor

to the problem of finding the expectation value ⟨C⟩p.

5.2.2 Tensor Network Contractions

Calculation of an expectation value of some observable in a given state generated by some

quantum circuit can be done efficiently by using a tensor network approach. In contrast

to state vector simulators, which store the full state vector of size 2N , QTensor maps a

quantum circuit to a tensor network. Each quantum gate of the circuit is converted to a

tensor. An expectation value ⟨ϕ|Ĉ|ϕ⟩ = ⟨ψ|Û†ĈÛ |ψ⟩ is then simulated by contracting the

corresponding tensor network. For more details on how a quantum circuit is converted to a

tensor network, see [Schutski et al., 2020; Lykov et al., 2020a].

A tensor network is a collection of tensors, which in turn have a collection of indices,

where tensors share some indices with each other. To contract a tensor network, we create

an ordered list of tensor buckets. Each bucket (a collection of tensors) corresponds to a tensor

index, which is called bucket index. Buckets are then contracted one by one. The contraction

of a bucket is performed by summing over the bucket index, and the resulting tensor is then

appended to the appropriate bucket. The number of unique indices in aggregate indices of all

bucket tensors is called a bucket width. The memory and computational resources of a bucket

73

contraction scale exponentially with the associated bucket width. For more information on

tensor network contraction, see [Lykov and Alexeev, 2021; Lykov et al., 2020b; Schutski

et al., 2020]. If some observable Σ̂ acts on a small subset of qubits, most of the gates in

the quantum circuit Û cancel out when evaluating the expectation value. The cost QAOA

operator Ĉ is a sum of m such terms, each of which could be viewed as a separate observable.

Each term generates a lightcone—a subset of the problem that generates a tensor network

representing the contribution to the cost expectation value.

The expectation value of the cost for the graph G and MaxCut QAOA depth p is then

⟨C⟩p (γ⃗, β⃗) = ⟨γ⃗, β⃗|Ĉ|γ⃗, β⃗⟩

= ⟨γ⃗, β⃗|
∑
jk∈E

1

2
(1− σ̂zj σ̂zk)|γ⃗, β⃗⟩

=
|E|
2
− 1

2

∑
jk∈E

⟨γ⃗, β⃗|σ̂zj σ̂zk|γ⃗, β⃗⟩

≡ |E|
2
− 1

2

∑
jk∈E

ejk(γ⃗, β⃗),

where ejk is an individual edge contribution to the total cost function. Note that the

observable in the definition of ejk is local to only two qubits; therefore most of the gates in

the circuit that generates the state |γ⃗, β⃗⟩ cancel out. The circuit after the cancellation is

equivalent to calculating σ̂zj σ̂zk on a subgraph S of the original graph G. These subgraphs

can be obtained by taking only the edges that are incident from vertices at a distance p− 1

from the vertices j and k. The full calculation of EG(γ⃗, β⃗) requires evaluation of |E| tensor

networks, each representing the value ejk(γ⃗, β⃗) for jk ∈ E.

5.2.3 Merged Indices Contraction

Since the contraction in the bucket elimination algorithm is executed one index at a time, the

ratio of computational operations to memory read/write operations is small. This ratio is

74

also called the operational intensity or arithmetic intensity. Having small arithmetic intensity

hurts the performance in terms of FLOPs: for each floating-point operation calculated there

are relatively many I/O operations, which are usually slower. For example, to calculate one

element of the resulting matrix in a matrix multiplication problem, one needs to read 2N

elements and perform 4N operations. The size of the resulting matrix is similar to the input

matrices. In contrast, when calculating an outer product of two vectors, the size of the

resulting matrix is much larger than the combined size of the input vectors; each element

requires two reads and only one floating-point operation.

To mitigate this limitation, we develop an approach for increasing the arithmetic intensity,

which we call merged indices. The essence of the approach is to combine several buckets

and contract their corresponding indices at once, thus having smaller output size and larger

arithmetic intensity. We have a group of circuit contraction backends that all use this

approach.

For the merged backend group, we order the buckets first and then find the mergeable

indices before performing the contraction. We list the set of indices of tensors in each bucket

and then merge the buckets if the set of indices of one bucket is a subset of the other. We

benchmark the sum of the total time needed for the merged indices contraction and compare

it with the unmerged baseline results. We call this group the “merged” group and the baseline

the “unmerged” group.

5.2.4 CPU-GPU Hybrid Backend

The initial tensor network contains only very small tensors of at most 16 elements (4 di-

mensions of size 2). We observe that the contraction sequence obtained by our ordering

algorithm results in buckets of small width for first 80% of contraction steps. Only after all

small buckets are contracted, sequence we start to contract large buckets. The GPUs usually

perform much better when processing large amount of data. We observe this behaviour in

75

our benchmarks on Figure 5.1. We therefore implement a mix backend which uses both CPU

and GPU. It combines a CPU backend and a GPU backend by dispatching the contraction

procedure to appropriate backend.

The mix or the hybrid backend uses the bucket width, which is determined by the number

of unique indices in a bucket, to allocate the correct device for such a bucket to be computed.

The threshold between the CPU backend and the GPU backend is determined by a trial

program. This program runs a small circuit, which is used for all backends for testing,

separately on a GPU backend and a CPU backend. After the testing is complete, it iterates

through all bucket widths and checks whether at this bucket width the GPU takes less time

or not. If it finds the bucket width at which the GPU is faster, it will output that bucket

width, and the user can use this width when creating the hybrid backend in the actual

simulation. In the actual simulation, if the bucket width is smaller than the threshold, the

hybrid backend will allocate this bucket to the CPU and will allocate it to the GPU if the

width is greater.

Since we don’t contract buckets of large width on CPU, the resulting tensors are rather

small, on the order of 1,000s of bytes. The time for data transfer in this case is consid-

ered negligible and is not measured in our code. The large tensors start to appear from

contractions that combine these small tensors after all the data is moved to GPU.

