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ABSTRACT

This dissertation investigates the economics of scale and complexity in healthcare. Chapter

one provides an overview of the dissertation. Chapter two measures trade and economies of

scale in healthcare, and considers the implications for rural healthcare policy. Chapter three

finds medical knowledge growth causes some oncologists to become more specialized, leading

to growing economies of scale in healthcare. Chapter four explores the trade-off between

accuracy and interpretability in the use of machine learning in formula driven healthcare

policy.
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CHAPTER 1

INTRODUCTION

Complexity and scale are unavoidable aspects of modern medical practice. This dissertation

investigates the economics of scale and complexity in healthcare, motivated by observation

of how these factors impact healthcare. In this introduction, I summarize the circumstances

that motivated each chapter and the key findings.

1.1 Overview of Chapter Two

The seed for chapter two was planted in my first year of medical school when I went on

a service trip to the Rosebud reservation in South Dakota. While there, I shadowed in a

small local clinic. The town was too small to support even a single full-time doctor. Instead,

a family physician visited the clinic one day a week. The clinic was staffed with nurse

practitioners the rest of the time.

Many patients saw these nurse practitioners who would have seen a subspecialist in

Chicago. One boy came in with a punctured eardrum. At the University of Chicago, he

would likely have been referred to a pediatric ear-nose-throat specialist. Another kid had

an extensive skin infection - likely impetigo. In Chicago, he likely would have been sent to

a pediatric dermatologist. However, in Rosebud, there were no such specialists; there was

barely even a doctor. The town was too small to support those kinds of medical professionals.

Instead, the nurse practitioners managed both children.

This set of observations got me talking with my collaborators about how providers’

tasks shift across space. In small places, generalists take on many tasks that would be the

purview of specialists in larger places. The small places do not have the scale to support

the specialists. This line of thinking got us to consider the role of scale in healthcare, which

then snowballed into the research project in chapter two.

1



Chapter Two documents substantial interregional trade in medical services and inves-

tigates whether regional economies of scale explain it. In Medicare data, one-fifth of pro-

duction involves a doctor treating a patient from another region. Larger regions produce

greater quantity, quality, and variety of medical services, which they “export” to patients

from smaller regions. These patterns reflect scale economies: greater demand enables larger

regions to improve quality, so they attract patients from elsewhere. Most policies to support

access to healthcare for people in rural areas relocate production to small regions. How-

ever, contrary to concerns that production is too concentrated, larger regions increase access

more per subsidy dollar. Another viable policy approach is to lower travel costs rather than

relocating production.

1.2 Overview of Chapter Three

The seeds of chapter three were also planted in my second and third years of medical school,

as I met a dizzying array of astonishingly specialized physicians. I met a neurosurgeon

who only operated on one particular type of brain cancer, glioblastoma. I rotated with

a urologist who only removed prostate cancer and a urologist who only removed kidney

stones. I encountered a gastrointestinal (GI) specialist who treated mainly inflammatory

bowel disease and a different one who focused on liver disease. Medical care at the University

of Chicago was unimaginably specialized to me. I was amazed that a doctor could and would

want to treat one type of disease for most of their career.

When I asked physicians why they were so specialized, they almost uniformly had the

same answer. It was the only way to keep up — with surgical skills, the literature, the

dizzying pace of new treatments. As I progressed in medical school, I grew more sympathetic.

The volume of knowledge in medicine was growing, and I was being asked to learn more than

previous generations of medical students. First Aid for the USMLE Step 1 was around 400

pages in 2000. In 2020, the year I took my Step 1 exam, it was over 800 pages. In preparing

2



for that exam, I reached a point where my forgetting rate started to equal my learning rate.

I felt I reached the physical limit of what could be held in my head.

These experiences spurred me to investigate how physicians manage the growth of medical

knowledge empirically. However, this investigation faced a central hurdle. Everyone says that

there is more to know in medicine — but how do you actually measure growth in knowledge?

Growth in knowledge proved surprisingly tricky to plausibly quantify. I considered using new

imaging technologies in radiology, new medical devices in orthopedics, new machinery in

urology, and drug approvals in oncology. I finally settled on the length of clinical guidelines

in oncology as my measure of knowledge growth from chapter three, summarized below.

Chapter three investigates the impact of knowledge growth on specialization. Many fields,

such as computer science, molecular biology, and medicine, have a rapidly growing knowledge

base. Do expert workers respond to growth in knowledge by becoming more specialized? We

study this empirically in the context of oncology, which has experienced explosive growth in

knowledge. Using a panel of Medicare claims data and historical cancer treatment guidelines,

we test if oncologists exposed to greater knowledge growth become more specialized. We

proxy knowledge growth in each cancer subfield using the increase in the length of clinical

guidelines. Exposure to knowledge growth causes ex-ante specialized oncologists to become

even more specialized but does not affect general oncologists. We find that the resulting

growth in specialization among specialist oncologists occurs entirely in large markets. These

trends lead to growing divergence in extreme specialization between large and small markets

and suggest that knowledge growth increases economies of scale in expert work.

1.3 Overview of Chapter Four

The seeds of chapter four were planted in my first year of graduate school in conversation

with one of my main advisors, Dr. Meltzer. He noted that risk adjustment tended to

consistently underestimate costs for complex patients, a problem for the Comprehensive
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Care Program, a program he had started. I thought about this problem and wondered if

it could be driven by all the interactions between health conditions. For example, diabetes

impairs the immune system, leading to worse infections. Many drugs are cleared by the liver

or kidneys and, therefore, cannot be used in people with significant liver or kidney disease.

There are innumerable such interactions and challenges for complex patients. However,

standard risk adjustment models largely assumed these health conditions were additive.

They did not account for these potential interactions.

Thinking about interactions led me to think about machine learning. After all, many

machine learning estimators allow for more flexible functional forms than standard linear

models. However, another question arose when talking to other advisors about using machine

learning for risk adjustment. Could these complex machine-learning models ever actually be

used in public policy? Or would they be too complex and uninterpretable for policymakers

actually to use? Contemplating these questions led me to write chapter four.

Chapter four empirically investigates the trade-off between accuracy and interpretabil-

ity in Medicare Advantage risk adjustment models. I introduce a formal metric for model

complexity in payment policy, which equates complexity to the number of coefficients in

a model, a factor central to stakeholder interpretation of payment rates. Machine learn-

ing models significantly improve prediction accuracy and robustness to upcoding but also

dramatically increase complexity. Analyzing policymakers’ preferences reveals that these

models likely do not justify their additional complexity. Future research should explore

aligning machine learning advances with payment policy constraints.
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CHAPTER 2

MARKET SIZE AND TRADE IN MEDICAL SERVICES

2.1 Introduction

Rural Americans have worse health outcomes [Deryugina and Molitor, 2021, Finkelstein

et al., 2021], but America’s doctors are disproportionately located in big cities [Rosenblatt

and Hart, 2000]. This contrast might suggest a spatial mismatch between consumers and

producers of medical services, and arguments about whether physicians are geographically

“maldistributed” go back decades [Newhouse et al., 1982a, Skinner et al., 2019]. To evaluate

this concern, we must consider two economic mechanisms: economies of scale and patients’

travel costs. We find that both are key to understanding spatial patterns of healthcare within

the United States 1.

When medical services exhibit increasing returns to scale, there are benefits to geograph-

ically concentrating production. Indeed, medicine has long been suggested as an industry in

which the division of labor is limited by the extent of the market [Arrow, 1963, Baumgard-

ner, 1988a]. But if healthcare markets are geographically segmented, the only way to serve

patients in smaller regions is to disperse production across space, foregoing the benefits of

scale.2 For time-sensitive emergency care, this assumption is plausible. But the vast major-

ity of medical spending is not for such emergencies. For example, if patients with cancer can

travel across regions in search of the ideal oncologist—one specialized in their particular type

of cancer, one with a better reputation, or simply a better personal match—the economic

1. This chapter is co-authored with Jonathan Dingel, Joshua Gottlieb, and Pauline Mourot.

2. Many economists assume trade costs for medical services are prohibitively high. Hsieh and Rossi-
Hansberg [2021]: “Producing many cups of coffee, retail services, or health services in the same location
is of no value, since it is impractical to bring them to their final consumers.” Jensen and Kletzer [2005]:
“Outside of education and healthcare occupations, the typical ‘white-collar’ occupation involves a potentially
tradable activity.” Bartik and Erickcek [2007]: “An industry can bring in new dollars by selling its goods
or services to persons or businesses from outside the local economy (‘export-base production’). . . For health
care institutions, demand for services tends to be more local.”
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geography of medical care may resemble other tradable industries. Society would face a

proximity-concentration tradeoff: patients who import medical services produced elsewhere

incur trade costs but benefit from higher quality generated by scale economies.

We quantify the roles of local increasing returns and trade costs in medical services. Us-

ing millions of Medicare claims, we find that “imported” medical procedures—defined as a

patient’s consumption of a service produced by a medical provider in a different region—

constitute about one-fifth of US healthcare consumption. Imports are a larger share of

consumption for patients in smaller markets. “Exported” medical services are dispropor-

tionately produced in large markets. Larger regions specialize in producing less common

procedures, and these procedures are traded more. These patterns are attributable to local

increasing returns to scale: larger regions produce higher-quality services because they serve

more patients. We estimate a model and use it to quantify how production or travel subsi-

dies would affect patients’ access to care and the quality produced in each region. Spatially

neutral policies affect regions differently depending on their size and trade patterns.

Section 2.2 develops a model of trade in medical services to guide our analysis. We

adapt standard models of agglomeration and trade to a setting in which the government sets

prices, so endogenous quality and travel patterns clear markets. If there are local increasing

returns, larger markets produce higher-quality care and export it. When economies of scale

are sufficiently strong relative to market size, the model predicts that larger markets will

be net exporters of medical services. Market size matters more at smaller scales, so less

common medical procedures respond more to differences in market size.

Section 2.3 describes our Medicare claims data. Medicare is the federal government’s

insurance program for the elderly and disabled and the largest insurer in the United States.

Medical service providers submit claims that report the treatment location, where the patient

lives, and distinguish among thousands of distinct medical procedures.

Section 2.4 begins our empirical investigation by examining how production and con-
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sumption vary with market size. Production is geographically concentrated in larger mar-

kets, while consumption is much less so. This contrast implies that larger markets are net

exporters of medical services to smaller markets. To test whether this pattern reflects a home-

market effect—that is, larger demand causes larger regions to export medical services—we

estimate a gravity model of bilateral gross trade flows [Costinot et al., 2019]. Controlling for

the geographic distribution of demand and travel distances, regions with larger residential

populations export more medical care. Local increasing returns to scale are so strong that

greater demand induces a larger increase in exports than imports, making larger markets net

exporters of medical care. We show that these scale effects cannot be attributed to larger

markets having lower input costs or medical production raising population size.

Section 2.5 shows that trade and market size play a larger role in less common proce-

dures. The imported share of consumption is 22% for above-median-frequency procedures

and 35% for those below the median. Doctors performing rare procedures export their ser-

vices more often and across a broader geographic scope, sometimes serving patients who

reside thousands of kilometers away. For example, half of the patients having left ventric-

ular assist devices (LVADs) inserted to restore their heart function come from outside the

surgeon’s region, while only 15% of screening colonoscopies are imported. Consistent with

the model, the home-market effect is substantially stronger for less common procedures: a

larger residential population drives a greater increase in net exports for rarer services.

Section 2.6 shows that larger markets produce higher-quality services thanks to economies

of scale. We recover revealed-preference estimates of regional service quality by estimating

patients’ willingness to travel to each exporting region for medical services.3 These estimates

are positively related to external quality measures, such as hospital rankings published by

U.S. News and World Report. Inferred quality rises considerably with the regional volume

of production. We estimate the scale elasticity of production to be about 0.6: a region

3. Regional quality estimates and other results may be downloaded at http://jdingel.com.
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producing 10% more because of greater demand produces about 6% higher quality.

A variety of mechanisms could generate these local increasing returns to scale: finer

specialization among physicians, sharing of lumpy capital equipment, knowledge diffusion,

learning by doing, and greater availability of complementary inputs [Marshall, 1890]. While

we cannot test all these hypotheses, we find that physicians in larger markets are more spe-

cialized and more experienced in the procedures they perform. Trade enables patients from

across regions to share in these benefits of scale: imports are more likely to be provided

by a specialist—and the appropriate specialist—than locally produced services. Specializa-

tion and learning by doing likely contribute to the local increasing returns that produce

higher-quality medical care in larger markets.

We use our estimates of scale economies and trade costs to quantitatively explore the

proximity-concentration tradeoff. Section 2.7 shows that policies affect regions differently

depending on their size and trade patterns. A nationwide increase in reimbursements raises

local output quality more in smaller regions, but these regions experience smaller increases

in patients’ market access because fewer of their patients consume local services. We then

examine the implications of increasing access to care in one region by either increasing

reimbursements or reducing travel costs. Increasing reimbursements has a higher return in

more populous regions: the nationwide improvement in patient market access is about 15%

higher per dollar of spending when raising reimbursements in the largest regions instead

of the smallest regions. Increasing reimbursements in one region reduces output quality in

neighboring regions, while improving patients’ market access to the extent they import from

the treated region. Reducing travel costs for one region increases its import demand, which

improves both output quality and market access in neighboring regions. The rich pattern of

consequences when subsidizing patients in low-output regions highlights the importance of

trade and agglomeration for the incidence of these policies on patients and producers.

The higher-quality care available in larger markets may not benefit all patients equally.
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Patients of lower socioeconomic status are less likely to travel for better medical care. Gravity

regressions show that patients from the lowest neighborhood-income decile exhibit a distance

elasticity of -2.1, while those in the highest decile have a distance elasticity of -1.7. This

finding is not driven by differences in the composition of care needed: these patients are

more sensitive to distance even when we examine travel patterns within specific billing codes.

Thus, the gains generated by local increasing returns do not benefit all patients equally.

This paper builds on research in urban, trade, and health economics. Urban economists

have documented skill-biased agglomeration in production as knowledge workers have be-

come more numerous and concentrated in skilled cities [Berry and Glaeser, 2005, Moretti,

2011, Diamond, 2016, Davis and Dingel, 2020, Eckert et al., 2020]. Connecting this to the

production and trade of services has been more difficult. Most studies of the geography

of services analyze restaurants and retailers [Davis et al., 2019, Agarwal et al., 2020, Allen

et al., 2021, Miyauchi et al., 2021, Burstein et al., 2022]. We show that—even in a service-

based economy—the sizes of both local and potential export markets influence production

and quality. This suggests that healthcare can serve as an export base for large markets

[Bartik and Erickcek, 2007].

The trade literature has examined market-size effects in manufacturing but investigated

services much less. Davis and Weinstein [2003], Hanson and Xiang [2004], and Bartelme et al.

[2019] link manufactures’ market size to export patterns, in line with the home-market effect

of Krugman [1980] and Helpman and Krugman [1985]. Dingel [2017] shows that market-size

effects drive quality specialization across US cities. Market-size effects for pharmaceuticals

have been estimated using demographic variation over time [Acemoglu and Linn, 2004a] and

across countries [Costinot et al., 2019]. Services are much less studied, in part because of

the paucity of reliable trade data [Lipsey, 2009, Muñoz, 2022]. We advance this literature

using the detailed procedure and location information in medical claims data.

The importance of medical care for health, life expectancy, and welfare generates sub-
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stantial public-policy interest. Rural locations have worse health outcomes but fewer doctors

per capita. An important series of papers by Newhouse et al. [1982a,b,c], Newhouse [1990],

and Rosenthal et al. [2005] considered this issue and argued against targeting a uniform

geographic distribution of physicians. Building on these studies, we measure interregional

trade in medical services, estimate the impact of geography on patient access, and connect

this trade to economies of scale. Importantly, we use modern trade theory to guide our

modeling, estimation strategy, and counterfactual policy analysis.

2.2 Theoretical framework

This section develops a model of trade in medical services tailored to our empirical analysis of

US healthcare. Patients select quality-differentiated services and face trade costs. Regional

increasing returns cause the quality-adjusted cost of producing a service to decline with scale.

The distinction between lower costs and higher quality is important in our empirical context.

The US government plays a unique role in healthcare, purchasing a large share of all output

and imposing substantial regulations. We focus on Medicare, the large federal program that

purchases healthcare for the elderly and disabled at regulated prices. In this context, prices

do not play their traditional role in clearing markets. Instead, quality of care and patients’

distance from care bring this market towards equilibrium.

For brevity, we present a competitive model, but the consequences of regional increasing

returns for trade flows in a fixed-price environment do not hinge on this assumption. Ap-

pendix 2.10.1 shows that a monopolistic-competition model with one medical provider in each

region delivers the same predictions. As in flexible-price models, many market structures

can give rise to a home-market effect [Costinot et al., 2019].

Beyond healthcare, this model speaks to agglomeration effects in other markets subject to

price controls. We show that such circumstances can be captured by a modest modification

to conventional trade models. Our model continues to deliver a gravity equation for trade
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flows and to predict home-market effects. This framework delivers testable predictions about

spatial variation in services’ quality and trade patterns when prices are fixed.

2.2.1 Demand

We use a logit model of individuals choosing providers for a given service. Providers and

patients are in regions indexed by i or j, with I denoting the set of regions. Let Nj denote

the number of patients residing in region j who make a choice.4 All providers in a region are

identical. Utility has a provider-region-specific component, a region-pair component, and an

idiosyncratic component: patient k in region j choosing a provider in region i obtains utility

Uik = ln δi + ln ρij(k) + ϵik.

The provider-region-specific component δi would usually include a product’s characteristics

and price. Since Medicare pays reimbursement rates that it sets administratively,5 the δi

relevant for the patient is the quality of the providers in region i. The region-pair component

ρij represents bilateral inverse trade costs (proximity). The idiosyncratic component ϵik is

independently and identically drawn from a standard Gumbel distribution, so the probability

that patient k selects a provider in region i is

Pr
(
Uik > Ui′k ∀i′ ̸= i

)
=

exp
(
ln δi + ln ρij(k)

)
∑

i′∈0∪I exp
(
ln δi′ + ln ρi′j(k)

) .
4. Appendix 2.10.2 extends the model to have multiple patient types.

5. Patients pay a share of these reimbursements through copayments and deductibles. But note that
these cost-sharing rules are constant nationally, and most Medicare patients have a supplemental insurance
(Medigap or Medicaid) which covers most or all of this cost-sharing.
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There is an outside option denoted by i = 0, which represents individuals choosing to forgo

care, and we normalize its common component to zero, ln δ0 = ln ρ0j(k) = 0 ∀k.6

This choice probability implies a gravity equation for the quantity of trade between any

two regions when we aggregate patients’ decisions. Let Qij denote the quantity of procedures

supplied by providers in i to patients residing in j, and let Q0j denote the number of

patients in j selecting the outside option. Because each patient selects at most one provider,

Nj =
∑

i∈I∪{0}Qij . The demand by patients in j for procedures performed in i is

Qij = δi
Nj

Φj
ρij , (2.1)

where Φj ≡ ∑
i′∈0∪I δi′ρi′j is the expected value of the choice set for patients in region

j. We call this Φj “patient market access.” Equation (2.1) is a gravity equation with an

origin i component, a destination j component, and an ij pair component. Total demand

for procedures produced in i is

Qi = δi
∑
j

Nj

Φj
ρij . (2.2)

2.2.2 Production

We assume competitive production of services with free entry and local increasing returns

that are external to the firm. That is, each price-taking provider chooses its output quality

6. This formulation of demand is familiar from the hospital competition literature, which has studied
competition among hospitals on price and quality. The literature tends to assume competition occurs within
a specified geographic radius [e.g., Kessler and McClellan, 2000, Cooper et al., 2018] or within a metropolitan
area or similar geographic unit [e.g., Ho, 2009, Gowrisankaran et al., 2015, Clemens and Gottlieb, 2017, Lewis
and Pflum, 2017, Ho and Lee, 2019, Dafny et al., 2019, Garthwaite et al., 2022]. Data in this literature are
often limited to certain states [e.g., Town and Vistnes, 2001, Gaynor and Vogt, 2003, Capps et al., 2003,
Lewis and Pflum, 2015, Ericson and Starc, 2015, Ho and Lee, 2017]. Patients who are treated outside
their home region may be dropped from the data or treated as choosing the outside option [as in Gaynor
and Vogt, 2003]. These definitions may be appropriate for modeling competition within specified markets
[though they have been questioned by Gaynor et al., 2013, Dranove and Ody, 2016] and are natural if one
assumes healthcare demand is local—as has been standard (see footnote 2). We assume all regions are in
each patient’s choice set, so there are no “control” markets and modeling strategic interactions would be very
computationally costly.

12



and quantity given total regional production, an exogenous factor price, and an exogenous

productivity shifter. A provider in region i that employs L units of the composite input to

produce service of quality δ produces the following output quantity:

Ai
H(Qi)

K(δ)
L.

Improving quality is costly so K(δ) is increasing. Regional increasing returns to scale are a

weakly increasing, concave function H(Qi) of total regional production, Qi, which competi-

tive firms take as given [Chipman, 1970]. The regional productivity shifter Ai captures any

other influences, such as historical investments. Provider size L is indeterminate (and unim-

portant) given the linear production function, external economies of scale, and price-taking

behavior. The composite input is supplied to region i at factor price wi.7 Thus, the unit

cost of producing quality δ in region i is

C(Qi, δi;wi, Ai) ≡
wiK(δi)

AiH(Qi)
.