5.2.5 Datasets for Synthetic Benchmarks

Tensor network contraction is a complex procedure that involves many inhomogeneous op-

erations. Since we are interested in achieving the maximum performance of the simulations,

it is beneficial to compare the FLOPs performance to several more relevant benchmarking

problems. We select several problems for this task:

1. Square matrix multiplication, the simplest benchmark problem which serves as an

upper bound for our FLOP performance;

76

2. Pairwise tensor contractions with a small number of large dimensions and fixed con-

traction structure;

3. Pairwise tensor contractions with a large number of dimensions of size 2 and permuted

indices;

4. Bucket contraction of buckets that are produced by actual expectation value calcula-

tion;

5. Full circuit contraction which takes into account buckets of large and small width.

By gradually adding complexity levels to the benchmark problems and evaluating the per-

formance on each level, we look for the largest reduction in FLOPs. The corresponding level

of complexity will be at the focus of our future efforts for optimisation of performance. The

results for these benchmarks are shown in Section 5.3.5 and Figures 5.6 and 5.7.

Matrix Multiplication

We perform the matrix multiplications for the square matrices of the same size and record

the time for the operation for the CPU backend Numpy and the GPU backends PyTorch

and CuPy. We use the built-in random() function of each backend to randomly generate

two square matrices of equal size as our input, and we use the built-in matmul() function

to produce the output matrix. The size of the input matrices ranges from 10 × 10 to

8192 × 8192, and the test is done repeatedly on four different data types: float, double,

complex64, and complex128. For the multiplication of two n × n matrices, we define the

number of complex operations to be n3, and we calculate the number of FLOPs for complex

numbers as 8× number_of_operations
operation_time .

77

Tensor Network Contraction

We have two experiment groups in benchmarking the tensor contraction performance: tensor

contractions with a fixed contraction expression and tensor contractions with many indices

where each index has a small size. We call the former group “tncontract fixed” because we

fix the contraction expression as “abcd,bcdf−→acf,” and we call the latter one “tncontract

random” because we randomly generate the contraction expression. In a general contrac-

tion expression, we sum over the indices not contained in the result indices. In this fixed

contraction expression, we sum over the common index “b” and “d” and keep the rest in our

result indices. We generate two square input tensors of shape n × n × n × n and output a

tensor of shape n × n × n, where n is a size ranging from 10 to 100. For the “tncontract

random” group, we randomly generate the number of contracted indices and the number

of indices in the results first and then fill in the shape array with size 2. For example, a

contraction formula “dacb,ad−→bcd” (index “a” is contracted) needs two input tensors: the

first one with shape 2 × 2 × 2 × 2 and the second one with shape 2 × 2. We use the for-

mula 2number_of_different_indices to calculate the number of operations, and we record the

contraction time and compute the FLOPs value based on the formula used in matrix mul-

tiplication. Following the same procedure in matrix multiplication, we use the backends’

built-in functions to randomly generate the input tensors based on the required size and the

four data types.

Circuit Simulation

For numerical evaluations, we benchmark the full expectation value simulation of the QAOA

MaxCut problem for a 3-regular graph of size 30 and QAOA depth p = 4. We have two

properties for evaluating the circuit simulation performance: unmerged vs. merged backend

and single vs. mixed backend.

78

0 5 10 15 20 25 30
bucket width

10 5

10 4

10 3

10 2

10 1

100

101

m
ea

n
of

 o
pe

ra
tio

n
tim

e

cupy
einsum
torch_gpu

Figure 5.1: Breakdown of mean time to contract a single bucket by bucket width. The
test is performed for expectation value as described in 5.3.1. CPU backends are faster for
buckets of width ≤ 13− 16, and GPU faster are better for larger buckets. This picture also
demonstrates that every contraction operation spends some time on overhead which doesn’t
depend on bucket width, and actual calculation that scales exponentially with bucket width.

5.3 Results

The experiment is performed on an NVIDIA DGX-2 server (provided by NVIDIA cor-

poration) with a V100 accelerator using the CUDA version 11.0. The baseline NumPy

backend is executed only on a CPU and labeled “einsum" in our experiment since we use

numpy.einsum() for the tensor computation. We also benchmark the GPU library CuPy

(on the GPU only) and PyTorch (on both the CPU and GPU).

5.3.1 Single CPU-GPU Backends

We benchmark the performance of the full expectation value simulation of the QAOA Max-

Cut problem on a 3-regular graph of size 30 with depth p = 4, as shown in in Figures 5.1,

5.2, and 5.3. This corresponds to contraction of 20 tensor networks, one network per each

lightcone. Our GPU implementation of the simulator using PyTorch (labeled “torch_gpu")
79

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

bucket width

100

101

102

103
co

un
t o

f b
uc

ke
ts

Figure 5.2: Distribution of bucket width in the contraction of QAOA full circuit simulation.
The y-axis is log scale; 82% of buckets have width ≤ 6, which have relatively large overhead
time.

0 5 10 15 20 25 30
bucket width

10 3

10 2

10 1

100

101

su
m

 o
f o

pe
ra

tio
n

tim
e

cupy
einsum
torch_gpu

Figure 5.3: Breakdown of total time spent on bucket of each size in full QAOA expectation
value simulation. The y-value on this plot is effectively one in Figure 5.1 multiplied by one in
Figure 5.2. This figure is very useful for analyzing the bottlenecks of the simulation. It shows
that most of the time for CPU backend is spent on large buckets, but for GPU backends the
large number of small buckets results in a slowdown.

80

achieves 70.3× speedup over the CPU baseline and 1.92× speedup over CuPy.

Figure 5.1 shows the mean contraction time of various bucket widths in different backends.

In comparison with "cupy" backend, the "einsum" backend spends less total time for bucket

width less than 16, and the threshold value changes to around 13 when being compared to

"torch_gpu" backend. Both GPU backends have similar and better performance for larger

bucket widths. However, this threshold value can fluctuate when comparing the same pair

of CPU and GPU backends. This is likely due to the fact that the benchmarking platform

are under different usage loads.

Figure 5.3 provides a breakdown of the contraction times of buckets by bucket width.

This distribution is multimodal: A large portion of time is spent on buckets of width 4.

For CPU backends the bulk of the simulation time is spent on contracting large buckets.