In our institutional setting, output prices are not an equilibrium object determined solely

by the intersection of supply and demand. Instead Medicare sets “reimbursement rates”

largely independent of quality, quantity, or region,8 which we denote R. Each provider that

produces output of the highest quality produced in region i earns revenue R per unit.

Provider optimization and free entry make the unit cost equal to the reimbursement rate

7. If the regional factor supply were upward-sloping rather than perfectly elastic, we would estimate
increasing returns net of the cost of hiring additional inputs. That is, if the factor supply elasticity were β,
our estimate of the scale elasticity α from equation (2.4) below would instead be an estimate of the effective
scale elasticity α̃ ≡ α− β

1+β .

8. While Medicare does have some quality incentive programs, the money at stake is a small share of
Medicare’s overall spending [Gupta, 2021]. Medicare has some spatial variation in physician reimbursements,
but it is not very large and has diminished over time [Clemens and Gottlieb, 2014].
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in each region. Given the factor price wi and productivity shifter Ai, the free-entry condition

C(Qi, δi;wi, Ai) = R (2.3)

defines a regional isocost curve: the set of quantity-quality combinations for which the

average cost of production equals the reimbursement rate. This isocost curve is the set of

potential equilibrium production outcomes in region i. Regional increasing returns make the

isocost curve upward-sloping in (Q, δ) space. With free entry and fixed prices, the benefits

of scale are realized as higher-quality services in higher-output regions.

While our assumptions thus far suffice for qualitative results, we later specify functional

forms for additional predictions and empirical quantification; specifically, K(δi) = δi and

H(Qi) = Qα
i , with a scale elasticity of α ∈ (0, 1). In this case, the free-entry condition (2.3)

is

R =
wiδi
AiQ

α
i

. (2.4)

2.2.3 Equilibrium

Equilibrium equates supply and demand in each region, Qi =
∑

j Qij . Given exogenous

parameters R, {wi, Ai, Ni}i∈I , and {ρij}(i,j)∈(I,I), an equilibrium is a set of quantities and

qualities {Qi, δi}i∈I that simultaneously satisfy equations (2.2) and (2.3).

2.2.4 Scale effects in autarky

We first consider equilibrium in autarky: patients can choose whether to receive care, but

they cannot travel between regions (ρij = 0 for i ̸∈ {0, j}). In this case, all demand is local

and equation (2.2) simplifies to

Qjj =
δjρjj

1 + δjρjj
Nj . (2.5)
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The autarkic equilibrium is at the intersection of the demand curve given by equation (2.5)

and the free-entry isocost curve given by equation (2.3).9 An increase in population size,

∆Nj > 0, affects equilibrium outcomes by shifting the demand curve.

Figure 2.1 illustrates how greater demand affects quality in autarky. Panel 2.1a shows

the role of increasing returns to scale. The vertical axis shows quality δi and the horizontal

axis shows quantity Qi (on logarithmic scales). Higher quality attracts more patients, so

demand is upward-sloping.10 We draw two cases of the free-entry isocost curve defined by

equation (2.4): the horizontal line depicts constant returns (α = 0) and the upward-sloping

line depicts increasing returns (α > 0). With constant returns, a rightward shift in demand

(∆Nj > 0) causes a proportional increase in quantity produced and no change in output

quality. With increasing returns, the demand shift elicits higher quality because producers

move up the isocost curve and thus implies a more-than-proportional increase in quantity

produced because the share of patients receiving care rises.

Panel 2.1b shows that an increase in demand raises quality more as the demand curve

is increasingly elastic. The panel depicts two demand curves: the one on the left is more

elastic, as we would expect for a less-common procedure.11 Shifting each demand curve

to the right raises the equilibrium quality of each procedure because of increasing returns

to scale. This market-size effect is larger for the less common procedure with more elastic

demand because the demand shift is amplified by a larger increase in quantity demanded.12

9. For the equilibrium to be Marshallian stable, the demand curve must be steeper than the isocost curve
at the intersection. There is a stable equilibrium because equation (2.5) means Qjj → Nj as δj → ∞.

10. For visual clarity, we draw a log-linear demand curve. The logit demand function (2.5) is in fact
log-convex, which is consistent with all the comparative statics illustrated in Figure 2.1.

11. The demand function (2.5) is log-convex, so demand is indeed more elastic at lower quality. This is a
fixed-price counterpart of Marshall’s second law that demand is more elastic at higher prices.

12. Alternatively, one could obtain this prediction by assuming that demand is log-linear and the isocost
curve is log-concave. A rightward shift in demand would cause a larger (log) difference in quality for the
low-volume procedure on the steeper part of the isocost curve.
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2.2.5 Market-size effects on trade flows

We now consider trade. With multiple regions and finite trade costs (ρij > 0), some patients

will engage in trade—i.e., select a provider located in another region. This trade stems

from two sources. First, in the logit demand system with finite trade costs, patients have

idiosyncratic preferences that yield a strictly positive probability of choosing every region.

Second, when quality varies, regions producing higher-quality services attract more patients.

Fixing the qualities produced in other regions, an increase in one region’s demand affects

its trade flows through three mechanisms. First, greater demand for services directly raises

a region’s demand for imports through the Nj term in equation (2.1). A larger population

translates proportionally to a greater demand for imports. Second, with increasing returns,

an increase in Ni elicits an increase in quality δi, which raises region i’s gross exports to each

region. Costinot et al. [2019] call this the “weak home-market effect.” Third, if increasing

returns are sufficiently strong, the increase in quality δi improves region i’s patient market

access Φi so much that ln δi rises more than ln
(
Ni
Φi

)
does. That is, the increase in region

i’s gross exports exceeds any increase in its gross imports. This is the “strong” home-market

effect: an increase in local demand raises a region’s net exports.

Figures 2.1c and 2.1d introduce trade and illustrate the distinction between weak and

strong home-market effects.13 Panel 2.1c depicts the quality and quantity produced in one

region under two scale elasticities. Comparing points B and C, we see that a given increase in

demand elicits a larger quality improvement when increasing returns are stronger. Panel 2.1d

depicts equilibrium exports and imports as a function of the region’s demand shifter Nj . The

import curves are upward-sloping because an increase in local demand raises demand for

imports. The export curves are upward-sloping because of increasing returns: an increase in

local demand causes an increase in quality, which causes an increase in gross exports. This

13. These diagrams are fixed-price analogues of Figures II and III in Costinot et al. [2019]. See their
discussion of the assumption that one region is large enough to affect its own quality but too small to affect
the quality produced in other regions. This assumption is only made for this figure.
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is the weak home-market effect. When the scale elasticity α is larger—the free-entry isocost

curve in Figure 2.1c is steeper—greater demand elicits a larger increase in output quality,

which steepens the export curve and flattens the import curve in Figure 2.1d. When the

export curve is steeper than the import curve, there is a strong home-market effect: the

increase in demand raises exports more than imports.

We predict larger effects of market size for less common procedures. When two procedures

have the same production function and trade costs, demand is more elastic at the rare

procedure’s equilibrium quantity. As Figure 2.1b shows, an increase in demand raises quality

more when the demand curve is more elastic, leading to a stronger home-market effect for

the rarer procedure.

If rare procedures also have greater economies of scale (higher α)—for example, because

they require specialized equipment—that would amplify this contrast. This result motivates

a difference-in-differences research design: we compare the market-size effects of common

and rare procedures.

These results continue to hold when an increase in demand in one region affects equilib-

rium outcomes in all other regions. To demonstrate this, we consider the isoelastic special

case with scale elasticity α ∈ (0, 1) and examine the home-market effect in the neighbor-

hood of a symmetric equilibrium. Suppose all regions are the same size, Ni = N̄ ∀i, and

trade costs are symmetric: ρii = 1 and ρij = ρ ∈ (0, 1) ∀i ̸∈ {0, j}. There is a symmetric

equilibrium, which has quality δ̄ and patient market access Φ̄ in each region. As detailed in

Appendix 2.10.3, we totally differentiate the system of equations in terms of {dδi, dNi}Ii=1

and evaluate this system with dN1 > 0 and dNj = 0 ∀j ̸= 1 at the symmetric equilibrium.

With increasing returns of any magnitude, there is a weak home-market effect; with

sufficiently strong increasing returns, there is a strong home-market effect. When α > 0,

an increase in the population size of region 1 elicits an increase in the quality of service
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produced in region 1 relative to the other regions:

d ln δ1 − d ln δj ̸=1 =

[
1− α

α

(Φ̄− 1)

(1− ρ)δ̄
+

(1− ρ)δ̄

Φ̄

]−1

d lnN1 > 0.

This higher quality causes region 1 to export more to every other region: d lnQ1j
d lnN1

> 0. The

effect on the region’s net exports is

d lnQ1,j ̸=1 − d lnQj ̸=1,1 =

 1− 1−α
α

1+(I−1)ρ
1−ρ

1−α
α

(1+(I−1)ρ)
(1−ρ)

+
(1−ρ)δ̄

1+(1+(I−1)ρ)δ̄

 d lnN1. (2.6)

Net exports increase if and only if

α

1− α
>

1 + (I − 1)ρ

1− ρ
.

When this inequality holds, the larger population size of region 1 makes it a net exporter of

the medical procedure; i.e., the procedure exhibits a strong home-market effect around the

symmetric equilibrium. This occurs if increasing returns are sufficiently strong (α is large

enough) and trade costs are sufficiently large (ρ is small enough). Otherwise, there is a weak

home-market effect but not a strong one. Given a strong home-market effect, the effect in

equation (2.6) is diminishing in the number of potential patients N̄ , so we predict a stronger

home-market effect for less common procedures.

While the existence of increasing returns seems likely—at least for some types of medical

care—there is no guarantee they are sufficiently large to generate a strong home-market effect.

When larger markets are net exporters, they produce care that smaller regions need. This

trade can also support the larger markets’ economies: rather than exporting manufactured

goods, as in decades past, larger cities can reinvent themselves [Glaeser, 2005] and export

medical services. Absent a strong effect, healthcare would be a net import, not an economic

base, for larger regions.

18



2.3 Data description

Our primary dataset is 2017 claims data from Medicare, the US federal government’s in-

surance program for the elderly and disabled. Medicare is the largest health insurer in the

United States. It does not directly employ physicians or run its own hospitals. Instead,

it pays bills submitted by independent physicians, physician groups, hospitals, and other

medical service providers. These bills—called “claims” in industry terminology—report the

specific services provided using 5-digit codes from the Healthcare Common Procedure Coding

System (HCPCS). There are over 12,000 distinct HCPCS codes, which identify individual

procedures at a granular level.14 Federal regulation determines the payment for each claim,

rather than physicians’ or hospitals’ pricing decisions. In alternative analyses we use group-

ings of patient diagnoses to account for potential substitution between treatments.15

The claims data report the geographic location of both the physician providing the care

and the patient receiving it, allowing us to construct a trade matrix for medical services.

We study all medical care provided by physicians outside an emergency room, whether in

an office or hospital facility.16 Because Medicare rarely reimbursed telehealth in 2017, this

trade involves traveling to receive a service delivered in-person.17 We aggregate the ZIP-

code-level information up to 306 hospital referral regions (HRRs), which are geographic units

defined by the Dartmouth Atlas Project to represent regional health care markets for tertiary

14. For instance, there are distinct codes for providing flu vaccines based on patient age, whether the vaccine
protects against three or four strains of flu, and whether administration is intramuscular or intranasal. There
are distinct codes for chest X-rays based on whether the images are of ribs, the breastbone, or the full chest,
both sides or one side of the body, and the number of images taken (1, 2, 3, or 4+).

15. We use the Clinical Classifications Software Refined (CCSR) diagnosis categories produced by the
Agency for Healthcare Research and Quality’s Healthcare Cost and Utilization Project. CCSR aggregates
over 70,000 ICD-10-CM diagnosis codes into “clinical categories,” of which 482 have at least 20 patients each
in our data. We split these categories at the median frequency to separate common from rare diagnoses.

16. Our results are robust to adding the value of hospital facility fees on top of physicians’ professional
fees.

17. In 2012, Medicare spent only $5 million—less than 0.001% of its expenditures—on telehealth services
[Neufeld and Doarn, 2015], lagging other insurers [Dorsey and Topol, 2016].
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medical care based on 1992–93 data. We construct HRR-to-HRR trade flows by interpreting

the patient’s residential HRR as the importing region and the service location’s HRR as the

exporting region.18 The Dartmouth Atlas Project defines HRRs by aggregating residential

areas based on where patients were referred for major cardiovascular surgical procedures

and for neurosurgery and requires each HRR to have at least one city where both major

cardiovascular surgical procedures and neurosurgery were performed. Thus, the construction

of these geographic units should tend to minimize trade between different HRRs.19

Physicians, hospitals, pharmacies, and other healthcare providers submit different types

of claims. We use a random 20% sample of all physician claims paid by Traditional (fee-

for-service) Medicare in 2017, selected randomly by patient.20,21 One year of data from this

sample contains 229 million services, representing $19 billion in spending. The Medicare

claims are not perfectly representative of all US healthcare, since Medicare beneficiaries are

elderly or disabled. But the geographic distribution of Medicare beneficiaries is quite similar

to the overall population, and Medicare alone finances one-fifth of medical spending. So it

is likely to capture the key features of overall healthcare production and consumption.

Since we only see a sample of Medicare data—and hence an even smaller share of overall

medical care—we might completely miss physicians or procedures so rare that a 20% sample

includes none of them in a particular location. We use two other sources to address this

concern. First, we use a less-detailed but more comprehensive extract of Medicare data

18. The Medicare claims are US patients receiving care at US service facilities. These data do not report
any international transactions. Throughout this paper, “imports” and “exports” refer to domestic transactions
between regions of the United States.

19. We have also used alternative geographies, including core-based statistical areas (CBSAs) and
metropolitan statistical areas, a subset of CBSAs that excludes the smaller micropolitan areas. Because
these yield consistent findings, we do not report all such estimates.

20. We also use data from 2011 to 2016 to investigate trade patterns over time in Appendix Figure 2.13.

21. One-third of Medicare patients opt out of the traditional version of Medicare, where care is paid directly
by the government, in favor of a private insurance scheme (“Medicare Advantage”). In these private schemes,
the government pays the insurer a fixed amount per patient and the insurers are responsible for the patient’s
care. Because Medicare does not pay claim-level bills in these private insurance schemes, the availability and
quality of data for the privately insured patients is lower. We exclude these patients from our analysis.
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(based on all Traditional Medicare patients) to replicate some of our analyses and obtain

extremely similar findings.22 Second, we use physician registry data to study the geographic

patterns of production by specialty. These data provide the ZIP code and specialty of all

physicians registered to practice in the United States. Physician specialty is conceptually

distinct from medical service—and there is not a one-to-many mapping of specialties to

services, since many services can be provided by physicians of different specialties—but we

expect many of the same economic forces to apply at the level of physician specialties.

2.4 Is there a home market effect in medical services?

This section estimates how scale economies and trade costs shape the geography of aggre-

gate healthcare production and consumption. Section 2.4.1 documents size-related spatial

variation in both production and consumption. Section 2.4.2 shows that bilateral trade

declines with distance. Section 2.4.3 describes our empirical strategy, which identifies the

consequences of market size using gravity equations to model bilateral trade flows of medical

services. Section 2.4.4 reports the empirical estimates, which demonstrate a strong home-

market effect.

2.4.1 Spatial variation in production and consumption

Figure 2.2 shows maps of healthcare production and consumption across regions. The con-

sumption map shows the substantial geographic variation that has been well-documented

by the Dartmouth Atlas and related literature on geographic variation in healthcare [Fisher

et al., 2003a,b, Finkelstein et al., 2016]. The production map shows even more pronounced

variation: more production in large urban agglomerations and less in rural areas. There is

22. Appendix 2.11.1 explains why we must use the 20% sample and uses the 100% data to confirm some
of our measures. It also shows that the relative frequencies of services purchased by private insurance are
similar to those in Medicare.
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substantial variation in production even between neighboring regions, while spatial variation

in consumption is smoother.

The subsequent panels show patterns of trade, which constitutes the difference between

production and consumption. Nationally, 22.4% of production is exported to a patient in

another region.23 Panel 2.2c shows the ratio of production to consumption; a value larger

than one means an HRR is a net exporter. Net-exporting regions tend to be major urban

agglomerations, plus places such as Rochester, Minn. and Hanover, N.H. that specialize in

healthcare. Panel 2.2d shows gross exports as a share of local production for each HRR.

Three-quarters of services produced in the Rochester metropolitan area, home to the top-

rated Mayo Clinic, are provided to patients from other regions, who travel an average of

545 km to Rochester. As a major healthcare exporter with a population of merely 220,000,

Rochester is an outlier: larger regions are responsible for a disproportionate share of medical

services production.

Figure 2.3 plots the average production and consumption per capita across HRRs of

different sizes. Both rise monotonically with population. Production rises about twice as

steeply, with a population elasticity of 0.13 versus 0.06 for consumption. The difference

between production and consumption is net trade: larger markets are net exporters and

smaller markets are net importers. Gross trade flows exceed net trade flows, with imports

comprising about one-third of consumption in the smallest regions. Exports per capita are

approximately flat, which means total exports are increasing with local population. Imports

per capita decline with an elasticity of −0.25 with respect to population.

23. This value is nearly identical whether measured across HRRs or across CBSAs. Appendix Figure 2.13
shows that the exported share rose steadily from 18.6% in 2011 to its 2017 level of 22.4%. For manufactured
goods, the export share across CBSAs is about 68%.
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2.4.2 Bilateral trade and bilateral distance

Despite the clear patterns in Figure 2.3, geographic variation in trade is far from entirely

explained by market size. The four regions with the lowest export shares are Anchorage,

Honolulu, and Yakima and Spokane, Wash., likely reflecting their isolated geographic loca-

tions. The highest export shares are in Rochester, Minn., Ridgewood, N.J. (just outside of

New York City), and Hinsdale, Ill. (just west of Chicago). Other than Rochester—home to

the Mayo Clinic—these exporting regions are all on the edge of major metropolitan areas

and serve patients from those metros’ hinterlands. To ensure our analysis captures these

geographic patterns, we next examine bilateral trade flows.

Figure 2.4 depicts how trade varies with the distance between the patient and place of

service. Figure 2.4a shows the distribution of distances patients travel for care, distinguishing

between care provided in the patient’s home region and other regions.24 Within HRRs, there

is a narrow distribution of distances that peaks around 10 km. When visiting providers

in a different HRR, patients travel a great variety of distances. There is a local plateau

between approximately 30–100 km, suggesting a fair amount of travel to nearby HRRs,

perhaps indicating regional medical centers. There is another substantial peak at thousands

of kilometers, demonstrating substantial long-distance travel for care.25 Patients’ willingness

to travel these distance underpin our revealed-preference estimates of regional service quality.

Figure 2.4b shows that trade declines with distance. The blue curve depicts trade volume

against distance (for pairs of HRRs with positive trade flows) after removing fixed effects for

each exporter and each importer.26 This intensive-margin relationship is roughly log-linear.

24. For travel within an HRR, we use the distance between the centroids of the patient’s residential ZIP
code and the ZIP code of the service location. We obtain the centroid coordinates from the Census Bureau’s
corresponding ZIP code tabulation areas (ZCTAs). For travel across HRRs, we use ZCTA-to-ZCTA distances
when they are within 160 km, and (for computational ease) use HRR-to-HRR distances beyond 160 km.

25. The average patient travels 500 km to Chicago and 605 km to New York City, compared with less
than 135 km to Urbana-Champaign, Ill. or Charlottesville, Va. An older literature cited in Dranove and
Satterthwaite [2000] finds that patients who travel farther to hospitals tend to incur higher treatment costs.

26. This application of the Frisch-Waugh-Lovell theorem is only feasible for positive trade volumes.
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The red curve shows the extensive margin: the share of pairs with positive trade as a function

of distance. This is 100% for nearby pairs and under 60% for the most distant pairs. These

patterns motivate the inclusion of distance covariates in our gravity-based analysis.

Patients may vary in their ability or willingness to travel, especially by socioeconomic

status. We quantify it here, to the extent feasible in our data, for use in counterfactual

scenarios and interpreting welfare implications. Figure 2.4c depicts distance elasticities es-

timated separately by neighborhood income decile.27 We find a strong, nearly monotonic

relationship between socioeconomic status and the distance elasticity: patients from the high-

est neighborhood-income decile exhibit a distance elasticity 25% smaller than those in the

lowest decile.28 This means patients from higher-income neighborhoods are more amenable

to travel for medical care. Thus, the benefits of agglomeration—higher-quality rare care

produced in major centers—may not be shared evenly. This is especially notable given the

empirical setting: Medicare insures the near-universe of elderly and disabled Americans.

2.4.3 Gravity-based empirical strategy

We base our empirical examination of trade flows on a gravity equation that summarizes the

geography of demand. We obtain this equation from the model by assuming the region-pair

component in equation (2.1) satisfies ln ρij = γXij + υij , where Xij is a vector of observed

trade-cost shifters and υij is an orthogonal unobserved component. Taking expectations and

then logs yields gross bilateral trade flows:

lnE
(
RQij

)
= ln δi + ln

(
Nj

Φj

)
+ γXij . (2.7)

27. Our data do not contain patients’ wealth or income, so we use their residential ZIP code. We split ZIP
codes into deciles by median household income and estimate equation (2.12) separately by decile.