Figure 5.2 shows the distribution of bucket widths, where 82% of buckets have width less

than 7. This signifies that simulation has an overhead from contracting a large number of

small buckets.

This situation is particularly noticeable when looking at the total contraction time of

different bucket widths. Figure 5.3 shows that the distribution of time vs bucket width has

two modes: for large buckets that dominate the contraction time for CPU backends and for

small buckets where most of the time is spent on I/O and other code overhead.

5.3.2 Merged Backend Results

The “merged” groups merge the indices before performing contractions. In Fig. 5.4, the

three unmerged (baseline) backends are denoted by dashed lines, while the merged backends

are shown by solid lines. For the GPU backends CuPy and PyTorch, the merged group

performs significantly better for buckets of width ≥ 20. The CuPy merged backend always

has a similar or better performance compared with the CuPy unmerged group and has much

better performance for buckets of larger width. For buckets of width 28, the total operation

81

0 5 10 15 20 25 30
bucket width

10 3

10 2

10 1

100

101

102

su
m

 o
f o

pe
ra

tio
n

tim
e

cupy
einsum
torch_gpu

Figure 5.4: Breakdown of total contraction time by bucket width in full expectation value
simulation of problem size 30. Lines with the same color use the same type of backends.
The solid lines represent the merged version of backends, and the dashed lines denote the
baseline backends. The merged GPU backends are better for buckets of width ≥ 20.

time of the unmerged GPU backends is about 0.28 seconds, compared with 32 ms (8.75×

speedup) for the CuPy merged group and 8.8 ms (31.82× speedup) for the PyTorch backend.

But we do not observe much improvement for the merged CPU backend.

5.3.3 Mix CPU-GPU Backend Results

From Figure 5.1 one can see that GPU backends perform much better for buckets of large

width, while CPU backends are better for smaller buckets. We thus implemented a mixed

backend approach, which dynamically selects a device (CPU or GPU) on which the bucket

should be contracted. We select a threshold value of 15 for the bucket width; any bucket that

has a width larger than 15 will be contracted on the GPU. Figure 5.3 shows that for GPU

backends small buckets occupy approximately 90% of the total simulation time. The results

for this approach are shown in Table 5.1 under backend names “Torch_CPU + Torch_GPU"

and “NumPy + CuPy." Using a CPU backend in combination with Torch_GPU improves

82

Backend Name Device Time (second) Speedup
Torch_CPU CPU 347 0.71×
NumPy (baseline) CPU 246 1.00×
CuPy GPU 6.7 36.7×
Torch_GPU GPU 3.5 70.3×
Torch_CPU + Torch_GPU Mixed 2.6 94.8×
NumPy + CuPy Mixed 2.1 117×

Table 5.1: Time for full QAOA expectation value simulation using backend that utilize GPUs
or CPUs. The expectation value is MaxCut on a 3-regular graph of size 30 and QAOA depth
p = 4. Speedup shows the overall runtime improvement compared with the baseline CPU backend
“NumPy". “Mixed" device means the backend uses both CPU and GPU devices.

the performance by 1.2×, and for CuPy the improvement is 3×. These results suggest that

using a combination of NumPy + Torch_GPU has the potential to give the best results.

We have evaluated the GPU performance of tensor network contraction for the energy

calculation of QAOA. The problem is largely inhomogeneous with a lot of small buckets

and a few very large buckets. Most of the improvement comes from using GPUs on large

buckets, with up to 300× speed improvement. On the other hand, the contraction of smaller

tensors is faster on CPUs. In general, if the maximum bucket width of a lightcone is less

than ∼ 17, the improvement from using GPUs is marginal. In addition, large buckets require

a lot of memory. For example, a bucket of width 27 produces a tensor with 27 dimensions

of size 2, and the memory requirement for complex128 data type is 2 GB. In practice, these

calculations are feasible up to width ∼ 29.

5.3.4 Mixed Merged Backend Results

Since the performance of the NumPy-CuPy hybrid backend is the best among all imple-

mented hybrid backends, cross-testing between merged backends and hybrid backends fo-

cuses on the combination of the NumPy backend and CuPy backend. Because of the API

constraint, the hybrid of a regular NumPy backend and a merged CuPy backend was not

implemented.

83

Backend Name Device Time (seconds) Speedup
NumPy_Merged CPU 383 0.64×
NumPy (baseline) CPU 246 1.00×
CuPy GPU 6.7 36.7×
CuPy_Merged GPU 5.6 43.9×
NumPy + CuPy Mixed 2.1 117×
NumPy_Merged + CuPy_Merged Mixed 1.4 176×

Table 5.2: Time for full QAOA expectation value simulation using different Merged backends, as
described in Section 5.2.3. The expectation value is MaxCut on a 3-regular graph of size 30 and
QAOA depth p = 4. Speedup shows the overall runtime improvement compared with the baseline
CPU backend “NumPy".

In Table 5.2, merging buckets provide a performance boost for the CuPy backend and

Numpy + CuPy hybrid backend but not the NumPy backend. CuPy_Merged is 20% faster

than CuPy, and NumPy_Merged + CuPy_Merged is 50% faster than its regular counter-

part. However, NumPy_Merged has an significant slowdown compared with the baseline

NumPy, suggesting that combining the regular NumPy backend with the merged CuPy

backend can provide more speedup for the future.

In Fig. 5.5, CPU performance is better than GPU performance when the bucket width

is approximately less than 15. After 15, GPU performance scales with width much better

than that of CPU performance, providing a significant speed boost over the CPU in the

end. GPU performance of the hybrid backend is better than that of pure GPU backend for

buckets of width ≥ 15. This speedup of the hybrid backend is likely caused by less garbage

handling for the GPU since most buckets aren’t stored on GPU memory.

5.3.5 Synthetic Benchmarks

We also benchmark the time required for the basic operations: matrix multiplication, tensor

network contraction with fixed contraction indices, and tensor network contraction with

random indices, as well as circuit contractions.