28. These estimates are consistent with the interaction that Silver and Zhang [2022] estimate between
income and distance to care. These differences in distance elasticities are not driven by differences in the
composition of procedures. When we estimate elasticities separately for rare and common services—or even
for individual procedures (see Appendix Table 2.7)—the income gradient of distance elasticities persists.
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The left side of (2.7) is the value of procedures exported from region i to patients residing

in j. We specify the first two right-side regressors as either observable demand shifters or

fixed effects in different specifications described below. We generally parameterize observed

trade-cost shifters as containing log distance and a same-region dummy, so that γXij =

γ1 ln distanceij + γ01(i = j). Alternative specifications include (ln distanceij)2 or replace

these continuous distance covariates with indicators for distance deciles.

When using the total value of bilateral exports as the dependent variable in (2.7), we

aggregate quantities across thousands of distinct medical procedures using the average na-

tional Medicare reimbursement rate for each procedure. This produces an expenditure

measure independent of any spatial variation in reimbursement rates.29 We also estimate

procedure-level versions of (2.7) for selected procedures, such as LVAD insertion and screen-

ing colonoscopy. The dependent variable in this case is the procedure count and no aggrega-

tion is required. Since observed bilateral trade is zero for many pairs of regions, especially

when looking at trade in individual procedures, we estimate (2.7) using Poisson pseudo-

maximum-likelihood [PPML; Santos Silva and Tenreyro, 2006].

We test for a home-market effect in medical services using population as an observed

demand shifter. Following Costinot et al. [2019], we differentiate the system of equa-

tions (2.2) and (2.3). around the symmetric equilibrium. This delivers the local relationship

between trade and population, independent of market access Φj . The estimating equation

is

lnE
[
RQij

]
= λX ln populationi + λM ln populationj + γXij . (2.8)

Relative to (2.7), equation (2.8) replaces ln δi and ln
(
Nj
Φj

)
by log population in the producing

and consuming regions, respectively. A positive coefficient λX > 0 implies a weak home-

market effect as defined in Costinot et al. [2019]: gross exports increase with market size. If

29. Mechanically, we multiply the quantity of each procedure by the national average price for that proce-
dure and denote the sum across all procedures by RQij .
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λX > λM > 0, the home-market effect is strong: net exports increase with market size.

One potential concern with estimating (2.8) directly is reverse causality. Suppose that

success in exporting medical services serves as an employment base that raises current pop-

ulation size, as epitomized by “anchor institutions.” For example, William Worrall Mayo

settling in Rochester, Minn. in the 1860s, and subsequent investment in medical care and

reputation, helps explain Rochester’s current population [Clapesattle, 1969].

We use two instrumental variables to address this concern. First, we use historical popu-

lation. Medicine was a far smaller industry in 1940, and it is implausible that it could have

driven local population in the way it might today. Since population is persistent over time,

population in 1940 predicts contemporary population, and we are interested in capturing

any effects of historical population that operate through current population. We there-

fore instrument for both the exporting region’s and importing region’s contemporaneous log

populations with the respective log populations in 1940.

Our second instrument goes farther back than 1940 and uses local geology to predict

population. Rosenthal and Strange [2008] and Levy and Moscona [2020] show that shal-

lower subterranean bedrock makes construction easier, leading to higher population density.

Bedrock depth also predicts population size, so we use this as a second instrument for local

demand, again for both the importing and exporting regions.30

2.4.4 A strong home-market effect in medical services

Table 2.1 reports the results of estimating (2.8). The first column shows significant, positive

coefficients on both patient and provider market population. The coefficient on provider-

market population is two-thirds greater than that on patient-market population. This

demonstrates what Costinot et al. [2019] term a strong home-market effect. Not only does a

30. This instrument is currently only available for CBSAs, but not for HRRs. We demonstrate that our
main results are robust to defining markets based on CBSAs and to using both instruments at this level.
Levy and Moscona [2020] show that the instrument has ample first-stage power for predicting population
density; the same is true for our endogenous variables (population levels).
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larger population increase gross exports, but it does so more than it increases gross imports

by local patients. The distance elasticity of medical services trade between hospital referral

regions is -1.7. This is substantially larger than the distance elasticity of -0.95 estimated for

trade in manufactures between CBSAs [Dingel, 2017].31 This suggests that trade in personal

services incurs greater distance-related costs, relative to the degree of product differentia-

tion across regions, than trade in manufactured goods. The most obvious difference is that

patients themselves must travel to the provider.

The next two columns of Table 2.1 demonstrate that more flexible distance-covariate

specifications do not alter the result. Column 2 introduces the square of log distance as

an additional covariate. Column 3 replaces the parametric distance controls with dummies

for deciles of distance. The result is stable across the columns: gross and net exports both

increase with market size. The magnitudes are stable in columns 2 and 3, and the magnitude

of gross (though not net) exports increases when excluding zeros.

The last column of Table 2.1 uses the historical population instrument to address concerns

about reverse causality. We obtain similar home-market-effect estimates to our baseline

results. Appendix Table 2.8 reports similar results estimated using CBSAs rather than HRRs

as our geographic unit. It also shows the CBSA-based results are robust to instrumenting

with either historical population or bedrock depth. Appendix Table 2.9 reports similar

results when adding facility payments on top of physician fees.

The primary competing explanation for these results is other factors that reduce the cost

of production wi in larger markets. If doctors prefer to live in big cities [Lee, 2010], as college

graduates generally do [Diamond, 2016], they could accept lower nominal wages and thus

reduce healthcare production costs in such cities.

We investigate whether this mechanism is sufficiently large quantitatively to drive a net

31. We find a distance elasticity of medical services trade between CBSAs of -2.3. The analogous elasticity
of health care and social assistance services trade between Canadian provinces is -1.42 [Anderson et al.,
2014]. The distance elasticity of international trade is typically near -0.9 [Disdier and Head, 2008].
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cost reduction in larger markets. We use data from Gottlieb et al. [2020] to measure the

population elasticities of doctors’ earnings and the American Community Survey [Ruggles

et al., 2022] to examine other healthcare workers’ earnings and real estate costs.32 We

confirm that doctors are cheaper in larger markets [Gottlieb et al., 2020], but other costs rise

with population size. Appendix Figure 2.14 shows that the population elasticity of doctors’

earnings is -0.01, but that for non-physicians is 0.045. To compute the population elasticity

of labor costs, we use ACS data to estimate that non-physician labor’s share of healthcare

production is three times as much as physician labor’s share. The population elasticity of

labor costs is thus positive. The higher cost of real estate in larger markets reinforces these

higher labor costs. This spatial variation in costs undercuts the idea that amenities make

production cheaper in larger markets.

A number of related phenomena do not threaten our results. If doctors accept lower

wages because they prefer the sort of work available in healthcare agglomerations, this is

not a confound. Rather, it is a mechanism increasing profitability in healthcare agglom-

erations: greater scale lowers the cost of an input. Similarly, teaching hospitals are not a

confounder. Teaching hospitals tend to be large, suggesting an agglomeration benefit of

combining training with treatment at scale. Indeed, medical training exposes trainees to

a large volume of patients so that they learn clinical skills by practicing them. The most

salient example is Cornell University: after an abortive attempt to have medical training in

both Ithaca and New York City, the Cornell Trustees quickly closed down the Ithaca location

and centered the medical school in New York—where the patients and doctors were more

abundant—in the early 20th century [Flexner, 1910, Gotto and Moon, 2016]. As this history

illustrates, the potential local demand for care can drive the location of medical training.33

If academic hospitals attract doctors, and their location is driven by market size, they are

32. Appendix 2.11.2 discusses subtleties of the income data.

33. In general education, in contrast, university placement induces economic growth [Moretti, 2004].
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part of the agglomeration mechanism, not a confounder.

One final concern is measurement error in Medicare’s records of patients’ residences. To

address this, Appendix 2.11.4 first demonstrates our results’ robustness to excluding states

with large seasonal populations. Second, we examine how far dialysis patients appear to

travel. We find that residential measurement error is limited and does not drive our results.

2.5 Comparing rare and common services

Because our model predicts larger home-market effects for rarer procedures, comparing

market-size effects by service frequency is a finer test of our theory. Section 2.5.1 exam-

ines how spatial variation in the production and consumption of each procedure relates

to market size. Section 2.5.2 generalizes our gravity-based regression analysis to estimate

home-market effects separately for rare and common procedures.

2.5.1 Spatial variation in production and consumption by frequency

We estimate the population elasticity of production and consumption per Medicare ben-

eficiary for each procedure.34 We find that production rises with market size more than

consumption, especially for less common procedures.

Method

We first estimate the population elasticity of production per Medicare beneficiary for each

procedure. Let Qpi denote the count of procedure p produced in region i and its national

volume be Qp =
∑

iQpi. Let Mi denote the number of Medicare beneficiaries residing in i.

34. Davis and Dingel [2020] relate population elasticities to other measures of geographic concentration,
such as location quotients, and estimate population elasticities of employment for various skills and sectors.
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For each procedure p, we estimate the following relationship across regions:

lnE
[
Qpi

Mi

]
= ζp + βp ln populationi. (2.9)

The estimated population elasticity of production per beneficiary, β̂p, describes how produc-

tion varies with market size, and we estimate it using Poisson pseudo-maximum-likelihood.35

If the quantity produced were simply proportional to population, βp would be zero.

Our model suggests that scale effects play a larger role for rarer procedures. It predicts

less common services will have higher population elasticities of production. We therefore

estimate a linear regression relating β̂p to the total national volume of service p, lnQp.

To summarize size-linked variation in consumption patterns, we separately estimate the

population elasticity of consumption per beneficiary for each procedure. That is, we estimate

a Poisson model in which the outcome variable is the count of procedure p consumed by

patients residing in region i, Gpi, per Medicare beneficiary residing there:

lnE
[
Gpi

Mi

]
= ζCp + βCp ln populationi. (2.10)

If βCp ̸= βp, there is size-predicted net trade in procedure p. Our model predicts that

procedure frequency influences the pattern of trade, a prediction we test in Section 2.5.2.

Results

Production per beneficiary rises with market size, especially for less common procedures.

Figure 2.5a relates the population elasticity of production per beneficiary β̂p for each pro-

cedure to its national volume lnQp. Across all volumes, procedure output per beneficiary

increases with market size. Less common procedures have higher elasticities, consistent with

35. In a robustness check, we have also estimated a zero-inflated Poisson model, to account for the possi-
bility that fixed costs are especially important for the decision of whether to provide the first instance of a
service in a region. These results (not reported here) are quite similar.
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economies of scale that decline with quantity.

This finding raises questions about patients’ access to care. What happens to patients

who live in smaller markets but need rare services? To investigate this question, we estimate

equation (2.10), the population elasticity of consumption per beneficiary of each procedure.

The population elasticity of consumption per beneficiary is smaller for the vast majority of

procedures and less steeply related to a procedure’s national frequency. Figure 2.5a also plots

the population elasticity of consumption per beneficiary β̂Cp for each procedure against its

national volume lnQp. While the relationship is negative, the slope for consumption is only

one third that for production. Appendix Table 2.13 reports the production, consumption and

trade patterns for two exemplar procedures: screening colonoscopy and LVAD implantation.

Colonoscopies are common and geographically dispersed, while LVAD procedures are rare,

geographically concentrated, and traded over longer distances.

We have thus far modeled patients as demanding (and providers as producing) specific

service codes. An alternative view is that patients have a particular medical condition that

requires treatment, but the patients may not know what particular care they need; they

simply know they require care. As physicians might use different treatments across regions

for the same condition, our estimates thus far could reflect substitution among procedures.

We address this by conducting a similar analysis at the level of clinical condition.

Figure 2.5b shows production and consumption elasticities by diagnosis, rather than by

procedure. The key patterns remain similar: production elasticities are higher than con-

sumption and decline more rapidly with national patient volume. Both consumption and

production elasticities have less steep relationships with national volume than for procedures.

This could reflect measurement error within each category: the 482 diagnosis categories we

use are far coarser than the 8,253 procedures in Figure 2.5a. Alternatively, it could indicate

true substitution among procedures within a condition that varies with location.

The contrasting population elasticities of production and consumption summarized in
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Figure 2.5 imply trade in medical services between markets of different sizes. Just as the-

ories of trade with scale effects would predict, larger markets export rare procedures and

smaller markets import them. For almost all procedures, production increases more than

proportionately with market size. Consumption also increases more than proportionately

with market size, but much less so than production. The differences between these elastic-

ities mean net exports vary with market size. The implied net trade between markets of

different sizes is particularly large for procedures that have small national volumes.

2.5.2 Market-size effects are stronger for less common procedures

Procedure-level variation in bilateral trade provides a finer test of how market-size effects

depend on a procedure’s frequency. Appendix Figure 2.15a shows a wide distribution of

imports as a share of consumption by procedure.36 We divide procedures into two equal-sized

groups, common and rare, based on the quantity produced nationally and show each group’s

distribution of import shares across regions in Panel 2.15b. The difference is dramatic: rare

procedures (those with national frequency below the median) have much higher import

shares, while the common procedures are overwhelmingly lower.37 To formally test for

differences in home-market effects, we again employ gravity models.

Empirical strategy

To test the model’s difference-in-differences prediction for trade volumes, we estimate market-

size effects separately for common and rare services. We compute trade flows between each

HRR pair RQijc separately for these two categories of care, c ∈ {common, rare}. We thus

36. This kernel density plot exhibits a spike at just above 20%, indicating that trade is, quite common in
most procedures. There is a long tail reaching all the way to 1 and also many procedures with few or even
zero imports.

37. Nationally, the imported share of consumption is 22% for below-median-frequency procedures and 35%
for those above the median. Within both groups of procedures, there is substantial variation in import shares
across hospital referral regions.
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have two observations for each ij pair, allowing us to estimate:

lnE
[
RQijc

]
= λX ln populationi + λM ln populationj + γXij

+
(
µX ln populationi + µM ln populationj + ψXij

)
· 1(c = rare). (2.11)

An alternate specification introduces ij-pair fixed effects, which absorb all the covariates not

interacted with 1(c = rare). The theory from Section 2.2.5 predicts stronger market-size

effects for rare procedures, µX > 0.

Results

Table 2.2 reports estimates for a gravity regression in which each pair of location has two

observations: one for rare services and one for common. Column 1 repeats our baseline

regression from Table 2.1 but with this new structure and obtains identical results. Column 2

limits the sample to pairs of location that have positive trade in at least one of the two

procedure groups, which is the estimation sample used in the remainder of the table. In

columns 3 and following, we interact both provider-market and patient-market population

with an indicator for rare services. We find significant and robust evidence that the home-

market effect is stronger for rare services. The coefficient on provider-market population

increases by about 50% relative to common services. The coefficient on patient-market

population shrinks by nearly half. Column 4 introduces location-pair fixed effects. Columns 5

and 6 are analogues of the previous two, but add a quadratic distance control. These results

are statistically indistinguishable from the previous columns.

Table 2.3 shows that these results are robust to instrumenting for market size with either

historical population or depth to bedrock. Columns 1 and 2 show estimates for common

and rare services, respectively, when instrumenting for population in each region by its

1940 population. Columns 3 and 4 repeat the exercise using CBSAs rather than HRRs,
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and columns 5 and 6 switch to the bedrock-depth instrument. The results are consistent

regardless of geographic unit or instrument. The estimates’ stability suggests that neither the

aggregate result nor the variation with procedure frequency is driven by anchor institutions

or similar omitted variables.

The finding that less common procedures exhibit stronger home-market effects is robust to

different ways of defining rare and common care. Table 2.4 demonstrates that our result holds

when we look across diagnoses rather than procedures, and Appendix Table 2.14 shows the

same when including facility spending. As with the production and consumption elasticities

in Figure 2.5b, the magnitude of the difference between rare and common care shrinks. This

could reflect substitution across care within a diagnosis or a less precise classification of

diagnoses than of procedures. But the qualitative pattern holds and remains significant,

consistent with the model’s difference-in-difference prediction.

These findings reflect each procedure’s national frequency, not how often an individual

patient receives the same procedure. We call the latter concept the procedure’s “engagement”.

If patients are less willing to travel for high-engagement services and these services are more

common, higher engagement could drive the stronger home-market effect we observe for rare

procedures. In fact, the national frequency of a service has a very low correlation with various

measures of engagement for that service, so it does not confound this result.38 While the

distance elasticity is more negative for high-engagement procedures, Appendix Table 2.15

shows that separating high- from low-engagement procedures does not meaningfully alter

the estimated differential impacts of population size for rare procedures.

Figure 2.6 returns to categorizing services by frequency, reporting estimates of (2.8)

separately for each national frequency decile. The blue circles show estimated provider-

market population elasticities, which decline monotonically from the least common to most

common procedures. The red squares show patient-market population elasticities, which

38. For example, the correlation between the share of patients who had more than one claim for the
procedure in a given year and the procedure’s national frequency is 0.14.
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increase across the frequency distribution. The difference between the respective coefficients

demonstrates a strong home-market effect for all deciles. This effect is stronger the less

common the procedure. Appendix Table 2.16 shows the same pattern among illustrative

procedures.39

The potential concern about omitted cost shifters from Section 2.4.4 has an analogue

here: Do the doctors who provide rare services benefit more from urban amenities than those

providing common ones, lowering the cost of producing rare services in larger markets? This

has facial plausibility if rare services are produced by elite specialists, who are higher-earning

and more willing to pay for urban amenities through lower compensation.

Examining the population elasticities of physician earnings for each specialty alleviates

this concern. If urban amenities drive specialists’ locations, earnings elasticities should

be negative, especially for rare specialties. But Appendix Figure 2.16 shows that the in-

come elasticities are close to zero on average and uncorrelated with the specialty’s national

abundance. However urban amenities affect physicians’ choices, they do not exhibit the

compensating differentials necessary to explain the relationship between market size and

specialization.

2.6 Estimating the scale elasticity of quality

To estimate the scale elasticity of regional medical services production, we first estimate

each region’s quality in Section 2.6.1. Section 2.6.2 describes our empirical strategy for

estimating the scale elasticity, which Section 2.6.3 reports to be around 0.6 for aggregate

medical services. Section 2.6.4 documents one mechanism linking these increasing returns

and interregional trade: larger markets support a finer division of labor, and traded services

39. We show two common procedures—screening colonoscopy and cataract surgery—along with four rare
ones: two treatments for brain cancer, implantation of a left ventricular assist device (LVAD), and total
colectomy. All six procedures exhibit strong home-market effects, but the differences between λ̂X and λ̂M

are smaller for the common procedures than the rare ones.
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are performed by more specialized and more experienced physicians.

2.6.1 Quality estimates

We use a two-step procedure, which begins by estimating a fixed-effects version of the gravity

equation. In equation (2.7), the exporting region i component of the bilateral trade flow is

its perceived service quality. We can thus estimate ln δi as the origin fixed effect in this

gravity equation. Similarly, ln
(
Nj
Φj

)
can be estimated as a destination fixed effect, denoted

ln θj . This implies the following estimating equation:

lnE
(
RQij

)
= ln δi︸︷︷︸

exporter FE

+ ln θj︸︷︷︸
importer FE

+γXij . (2.12)

We interpret the exporter fixed effects l̂n δi as a revealed-preference measure of quality, an

interpretation we validate using hospital rankings and measures of physician specialization.

The importer fixed effects l̂n θj , plus an assumption about potential market size, enable us

to compute Φj = Nj/θ̂j , a measure of patient market access for those who reside in location

j. We also estimate (2.12) separately by service frequency, yielding l̂n δi
rare

and l̂n δi
common

.

To test whether l̂n δi reflects quality, the first three panels of Figure 2.7 compare the

estimated exporter fixed effects to external measures of regional hospital quality. We count

the number of times each region’s hospitals appear on U.S. News Best Hospitals.40 We

also obtain Hospital Safety Grades from the Leapfrog Group and average them by HRR.

The significant positive slopes in both Figures 2.7a and 2.7b show that patients prefer to

obtain care from HRRs with better U.S. News rankings. There is also a positive relationship

with Hospital Safety Grades, shown in Figure 2.7c.41 The positive relationships with both

measures suggest that our estimates capture a meaningful measure of hospital quality.

40. Appendix 2.11.2 explains how we use these rankings.

41. The distance elasticity does not meaningfully vary with procedure frequency. This suggests that pa-
tients’ preference for a particular region loads onto the region fixed effects, consistent with our interpretation.
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The U.S. News rankings are intended to capture the “Best Hospitals,” a concept as-

sociated with providing highly specialized care. So it is natural that there is a stronger

relationship between the U.S. News rankings and exporter fixed effects for rare services; the

slope in Figure 2.7b is twice as large as that for common services in Figure 2.7a.42

2.6.2 Empirical approach

We use the estimated exporter fixed effects l̂n δi to examine the determinants of regional

service quality, in particular the scale elasticity, α. In the free-entry condition (2.4), service

quality in region i is an isoelastic function of the quantity produced, conditional on revenue,

cost, and productivity shifters. Taking the log of (2.4) and rearranging terms yields an

estimating equation for the quality-quantity relationship across locations:

ln δi = α lnQi + lnR− lnwi + lnAi. (2.13)

Replacing ln δi with its estimate l̂n δi from (2.12) yields an estimating equation for α̂.43

One potential concern with estimating equation (2.13) by ordinary least squares is reverse

causality. Shifts of the isocost curve would cause movements along the upward-sloping

demand curve, biasing the estimated scale elasticity upwards. We address this with three

instruments, starting with current population. Population is relevant for healthcare output

and is valid if not correlated with healthcare quality other than by driving local demand.

The “anchor institutions” concern discussed in Section 2.4.3 could violate this exclusion

restriction, so we also use the historical population and bedrock-depth instruments.

Despite our instruments, other channels related to population size could generate the

42. In contrast, safety grades are not differentially relevant for rare services: Appendix Figures 2.18a
and 2.18b show virtually identical slopes.

43. Appendix 2.11.5 quantifies the potential bias resulting from our observing only the quantity produced
for Traditional Medicare beneficiaries, rather than the total quantity produced for all patients. It shows that
the bias is small: the estimates in Table 2.5 should be deflated by about 5%.
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same relationship as the market-size effect we estimate. Most significantly, physicians might

prefer to live in cities [Lee, 2010], regardless of patient demand. This could drive up quality

in large markets, but through a different mechanism than the one we emphasize.

Before we address this problem, first note what is not a problem: physicians preferring

to work in larger regions for job-related reasons. A larger population of patients allows

physicians to specialize, conduct research, and train medical students. As discussed in Sec-

tion 2.4.4, these forces operate through the scale of healthcare production in the region.

Academic medical centers are often an important part of a region’s medical industry. If their

scale attracts workers, this is an agglomeration benefit α ought to capture.

The challenge to our interpretation arises if physicians prefer larger markets for non-

professional reasons, and this labor supply shift increases quality. If urban amenities attract

physicians—and higher-quality physicians in particular—this would represent variation in

wi or Ai that is correlated with population size and hence local output in equation (2.13).

The analysis of local costs in Section 2.4.4 and Appendix Figure 2.14 mitigates this concern.

2.6.3 Scale improves quality

Estimated service quality l̂n δi rises substantially with the regional volume of production

lnQi. Figure 2.7d depicts this relationship and Table 2.5 reports regression estimates. The

estimated scale elasticity is around 0.6 and stable under various estimation approaches. The

first row uses OLS, while subsequent rows instrument for output using contemporaneous

or historical population. The first and third columns omit the diagonal Qii observations

when estimating the gravity equation (2.12), to avoid any bias from having a region’s own

local consumption influence both the quality measures and output. The third and fourth

columns control for spatial variation in reimbursements. Across twelve estimates, the lowest

elasticity is 0.53 and the highest is 0.97. Instrumenting for output tends to reduce the esti-

mated scale elasticity. Excluding the diagonal of the trade matrix when estimating quality
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tends to raise it. The results for CBSAs, reported in Appendix Table 2.17, are also stable

across specifications and when using the alternative bedrock instrument. While the exis-

tence of home-market effects implied local increasing returns, these estimates quantify their

magnitude.44 These estimates are central to our counterfactual calculations in Section 2.7.

The second panel of Table 2.5 estimates the scale elasticity for rare services. Section 2.2.5

shows that market-size effects are larger for rarer procedures even if all procedures have the

same scale elasticity. These differences are amplified if rarer procedures have a larger scale

elasticity than more common procedures. The scale elasticity is indeed substantially larger

for rare services, with estimates centered around 0.9.

2.6.4 Scale facilitates the division of labor

One source of increasing returns—though certainly not the only one—could be division of

labor among physicians. In particular, the specialized labor required to produce rare services

could drive the patterns we found in Section 2.5 across treatments and diagnoses. Specialized

services may require physicians with specific training, whom low demand in smaller HRRs

may not support [Dranove et al., 1992].

Specialization as a source of local increasing returns

To study this mechanism, we estimate the population elasticity of physicians per capita for

each specialization and relate it to the number of physicians in the specialization. Let Ysi

44. These estimates lie in the middle of other estimated agglomeration elasticities, Kline and Moretti [2013]
estimate an elasticity of 0.4–0.47 from the Tennessee Valley Authority’s investments. In manufacturing,
Greenstone et al. [2010] report an analogous elasticity above 1 (a 12% increase in total factor productivity
caused by adding a plant representing 8.6% of the county’s prior output).
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be the number of doctors of specialty s in location i.45 We estimate a Poisson model,

lnE
[

Ysi
populationi

]
= ζSs + βSs ln populationi, (2.14)

for each specialty s by maximum likelihood.

Figure 2.8a shows a clear negative relationship between a specialty’s per capita popula-

tion elasticity β̂Ss and the national number of physicians in that specialization.46 A natural

explanation for rare procedures and rare specializations both being geographically concen-

trated in larger regions is that the size of the market limits the division of labor. To the

extent that producing rare procedures requires specialized physicians, a larger volume of

patients makes production economically viable.

Consistent with this idea, Appendix Figure 2.17 shows the number of distinct procedures

produced as a function of market size by procedure type. We group procedures into seven

categories, count the number of procedures produced in each region, and project these onto

regional population.47 Larger regions produce a greater variety of procedures in all seven

categories. If physicians specialize in particular procedures, this makes sense: larger markets

have more specialties of physicians and thus a greater ability to provide rare procedures.

This evidence on specialization does not preclude other agglomeration mechanisms from

also playing a role. Lumpy capital, knowledge diffusion [Baicker and Chandra, 2010], and

thicker input markets could also be important productivity benefits of scale. We focus on

45. Data come from the National Plan and Provider Enumeration System (NPPES) data, which cover all
physicians, not just those serving Medicare patients. These data only report the number of doctors/specialists
and their location, but contain no further information about procedures performed. We restrict attention
to the 223 specializations within Allopathic & Osteopathic Physicians. We restrict attention to national
provider identifiers of the “individual” entity type (as opposed to “organization”). We consider each physician’s
primary specialty, as indicated in the NPPES file. Results (unreported) are similar when we allow for multiple
specialties per physician, a common occurrence in the NPPES data.

46. This pattern is not attributable to spatial sorting driven by rare specialties commanding higher earn-
ings. In fact, a specialty’s number of physicians and mean earnings are uncorrelated. Appendix Table 2.19
shows that controlling for a specialty’s earnings has no effect on the negative relationship between population
elasticity and number of physicians across specialties.

47. Appendix Table 2.20 reports regression estimates for these relationships.
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specialization and physician experience because of their close link to the procedure-level

agglomeration we analyze and we can observe them in claims data.

Imports are specialist-intensive

We next ask whether the distribution of specialties helps explain trade. Figure 2.8b shows

the share of imports and of local consumption that are provided by specialists as a function

of regional population.48 Imports are significantly more specialist-intensive than local pro-

duction. This difference is especially pronounced in the smallest regions, and it remains true

throughout the population distribution.

Does trade match patients with the appropriate specialist? Among all specialty care, we

determine the two most common specialties to provide each unique service and label these

the “standard” specialties for that care. We then determine whether each instance of the

treatment was provided by a standard or non-standard specialty.

Figure 2.8c shows the share of imports and of local care provided by the standard spe-

cialties. Imports are more likely to come from the standard specialist than local care, and

the distinction is especially pronounced in the smallest regions. The difference is substan-

tial: Local care in the smallest regions is 40% more likely to be provided by a non-standard

specialist than in the largest regions (7.0% vs. 5%). When importing medical services, this

share falls to 5%—indistinguishable from the largest regions’ local care.

We conduct a similar analysis based on provider experience. Using the public Medicare

provider data (based on all Traditional Medicare patients), we count the number of times

the physician billed for the specific service in the previous year. We divide this experience

measure by the procedure’s national mean and average it across all procedures provided to

patients in an HRR. Figure 2.8d shows that, at all population sizes, care imported from other

48. We define “specialist” to mean all physicians except those whose primary specialty is internal medicine,
general practice, or family practice.
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regions is produced by more experienced providers than locally produced care.49 Patients in

larger regions see more experienced providers for both imported and locally produced care.

Specialists are disproportionately located in larger markets, as are physicians with more

experience in any given procedure. Since imported care is predominantly specialty care, and

provides patients access to this higher experience, we conclude that visiting the appropriate

specialist based on training or experience is part of the value proposition for trade in medical

care. This provides a second validation of our interpretation that trade reflects quality

variation. Patients travel to regions with highly-ranked hospitals, which larger markets tend

to have—along with the ability to provide rare services. This market-size effect strongly

predicts gross and net exports. Together, this suggests that economies of scale play an

important role in increasing the quality of care, and trade between regions enables patients

from many regions to share the benefits of this agglomeration.

2.7 Tradeoffs and counterfactual scenarios

Given the estimated strength of local increasing returns, geographically concentrating health-

care production has substantial benefits. Larger regions support specialists, house experi-

enced physicians, and produce more specialized procedures. But this geographic concentra-

tion implies that patients in smaller regions may suffer from limited access to care. We use

observed trade flows and our estimates of the scale elasticity α and region-specific qualities

δi to quantify how various counterfactual policy scenarios would change each region’s patient

market access. Our results underline the importance of distinguishing between the quality

of locally produced services and the quality of services to which local residents have access.

We compute counterfactual equilibrium outcomes relative to the baseline equilibrium. For

the baseline equilibrium, define export shares xij ≡ Qij∑
j′ Qij′

and import shares mij ≡ Qij
Nj

.

49. This comparison restricts attention to procedures that are performed in all hospital referral regions
(143 procedures). Thus, regional variation does not reflect the fact that larger markets produce a greater
number of distinct codes (Appendix Figure 2.17).
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For every variable or parameter y, denote the ratio of its counterfactual value y′ to its base-

line value y by ŷ ≡ y′
y . Appendix 2.12.1 shows how we solve for the relative counterfactual

endogenous qualities (δ̂) using baseline equilibrium shares (xij ,mij), the scale elasticity (α),

and relative counterfactual exogenous parameters (Â, R̂, ŵ, ρ̂, N̂). In particular, counterfac-

tual qualities are given by a system of I equations with unknowns {δ̂i}I=1:

δ̂i =
(
R̂iÂi/ŵi

) 1
1−α

∑
j∈I

xij ρ̂ijN̂j

m0j +
∑

i′∈I mi′j δ̂i′ ρ̂i′j

 α
1−α

.

The first term of this expression,
(
R̂iÂi/ŵi

) 1
1−α , shows that the scale elasticity α governs

the effect of exogenous supplier shifters, including reimbursements R̂i, on quality produced

in a region. Reimbursement rates shift the scale of production, and stronger scale economies

(higher α) amplify these shifts. The second term shows how changes in other regions influence

local outcomes through trade, combined with scale. Thus, our counterfactual scenarios rely

on both our estimates of the scale elasticity α and observed trade patterns.50

We first consider the impact of a nationwide change in reimbursements. Increasing reim-

bursements uniformly by 10% has heterogeneous effects. Figure 2.9a depicts the change in

output quality in each region. Remote, rural areas tend to experience the largest increases

in output quality δi. Large regions such as Boston, New York, Atlanta, and Florida have

the smallest increases, because they produce more care at baseline.

Figure 2.9b shows the impact on patient market access is nearly opposite: regions with the

largest increase in output quality have the smallest improvements in market access. Their

residents already had high import shares, so the least reliance on local production. The

increase in local quality thus has limited impact on their overall market access. For patients

50. In order to compute import shares, we assume that the number of potential patients is proportional to
the number of enrolled Traditional Medicare beneficiaries. See Appendix 2.12.2 for details. The qualitative
and spatial patterns of counterfactual outcomes do not depend on what share of potential patients we assume
choose the outside option. Appendices 2.12.3 and 2.12.4 generalize this method of computing counterfactual
outcomes to the model with multiple types of patients introduced in Appendix 2.10.2.
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who switch to consuming local care, the gains are modest as local production is still lower-

quality than the care they otherwise import. In contrast, patients in Houston, Dallas, or

Florida had limited reason to travel. The increase in δi due to higher local reimbursements,

even if modest, improves their access relatively more.

Figure 2.9c summarizes these contrasting changes in output quality and patient access.

Regions with the lowest initial patient market access Φi have the biggest increase in local

production quantity and quality, Q̂i and δ̂i, but the smallest increase in patient market

access Φ̂i. Appendix Figure 2.19 conducts this exercise separately for rare and common

services. The patterns are qualitatively similar, but the impacts on quality are much larger

for rare services because of their larger scale elasticity (α = 0.9 rather than α = 0.6), more

concentrated baseline production, and higher baseline trade shares.

These results help reconcile two notable aspects of US healthcare policy. First, a range of

recent studies find medical outcomes that match our predictions: patients who travel farther

for care in larger markets tend to have better outcomes [Battaglia, 2022, Fischer et al., 2022,

Petek, 2022]. Second, there is nevertheless a major political and policy effort to subsidize

production in rural areas.51 Our contrasting results for output and access rationalize this

pattern: producers in rural areas are especially dependent on high reimbursements. This

naturally leads to political pressure to subsidize production in such places. But patients do

not necessarily benefit. They would often benefit from traveling to larger markets for better

care, suggesting that the emphasis on local production may not be efficient—even from the

perspective of rural patients.

We next consider the impact of this nationwide reimbursement increase on different

income groups, indexed by κ. We compute changes in market access for each region and

income group, and rescale them into percentage changes, 100(Φ̂jκ − 1). At the region-by-

51. These policies include Critical Access Hospitals, Health Professional Shortage Areas, rural-biased ad-
justments to Medicare’s Geographic Practice Cost Index for physician work, hospital geographic reclassifi-
cation for Medicare reimbursements, increasing residency slots in rural areas, and more federal and state
programs. The effectiveness of these policies is not always clear [Khoury et al., 2022, Falcettoni, 2021].
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income-tercile level, Table 2.6 regresses these changes on income-group dummies (columns 1–

3) and HRR fixed effects (columns 2–3). Column 1 shows that the market access gain for

the highest income tercile is nearly 20% larger than for the lowest tercile. The lowest tercile

experiences an 8.8% increase in patient market access (the constant in the regression). The

highest tercile gains this plus an additional 1.6 percentage points. The difference is explained

by differences in the groups’ outside option shares, m0jκ, as column 3 shows. Patients in

the highest tercile are more likely to seek care, so benefit more from quality improvements.

Policies often target specific regions so we now examine how targeted production subsidies

affect output quality and patient access. Figure 2.10 contrasts the consequences of raising

reimbursements by 30% in Boston and in Paducah, Ky. Figure 2.10a depicts the impact

on quality of care in each region relative to its baseline value in the Boston scenario. Free

entry means that higher reimbursements translate to higher-quality care produced in Boston.

Quality declines in the rest of New England as patients substitute away and scale economies

translate lower volumes into lower quality [an “agglomeration shadow”, as in Fujita and

Krugman, 1995]. These effects diminish with distance to Boston.

Regions that experience larger declines in output quality due to Boston’s expansion si-

multaneously experience larger improvements in patient market access. Figure 2.10b depicts

the change in the value of patients’ market access, Φ̂i. Patients in Boston benefit the most

from the higher reimbursement of their local production. Outside Boston, regional changes

in patient market access are nearly opposite the changes in local output quality. The nearest

regions import sufficient volumes that the benefits of improved quality in Boston exceed the

declines in the quality of local production, causing their patient market access to improve.

Regions closer to Boston experience larger declines in the quality of local production pre-

cisely because their residents’ choice sets improve more, spurring more substitution. In more

distant regions, the welfare impacts are neutral to ever-so-slightly negative.

We again see disproportionate gains for patients who live in higher-income neighborhoods,
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shown in columns 4–6 of Table 2.6. The value of market access increases by 0.098% for first-

tercile patients nationwide; this is orders of magnitude lower than in columns 1–3 because

only one region’s reimbursement is increasing. Gains are 70% larger for third-tercile patients.

Once again this can be explained by baseline trade shares, as column 3 shows.

The consequences of higher reimbursement rates in Paducah, Ky. exhibit very different

spatial patterns than in Boston. Figures 2.10c and 2.10d depict the regional changes in

output quality and patient market access, respectively, caused by a 30% reimbursement in-

crease in Paducah. Unlike Boston, Paducah is a net importer: its consumption of medical

services exceeds local production by more than one-third. Higher reimbursements that im-

prove output quality in Paducah cause Paducahans to reduce their imports from neighboring

regions. This reduces the quantity produced in neighboring regions, lowering their output

quality, similar to the regional spillovers in the Boston scenario. But Figure 2.10d shows

that those regions where output quality declines more are the regions where patient market

access declines more, contrary to the pattern of outcomes in the Boston scenario.

The contrasting outcomes reflect trade flows in the baseline equilibrium: Boston is a

net exporter of medical services and Paducah is a net importer. Paducah imports one-

third of its consumption, and Boston imports only six percent. Higher reimbursements in

Boston cause output quality declines in nearby regions—largely because residents of those

regions import more when Boston’s quality improves. In contrast, higher reimbursements

in Paducah reduce neighboring regions’ output quality largely because Paducah residents

demand fewer exports from these regions when Paducah’s quality improves. Nearby regions

import little from Paducah, so they benefit little from its improved quality. Appendix

Figure 2.20 shows that the lessons from Boston and Paducah generalize: the pattern of

spillovers from increasing reimbursements in one region is driven by that region’s net trade

in medical care. To summarize, the spillover consequences of subsidizing production in one

region depend on the pattern of trade; changes in regional output quality need not align
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with changes in regional patient market access.

The distributional consequences of region-specific subsidies depend on which region is

subsidized. We compute the nationwide gains in market access from subsidizing production

in each region, one at a time. Figure 2.11 shows this gain, scaled by the increase in total

spending, as a function of region size. The aggregate gain in market access per dollar spent is

higher in larger markets: further concentration of production has larger benefits. The graph

also shows the gains per dollar separately by income tercile. Unlike the Boston scenario,

in which benefits accrue more to higher-income ZIP codes, subsidizing production in less

populous regions benefits lower-income ZIP codes more. These contrasts reflect geographic

divides in incomes: lower-income patients are more likely to live in and near smaller regions.

Rather than subsidizing local production, policies might improve patient market access

in a particular region by facilitating trade. We examine the consequences of a policy that

reduces travel costs for Paducahans obtaining care elsewhere (specifically, ρ̂i,Paducah = 1.3

when i ̸= Paducah).52 Figure 2.12 shows that, unlike an increase in Paducah reimburse-

ments, this policy has positive spillovers on neighboring regions. These regions increase their

exports to Paducah, and thus their own scale and quality. This improves their residents’

market access.53 Because lower-income patients are more sensitive to distance and are less

likely to import care from other regions, a larger travel subsidy is necessary to achieve the

same percentage improvement in their patient market access. To increase each income ter-

cile’s patient market access in Paducah by 7%, one would need to reduce trade costs by 40%

for the first income tercile and by 37% for the third income tercile.

So this policy benefits both Paducah and its neighbors—though we do not estimate

the costs of this travel subsidy. But facilitating travel reduces the quantity—and thus the

52. The impact of this change on Paducah residents’ market access Φ̂Paducah is similar to an 8% increase
in reimbursements in Paducah.

53. Recall that our model assumes elastic supply. The short-run impact on exporters may be more complex
if there are short-term diseconomies of scale due to crowding or queuing.
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quality—produced in Paducah. Analysts looking at the impact of travel subsidies on the

quantity or quality of care provided in Paducah itself would reach very different conclusions

than those looking at the impact on patient market access.

These counterfactual scenarios are subject to significant caveats, and we have not at-

tempted to identify the optimal policy. Even so, this simple model rationalizes important

aspects of the economics and politics of US healthcare policy. The counterfactual scenar-

ios highlight our main findings: Healthcare production has substantial local increasing re-

turns, and patient travel plays a meaningful role in enabling access to higher-quality care.

Given these economic mechanisms, regional spillovers are larger when economies of scale

are stronger, depend on the pattern of trade flows, and differ depending on whether policies

subsidize production or travel. This shows the importance of distinguishing between regional

output quality and regional patient access when evaluating healthcare policies.

2.8 Conclusion

Smaller markets have fewer specialized physicians, produce less medical care per capita, and

have worse health outcomes than larger markets. Thanks to trade in medical services, less

production does not translate one for one into less consumption of medical services. Instead,

trade affords patients who live in smaller markets access to higher-quality care. This higher

quality comes in part from consuming services that would otherwise be unavailable, visiting

appropriate specialists, and accessing experienced physicians.

This trade amplifies the scale advantages of large markets and hence the quality of care

they produce. This means the healthcare industry can serve as an export base for large

cities. Substantial scale economies also imply that policies to reallocate care across regions

may impact the quality of care available. We simulate policies that aim to improve care

access in “under-served” markets. The rich and varied patterns of welfare consequences

when subsidizing production or travel highlight the importance of trade and agglomeration
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for the incidence of these policies on patients and producers.