The summary of the results is shown in Table 5.3, which compares FLOPs count for

84

5 10 15 20 25 30
bucket width

10 2

10 1

100

101

102

su
m

 o
f o

pe
ra

tio
n

tim
e

cupy
einsum-cupy
einsum

Figure 5.5: Breakdown of sum contraction time by bucket width for merged backends. CPU
backends are better for buckets of width ≤ 15, and GPU backends are better for larger
buckets. The hybrid backend’s GPU backend spends outperforms the regular GPU backend
for buckets of width ≥ 15.

similar-sized problems of different types. Figures 5.6 and 5.7 show dependence of FLOPs vs

problem size for different problems. We observe 80% of theoretical peak performance on GPU

for matrix multiplication. Switching to pairwise tensor network contraction shows similar

FLOPs for GPU, while for CPU, it results in 10× FLOPs decrease. A significant reduction

in performance comes from switching from pairwise tensor network contractions of a tensor

with few dimensions of large size to tensors with many permuted dimensions and small

size. This reduction in performance is about 10× for both CPU and GPU. This observation

suggests that further improvement can be achieved by reformulating the tensor network

operations in a smaller tensor by transposing and merging the dimensions of participating

tensors. It is partially addressed in using the merged indices approach, where the contraction

dimension is increased. The “Bucket Contraction Merged" task shows 45% of theoretical peak

performance, which significantly improves compared to the unmerged counterpart.

The significant reduction of performance comes when we compare bucket contraction and

85

Task CPU FLOPs GPU FLOPs
Matrix Multiplication 50.1G 2.38T
Tensor Network Fixed Contraction 5.53G 1.36T
Tensor Network Random Contraction 640M 97.5G
Bucket Contraction Unmerged 241M 61.9G
Bucket Contraction Merged 542M 1.14T
Lightcone Contraction Unmerged 326M 4.92G
Lightcone Contraction Merged 177M 3.1G
Circuit Contraction Mixed 30.7G

Table 5.3: Summary of GPU and CPU FLOPs for different tasks at around 100 million operations.
Matrix Multiplication and Tensor Contraction tasks are described in Section 5.3.5. “Bucket Contrac-
tion" groups record the maximum number of FLOPs for a single bucket. “Lightcone Contraction"
groups contain the FLOPs data on a single lightcone where the sum of operations is approximately
100 millions, small and large buckets combined.

full circuit contraction. It was explained in detail in Section 5.3.1 and is caused by overhead

from small buckets. It is evident from Figure 5.3 that most of the time in GPU simulation is

spent on overhead from small bucket contraction. This issue is addressed by implementing

the mixed backend approach.

It is also notable that the merged approach does not improve the performance for CPU

backends which is probably due to an inefficient implementation of original numpy.einsum().

Matrix Multiplication

The multiplication of square matrices of size 465 needs approximately 100 million complex

operations according to our calculation of operations value. The average operation time for

the multiplication of two randomly generated complex128 square matrices of size 465 is 0.3

ms on the GPU, which achieves 50× speedup compared with the operation time of 16 ms

on the CPU; NumPy produces 50G FLOPs on CPU, and the GPU backend CuPy reaches

2.38T FLOPs for this operation. We observe that the CPU backend has an advantage in

performing small operations: for matrices of size 10× 10, the CPU backend NumPy spends

only 5.8 µs for the multiplication, while the best GPU backend PyTorch spends 27 µs on the

86

operation. When the matrix size is less than 2000 × 2000 for the GPU backends, PyTorch

outperforms CuPy, and CuPy is slightly better for much larger operations. Moreover, the

operation time for both CPU and GPU backends decreases slightly when the size of matrices

increases from 1000 to 1024 and from 4090 to 4096.

Fixed Tensor Network Contraction

We use the fixed contraction formula “abcd,bcdf−→acf” and control the size of the tensor

indices from 10 to 100. Even for the smallest case when the number of operations is 100,000

with indices of size 10, the slowest GPU backend is faster than the CPU backend Numpy,

which spends 0.3 ms on the contraction. For the GPU backends, we achieve 1.36T FLOPs

for this fixed contraction, which is 57% of the recorded peak performance. In accordance

with the matrix multiplication results, the CuPy backend performs better than the PyTorch

backend in the fixed tensor network contractions only when the number of operations is

greater than 1G.

Random Tensor Network Contraction

We let the number of indices be any number between 4 and 25, and we set the size of

each mode to be 2. For example, we have 5 indices in total, and we randomly generate

a contraction sequence “caedb,eab−→cde,” so the sizes of the input tensors are 25 and 23,

resulting in an output tensor of size 23. We reach 97.5 G FLOPs for the GPU backends and

640 M for the CPU backend only when performing this random contraction. As shown in

Fig. 5.6, the mean FLOPs drop significantly when we use random contraction (in green)

instead of fixed contraction (in red) on the CuPy backend. On the CPU, the gap increases

with the increasing number of operations according to Fig. 5.7. Therefore, contractions on

tensors with small numbers of indices of large size have better performance than contractions

on tensors with many indices of small size. The "tncontract random" group is designed to

87

101 103 105 107 109 1011

Operations

106

108

1010

1012

FL
OP

s

CuPy on different tasks
circuit unmerged
circuit merged
tncontract random
tncontract fixed
matmul

Figure 5.6: FLOPs vs. the number of operations for all tasks on the CuPy backend. “circuit
unmerged" and “circuit merged" are results of expectation value of the full circuit simulation
of QAOA MaxCut problem on a 3-regular graph of size 30 with depth p = 4. “tncontract
random” tests on tensors of many indices where each index has a small size. “tncontract
fixed" uses the contraction sequence “abcd,bcdf−→acf” for all contractions. “matmul" per-
forms matrix multiplication on square matrices. All groups use complex128 tensors in the
operation. We use the triangles to denote the data at ∼ 100 million operations, which is
shown in Table 5.3.

break down the circuit simulation to tensor contraction operations, so it overlaps with the

results from the "bucket unmerged" group in Fig. 5.6. From the difference in performance

of the random and the fixed tensor contraction group, we design the merged bucket group to

improve the performance of contractions. Our goal is to make the bucket simulation curve

close to the tensor contraction fixed group (the red curve).