2.9 Exhibits

Figure 2.1: Illustrative model diagrams
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Notes: This figure depicts how increasing demand in one region affects its equilibrium outcomes. In panels a–c, quantity
produced Q is on the horizontal axis and service quality δ is on the vertical axis. The black lines depict the free-entry isocost
curve, C = R, given by equation (2.3). The blue and cyan lines depict demand for the region’s service, which we depict as log-
linear for visual clarity. (The logit demand function is actually log-convex, which is consistent with all the depicted comparative
statistics.) Equilibrium is the intersection of the demand and isocost curves. An increase in demand is the rightward shift
from the solid to the dashed demand curve. This shift increases equilibrium quality from δ to δ′. Panel a shows that higher
demand elicits higher quality if there are increasing returns to scale. Panel b shows that this quality improvement is larger when
demand is more elastic. Panels c and d introduce trade and compare the extent of quality improvement under two different
magnitudes of increasing returns (α > 0 and α ≫ 0). These magnitudes govern the patterns of interregional trade, shown in
panel d as a function of the number of potential patients N . Imports from other regions rise with N . With increasing returns
to scale (α > 0), exports to other regions also rise with N (a weak home-market effect). When the scale elasticity α is larger
(α ≫ 0), the import curve is flatter and the export curve is steeper. With sufficiently strong increasing returns, an increase in
local demand causes a greater increase in exports than imports (a strong home-market effect).
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Figure 2.2: Production, consumption, and trade across regions

(a) Production per capita (b) Consumption per capita

(c) Production divided by consumption (d) Gross exports relative to production

Notes: Panel a shows production per capita, including professional and facility fees. The hospital referral region (HRR) of production is the
location where the service is provided. Panel b shows consumption per capita, including professional and facility fees. The HRR of consumption
is based on the patient’s residential address. Colors depict deciles of production per capita in both Panels a and b. Panel c shows the ratio of
production per capita to consumption per capita for professional services. Panel d shows gross exports as a share of total production by HRR
for professional services. Data come from the Medicare 20% carrier Research Identifiable Files. All calculations exclude emergency-room care
and skilled nursing facilities. Expenditures are computed by assigning each procedure its national average price. HRR definitions are from the
Dartmouth Atlas Project.
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Figure 2.3: Production and consumption of medical care across regions
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Population elasticity (log−log regression slope) of transactions per
resident Medicare beneficiary:
Production: 0.13 (0.02), Consumption: 0.06 (0.01)
Exports: −0.00 (0.05), Imports: −0.25 (0.03)

Notes: This figure shows production, consumption, and trade per capita of Medicare services across hospital
referral regions (HRRs) of different sizes, all smoothed via local averages. We use the Medicare 20% carrier
Research Identifiable Files to compute the dollar value of physician services, excluding emergency-room
care and assigning each procedure its national average price. The black series shows production of medical
care per Medicare beneficiary residing in the HRR of production. The blue series shows consumption of
medical care per Medicare beneficiary residing in the HRR of consumption. The dashed dark-gray series
shows interregional “exports” of medical care and the dashed light-blue series shows interregional “imports” of
medical care, again per Medicare beneficiary. The orange series depicts the distribution of HRR population
sizes. HRR definitions are from the Dartmouth Atlas Project.
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Figure 2.4: Patients travel between regions and trade declines with distance, moreso for lower-income patients
(a) Distribution of travel distances within
and across HRRs
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(c) Higher-income patients are less sensi-
tive to distance
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Notes: Panel a shows the distribution of patients’ travel distances when patients obtain care within their home HRR (blue distribution) and when
they travel across HRRs (red distribution). Travel distances measure the distance between home and treatment locations. For travel within a
hospital referral region, the distance measure reflects the distance between the centroid of the patient’s residential ZIP code and the ZIP code
of the service location. We use ZCTA-to-ZCTA distances downloaded from the National Bureau of Economic Research; those exceeding 160
kilometers are winsorized at 160 kilometers. For travel across HRRs, we use ZCTA-to-ZCTA distances when they are within 160 kilometers
and (for computational ease) use HRR-to-HRR distances beyond 160 kilometers. In Panel b, the blue series depicts the volume of trade against
distance, after conditioning out the fixed effects in equation (2.12), for positive-trade pairs of locations. The red series shows the share of HRR
pairs with positive trade as a function of the distance between them, after conditioning out the importer fixed effects and exporter fixed effects, as
in equation (2.12). Panel c depicts the coefficient on log distance obtained by estimating equation (2.12) separately for each decile of the national
ZIP-level median-household-income distribution. The 95% confidence intervals are computed using standard errors two-way clustered by both
patient HRR and provider HRR. Patients from higher-income ZIP codes are less sensitive to distance.
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Figure 2.5: Population elasticities of production and consumption

(a) Population elasticities by procedure frequency
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Production fitted line: y = −0.024 (0.002) * x + 0.391 (0.016)
Consumption fitted line: y = −0.007 (0.002) * x + 0.138 (0.014)
This plot depicts estimated population elasticities per Medicare beneficiary for 8,253 procedures
produced at least 20 times nationally.

(b) Population elasticities by diagnosis frequency

0

.2

.4

P
o
p
u
la

ti
o
n
 e

la
st

ic
it

y
 o

f 
ex

p
en

d
it

u
re

s
p
er

 M
ed

ic
ar

e 
b
en

ef
ic

ia
ry

 

32 256 2,048 16,384 131,072 1,048,576

National number of patients

production consumption

Production fitted line: y = −0.010 (0.003) * x + 0.253 (0.032)
Consumption fitted line: y = −0.001 (0.003) * x + 0.071 (0.028)
This plot depicts estimated population elasticities per Medicare beneficiary for 482 diagnoses 
billed for at least 20 patients nationally.

Notes: The vertical axis of both panels plots the population elasticities of quantity of medical care produced and consumed per local Medicare
beneficiary. The elasticities are computed using the Poisson models in equations (2.9) and (2.10) based on production location and patients’
residential location, respectively. Panel a estimates these elasticities for each of the procedures provided at least 20 times nationally in the
Medicare data. The horizontal axis shows the total national volume of physician services for the procedure. Panel b estimates the elasticities
for care provided to treat each of the Clinical Classifications Software Refined (CCSR) diagnoses billed for at least 20 patients nationally in
the Medicare data. Expenditures are computed from the Medicare 20% carrier Research Identifiable Files using the dollar value of physician
services, excluding emergency-room care and assigning each procedure its national average price. The horizontal axis shows the total number of
patients nationally with the diagnosis. In both panels, the blue dots are a binned scatterplot of the estimated population elasticity of production
per beneficiary as a function of the national volume. The red dots are the same for consumption (residential location)-based estimates. There
is a significant negative relationship for production, indicating that production elasticities are highest for rare services and rare diseases. The
relationship for consumption is much more modest. The difference between these estimates must be driven by trade between locations.
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Figure 2.6: The home-market effect is stronger for rarer procedures
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Notes: This figure groups non-emergency physician-provided services in the Medicare claims data into deciles
based on the national frequency of each procedure. For each decile, we estimate equation (2.8), testing for
a home market effect, and plot the estimated coefficients on provider and patient market log population
with their 95% confidence intervals. The coefficients on provider-market size always exceed the respective
coefficients on patient-market size, indicating a strong home-market effect. The coefficients on provider-
market size monotonically decrease across the deciles. The coefficients on patient-market size monotonically
increase across the deciles. Together, these two patterns show that the home-market effect is stronger the
less common the procedure is, in line with the theoretical difference-in-difference prediction.
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Figure 2.7: Estimated quality is positively correlated with total output and external quality metrics
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(b) U.S. News vs. quality estimated
for rare services
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Notes: The first three panels show the relationship between the exporter fixed effects (our revealed-preference measure of quality) and external
quality measures. The vertical axis shows the exporter fixed effects for each HRR estimated using trade in common services in Panel a, using
trade in rare services in Panel b, and for all services in Panels c and d. The horizontal axis in Panels a and b is a count of the number of times
each region’s hospitals appear on the U.S. News list of best hospitals. U.S. News produces an overall ranking as well as rankings for 12 particular
specialties. We count the number of times each HRR’s hospitals appear on any of these 13 lists. Both panels show a positive relationship,
indicating that patients travel farther to obtain care from regions highly ranked by U.S. News. The relationship is stronger for rare services, as
the slope is nearly double that for common services. The horizontal axis in Panel c is the average safety grade for hospitals in an HRR (mapping
A=5, B=4, etc.), for grades determined by the Leapfrog Group. These are positively correlated with exporter fixed effects. Panel d shows the
relationship between production and the exporter fixed effects from equation (2.12), across HRRs. HRR production is measured as Medicare
output produced (in millions US dollars) for non-emergency physician services in the 20% carrier file.
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Figure 2.8: Imports are specialist-intensive, especially in smaller regions

(a) Population elasticities of physician specializa-
tions
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Notes: The vertical axis of Panel a depicts the population elasticities of quantity of physicians in an HRR.
The population elasticities are computed for each specialty using the Poisson model in equation (2.14).
The horizontal axis shows the nationwide number of physicians in each specialty. The negative relationship
indicates that rare specialties are disproportionately concentrated in high-population regions. Panel b shows
the share of procedures that are performed by a specialist, for imports and locally produced procedures, by
market size. We define generalists as internal-medicine, general-practice, and family-practice physicians and
define specialists as all other physicians. Imports are more likely to be performed by a specialist, and smaller
markets’ imports especially so. Panel c examines procedures that are typically performed by specialists,
and classifies the “standard” specialists as the top two specialties performing the procedure nationally. It
shows the shares of procedures performed by the “standard” specialties in imported specialty care and locally
produced specialty care as a function of local population size. Imports are more likely to be performed by
“standard” specialties, especially for smaller regions. Panel d shows the mean relative experience of providers
for care produced locally and imported by population size of the patient’s region. This panel describes only
procedures that are performed in all hospital referral regions (143 procedures). In public-use Medicare data,
we define a provider’s experience for a given procedure as the number of times they performed the procedure
for Traditional Medicare patients in the prior calendar year. Before aggregating to the regional level, we
rescale experience in each procedure so that its mean is one. On average, patients in larger markets obtain
treatment from more experienced providers. At all population levels, imported care is produced by more
experienced providers than local care. 56



Figure 2.9: Counterfactual outcomes when reimbursements increase 10% everywhere

(a) Change (%) in output quality δi (b) Change (%) in patient market access Φi

(c) Outcomes as a function of baseline patient mar-
ket access Φi
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Notes: Panels a and b show the impacts of increasing reimbursements by 10% everywhere (R̂i = 1.1 ∀i) based on our estimated model. Panel a
depicts the percentage change in quality of care δi provided in each region. Panel b depicts the percentage change in the value of market access
Φi for patients who live in a region. Panel c shows local linear regressions of the percentage changes in δi, Φi, and Qi against the region’s initial
patient market access, Φi. There is a negative relationship between the percentage changes in δ and Φ across regions. Patients who live in the
regions with the largest quality increases in δ tend to have the lowest gains in patients’ market access, Φ. The exercise is described in detail in
Section 2.7.
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Figure 2.10: Counterfactual outcomes for higher reimbursements in one region

(a) Change (%) in output quality δi: higher reim-
bursement in Boston, Mass.

(b) Change (%) in market access Φi: higher reim-
bursement in Boston, Mass.

(c) Change (%) in output quality δi: higher reim-
bursement in Paducah, Ky.

(d) Change (%) in market access Φi: higher reim-
bursement in Paducah, Ky.

Notes: Panels a and b show the impacts of increasing reimbursements by 30% in the Boston, Mass. HRR (R̂i = 1.3) based on our estimated
model. Panel a illustrates the percentage change in quality of care δi provided in each region. Panel b illustrates the percentage change in the
value of market access Φi for patients who live in an region. Panels c and d are analogous, but for a 30% increase in reimbursements in Paducah,
Ky., a net importer. In all panels, the predicted change for the region whose reimbursement changes (“treated region”) is listed on the map itself.
In both cases, the quality produced in neighboring regions declines (Panels a and c). Patients in regions near Boston benefit from increased access
to the treated region (Panel b), so there is a negative relationship between the percentage changes in δ and Φ across regions. In contrast, patients
in regions near Paducah suffer a decrease in access (Panel d). The contrasting outcomes stem from Boston being a net exporter and Paducah
being a net importer in the baseline equilibrium. The exercise is described in detail in Section 2.7.
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Figure 2.11: Changes in access Φ̂jκ by income when increasing reimbursements
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Notes: This figure summarizes the counterfactual outcomes of 30% higher reimbursements in one HRR as a function that HRR’s population size.
The nationwide return is the percentage increase in patient market access

∑
κ

∑
j NjκΦjκ per percentage increase in nationwide expenditures∑

i QiRi. The tercile-specific return is the increase in tercile-specific patient market access
∑

j NjκΦjκ. Increasing reimbursements in more
populous HRRs has the highest return when measured as impact on aggregate market access. Subsidies in less populous regions favor lower-
income patients, primarily because there are more low-income patients living in and close to smaller regions.
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Figure 2.12: Counterfactual outcomes when changing travel costs for Paducah, Ky. residents

(a) Change (%) in quality δi: reducing Paducah residents’
travel costs by 30%

(b) Change (%) in access Φi: reducing Paducah residents’
travel costs by 30%

Notes: Both panels show the impact of a 30% fall in travel costs for Paducah residents (ρ̂ij = 1.3 ∀i ̸= Paducah). Panel a illustrates the percentage
change in quality of care δi provided in each region. Panel b illustrates the percentage change in the value of market access Φi for patients who
live in a region. The note shows the change for Paducah itself. Reduced travel costs for Paducah residents improves their market access but
reduces the quality of care produced in Paducah itself. The increase in imports by Paducah residents causes service quality in neighboring regions
to increase because of scale effects. This higher quality in turn attracts additional patients from the ring surrounding them, reducing quality
slightly in that distant ring.
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Table 2.1: Aggregate medical services exhibit a strong home-market effect

(1) (2) (3) (4)
Estimation method: PPML PPML PPML IV

Provider-market population (log) 0.635 0.642 0.644 0.597
(0.0622) (0.0605) (0.0453) (0.0730)

Patient-market population (log) 0.380 0.376 0.405 0.360
(0.0605) (0.0581) (0.0421) (0.0517)

Distance (log) -1.654 0.124 0.106
(0.0497) (0.289) (0.255)

Distance (log, squared) -0.181 -0.179
(0.0283) (0.0250)

p-value for H0: λX ≤ λM 0.017 0.011 0.002 0.017
Observations 93,636 93,636 93,636 93,636
Distance elasticity at mean -2.46 -2.46
Distance deciles Yes

Notes: This table reports estimates of equation (2.8), which estimates the presence of weak or strong home-
market effects. The sample is all HRR pairs (N = 3062), and the dependent variable in all regressions is
the value of trade. The independent variables are patient- and provider-market log population, log distance
between HRRs, and an indicator for same-HRR observations (i = j). The positive coefficient on provider-
market log population implies a weak home-market effect, and the fact that this coefficient exceeds that on
patient-market population implies a strong home-market effect. Column 2 makes the distance coefficient
more flexible by adding a control for the square of log distance. Column 3 replaces parametric distance
specifications with fixed effects for each decile of the distance distribution. Column 4 uses the provider-
market and patient-market log populations in 1940 as instruments for the contemporaneous log populations
when estimating by generalized method of moments (GMM). Trade flows are computed from the Medicare
20% carrier Research Identifiable Files, using the dollar value of physician services, excluding emergency-room
care and assigning each procedure its national average price. HRR definitions are from the Dartmouth Atlas
Project. Standard errors (in parentheses) are two-way clustered by patient market and provider market.
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Table 2.2: The home-market effect is stronger for rare procedures

(1) (2) (3) (4) (5) (6)

λX Provider-market population (log) 0.635 0.622 0.621 0.629
(0.0622) (0.0601) (0.0602) (0.0592)

λM Patient-market population (log) 0.380 0.381 0.382 0.379
(0.0605) (0.0580) (0.0581) (0.0566)

µX Provider-market population (log) × rare 0.302 0.291 0.316 0.288
(0.0468) (0.0453) (0.0477) (0.0455)

µM Patient-market population (log) × rare -0.225 -0.220 -0.232 -0.212
(0.0686) (0.0669) (0.0703) (0.0657)

p-value for H0: λX ≤ λM 0.017 0.019 0.020 0.014
p-value for H0: µX ≤ µM <0.001 <0.001 <0.001 <0.001

Observations 187,272 113,468 113,468 113,468 113,468 113,468
Distance controls Yes Yes Yes Yes
Distance [quadratic] controls Yes Yes
Patient-provider-market-pair FEs Yes Yes

Notes: This table reports estimates of equation (2.11), which introduces interactions with an indicator for whether a procedure is “rare” (provided less often than the
median procedure, when adding up all procedures provided nationally). The interactions with patient- and provider-market population reveal whether the home-market
effect is larger for rare procedures. The unit of observation is {rare indicator, exporting HRR, importing HRR} so the number of observations is 2× 3062 in column 1, and
the dependent variable in all regressions is the value of trade. Columns 2 onwards drop HRR pairs with zero trade in both procedure groups, and column 2 shows that this
restriction has a negligible impact on the estimated log population coefficients. Columns 3 onwards include the rare indicator interacted with patient- and provider-market
populations and distance covariates. Columns 1–4 control for distance using the log of distance between HRRs. Columns 5 and 6 add a control for the square of log
distance. Columns 4 and 6 introduce a fixed effect for each ij pair of patient market and provider market, so these omit all covariates that are not interacted with the
rare indicator. The positive coefficient on provider-market population × rare across all columns indicates that the home-market effect is stronger for rare than for common
services. The negative coefficient on patient-market population × rare across all columns indicates that the strong home-market effect has a larger magnitude for rare
services. Trade flows are computed from the Medicare 20% carrier Research Identifiable Files, using the dollar value of physician services, excluding emergency-room care
and assigning each procedure its national average price. HRR definitions are from the Dartmouth Atlas Project. Standard errors (in parentheses) are two-way clustered
by patient market and provider market.
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Table 2.3: The stronger home-market effect for rare procedures is robust to instrumenting for population

(1) (2) (3) (4) (5) (6)
Geography: HRR HRR CBSA CBSA CBSA CBSA
Instrument: 1940 pop 1940 pop 1940 pop 1940 pop Bedrock Bedrock
Procedure Sample: Common Rare Common Rare Common Rare

Provider-market population (log) 0.595 1.081 0.716 0.895 1.157 1.753
(0.0731) (0.0914) (0.0249) (0.0388) (0.307) (0.524)

Patient-market population (log) 0.362 0.0477 0.396 0.328 0.182 -0.582
(0.0518) (0.115) (0.0261) (0.0344) (0.373) (0.580)

Distance (log) 0.102 0.992 -3.412 -1.378 -4.678 -4.631
(0.255) (0.442) (0.294) (0.989) (1.049) (2.520)

Distance (log, squared) -0.179 -0.263 0.105 -0.0742 0.210 0.181
(0.0251) (0.0497) (0.0287) (0.0935) (0.0845) (0.199)

Observations 93,636 93,636 857,476 857,476 781,456 781,456
Distance elasticity at mean -2.46 -2.77 -1.91 -2.43 -1.68 -2.05

Notes: This table reports estimates of equation (2.8), when separating procedures into those above- and below-median frequency and instrumenting
for log population. The dependent variable in all regressions is the value of trade. Trade flows are computed from the Medicare 20% carrier
Research Identifiable Files, using the dollar value of physician services, excluding emergency-room care and assigning each procedure its national
average price. We report coefficients on provider market population, patient market population, log distance, and log distance squared. Every
specification also includes a same-market (i = j) indicator variable. The odd-numbered columns are trade in above-median-frequency procedures;
the even-numbered columns are trade in below-median-frequency procedures. In columns 1 and 2, the sample is all HRR pairs (N = 3062). In
columns 3 and 4, the sample is all CBSA pairs (N = 9262). In columns 5 and 6, the sample is all CBSA pairs for which the bedrock-depth
instrumental variable is available (N = 8442). We use 1940 population counts to produce two instrumental variables: 1940 population in the
patient market and 1940 population in the provider market are instruments for log population in the patient market and log population in
the provider market, respectively. Similarly, we use bedrock depth to produce two instrumental variables for CBSAs. Both the strong home-
market effect and its larger magnitude for rare procedures are robust to instrumenting for population, estimating by GMM. Standard errors (in
parentheses) are two-way clustered by patient market and provider market.
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Table 2.4: The home-market effect is stronger for rarer diagnoses

(1) (2) (3) (4) (5) (6)

λX Provider-market population (log) 0.635 0.622 0.616 0.624
(0.0625) (0.0604) (0.0588) (0.0578)

λM Patient-market population (log) 0.382 0.383 0.386 0.383
(0.0606) (0.0580) (0.0569) (0.0555)

µX Provider-market population (log) × rare 0.0719 0.0687 0.0763 0.0683
(0.0547) (0.0519) (0.0561) (0.0506)

µM Patient-market population (log) × rare -0.0422 -0.0409 -0.0429 -0.0380
(0.0419) (0.0403) (0.0440) (0.0395)

p-value for H0: λX ≤ λM 0.018 0.020 0.021 0.015
p-value for H0: µX ≤ µM 0.114 0.113 0.113 0.115

Observations 187,272 112,626 112,626 112,626 112,626 112,626
Distance controls Yes Yes Yes Yes
Distance [quadratic] controls Yes Yes
Patient-provider-market-pair FEs Yes Yes

Notes: This table augments equation (2.8) by adding interactions with an indicator for whether a diagnosis is “rare” (provided less often than the median diagnosis, when
adding up all patients receiving the diagnosis nationally) or “common” (more often than median). The interactions with patient- and provider-market population reveal
whether the home-market effect is larger for rare diagnoses. The unit of observation is {rare indicator, exporting HRR, importing HRR} so the number of observations
is 2 × 3062 in column 1, and the dependent variable in all regressions is the value of trade. Valid primary diagnoses observed in 1,000 distinct claims or more nationally
in the professional fees 20% sample are included. Columns 2 onwards drop HRR pairs with zero trade, and column 2 shows that this restriction has a negligible impact
on the estimated log population coefficients. Columns 1–4 control for distance using the log of distance between HRRs. Columns 5 and 6 add a control for the square of
log distance. Columns 4 and 6 introduce a fixed effect for each ij pair of patient market and provider market, so these omit the patient- and provider-market population
covariates. The positive coefficient on provider-market population × rare across all columns indicates that the home-market effect is stronger for rare than for common
diagnoses. The negative coefficient on patient-market population × rare across all columns indicates that the strong home-market effect is especially true for rare diagnoses.
Trade flows are computed from the Medicare 20% carrier Research Identifiable Files, using the dollar value of physician services, excluding emergency-room care and
assigning each procedure its national average price. HRR definitions are from the Dartmouth Atlas Project. Standard errors (in parentheses) are two-way clustered by
patient market and provider market.
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Table 2.5: Scale elasticity estimates

Panel A: All services Baseline No Diagonal Controls

OLS 0.776 0.803 0.810
(0.031) (0.045) (0.041)

2SLS: population (log) 0.712 0.798 0.724
(0.031) (0.050) (0.039)

2SLS: population (1940, log) 0.533 0.663 0.545
(0.072) (0.098) (0.067)

Panel B: Rare services

OLS 0.947 1.083 0.927
(0.030) (0.045) (0.035)

2SLS: population (log) 0.912 1.026 0.881
(0.037) (0.049) (0.049)

2SLS: population (1940, log) 0.835 0.951 0.789
(0.061) (0.084) (0.070)

Notes: This table reports estimates of α̂ from ordinary least squares (OLS) or two-stage least squares (2SLS)
regressions of the form l̂n δi = α lnQi + lnRi + ui, where l̂n δi is estimated in equation (2.12), Qi is region
i’s total production of non-emergency-room physician services for Medicare beneficiaries, Ri is Medicare’s
Geographic Adjustment Factor, and ui is an error term. In the rows labeled “2SLS” we instrument for
lnQi using the specified instruments. The lnRi control is omitted in the columns labeled “no controls”.
Appendix Table 2.17 reports analogous estimates at the CBSA level, which allows us to also control for
input costs (as input cost data are more reliable for CBSAs than for HRRs). In the columns labeled “no
diag”, Qii observations were omitted when estimating l̂n δi in equation (2.12). Standard errors are robust to
heteroskedasticity. Across all of the permutations of our method, we estimate substantial scale economies.
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Table 2.6: Regression of Φ̂jk on tercile dummies and trade shares

Nationwide Reimbursement Increase Boston Reimbursement Increase

(1) (2) (3) (4) (5) (6)

Income tercile = 2 1.080 1.085 -0.143 2.00e-05 0.00298 -0.00494
(0.0554) (0.0555) (0.0318) (0.00938) (0.00966) (0.00214)

Income tercile = 3 1.568 1.553 -0.240 0.0697 0.0649 -0.00732
(0.0712) (0.0698) (0.0549) (0.0349) (0.0347) (0.00266)

Imported share (1−m0jκ −mjjκ) -0.519
(0.129)

m0jκ -12.65
(0.422)

mBoston,jκ 36.95
(0.435)

Constant 8.763 8.767 11.10 0.0984 0.0989 -0.0691
(0.0594) (0.0403) (0.0769) (0.105) (0.0127) (0.00265)

Observations 885 885 885 885 885 885
R-squared 0.498 0.675 0.988 0.000 0.980 1.000
HRR fixed effects No Yes Yes No Yes Yes

Notes: This table uses linear regressions to summarize how market access changes across HRRs j and income terciles κ in response to two different
counterfactual policies. The dependent variable in all columns is the percentage change in market access, 100 × (Φ̂jk − 1). Standard errors (in
parentheses) are clustered by market. Columns 1, 2, and 3 consider a 10% reimbursement increase nationwide. Columns 4, 5, and 6 consider a
30% reimbursement increase in Boston only. The constant in the first regression reports the percentage change for the lowest income terciles,
and the coefficients on the other terciles are the additional percentage point gain for those terciles relative to the lowest. Other controls include
the outside option market share m0jκ, imported share 1−m0jκ −mjjκ (where mjjκ is local production), and Boston’s market share mBoston,jκ.
The coefficients are much smaller in columns 4, 5, and 6 because only Boston is treated, so most of the country is hardly affected. When we
add market share controls, the coefficients indicating tercile differences become much smaller, indicating that baseline trade patterns drive the
distributional impacts.
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2.10 Theory appendix

2.10.1 Monopolistic competition with one firm per region

Suppose that there is a single firm in each region that offers fixed-price services to patients

under monopolistic competition with the firms in other regions. Assume K(δi) = δi and

H(Qi) = Qα
i . The profit-maximizing choice of quality δi by the firm in region i is

max
δi

πi =

(
R̄− wiδi

AiQ
α
i

)
Qi where Qi =

∑
j

Qij = δi
∑
j

Nj

Φj
ρij

∂πi
∂δi

= 0 =⇒ R̄

2− α
=

wiδi
AiQ

α
i

= C(Qi, δi;wi, Ai)

This expression replaces the free-entry condition (2.4) in the definition of equilibrium. Chang-

ing the value of the constant on the left side of this equality does not change any of the sub-

sequent theoretical predictions. In this respect, the monopolistic-competition model with

one firm per region is isomorphic to the perfect-competition model with external economies

of scale.

2.10.2 Model with multiple types of patients

This section extends the model to feature multiple types of patients who face different trade

costs. There is a finite set of patient types, which are indexed by κ. A patient type is

defined by the trade costs ρij(k) = ρκij∀k ∈ κ. Qualities δi, including the outside option δ0,

are the same for all patient types. The demand by patients of type κ residing in location j

for procedures performed by providers in location i is now given by

Qκ
ij =

δiN
κ
j

Φκ
j

ρκij .
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The aggregate gravity equation is the sum of type-specific gravity equations:

Qij =
∑
κ

Qκ
ij = δi

∑
κ

Nκ
j

Φκ
j

ρκij . (2.15)

The free-entry condition (2.4) remains unchanged with the introduction of multiple patient

types:

Ri =
wiδi
AiQ

α
i

.

In equilibrium, market clearing requires that

Qi =

(
wiδi
AiRi

)1/α

= δi
∑
j

∑
κ

Nκ
j

Φκ
j

ρκij =⇒ δi =

(
AiRi

wi

)1/(1−α)
∑

j

∑
κ

Nκ
j

Φκ
j

ρκij

α/(1−α)

.

2.10.3 Derivations of results in Section 2.2.5

Abusing notation so that I is both the set and number of regions, equations (2.2) and (2.3)

together constitute 2I equations with 2I unknowns. For the special case of H(Qi) = Qα
i

and K(δi) = δi, this reduces to the following I equations with the unknowns {δi}Ii=1:

δi =

(
RAi

wi

) 1
1−α

∑
j∈I

ρij∑
i′∈0∪I δi′ρi′j

Nj

 α
1−α

Following Costinot et al. [2019], we examine the home-market effect in the neighborhood

of a symmetric equilibrium. For brevity, assume RAi
wi

= 1 ∀i. Note that at the symmetric

equilibrium:

δ̄
1−α
α =

1

1 + δ̄ +
∑

i′ ̸=i δ̄ρ
N̄ +

∑
j ̸=i

ρ

1 + δ̄ +
∑

i′ ̸=j δ̄ρ
N̄ =

1 + (I − 1)ρ

Φ̄
N̄ =

Φ̄− 1

Φ̄

N̄

δ̄
. (2.16)

Given α > 0, totally differentiating the above system of equations in terms of {dδi, dNi}Ii=1
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and evaluating it at the symmetric equilibrium yields the following expression:

Φ̄2

N̄

1− α

α
δ̄
1−2α
α dδi = −

dδi + ρ
∑
i′ ̸=i

dδi′

+Φ̄
dNi

N̄
+
∑
j ̸=i

−ρ

dδj + ρ
∑
i′ ̸=j

dδi′

+∑
j ̸=i

ρΦ̄
dNj

N̄
.

Given dN1 > 0 and dNj = 0 ∀j ̸= 1, we obtain the following expression for d ln δ1:

d ln δ1 =

Φ̄
δ̄
d lnN1 − (I − 1)(2ρ+ ((I − 2)ρ2))d ln δj ̸=1

Φ2

N̄
(1−α)

α δ̄
1−2α
α + 1 + (I − 1)ρ2

. (2.17)

Further tedious algebra delivers the following expression for quality changes:

d ln δ1 − d ln δj ̸=1 =
(1− ρ)

Φ2

N̄
(1−α)

α δ̄
1−2α
α + (1− ρ)2

Φ̄

δ̄
d lnN1. (2.18)

Equation (2.16) implies that Φ2

N̄
(1−α)

α δ̄
1−2α
α =

(
1−α
α

)
Φ(Φ−1)

δ̄
and therefore

d ln δ1 − d ln δj ̸=1 =
(1− ρ)(

1−α
α

)
Φ(Φ−1)

δ̄
+ (1− ρ)2

Φ̄

δ̄
d lnN1

=

[
1− α

α

(Φ̄− 1)

(1− ρ)δ̄
+

(1− ρ)δ̄

Φ̄

]−1

d lnN1 > 0.

The last expression above is reported in Section 2.2.5.

Prior to deriving the weak and strong home-market effects, we obtain an expression

for d ln δj
d lnN1

for j ̸= 1 around the symmetric equilibrium. Define Q̄ ≡ Φ2

N̄
(1−α)

α δ̄
1−2α
α > 0.

Combining the expressions for d ln δ1 from equation (2.17) and for d ln δ1 − d ln δj ̸=1 from

equation (2.18) yields the following:

d ln δj ̸=1

d lnN1
=

Φ̄

δ̄

Q̄ρ+ ρ3(I − 1)− ρ2(I − 2)− ρ

(Q̄+ (1− ρ)2)(Q̄+ 1 + ρ2 + 2ρ(I − 1) + Iρ2(I − 2))
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The weak home-market effect is derived as follows:

lnQ1,j ̸=1 = α lnQ1 + ln ρ− lnΦj + lnNj

d lnQ1,j ̸=1

d lnN1
= α

d lnQ1

d lnN1
− α

Φj

ρQα−1
1

dQ1

d lnN1
+Qα−1

j

dQj

d lnN1
+ ρ

∑
i′ ̸=1,j

Qα−1
i′

dQi′

d lnN1


=

d ln δ1
d lnN1

− 1

Φj

ρδ1 d ln δ1
d lnN1

+ δj
d ln δj
d lnN1

+ ρ
∑
i′ ̸=1,j

δi′
d ln δi′

d lnN1


=

(
N̄ −Q1j

N̄

)
d ln δ1
d lnN1

−
(
N̄ −Q0j −Q1j

N̄

)
d ln δj
d lnN1

=

(
N̄ −Q1j

N̄

)[
d ln δ1
d lnN1

− d ln δj
d lnN1

]
+
Q0j

N̄

d ln δj
d lnN1

=
Φ

δ̄N̄

1

Q̄+ (1− ρ)2

[
(Qjj + (I − 2)Q1j)(1− ρ)

+
Q0j

Q̄+ 1 + ρ2 + 2ρ(I − 1) + Iρ2(I − 2)

×
{
Q̄+ (ρ− 1)2 + 2(I − 1)(ρ− ρ2) + (I − 1)(I − 2)[ρ2 − ρ3]

}]
> 0.

The condition for the strong home-market effect is derived as follows:

Q1,j ̸=1 −Qj ̸=1,1 =
Qα
1 ρ

1 +Qα
1 ρ+Qα

j +
∑

i ̸=1,j Q
α
i ρ
Nj

−
Qα
j ρ

1 +Qα
1 +Qα

j ρ+
∑

i̸=1,j Q
α
i ρ
N1

d lnQ1,j ̸=1 − d lnQj ̸=1,1 = d lnNj − d lnN1 + α

[
1 + (1− ρ)

Q̄α

Φ̄

] (
d lnQ1 − d lnQj

)
= −d lnN1 +

[
1 + (1− ρ)

δ̄

Φ̄

] (
d ln δ1 − d ln δj

)
=

 1− 1−α
α

1+(I−1)ρ
1−ρ

1−α
α

(1+(I−1)ρ)
(1−ρ)

+
(1−ρ)δ̄

1+(1+(I−1)ρ)δ̄

 d lnN1.

There is a strong home-market effect in the neighborhood of the symmetric equilibrium
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if and only if d lnQ1,j ̸=1 − d lnQj ̸=1,1 > 0.

 1− 1−α
α

1+(I−1)ρ
1−ρ

1−α
α

(1+(I−1)ρ)
(1−ρ)

+
(1−ρ)δ̄

1+(1+(I−1)ρ)δ̄

 d lnN1 > 0 ⇐⇒ α

1− α
>

1 + (I − 1)ρ

1− ρ

This is true if α is large enough and ρ is small enough.

Our difference-in-differences prediction concerns how the effect of market size on net

exports varies with the number of potential patients N̄ . Given the scale elasticity α and

(inverse) trade costs ρ, the denominator of the right side of equation (2.6) is increasing

in the symmetric-equilibrium quality δ̄. For two procedures that both exhibit a strong

home-market effect because they have the same scale elasticity and trade costs, the effect

of population size on net exports will be larger for the procedure with lower service quality.

The symmetric-equilibrium service quality is increasing in the number of potential patients

N̄ because there are increasing returns (see equation (2.16)). Thus, in the neighborhood of

the symmetric equilibrium, the strength of a strong home-market effect is decreasing in the

number of potential patients.

2.11 Data appendix

2.11.1 Procedure frequency in main sample compared with aggregate and

private data

Medicare provides two public-use files based on 100 percent claims. The first one contains

the complete count of procedures billed by HCPCS code but does not have information

about providers. We use it to confirm that procedure counts based on the confidential data

do not suffer substantial sampling bias. In Figure 2.21, we split procedure codes into deciles

based on their national frequencies, separately in the confidential and public datasets. This

generates a 100-cell matrix by decile pair. We plot the share of procedures in each cell in
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this matrix to determine how well the two datasets align. The vast majority of the codes are

on the diagonal, with almost all of the remainder adjacent to the diagonal. This suggests

that sampling error is not causing us to mischaracterize procedure frequency.

Medicare provides a second public file at the level of physician-by-procedure (HCPCS

code). This summary does not contain any patient-level information so cannot be used to

study trade flows, but we can use it to replicate analyses based on the location of production

and physician experience. This file is censored such that physician-by-procedure pairs with

10 or fewer observations per year are suppressed, which makes for a more complicated bias

than simple 20 percent random sampling. Nevertheless, all of the results that can be tested

on this sample confirm those found in the 20 percent sample.

Since our procedure frequency measures rely on Medicare data, we would mismeasure fre-

quency if the Medicare population uses a substantially different composition of care from the

broader population. For example, childbirth is less common among Medicare beneficiaries.

So our frequency measures may not capture the true national frequency of a procedure.

We address this by comparing procedure frequencies between the Medicare public data

and private data from the Health Care Cost Institute (HCCI). The HCCI data contain claims

for about 55 million privately insured patients (about 35% of individuals with employer-

based insurance). We only consider HCPCS codes performed on at least eleven patients in

the HCCI data. Note that frequencies are computed for all providers here, not only MDs

and DOs. The authors acknowledge the assistance of the Health Care Cost Institute (HCCI)

and its data contributors, Aetna, Humana, and Blue Health Intelligence, in providing the

claims data analyzed in this section.

We examine whether procedures classified as above median frequency in one dataset are

above median frequency in the other dataset. Table 2.18 shows that 88% of the services

above median frequency in Medicare are also as above median frequency in the HCCI data.

Similarly, 82% of the services below median frequency in Medicare are also below median
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frequency in the HCCI data.

We next compare classifications of procedures’ frequency deciles in Figure 2.22. Analo-

gous to Figure 2.21, this plot visualizes the share of procedures which fall into each of pair of

frequency decile bins in HCCI and Medicare data. The two classifications appear to coincide

relatively well, with slightly stronger agreement for very frequent procedures compared to

rarer procedures in the Medicare public-use data. Overall, the frequency classifications of

procedures coincide well between Medicare public-use data and HCCI data.

2.11.2 Additional details on data sources

Physician earnings. The Gottlieb et al. [2020] earnings data depicted in Appendix Fig-

ure 2.14 are only available for 111 commuting zones. The American Community Survey

(ACS) covers far more CBSAs, but this source top-codes income for a substantial share of

doctors.

U.S. News and World Report. The publication produces an overall ranking and rank-

ings for 12 particular specialties. We count the number of times each HRR’s hospitals appear

on any of these 13 lists.54 Thus, higher ranking on the horizontal axis indicates a region

has some combination of more top-ranked hospitals, or each of its hospitals performs well in

many specialty areas.

2.11.3 Geographic price adjustments

Professional fees. To adjust for geographic price variation in the professional fees, we

compute a national average price per Healthcare Common Procedure Coding System (HCPCS)

code as the sum of the line allowed amount, which includes the line item’s Medicare-paid

and beneficiary-paid amounts (i.e., deductible, copayment, and coinsurance), divided by the

54. Results are similar when we use other methods to aggregate the rankings information, including when
we account for the ordered nature of the lists.
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sum of the line service count per HCPCS code nationally. We then apply this average price

to all billing for the HCPCS code when computing total spending across services.

Hospital inpatient fees. We use the field “final standard payment amount” in the Med-

PAR file, which is computed as described in Finkelstein et al. [2016] and Gottlieb et al.

[2010b]. This represents “a standard Medicare payment amount, without the geographi-

cal payment adjustments and some of the other add-on payments that go to the hospitals”

according to the data documentation.

Hospital outpatient fees. To adjust for geographic price variation in hospital outpatient

fees, we compute a national average price per Healthcare Common Procedure Coding System

(HCPCS) code, Ambulatory Payment Classifications (APC) code, and revenue center code.

HCPCS codes reflect the procedure performed and APC codes reflect a prospective payment

system applicable to outpatient analogous to Diagnosis Related Groups (DRGs) for inpatient

claims. Revenue center contains information on the place of service, e.g. rehabilitation or

acute care, so we consider two procedures performed in different revenue centers as different

procedures for price adjustment purposes.

The total amount per claim line is calculated as the sum of the claim (Medicare) pay-

ment amount, the primary payer amount, the Part B beneficiary co-insurance amount, the

beneficiary Part B deductible amount, and the beneficiary blood deductible amount. These

amounts are summed nationally for each {HCPCS code, APC code, revenue center code}

triplet, and divided by the frequency of that triplet to obtain a national average price. We

then apply this average price to all instances of that {HCPCS code, APC code, revenue

center code} combination when computing total spending across services.
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2.11.4 Residential measurement error

This appendix uses two methods to investigate potential measurement error in patients’

residential location. The first source of potential error is “snowbird” patients, who have

multiple residences and therefore may appear to travel farther than they actually do. They

may need medical care while spending months in a warmer HRR that is not the one listed

as their main residence (or vice versa). Our results are robust to two methods of removing

potential snowbirds: excluding Arizona, California, and Florida, following Finkelstein et al.

[2016], and excluding the 10% of HRRs with the highest share of second homes in American

Community Survey data. These results are in Tables 2.10 and 2.11. The results are little

changed by these sample restrictions.

We test for more general location measurement error by examining how far patients

appear to travel for dialysis. Since Medicare patients requiring dialysis must generally visit

a dialysis center thrice weekly, they are unlikely to go substantial distances for this service.

Table 2.12 compares travel distances for dialysis with other care. Dialysis patients appear

to travel less than one-quarter as often as other patients—and even less when excluding

snowbird states—suggesting that our residential location assignment is largely accurate.

2.11.5 Scale elasticity estimation with unobserved market segments

Our data only contain procedure-level production and consumption in Traditional Medicare

(TM), not for Medicare Advantage (MA) or non-Medicare (NM) patients. We quantify how

this biases our estimate of the scale elasticity, α, based on geographic variation. Suppose

the production function is

ln δi = α lnQi + ui,

where Qi = QTM
i +QMA

i +QNM
i is the total quantity produced in region i, of which we only

observe QTM
i . When we estimate the scale elasticity α using QTM

i as a proxy for Qi, our
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regression coefficient may be biased:

Cov(ln δi, lnQTM
i )

Var(lnQTM
i )

=
Cov(α lnQi, lnQ

TM
i )

Var(lnQTM
i )

+
Cov(ui, lnQTM

i )

Var(lnQTM
i )

= αζ,

where ζ, which governs the bias, is the regression coefficient from lnQi = ζ lnQTM
i + ui .

To compute ζ we differentiate the identity Qi = QTM
i

(
1 +

QMA
i

QTM
i

+
QNM
i

QTM
i

)
with respect

to QTM
i , which we observe:

d lnQi

d lnQTM
i

= 1 + sMA
i ϱMA

i + sNM
i ϱNM

i ,

where sMA
i ≡ QMA

i

QTM
i +QMA

i +QNM
i

is the MA share of production in region i, ϱMA
i ≡

d ln
QMA
i

QTM
i

d lnQTM
i

is

the TM production elasticity of relative production, and sNM
i and ϱNM

i are similarly defined

for non-Medicare (NM) insurance. To make it feasible to estimate these elasticities, we

assume that they are constant across regions. If relative quantities produced are uncorrelated

with the Traditional Medicare quantity produced (ϱMA = ϱNM = 0), then ζ = 1 and αζ is

an unbiased estimate of the scale elasticity α.55 Otherwise, we need estimates of the average

production shares s̄MA and s̄NM and the regression coefficients ϱMA and ϱNM to compute ζ.