5.4 Conclusions

This work has demonstrated that GPUs can significantly speed up quantum circuit simula-

tions using tensor network contractions. We demonstrate that GPUs are best for contracting

large tensors, while CPUs are slightly better for small tensors. Moving the computation onto

88

101 103 105 107 109 1011

Operations

106

107

108

109

1010

1011

1012

FL
OP

s

NumPy on different tasks
circuit unmerged
circuit merged
tncontract random
tncontract fixed
matmul

Figure 5.7: FLOPs vs. the number of operations for all tasks on NumPy backend. Same
problem setting as Fig. 5.6. “tncontract random" outperforms “tncontract fixed" as the ops
value increases. Merged backend does not have an advantage on CPU compared to the
unmerged backend. We use the triangles to denote the data at ∼ 100 million operations,
which is shown in Table 5.3.

89

GPUs can dramatically speed up the computation. We propose to use a contraction backend

that dynamically assigns the CPU or GPU device to tensors based on their size. This mixed

backend approach demonstrated a 176× improvement in time to solution.

We observe up to 300× speedup on GPU compared to CPU for individual large buckets.

In general, if the maximum bucketwidth of a lightcone is less than ∼ 17, the improvement

from using GPUs is marginal. It underlines the importance of using a mixed CPU/GPU

backend for tensor contraction and using device selection for the tensor at runtime to achieve

the maximum performance. On NVIDIA DGX-2 server we found out that the threshold is

∼ 15, but it may change for other computing systems.

We also demonstrated the performance of the merged indices approach, which improves

the arithmetic intensity and provides a significant FLOP improvement. Our synthetic bench-

marks for various tensor contraction tasks suggest that additional improvement can be ob-

tained by transposing and reshaping tensors in pairwise contractions.

The main conclusion of this chapter is that we found that GPUs can dramatically increase

the speed of tensor contractions for large tensors. The smaller tensors need to be computed

on a CPU only because of overhead to move on and off data to a GPU. We show that the

approach of merged indices allows to speed up large tensors contraction, but it does not solve

the problem completely. Where to compute tensors leads to the problem of optimal load

balancing between CPU and GPU. This potential issue will be the subject of our future work,

as well as testing of the performance of the code on new NVidia DGX systems and GPU

supercomputers using cuTensor and cuQuantum software packages developed by NVidia.

90

CHAPTER 6

CONCLUSIONS AND OUTLOOK

A naïve approach to simulating observables of an arbitrary quantum system scales expo-

nentially with the system size. However, by utilizing the structure of interactions between

system components, it is possible to simulate the system more efficiently. This approach can

reduce the exponential factor or in some cases change the scaling to linear in system size.

The latter case is possible due to lightcone optimization for calculation of energy expectation

values. In the case of calculation of probability amplitudes, the tensor network approach

allows calculating a batch of several amplitudes for the same cost as a single amplitude. If

the contraction width of the tensor network is w, then one can calculate the batch of 2w

probability amplitudes without significant increase in computational cost. In the application

to the quantum circuit simulation, it is possible to exploit the structure of quantum gates

in the circuit. For gates that have non-zero elements only on their diagonal, the “Diagonal

gates" optimization is possible and provides a significant performance improvement.

A key part of the process of tensor network contraction is the contraction ordering al-

gorithm. The cost for contraction depends exponentially on the quality of the contraction

order. It, therefore, promises to be a rewarding task to study different contraction order

algorithms. The tensor networks used for most quantum many-body simulation problems

have a lot of small indices. This setup is not beneficial for the numerical efficiency of tensor

network contraction, since the contraction of two tensors is dominated by read/write oper-

ations, not arithmetic operations. This puts an additional constraint on the optimization

of the contraction procedure of tensor networks. As discussed above, multiple approaches

can be utilized to improve the performance of parallelized GPU-accelerated tensor network

contraction.

To further improve the scaling of the tensor network approach, it is possible to borrow

the idea of approximate simulations using the tensor decomposition, as used in the DMRG

91

algorithm. This approach can dramatically reduce the cost for simulation for a small error

in the resulting value.

92

REFERENCES

Argonne National Laboratory Leadership Computing Facility, 2017.

U.S. Department of Energy Office of Science Innovative and Novel Computational Impact
on Theory and Experiment (INCITE) program, 2017.

Scott Aaronson and Lijie Chen. Complexity-theoretic foundations of quantum supremacy
experiments. arXiv preprint arXiv:1612.05903, 2016.

Yuri Alexeev, Dave Bacon, Kenneth R Brown, Robert Calderbank, Lincoln D Carr, Fred-
eric T Chong, Brian DeMarco, Dirk Englund, Edward Farhi, Bill Fefferman, Alexey Gor-
shkov, Andrew Houck, Jungsang Kim, Shelby Kimmel, Michael Lange, Seth Lloyd, Mikhail
Lukin, Dmitri Maslov, Peter Maunz, Christopher Monroe, John Preskill, Martin Roetteler,
Martin Savage, and Jeff Thompson. Quantum computer systems for scientific discovery.
PRX Quantum, 2(1):017001, 2021.

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends,
Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum
supremacy using a programmable superconducting processor. Nature, 574(7779):505–510,
2019.

Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on
computing, 26(5):1411–1473, 1997.

Jacob Biamonte and Ville Bergholm. Tensor networks in a nutshell, 2017.

Jean RS Blair and Barry Peyton. An introduction to chordal graphs and clique trees. In
Graph theory and sparse matrix computation, pages 1–29. Springer, 1993.

Hans L Bodlaender. A tourist guide through treewidth. Acta cybernetica, 11(1-2):1, 1994.

Hans L Bodlaender, Fedor V Fomin, Arie MCA Koster, Dieter Kratsch, and Dimitrios M
Thilikos. On exact algorithms for treewidth. In European Symposium on Algorithms, pages
672–683. Springer, 2006.

Sergio Boixo. Random circuits dataset. https://github.com/sboixo/GRCS.git, 2019.
Accessed: 2019-09-16.

Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, and Hartmut Neven. Simulation
of low-depth quantum circuits as complex undirected graphical models. arXiv preprint
arXiv:1712.05384, 2017.

Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang
Jiang, Michael J Bremner, John M Martinis, and Hartmut Neven. Characterizing quantum
supremacy in near-term devices. Nature Physics, 14(6):595, 2018.

93

https://github.com/sboixo/GRCS.git

Jacob C Bridgeman and Christopher T Chubb. Hand-waving and interpretive dance: an
introductory course on tensor networks. Journal of Physics A: Mathematical and Theo-
retical, 50(22):223001, 2017.

Thang Nguyen Bui and Curt Jones. A heuristic for reducing fill-in in sparse matrix fac-
torization. Technical report, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1993.

Juan Carrasquilla, Di Luo, Felipe Pérez, Ashley Milsted, Bryan K Clark, Maksims Volkovs,
and Leandro Aolita. Probabilistic simulation of quantum circuits with the transformer.
arXiv preprint arXiv:1912.11052, 2019.

Jianxin Chen, Fang Zhang, Mingcheng Chen, Cupjin Huang, Michael Newman, and
Yaoyun Shi. Classical simulation of intermediate-size quantum circuits. arXiv preprint
arXiv:1805.01450, 2018a.

Jianxin Chen, Fang Zhang, Cupjin Huang, Michael Newman, and Yaoyun Shi. Classical
simulation of intermediate-size quantum circuits. arXiv, may 2018b.

Yu Chen, C Neill, P Roushan, N Leung, M Fang, R Barends, J Kelly, B Campbell, Z Chen,
B Chiaro, et al. Qubit architecture with high coherence and fast tunable coupling. Physical
review letters, 113(22):220502, 2014.

Zhao-Yun Chen, Qi Zhou, Cheng Xue, Xia Yang, Guang-Can Guo, and Guo-Ping Guo.
64-qubit quantum circuit simulation. Science Bulletin, 63(15):964–971, 2018c.

Lam Chi-Chung, P Sadayappan, and Rephael Wenger. On optimizing a class of multi-
dimensional loops with reduction for parallel execution. Parallel Processing Letters, 7(02):
157–168, 1997.

Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, Danilo P
Mandic, et al. Tensor networks for dimensionality reduction and large-scale optimiza-
tion: Part 1 – low-rank tensor decompositions. Foundations and Trends® in Machine
Learning, 9(4-5):249–429, 2016.

Hans De Raedt, Fengping Jin, Dennis Willsch, Madita Willsch, Naoki Yoshioka, Nobuyasu
Ito, Shengjun Yuan, and Kristel Michielsen. Massively parallel quantum computer simu-
lator, eleven years later. Computer Physics Communications, 237:47–61, 2019.

Koen De Raedt, Kristel Michielsen, Hans De Raedt, Binh Trieu, Guido Arnold, Marcus
Richter, Th Lippert, H Watanabe, and N Ito. Massively parallel quantum computer
simulator. Computer Physics Communications, 176(2):121–136, 2007.

Rina Dechter. Bucket elimination: A unifying framework for several probabilistic inference.
CoRR, abs/1302.3572, 2013.

94

Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J Hanson. An extended
set of FORTRAN basic linear algebra subprograms. ACM Transactions on Mathematical
Software (TOMS), 14(1):1–17, 1988.

Daniel J Egger, Jakub Mareček, and Stefan Woerner. Warm-starting quantum optimization.
Quantum, 5:479, 2021.

Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17–60, 1960.

Edward Farhi and Aram W Harrow. Quantum supremacy through the quantum approximate
optimization algorithm. arXiv preprint arXiv:1602.07674, 2016.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization
algorithm. arXiv preprint arXiv:1411.4028, 2014.

Richard P. Feynman. Simulating physics with computers. 21(6-7):467–488, June 1982.
doi:10.1007/bf02650179.

E. Schuyler Fried, Nicolas P. D. Sawaya, Yudong Cao, Ian D. Kivlichan, Jhonathan Romero,
and Alán Aspuru-Guzik. qtorch: The quantum tensor contraction handler. PLOS ONE,
13(12):e0208510, Dec 2018. ISSN 1932-6203. doi:10.1371/journal.pone.0208510.

Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing,
1(2):180–187, 1972.

Edward Gillman, Dominic C. Rose, and Juan P. Garrahan. A tensor network approach to
finite markov decision processes, 2020.

Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth. In Proceed-
ings of the 20th conference on Uncertainty in artificial intelligence, pages 201–208. AUAI
Press, 2004.

Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth, 2012.

Johnnie Gray and Stefanos Kourtis. Hyper-optimized tensor network contraction, 2020.

Michael Hamann and Ben Strasser. Correspondence between multilevel graph partitions and
tree decompositions. Algorithms, 12(9):198, 2019.

Thomas Häner and Damian S Steiger. 0.5 petabyte simulation of a 45-qubit quantum cir-
cuit. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, page 33. ACM, 2017.

Aram W Harrow and Ashley Montanaro. Quantum computational supremacy. Nature, 549
(7671):203, 2017.

95

https://doi.org/10.1007/bf02650179
https://doi.org/10.1371/journal.pone.0208510

IBM. Ibm q experience, 2018.

Intel. 2018 ces: Intel advances quantum and neuromorphic computing research, 2018.

Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, and Prasanna Balaprakash.
Learning to optimize variational quantum circuits to solve combinatorial problems. In
Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), 2020.

Ton Kloks. Treewidth: computations and approximations, volume 842. Springer Science &
Business Media, 1994.

Ton Kloks, H Bodlaender, Haiko Müller, and Dieter Kratsch. Computing treewidth and
minimum fill-in: All you need are the minimal separators. In European Symposium on
Algorithms, pages 260–271. Springer, 1993.

Riling Li, Bujiao Wu, Mingsheng Ying, Xiaoming Sun, and Guangwen Yang. Quantum
supremacy circuit simulation on Sunway Taihulight. arXiv preprint arXiv:1804.04797,
2018.

Norbert M Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt,
Kevin A Landsman, Kenneth Wright, and Christopher Monroe. Experimental comparison
of two quantum computing architectures. Proceedings of the National Academy of Sciences,
114(13):3305–3310, 2017.