We compute the production shares using data on aggregate expenditures and price de-

flators from prior research. Medicare, including both TM and MA, paid for $153 billion of

the $525 billion spent nationally on physician services in 2017 [Centers for Medicare and

Medicaid Services, 2022]. Per capita spending and prices are similar between the two parts

of Medicare [Berenson et al., 2015, Gupta et al., 2022]. Given this similarity, we appor-

tion Medicare’s production between TM and MA based on relative enrollment and obtain

s̄MA = 0.111. Next we consider Non-Medicare (NM) production. Private insurance spent

55. A special case would be if the quantity of care produced outside of TM is perfectly correlated with
volume inside TM, so the shares sMA

i and sNM
i are constant.
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$226 billion, which we deflate by a factor of 1.43 to account for the higher prices private insur-

ance pays to make quantities comparable to Medicare [Lopez and Jacobson, 2020]. Medicaid

spent roughly $41 billion, which we deflate by its relative price of 0.72 [Zuckerman et al.,

2021]. We incorporate other residual categories of production without price adjustments.56

Combining these, we obtain an average s̄NM = 0.676.

To estimate ϱMA and ϱNM, we assume that relative production is proportionate to rel-

ative resident beneficiaries. We obtain the number of TM beneficiaries and number of MA

beneficiaries by HRR from Medicare enrollment data and compute the number of NM pa-

tients as total population minus Medicare enrollees.57 Regressing the respective beneficiary

ratios on log TM production yields ϱ̂MA = 0.073 and ϱ̂NM = 0.069. Putting these together

means ζ̂ = 1.055, so our estimated αζ = 0.66 from Table 2.5 implies a scale elasticity of

α = 0.66
1.055 = 0.63.

2.12 Details of counterfactual calculations

Section 2.12.1 describes how we compute counterfactual equilibrium outcomes relative to

baseline equilibrium outcomes in the model. Section 2.12.2 describes the assumptions we

make to infer the number of potential patients Nj and hence import shares mij , which

are inputs into these calculations. Section 2.12.3 describes how to compute counterfactual

outcomes in the model when there are multiple (observed) types of patients who differ in

their trade costs. Section 2.12.4 describes how we infer the number of potential patients of

56. These other categories in the National Health Expenditure data are labeled Other Health Insurance
Programs and Other Third Party Payers, along with out-of-pocket spending. Our simplifying approach here
amounts to assuming Medicare prices for these residual categories.

57. Ideally we would like to use the quantity of production in NM and MA markets, but we do not have
this available at the HRR level. Beneficiaries might seem like a problematic proxy because the composition
of NM beneficiaries varies widely across space, with some regions having a high Medicaid share and others a
high private share. In aggregate, these two markets turn out to have similar per capita quantities of physician
service spending: while private spending is $1,118 per capita and Medicaid spending is $550 per capita, the
price adjustments mentioned above the quantities are relatively similar at $782 and $764, respectively, when
valued at Medicare prices.
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each type.

2.12.1 Computing equilibrium outcomes in counterfactual scenarios

We compute counterfactual equilibrium outcomes relative to baseline equilibrium outcomes

by rewriting the equilibrium system of equations in terms of the initial allocation, constant

elasticities, relative exogenous parameters, and relative endogenous equilibrium outcomes, a

technique known as “exact hat algebra” in the trade literature.

IfK(δ) = δ andH(Q) = Qα, an equilibrium is a set of quantities and qualities {Qi, δi}i∈I
that simultaneously satisfy equations (2.4) and (2.1) and Qi =

∑
j Qij . Consider two equi-

libria: the baseline equilibrium and the counterfactual equilibrium. Define export shares

xij ≡ Qij∑
j′ Qij′

and import shares mij ≡ Qij
Nj

in the baseline equilibrium. Denote the coun-

terfactual parameters and equilibrium outcomes by primes. Plugging Qi =
∑

j Qij into

equation (2.4), we can write the system of equations for each equilibrium as

δ′i =
(

R′
iA

′
i

w′
i

)(∑
j Q

′
ij

)α
Q′
ij = δ′i

ρ′ij∑
i′∈0∪I δ′

i′ρ
′
i′j
N ′
j

δi =
(
RiAi
wi

)(∑
j Qij

)α
Qij = δi

ρij∑
i′∈0∪I δi′ρi′j

Nj

.

Define ŷ ≡ y′
y for every variable y. For example, δ̂i ≡

δ′i
δi

.

We now rewrite the counterfactual equilibrium equations in terms of baseline equilib-

rium shares xij ,mij , the scale elasticity α, (relative) counterfactual exogenous parameters

Â, R̂, ŵ, ρ̂, N̂ , and (relative) counterfactual endogenous qualities δ̂.

First, divide the counterfactual free-entry condition by the baseline free-entry condition

to obtain an expression for relative quality:

δ′i
δi

=
R̂iÂi

ŵi

(∑
j∈I Q

′
ij∑

j∈I Qij

)α

=
R̂iÂi

ŵi

∑
j∈I

Qij∑
j∈I Qij

Q′
ij

Qij

α

=
R̂iÂi

ŵi

∑
j∈I

xij
Q′
ij

Qij

α

(2.19)
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Second, divide the counterfactual gravity equation by the baseline gravity equation to obtain

an expression for relative bilateral flows:

Q′
ij

Qij
=
δ′i
δi


ρ′ij∑

i′∈0∪I δ′
i′ρ

′
i′j
N ′
j

ρij∑
i′∈0∪I δi′ρi′j

Nj

 =

δ′i
δi

ρ′ij
ρij

N ′
j

Nj∑
i′∈0∪I

δi′ρi′j∑
i′∈0∪I δi′ρi′j

δ′
i′ρ

′
i′j

δi′ρi′j

=
δ̂iρ̂ijN̂j∑

i′∈0∪I
Qi′j
Nj

δ̂i′ ρ̂i′j

=
δ̂iρ̂ijN̂j

m0j +
∑

i′∈I mi′j δ̂i′ ρ̂i′j

Plug this expression for relative bilateral flows into equation (2.19) and rearrange terms to

obtain the following system of I equations with unknowns {δ̂i}Ii=1:

δ̂i =
(
R̂iÂi/ŵi

) 1
1−α

∑
j∈I

xij ρ̂ijN̂j

m0j +
∑

i′∈I mi′j δ̂i′ ρ̂i′j

 α
1−α

. (2.20)

2.12.2 Inferring the number of potential patients

A baseline calibration of our model requires α, xij , and mij in order to use equation (2.20)

to compute relative counterfactual outcomes. We have estimated α. The export shares

xij ≡ Qij∑
j Qij

are easily computed using the observed trade matrix.58 The challenge is

computing import shares mij ≡ Qij
Nj

because we do not observe Nj ; while we observe the

number of Medicare beneficiaries in region j, not all beneficiaries are in the market for all

services. This section describes the assumptions we make in order to infer the values of

the relevant market size Nj ∀j ∈ I. Specifically, we assume per capita demand is uniform,

outside-option quality is constant across regions, and the average outside-option share is

10%, as described below.

We have estimated θj = Nj/Φj in equation (2.12). We observe the number of beneficiaries

58. Dingel and Tintelnot [2021] document overfitting problems when calibrating gravity models using
noisy observed shares. We obtain similar counterfactual outcomes when calibrating our model using gravity-
predicted shares.
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enrolled in Traditional Medicare in region j, which we denote STM
j . By definition, m0j =

δ0j
Φj

.

We assume δ0j = δ0 ∀j and Nj ∝ STM
j . This implies

m0j =
δ0j
Φj

=
δ0θj
Nj

=
δ0θj

sSTM
j

,

where s is a constant of proportionality. We set δ0
s such that the average outside-option

share is 10%, 1
I
∑

jm0j = 0.1. This requires δ0
s = 0.1×I∑

j θj/S
TM
j

. With m0j in hand, we can

infer Nj :

m0j = 1−
∑
i∈I

mij = 1− 1

Nj

∑
i∈I

Qij =⇒ Nj =
1

1−m0j

∑
i∈I

Qij .

With Nj in hand, we can compute all import shares, mij =
Qij
Nj

∀i ∈ 0 ∪ I,∀j ∈ I.

We exclude the Anchorage, Alaska HRR from our counterfactual computations. The

entire state of Alaska is one (geographically isolated and very large) HRR. The average

within-Alaska-HRR procedure incurs more than 60 kilometers of travel. In the gravity

regression, Alaska has the smallest exporter fixed effect: very few patients travel to Alaska for

care. Alaska’s importer fixed effect is quite large because Alaskans import about 15% of their

services and the average import traverses 3, 616 kilometers. As a result, the implied outside-

option share would exceed one when we set the nationwide average to 10%. We therefore

exclude the Alaska HRR from the economy when computing counterfactual outcomes. Given

its considerable geographic isolation, Alaska would have little influence on outcomes in other

regions.

The qualitative and spatial patterns of counterfactual outcomes are the same if we assume

the average outside-option share is 20% rather than 10%.
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2.12.3 Counterfactual outcomes with multiple patient types

This section describes how to compute counterfactual equilibrium outcomes relative to base-

line equilibrium outcomes when there are multiple patient types who face heterogeneous

trade costs. The derivation is very similar to that of Section 2.12.1. Define import shares

mijκ ≡ Qijκ
Njκ

in the baseline equilibrium. Define patient-type shares njκ ≡ Njκ
Nj

. We rewrite

the system of baseline and counterfactual gravity equations (2.15) and free-entry condi-

tion (2.4) as follows:

δ′i =
(

R′
iA

′
i

w′
i

)(∑
j Q

′
ij

)α
Q′
ij = δ′i

∑
κ

ρ′ijκ∑
i′∈0∪I δ′

i′ρ
′
i′jκ

N ′
jκ

δi =
(
RiAi
wi

)(∑
j Qij

)α
Qij = δi

∑
κ

ρijκ∑
i′∈0∪I δi′ρi′jκ

Njκ

.

As above, dividing the counterfactual free-entry condition by the baseline free-entry condition

yields the expression for relative quality in equation (2.19). Second, divide the counterfactual

gravity equation by the baseline gravity equation to obtain an expression for relative bilateral

flows:

Q′
ij

Qij
=
δ′i
δi


∑

κ
ρ′ijκ∑

i′∈0∪I δ′
i′ρ

′
i′jκ

N ′
jκ∑

κ
ρijκ∑

i′∈0∪I δi′ρi′jκ
Njκ

 =
δ′i
δi


∑

κ
ρ′ijκ
Φ′
jκ
N ′
jκ∑

κ
ρijκ
Φjκ

Njκ

 = δ̂i
∑
κ

njκ
mij
mijκ

ρ̂ijκ

Φ̂jκ

N̂jκ

Plugging this expression for relative bilateral flows into equation (2.19) and then rear-

ranging terms yields the following system of I equations with unknowns {δ̂i}Ii=1:

δ̂i =
(
R̂iÂi/ŵi

) 1
1−α

∑
j∈I

xij

(∑
κ

njκ
mij

mijκρ̂ijκ

m0jκ +
∑

i′∈I mi′jκδ̂i′ ρ̂i′jκ
N̂jκ

) α
1−α

. (2.21)
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2.12.4 Inferring the number of potential patients of each type

Because we do not observe patients who select the outside option, we make assumptions that

allow us to infer Njκ and thus njκ and mijκ, which are needed to compute counterfactual

outcomes using equation (2.21). We start from a type-specific variant of the gravity equa-

tion (2.7) with fixed effects, as in the single-type equation (2.12). The estimating equation

is

lnE
(
RQijκ

)
= ln δi + ln

(
Njκ

Φjκ

)
+ γκXij = ln δi + ln θjκ + γκXij .

This yields an estimate of θjκ = Njκ/Φjκ.

As in the single-type case above, we assume per capita demand is uniform and outside-

option quality is constant across regions. We observe the number of beneficiaries of type κ

enrolled in Traditional Medicare in region j, which we denote STM
jκ . We assume δ0j = δ0 ∀j

and Njκ = sSTM
jκ , where s is a constant of proportionality that is common across types.

This implies

m0jκ =
δ0
Φjκ

=
δ0θjκ
Njκ

=
δ0θjκ

sSTM
jκ

.

Let K =
∑

κ 1 denote the number of patient types. We set δ0
s such that the average outside-

option share, across all types, is 10%, 1
IK
∑

jκm0jκ = 0.1. This implies

m0jκ = 0.1×
θjκ/S

TM
jκ

1
IK
∑

j′κ′ θj′κ′/S
TM
j′κ′

.

Using the resulting Njκ = 1
1−m0jκ

∑
i∈I Qijκ allows us to compute all import shares.
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2.13 Additional exhibits

Figure 2.13: Trade in medical services has increased over time

0

.05

.1

.15

.2

.25
T

ra
d

e
d

 S
h

a
re

 o
f 

P
ro

d
u

c
ti

o
n

2011 2012 2013 2014 2015 2016 2017

 

Note: This figure shows the annual exported share of production from 2011 to 2017. Production and trade
are computed using the Medicare 20% carrier Research Identifiable Files for the relevant years. Production
is exported when the patient’s address and the service location are in different HRRs. HRR definitions are
from the Dartmouth Atlas Project.
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Figure 2.14: Population elasticities of input costs

(a) Physicians’ earnings (commuting zones)
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(b) Physicians’ earnings (CBSAs)
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(c) Other healthcare workers’ earnings
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(d) Median house value
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Notes: This figure depicts relationships between input costs and population sizes. Panel a shows physicians’
earnings across 111 commuting zones using data from Gottlieb et al. [2020]. Panels b, c, and d show variation
across CBSAs in physicians’ earnings, other healthcare workers’ earnings, and median house values (a proxy
for real estate and other locally priced inputs) using data from the 2015–2019 American Community Survey.
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Figure 2.15: Variation in trade shares across procedures and regions

(a) Distribution of import share by procedure
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(b) Distributions of import shares for common and rare services
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Notes: Panel a shows the distribution of the imported consumption share across procedures for procedures performed at least 20 times (in our
20% sample of Medicare claims). Imports are defined as care provided to a patient who lives in one HRR at a service location in a different HRR.
Panel b splits all services into two groups based on how often they are performed nationally. Those performed less often than the median are
shown in red, and those performed more often than the median service are shown in blue. Import shares are substantially higher for the rarer
services.
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Figure 2.16: Specialists’ income patterns do not explain the output-population gradient
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these elasticities are unrelated to the total national count of physicians in those specialties.
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Figure 2.17: Larger markets produce a greater variety of procedures
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Notes: This figure shows the local relationship between the number of distinct services performed in the
Medicare data in a given HRR and that HRR’s population. More populous HRRs perform more unique
services; Table 2.20 reports the population elasticities. We use procedure classifications from the American
Academy of Professional Coders, which groups codes into surgeries, anesthesia, radiology, pathology, medical,
and evaluation & management services [AAPC, 2021]. We combine Category II codes, Category III codes
and Multianalyte Assays into “other.”
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Figure 2.18: Leapfrog Safety Grade vs. estimated quality: common and rare

(a) Leapfrog Safety Grade vs. quality for common ser-
vices
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(b) Leapfrog Safety Grade vs. quality for rare services
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Notes: This figure shows the relationship between exporter fixed effects, estimated separately for common and rare services, and the Leapfrog
Safety Grade. The vertical axis shows the exporter fixed effects for each HRR estimated from equation (2.12), in Panel a using trade in common
services, and in Panel b using trade in rare services. The horizontal axis in both panels is the average safety grade for hospitals in an HRR,
determined by the Leapfrog Group. The Leapfrog Safety Grades range from A to F, which we scale as integers from 1 (for F) to 5 (for A). We
then compute the mean score for all hospitals in the HRR. The Safety Grades are positively associated with the exporter fixed effects for both
rare and common procedures.
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Figure 2.19: Counterfactual change in quality δ for rare vs. common services when increasing reimbursement by 10%
everywhere

(a) Change (%) in quality δ for common services (b) Change (%) in quality δ for rare services

Notes: Both panels show the impacts of increasing reimbursements by 10% everywhere (R̂i = 1.1 for all i) on the quality of production in each
region, δi. Panel a illustrates the change for common services, and Panel b for rare services. Each panel is based on the baseline trade matrix
for the respective set of services. Panel a uses an agglomeration elasticity of α = 0.6 and Panel b uses α = 0.9. The common-services scenario
excludes the Alaska HRR and the rare-services scenario excludes four HRRs (Alaska, Hawaii, Houma, La., and Minot, N.D.). The pattern of
outcomes is qualitatively similar but the magnitudes vary more for rare services.
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Figure 2.20: Spillovers from higher reimbursements in one region depend on that region’s net imports

(a) Correlation of δ̂i and Φ̂i across non-treated regions
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(b) Change in non-treated regions’ aggregate market ac-
cess
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Regression line: y = −0.0507 (0.0032) * x + 0.0071 (0.0007)

Notes: This figure characterizes counterfactual outcomes when raising reimbursements by 30 percent in one HRR. We conduct this exercise for
each region, one at a time, and each observation in each panel represents one such counterfactual scenario. Panel a illustrates the contrast in
spillovers as a function of net imports of the treated region. The vertical-axis value for each observation reports the correlation—across all regions
other than the treated one for the exercise in question—between the counterfactual changes δ̂i and Φ̂i. The scatterplot relates these correlations
to the treated region’s net import share, which is plotted on the horizontal axis. When the treated region is a net exporter, changes in quality
δi and in market access Φi for non-treated regions move in opposite directions: a region whose output quality declines experiences an increase
in market access through imports from the treated region. However, increasing reimbursements in a net-importing region often has the opposite
effect: neighboring regions with quality reductions also experience lower market access, (changes in δi and Φi are positively correlated). For each
counterfactual, the vertical-axis value in Panel b shows the aggregate impact on patient market access excluding the treated region. The panel
relates this impact to the treated region’s net imports, shown on the horizontal axis. When the treated region is a net importer, the aggregate
impact on market access for non-treated regions tends to be smaller or even negative.
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Figure 2.21: Deciles of Procedure Frequency in Confidential and Public Medicare Data
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Notes: This figure shows the share of procedures in each frequency decile in the Medicare public data
compared to the Medicare confidential data. The classification of procedures by frequency deciles appears
largely consistent between the two data sources for Medicare patients.
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Figure 2.22: Deciles of Procedure Frequency in Medicare and Private Insurance Data
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The simple correlation between quantile bins is 0.8287
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Notes: This figure shows the share of procedures in each frequency decile in the Medicare versus privately
insured data. The classification of procedures by frequency deciles appears largely consistent when comparing
public Medicare data with data on privately insured patients from the Health Care Cost Institute (HCCI).
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Table 2.7: Higher-income patients are less sensitive to distance: Procedure-level estimates

(1) (2) (3) (4) (5)
25min visit cataract removal knee joint repair heart artery bypass gallblader removal

Distance (log) -2.075 -2.281 -2.255 -2.246 -2.135
(0.0790) (0.0829) (0.0947) (0.0876) (0.0855)

Distance (log) × income tercile 2 0.0946 0.143 0.171 0.0987 0.205
(0.0610) (0.0819) (0.0754) (0.0823) (0.0685)

Distance (log) × income tercile 3 0.206 0.287 0.227 0.402 0.314
(0.0777) (0.0914) (0.0937) (0.0927) (0.0907)

Observations 271,728 268,400 262,352 240,352 250,800
Patient market-income FE & Provider market FE Yes Yes Yes Yes Yes

Notes: This table reports the coefficient on log distance for each income tercile from gravity regressions estimated separately for five procedures
varying in frequency: 25 min office visit (HCPCS 99214), cataract removal (66984), knee joint repair (27447), heart artery bypass (33533), and
gallblader removal (47562). The dependent variable in all regressions is the number of procedures traded. Each regression includes log distance
interacted with an income tercile indicator, an indicator for same-HRR observations (i = j), an exporting HRR fixed effect, and an income-tercile-
importing-HRR fixed effect. The coefficients for higher income terciles are positive, indicating that patients residing in higher-income ZIP codes
are less sensitive to distance. Trade flows are computed from the Medicare 20% carrier Research Identifiable Files. HRR definitions are from the
Dartmouth Atlas Project. Standard errors (in parentheses) are two-way clustered by patient market and provider market.
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Table 2.8: Estimates of a strong home-market effect by CBSA

(1) (2) (3) (4) (5) (6)
Estimation method: PPML PPML PPML IV PPML IV
Instrument: 1940 pop Bedrock

Provider-market population (log) 0.734 0.739 0.703 0.716 0.739 1.161
(0.0232) (0.0234) (0.0205) (0.0249) (0.0259) (0.307)

Patient-market population (log) 0.395 0.393 0.417 0.396 0.394 0.178
(0.0290) (0.0292) (0.0264) (0.0261) (0.0311) (0.373)

Distance (log) -2.311 -3.464 -3.403 -3.400 -4.677
(0.0493) (0.324) (0.295) (0.347) (1.056)

Distance (log, squared) 0.110 0.104 0.105 0.210
(0.0323) (0.0288) (0.0346) (0.0850)

p-value for H0: λX ≤ λM 0.000 0.000 0.000 0.000 0.000 0.063
Observations 857,476 857,476 857,476 857,476 781,456 781,456
Sample: All CBSAs All CBSAs All CBSAs All CBSAs Bedrock data Bedrock data
Distance elasticity at mean -1.90 -1.92 -1.90 -1.68
Distance deciles Yes