Danil Lykov, Roman Schutski, Valerii Vinokur, and Yuri Alexeev. Large-Scale Parallel
Tensor Network Quantum Simulator. In under review of Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis on - SC
’20, New York, New York, USA, 2020a. ACM Press.

Danylo Lykov. QTensor. https://github.com/danlkv/qtensor, 2021.

Danylo Lykov and Yuri Alexeev. Importance of diagonal gates in tensor network simulations,
2021.

Danylo Lykov, Roman Schutski, Alexey Galda, Valerii Vinokur, and Yurii Alexeev. Ten-
sor network quantum simulator with step-dependent parallelization. arXiv preprint
arXiv:2012.02430, 2020b.

Danylo Lykov, Angela Chen, Huaxuan Chen, Kristopher Keipert, Zheng Zhang, Tom Gibbs,
and Yuri Alexeev. Performance evaluation and acceleration of the qtensor quantum circuit
simulator on gpus. In 2021 IEEE/ACM Second International Workshop on Quantum
Computing Software (QCS), pages 27–34, 2021. doi:10.1109/QCS54837.2021.00007.

Igor L Markov and Yaoyun Shi. Simulating quantum computation by contracting tensor
networks. SIAM Journal on Computing, 38(3):963–981, 2008.

Stephen Marsland. Machine learning: an algorithmic perspective. Chapman and Hall/CRC,
2011.

96

https://github.com/danlkv/qtensor
https://doi.org/10.1109/QCS54837.2021.00007

H.-D. Meyer, U. Manthe, and L.S. Cederbaum. The multi-configurational time-dependent
hartree approach. 165(1):73–78, January 1990. doi:10.1016/0009-2614(90)87014-i. URL
https://doi.org/10.1016/0009-2614(90)87014-i.

Jacob Miller, Geoffrey Roeder, and Tai-Danae Bradley. Probabilistic graphical models and
tensor networks: A hybrid framework, 2021.

Vladimir Mironov, Yuri Alexeev, Kristopher Keipert, Michael Dḿello, Alexander Moskovsky,
and Mark S. Gordon. An efficient MPI/OpenMP parallelization of the Hartree-Fock
method for the second generation of Intel Xeon Phi processor. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis
on - SC ’17, pages 1–12, New York, New York, USA, 2017. ACM Press.

Uwe Naumann and Olaf Schenk. Combinatorial scientific computing. CRC Press, 2012.

Charles Neill, Pedran Roushan, K Kechedzhi, Sergio Boixo, Sergei V Isakov, V Smelyanskiy,
A Megrant, B Chiaro, A Dunsworth, K Arya, et al. A blueprint for demonstrating quantum
supremacy with superconducting qubits. Science, 360(6385):195–199, 2018.

Lars Onsager. Crystal statistics. i. a two-dimensional model with an order-disorder transition.
Phys. Rev., 65:117–149, Feb 1944. doi:10.1103/PhysRev.65.117. URL https://link.aps
.org/doi/10.1103/PhysRev.65.117.

Román Orús. A practical introduction to tensor networks: Matrix product states and pro-
jected entangled pair states. Annals of Physics, 349:117–158, Oct 2014. ISSN 0003-4916.
doi:10.1016/j.aop.2014.06.013. URL http://dx.doi.org/10.1016/j.aop.2014.06.013.

Matthew Otten. QuaC (quantum in c) is a parallel time dependent open quantum systems
solver, 2020.

Feng Pan, Pengfei Zhou, Sujie Li, and Pan Zhang. Contracting arbitrary tensor networks:
general approximate algorithm and applications in graphical models and quantum circuit
simulations. arXiv preprint arXiv:1912.03014, 2019.

Edwin Pednault, John A Gunnels, Giacomo Nannicini, Lior Horesh, Thomas Magerlein,
Edgar Solomonik, and Robert Wisnieff. Breaking the 49-qubit barrier in the simulation
of quantum circuits. arXiv preprint arXiv:1710.05867, 2017.

Robert NC Pfeifer, Jutho Haegeman, and Frank Verstraete. Faster identification of optimal
contraction sequences for tensor networks. Physical Review E, 90(3):033315, 2014.

Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation-based coarsening and multiscale graph
organization. Multiscale Modeling & Simulation, 9(1):407–423, 2011.

Ilya Safro, Dorit Ron, and Achi Brandt. Multilevel algorithms for linear ordering problems.
Journal of Experimental Algorithmics (JEA), 13:1–4, 2009.

97

https://doi.org/10.1016/0009-2614(90)87014-i
https://doi.org/10.1016/0009-2614(90)87014-i
https://doi.org/10.1103/PhysRev.65.117
https://link.aps.org/doi/10.1103/PhysRev.65.117
https://link.aps.org/doi/10.1103/PhysRev.65.117
https://doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013

Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix
product states. Annals of Physics, 326(1):96–192, Jan 2011. ISSN 0003-4916.
doi:10.1016/j.aop.2010.09.012. URL http://dx.doi.org/10.1016/j.aop.2010.09.012.

Roman Schutski, Danil Lykov, and Ivan Oseledets. Adaptive algorithm for quantum circuit
simulation. Phys. Rev. A, 101:042335, Apr 2020. doi:10.1103/PhysRevA.101.042335.

Ruslan Shaydulin and Yuri Alexeev. Evaluating quantum approximate optimization algo-
rithm: A case study. In Proceedings of the 2nd International Workshop on Quantum
Computing for Sustainable Computing, 2019.

Ruslan Shaydulin, Ilya Safro, and Jeffrey Larson. Multistart methods for quantum approx-
imate optimization. In 2019 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–8. IEEE, 2019a.

Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Christian FA Negre, Ilya Safro, Susan M
Mniszewski, and Yuri Alexeev. A hybrid approach for solving optimization problems on
small quantum computers. Computer, 52(6):18–26, 2019b.

Ruslan Shaydulin, Stuart Hadfield, Tad Hogg, and Ilya Safro. Classical symmetries and
QAOA. arXiv preprint arXiv:2012.04713, 2020.

Peter W Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
Proceedings 35th annual symposium on foundations of computer science, pages 124–134.
Ieee, 1994.

Mikhail Smelyanskiy, Nicolas PD Sawaya, and Alán Aspuru-Guzik. qHiPSTER: the quantum
high performance software testing environment. arXiv preprint arXiv:1601.07195, 2016.

Hisao Tamaki. Positive-Instance Driven Dynamic Programming for Treewidth. In Kirk
Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms
(ESA 2017), volume 87 of Leibniz International Proceedings in Informatics (LIPIcs), pages
68:1–68:13, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
ISBN 978-3-95977-049-1. doi:10.4230/LIPIcs.ESA.2017.68.

Robert E Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM
Journal on computing, 13(3):566–579, 1984.

Laurens Vanderstraeten, Bram Vanhecke, and Frank Verstraete. Residual entropies for
three-dimensional frustrated spin systems with tensor networks. 98(4), October 2018.
doi:10.1103/physreve.98.042145. URL https://doi.org/10.1103/physreve.98.042145.

Benjamin Villalonga, Sergio Boixo, Bron Nelson, Christopher Henze, Eleanor Rieffel, Rupak
Biswas, and Salvatore Mandrà. A flexible high-performance simulator for verifying and
benchmarking quantum circuits implemented on real hardware. NPJ Quantum Informa-
tion, 5:1–16, 2019.

98

https://doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevA.101.042335
https://doi.org/10.4230/LIPIcs.ESA.2017.68
https://doi.org/10.1103/physreve.98.042145
https://doi.org/10.1103/physreve.98.042145

Benjamin Villalonga, Dmitry Lyakh, Sergio Boixo, Hartmut Neven, Travis S Humble, Ru-
pak Biswas, Eleanor Rieffel, Alan Ho, and Salvatore Mandrà. Establishing the quantum
supremacy frontier with a 281 Pflop/s simulation. Quantum Science and Technology, 2020.

Haobin Wang and Michael Thoss. Multilayer formulation of the multiconfiguration time-
dependent hartree theory. 119(3):1289–1299, July 2003. doi:10.1063/1.1580111. URL
https://doi.org/10.1063/1.1580111.

Zhihui Wang, Stuart Hadfield, Zhang Jiang, and Eleanor G Rieffel. Quantum approximate
optimization algorithm for maxcut: A fermionic view. Physical Review A, 97(2):022304,
2018.

Xin-Chuan Wu, Sheng Di, Franck Cappello, Hal Finkel, Yuri Alexeev, and Frederic Chong.
Memory-efficient quantum circuit simulation by using lossy data compression. In Proceed-
ings of the 3rd International Workshop on Post-Moore Era Supercomputing (PMES) at
SC18, Denver, CO, USA, 2018a.

Xin-Chuan Wu, Sheng Di, Franck Cappello, Hal Finkel, Yuri Alexeev, and Frederic T Chong.
Amplitude-aware lossy compression for quantum circuit simulation. In Proceedings of 4th
International Workshop on Data Reduction for Big Scientific Data (DRBSD-4) at SC18,
2018b.

Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cappello, Hal Finkel, Yuri
Alexeev, and Frederic T Chong. Full-state quantum circuit simulation by using data
compression. In Proceedings of the High Performance Computing,Networking, Storage
and Analysis International Conference (SC19), Denver, CO, USA, 2019. IEEE Computer
Society.

Ya-Qian Zhao, Ren-Gang Li, Jin-Zhe Jiang, Chen Li, Hong-Zhen Li, En-Dong Wang, Wei-
Feng Gong, Xin Zhang, and Zhi-Qiang Wei. Simulation of quantum computing on classical
supercomputers, 2020.

99

https://doi.org/10.1063/1.1580111
https://doi.org/10.1063/1.1580111

	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 Tensor networks introduction
	1.1.1 Tensors and quantum states
	1.1.2 Tensor networks

	1.2 Quantum computing introduction
	1.3 Structure

	2 Tensor network simulation of quantum circuits
	2.1 Introduction
	2.2 Related work
	2.3 Quantum circuit simulation algorithm
	2.3.1 Tensor networks and graphical models
	2.3.2 Simulation of quantum circuits

	2.4 Batch circuit simulation
	2.4.1 Simulation of multiple amplitudes
	2.4.2 Node ordering and chordal graphs
	2.4.3 Finding restricted elimination orders
	2.4.4 Numerical examples

	2.5 Conclusion and comparison

	3 Diagonal gates approach for optimizing quantum circuit simulation
	3.1 Abstract
	3.2 Introduction
	3.3 QAOA algorithm
	3.4 Methodology
	3.4.1 Tensor network approach
	3.4.2 Tensor network contraction

	3.5 Optimization techniques
	3.5.1 Optimization of QAOA circuit structure
	3.5.2 Diagonal gate simplification

	3.6 Results
	3.7 Conclusions

	4 Parallel computation
	4.1 Introduction
	4.2 Related Work
	4.3 Methodology
	4.3.1 QAOA introduction
	4.3.2 Description of quantum circuits

	4.4 Overview of simulation algorithm
	4.4.1 Quantum circuit as tensor expression
	4.4.2 Graph model of tensor expression

	4.5 Simulation of a single amplitude
	4.5.1 Ordering algorithm

	4.6 Parallelization algorithm
	4.6.1 Description of hardware and software
	4.6.2 Single-node parallelization
	4.6.3 Multinode parallelization
	4.6.4 Step-dependent slicing

	4.7 Simulation of several amplitudes
	4.8 Results
	4.9 Conclusions
	4.10 Acknowledgements

	5 GPU acceleration of tensor network contraction
	5.1 Introduction
	5.2 Methodology
	5.2.1 QAOA Overview
	5.2.2 Tensor Network Contractions
	5.2.3 Merged Indices Contraction
	5.2.4 CPU-GPU Hybrid Backend
	5.2.5 Datasets for Synthetic Benchmarks

	5.3 Results
	5.3.1 Single CPU-GPU Backends
	5.3.2 Merged Backend Results
	5.3.3 Mix CPU-GPU Backend Results
	5.3.4 Mixed Merged Backend Results
	5.3.5 Synthetic Benchmarks

	5.4 Conclusions

	6 Conclusions and outlook
	References