Notes: This table reports estimates of equation (2.8), which estimates the presence of weak or strong home-market effects. The dependent
variable in all regressions is the value of trade computed by assigning each procedure its national average price. The independent variables are
patient- and provider-market log population, log distance between CBSAs, and an indicator for same-CBSA observations (i = j). The positive
coefficient on provider-market log population implies a weak home-market effect, and the fact that this coefficient exceeds that on patient-market
population implies a strong home-market effect. Column 2 makes the distance coefficient more flexible by adding a control for the square of
log distance. Column 3 replaces parametric distance specifications with fixed effects for each decile of the distance distribution. Column 4 uses
the provider-market and patient-market log populations in 1940 as instruments for the contemporaneous log populations when estimating by
generalized method of moments. Column 5 reports the PPML estimate on the subsample of regions for which we have data on depth to bedrock
available (N = 8842). Column 6 uses depth to bedrock in the importing and exporting regions as instruments for current log population in
those regions, respectively. Trade flows are computed from the Medicare 20% carrier Research Identifiable Files. HRR definitions are from the
Dartmouth Atlas Project. Standard errors (in parentheses) are two-way clustered by patient market and provider market.
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Table 2.9: Estimates of a strong home-market effect including facility spending

(1) (2) (3) (4)
Estimation method: PPML PPML PPML IV

Provider-market population (log) 0.687 0.700 0.689 0.829
(0.0576) (0.0525) (0.0382) (0.0586)

Patient-market population (log) 0.226 0.217 0.255 0.266
(0.0571) (0.0507) (0.0345) (0.0470)

Distance (log) -1.635 0.877 0.932
(0.0495) (0.316) (0.253)

Distance (log, squared) -0.254 -0.258
(0.0319) (0.0250)

Same hrr 0.434 1.791 4.685
(0.174) (0.238) (0.0637)

Observations 93,636 93,636 93,636 93,636
Distance elasticity at mean -2.76 -2.76
Distance deciles Yes

Notes: This table reports estimates of equation (2.8), which estimates the presence of weak or strong home-market effects, when including
professional and facility fees. The sample is all HRR pairs (N = 3062). The dependent variable in all regressions is the value of trade when
including professional and facility (inpatient and outpatient) fees at national average prices. The independent variables are patient- and provider-
market log population, log distance between HRRs, and an indicator for same-HRR observations (i = j). The positive coefficient on provider-
market log population implies a weak home-market effect, and the fact that this coefficient exceeds that on patient-market population implies a
strong home-market effect. Column 2 makes the distance coefficient more flexible by adding a control for the square of log distance. Column 3
replaces parametric distance specifications with fixed effects for each decile of the distance distribution. Column 4 uses the provider-market
and patient-market log populations in 1940 as instruments for the contemporaneous log populations when estimating by generalized method
of moments. Trade flows are computed from the Medicare 20% carrier, MedPAR, and outpatient claims Research Identifiable Files, excluding
emergency-room care and skilled nursing facilities. HRR definitions are from the Dartmouth Atlas Project. Standard errors (in parentheses) are
two-way clustered by patient market and provider market.
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Table 2.10: Estimates of a strong home-market effect excluding AZ, FL, CA

(1) (2) (3) (4)
Estimation method: PPML PPML PPML IV

Provider-market population (log) 0.647 0.647 0.649 0.663
(0.0811) (0.0701) (0.0425) (0.0626)

Patient-market population (log) 0.375 0.383 0.414 0.400
(0.0809) (0.0693) (0.0421) (0.0570)

Distance (log) -1.748 1.690 1.707
(0.0608) (0.428) (0.397)

Distance (log, squared) -0.360 -0.361
(0.0429) (0.0396)

Observations 67,600 67,600 67,600 67,600
Distance elasticity at mean -3.35 -3.35
Distance deciles Yes

Notes: This table reports estimates of equation (2.8), which estimates the presence of weak or strong home-market effects, excluding snowbird
states. The sample is all HRR pairs, excluding those in Arizona, Florida, or California. The dependent variable in all regressions is the value of
trade computed by assigning each procedure its national average price. The independent variables are patient- and provider-market log population,
log distance between HRRs, and an indicator for same-HRR observations (i = j). The positive coefficient on provider-market log population
implies a weak home-market effect, and the fact that this coefficient exceeds that on patient-market population implies a strong home-market
effect. Column 2 makes the distance coefficient more flexible by adding a control for the square of log distance. Column 3 replaces parametric
distance specifications with fixed effects for each decile of the distance distribution. Column 4 uses the provider-market and patient-market log
populations in 1940 as instruments for the contemporaneous log populations when estimating by generalized method of moments. Trade flows are
computed from the Medicare 20% carrier Research Identifiable Files. HRR definitions are from the Dartmouth Atlas Project. Standard errors
(in parentheses) are two-way clustered by patient market and provider market.
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Table 2.11: Estimates of a strong home-market effect excluding HRRs with high second-home share

(1) (2) (3) (4)
Estimation method: PPML PPML PPML IV

Provider-market population (log) 0.654 0.663 0.661 0.679
(0.0652) (0.0641) (0.0453) (0.0571)

Patient-market population (log) 0.369 0.362 0.392 0.382
(0.0639) (0.0619) (0.0424) (0.0564)

Distance (log) -1.675 0.364 0.372
(0.0509) (0.307) (0.279)

Distance (log, squared) -0.210 -0.211
(0.0300) (0.0273)

Observations 76,176 76,176 76,176 76,176
Distance elasticity at mean -2.64 -2.64
Distance deciles Yes

Notes: This table reports estimates of equation (2.8), which estimates the presence of weak or strong home-market effects, excluding HRRs with
a high second-home share. The sample is all HRR pairs excluding those in the top 10% based on the share of housing units that are vacant for
seasonal/recreational purposes in the 2013–2017 American Community Survey. See Table 2.10 notes on the variables, instruments, geographic
units, and standard errors.
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Table 2.12: Travel for dialysis

Distance (km) Share of output

All (Professional) All (Facility) All (Dialysis) No snowbird states (Dialysis) Snowbird states (Dialysis)

[0, 50) 0.77 0.77 0.94 0.94 0.93
[50, 100) 0.12 0.12 0.03 0.03 0.03
[100, .) 0.11 0.11 0.03 0.02 0.04

Notes: For the care described in each column and the distance intervals in each row, the entries in this table report the share of patients traveling
that distance from their residential ZIP code to the service location’s ZIP code. The first column shows professional claims (from Medicare’s
“carrier” file), the second column shows facility (hospital) claims, and the third column shows dialysis claims. The remaining columns split dialysis
claims between “snowbird” states (AZ, CA, and FL, following Finkelstein et al. 2016) and other states. In non-snowbird states, the table shows
that 94% of patients travel less than 50 km from their home for dialysis, and only 2% more than 100 km. This is less than one-fifth as much as
for other facility or professional care, suggesting that residential location is recorded correctly for almost all patients.
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Table 2.13: Contrasting geographies of colonoscopies and LVAD insertions

Colonoscopy LVAD Insertion

Code G0121 33979
N 58,798 333
Physicians 13,475 177
β̂

production
p 0.00 0.71
β̂

consumption
p -0.01 0.03

Share traded (HRR) 0.15 0.50
Share traded (CBSA) 0.15 0.48
Median distance traveled (km) 18.44 65.50
Share > 100km 0.06 0.37

Notes: This table reports statistics for two HCPCS codes: screening colonoscopy (G0121) and LVAD insertion (33979). We report the number
of times the procedure is performed in 2017 in our 20% sample of Medicare patients and the number of distinct physicians performing it. The
population elasticities of production and consumption are estimated using the Poisson models in equations (2.9) and (2.10) based on production
HRR and patients’ residential HRR, respectively. We also report the shares of procedures in which the patient and service location are in different
HRRs or CBSAs, the median distance traveled for all care, and the share in which the patient and service location are more than 100 kilometers
apart.
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Table 2.14: Estimates of a stronger home-market effect for rare diagnoses including facility spending

(1) (2) (3) (4) (5) (6)

λX Provider-market population (log) 0.665 0.659 0.649 0.662
(0.0573) (0.0560) (0.0557) (0.0516)

λM Patient-market population (log) 0.240 0.241 0.246 0.239
(0.0567) (0.0551) (0.0548) (0.0498)

µX Provider-market population (log) × rare 0.223 0.209 0.231 0.207
(0.0243) (0.0206) (0.0236) (0.0204)

µM Patient-market population (log) × rare -0.0793 -0.0753 -0.0841 -0.0700
(0.0216) (0.0158) (0.0210) (0.0161)

Observations 187,272 147,814 147,814 147,814 147,814 147,814
Distance controls Yes Yes Yes Yes
Distance [quadratic] controls Yes Yes
Patient-provider-market-pair FEs Yes Yes

Notes: This table reports estimates of equation (2.11), which introduces interactions with an indicator for whether a diagnosis is “rare” (provided
to less patients than the median diagnosis, when adding up all diagnoses nationally). The dependent variable in all regressions is the value
of trade when including professional and facility (inpatient and outpatient) fees at national average prices. The interactions with patient- and
provider-market population reveal whether the home-market effect is larger for rare diagnoses. The unit of observation is {rare indicator, exporting
HRR, importing HRR} so the number of observations is 2× 3062 in column 1. All diagnoses are included. Columns 2 onwards drop HRR pairs
with zero trade in both diagnosis groups, which leads to a larger sample than in Table 2.4 because trade in facility fees is included in addition
to professional fees for all diagnoses. Column 2 shows that this restriction has a negligible impact on the estimated log population coefficients.
Columns 1–4 control for distance using the log of distance between HRRs. Columns 5 and 6 add a control for the square of log distance. Columns 4
and 6 introduce a fixed effect for each ij pair of patient market and provider market, so these omit all covariates that are not interacted with the
rare indicator. The positive coefficient on provider-market population × rare across all columns indicates that the home-market effect is stronger
for rare than for common services. The negative coefficient on patient-market population × rare across all columns indicates that the strong
home-market effect has a larger magnitude for rare services. Trade flows are computed from the Medicare 20% carrier, MedPAR, and outpatient
claims Research Identifiable Files, excluding emergency-room care and skilled nursing facilities. HRR definitions are from the Dartmouth Atlas
Project. Standard errors (in parentheses) are two-way clustered by patient market and provider market.
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Table 2.15: Home-market effect is stronger for rare services controlling for patient engage-
ment

(1) (2)

Provider-market population (log) × common × high engagement -0.0355 -0.0354
(0.0349) (0.0347)

Provider-market population (log) × rare × low engagement 0.231 0.244
(0.0482) (0.0370)

Provider-market population (log) × rare × high engagement 0.481 0.360
(0.0808) (0.141)

Patient-market population (log) × common × high engagement 0.0440 0.0450
(0.0257) (0.0255)

Patient-market population (log) × rare × low engagement -0.146 -0.125
(0.0374) (0.0243)

Patient-market population (log) × rare × high engagement -0.477 -0.575
(0.0923) (0.271)

Distance (log) × common × high engagement -0.0548 0.146
(0.0209) (0.118)

Distance (log) × rare × low engagement 0.0488 0.716
(0.0375) (0.171)

Distance (log) × rare × high engagement -0.127 2.458
(0.0814) (2.764)

Distance (log, squared) × common × high engagement -0.0193
(0.0100)

Distance (log, squared) × rare × low engagement -0.0615
(0.0152)

Distance (log, squared) × rare × high engagement -0.277
(0.324)

Observations 226,936 226,936
Distance controls Linear Quadratic
Patient-provider-market-pair FEs Yes Yes
Additional distance elasticity at mean for high engagement: common procedures -0.05 -0.13
Additional distance elasticity at mean for high engagement: rare procedures -0.18 -1.34

Notes: This table reports estimates of a variant of equation (2.11), which adds interactions with indicators for whether a
procedure is “rare” (provided less often than the median procedure) and for whether a procedure is “high engagement” (median
number of distinct claims per patient for the procedure in a given year is above one) or low engagement. The unit of observation
is {rare indicator, high-engagement indicator, exporting HRR, importing HRR}, and the dependent variable is the value of
trade. Each column includes fixed effects for each ij pair of patient market and provider market, rare versus common procedures,
and high- versus low-engagement procedures, plus indicators for three categories (common × high-engagement, rare × low-
engagement, and rare × high-engagement) interacted with patient- and provider-market populations and distance covariates.
Covariates for common × low-engagement procedures are omitted, since they would lead to collinearity with the ij fixed
effects. Column 2 adds a control for the square of log distance and its interactions. The negative coefficient on provider-market
population and the positive coefficient on patient-market population for common and high-engagement procedures indicate
that the home-market effect is slightly less strong compared to common and low-engagement procedures, even though these
effects are not all statistically different from zero. The positive coefficient on provider-market population × rare and the
negative coefficient on patient-market population × rare for both high- and low-engagement procedures indicates that the
strong home-market effect is stronger for rare services, whether they are high- or low-engagement. The distance elasticity is
more negative for high-engagement procedures (both rare and common). Trade flows are computed from the Medicare 20%
carrier Research Identifiable Files. HRR definitions are from the Dartmouth Atlas Project. Standard errors (in parentheses)
are two-way clustered by patient market and provider market.
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Table 2.16: Gravity regression by procedure: individual procedures exhibit a strong home-market effect

(1) (2) (3) (4) (5) (6)
Procedure: Colonoscopy Cataract surgery Brain tumor Brain radiosurgery LVAD Colon removal
HCPCS code: G0121 66982 61510 61798 33979 44155

Provider-market population (log) 0.515 0.466 0.928 1.148 1.251 0.992
(0.0690) (0.0729) (0.0884) (0.119) (0.168) (0.165)

Patient-market population (log) 0.351 0.436 0.191 0.165 0.181 -0.143
(0.0692) (0.0690) (0.0726) (0.0817) (0.141) (0.147)

Distance (log) 0.446 0.965 1.018 1.484 2.176 3.097
(0.395) (0.495) (0.534) (0.686) (0.910) (1.630)

Distance (log, squared) -0.217 -0.270 -0.268 -0.304 -0.366 -0.500
(0.0394) (0.0491) (0.0564) (0.0697) (0.0922) (0.171)

p-value for H0: λX ≤ λM 0.100 0.407 0.000 0.000 0.000 0.000
Observations 93,636 93,636 93,636 93,636 93,636 93,636
Distance elasticity at mean -2.66 -2.90 -2.82 -2.87 -3.07 -4.07
Total count 58,798 43,604 1,922 752 333 112

Notes: This table reports estimates of equation (2.8) for procedure-level trade for six selected HCPCS codes, which vary in how common they
are. For all procedures, the sample is all HRR pairs (N = 3062). The dependent variable in all regressions is the value of trade in the procedure
(computed using each procedure’s national average price). The independent variables are patient- and provider-market log population, log distance
and square of log distance between HRRs, and an indicator for same-HRR observations (i = j). The positive coefficient on provider-market log
population implies a weak home-market effect, and the fact that this coefficient exceeds that on patient-market population implies a strong home-
market effect. Trade flows are computed from the Medicare 20% carrier Research Identifiable Files. HRR definitions are from the Dartmouth
Atlas Project. Standard errors (in parentheses) are two-way clustered by patient market and provider market. The bottom row reports the total
national count of the procedure in our sample. Common procedures include screening colonoscopy (column 1) and cataract surgery (column 2).
In a screening colonoscopy, the physician visualizes the large bowel with a camera to look for cancer. In a cataract surgery, the surgeon removes a
cloudy lens from the eye to improve vision. Relatively rare procedures include brain radiosurgery (column 3), brain tumor removal (column 4), left
ventricular assist device (LVAD) implantation (column 5) and colon removal (column 6). In brain radiosurgery, an area of the brain is irradiated,
often to kill a tumor. In an LVAD implantation, a pump is implanted in the chest to assist a failing heart in pumping blood. Brain tumor and
colon removals involve surgical removal of the respective structures.
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Table 2.17: Scale elasticity estimates for CBSAs

Panel A: All services Baseline No Diagonal Controls

OLS 0.888 1.052 0.907
(0.009) (0.017) (0.010)

2SLS: population (log) 0.845 1.023 0.852
(0.010) (0.016) (0.013)

2SLS: population (1940, log) 0.848 0.928 0.851
(0.014) (0.025) (0.017)

2SLS: bedrock depth 0.810 0.762 0.812
(0.038) (0.099) (0.044)

Panel B: Rare services

OLS 0.941 1.108 0.945
(0.010) (0.028) (0.011)

2SLS: population (log) 0.914 1.106 0.909
(0.013) (0.026) (0.016)

2SLS: population (1940, log) 0.942 1.019 0.941
(0.017) (0.044) (0.022)

2SLS: bedrock depth 0.814 0.095 0.807
(0.063) (0.393) (0.078)

Notes: This table reports estimates of α from ordinary least squares (OLS) or two-stage least squares
(2SLS) regressions of the form l̂n δi = α lnQi + lnRi + lnwi + ui using core-based statistical areas (CBSAs)
as the geographic units. The dependent variable l̂n δi is estimated in equation (2.12), Qi is region i’s total
production for Medicare beneficiaries, Ri is Medicare’s Geographic Adjustment Factor, the wi covariate
includes mean two-bedroom property value and mean annual earnings for non-healthcare workers, and ui

is an error term. In the rows labeled “2SLS” we instrument for lnQi using the specified instruments. The
lnRi and lnwi controls are omitted in the columns labeled “no controls”. In the columns labeled “no diag”,
Qii observations were omitted when estimating l̂n δi in equation (2.12). Standard errors (in parentheses) are
robust to heteroskedasticity.
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Table 2.18: Classification of rare and common procedures in Medicare vs. private insurance
data

Above median HCCI 0 1 total
Above median CMS

0 82 18 100
1 12 88 100

Notes: This table compares the percentage of procedures classified as rare (above median frequency equals
one) or common (above median frequency equals zero) in the public Medicare data versus the private in-
surance data from the Health Care Cost Institute (HCCI). Classifying procedures as rare versus common is
consistent when using Medicare or privately insured data.

Table 2.19: Specialization earnings and frequency

(1) (2) (3)
Dependent variable: Per capita population elasticity

Number of physicians in specialization (log, national) -0.0716 -0.0677
(0.0139) (0.0137)

Mean earnings (log) -0.245 -0.174
(0.0697) (0.0543)

Observations 209 209 209
R-squared 0.199 0.050 0.223

Notes: This table reports estimates of a regression of per capita population elasticity of physician count
on the national count of physicians and mean earnings. Each observation is an NPPES taxonomy code.
Earnings (wage and business income) data from Gottlieb et al. [2020] are reported by Medicare specialty
groups. We use a crosswalk to map Medicare specialty groups to NPPES taxonomy codes. The estimation
sample excludes 11 taxonomy codes that are not mapped to any Medicare specialty. Standard errors (in
parentheses) are robust to heteroskedasticity.
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Table 2.20: Larger markets produce a greater variety of procedures

(1) (2) (3) (4) (5) (6) (7) (8)
All Anesthesia E&M Medical Other Pathology Radiology Surgery

Population (log) 0.357 0.292 0.169 0.294 0.428 0.358 0.201 0.400
(0.00736) (0.0132) (0.00528) (0.00663) (0.0115) (0.0204) (0.00610) (0.00959)

Observations 306 306 306 306 306 306 306 306
Notes: This table reports the population elasticity of the number of distinct service codes produced in a region, estimated using Poisson pseudo-
maximum likelihood (PPML). Column 1 shows the coefficient including all service types. The remaining columns show the coefficients for
specific categories of service types. We use procedure classifications from the American Academy of Professional Coders, which groups codes into
surgeries, anesthesia, radiology, pathology, medical, and evaluation & management (“E&M”) services [AAPC, 2021]. We combine Category II
codes, Category III codes and Multianalyte Assays into “other.”
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CHAPTER 3

KNOWLEDGE GROWTH AND SPECIALIZATION

3.1 Introduction

Many fields, such as computer science, molecular biology, and medicine, have a rapidly

growing knowledge base. Do expert workers respond to growth in knowledge by becoming

more specialized? We study this empirically in the context of oncology, which has experienced

explosive growth in knowledge. Using a panel of Medicare claims data and historical cancer

treatment guidelines, we test if New advancements occur at a breakneck pace in computer

science, basic sciences, and medicine1. Experts must stay at the frontier of this rapidly

growing knowledge base. However, staying up to date may be costly. Specialization limits the

information one must keep up with and the required working knowledge to be at the frontier

to a manageable scope. Several economic theories predict that workers should become more

specialized as general knowledge increases [Becker and Murphy, 1992, Jones, 2009]. Do expert

workers respond to growth in the depth of knowledge by increasing worker specialization?

We empirically evaluate how specialization responds to growth in knowledge in the con-

text of medical oncology. Medical oncologists are physicians who treat cancer patients med-

ically (i.e., non-surgically). Cancer is a condition with a vast demand for treatment; Cancer

is the second leading cause of death in the United States [Centers for Disease Control and

Prevention, 2022] and the lifetime risk of cancer is 40% [American Cancer Society, 2020].

As a result, there has been substantial research and innovation in cancer drugs over the

last few decades. For example, we find that the total length of National Comprehensive

Cancer Network Guidelines, a “complete library” of cancer guidelines, has grown from 1,075

pages in 2002 to 5,760 pages in 2020. Similarly, the total number of FDA-approved anti-

cancer drugs increased from 90 to 243 (data from Pantziarka et al. [2021]).

1. Research in collaboration with Pauline Mourot.
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We conceptualize the relationship between general knowledge growth and specialization

in this context using the model from Becker and Murphy [1992]. Oncologists can treat every

type of cancer patient or collaborate with other oncologists to divide patients by cancer

type. If they divide patients by cancer type, they will produce a higher quantity or quality

of patient care. For example, an oncologist specializing in breast cancer may spend less time

keeping up to date with various clinical guidelines, allowing higher patient throughput. They

may also have more experience with breast cancer therapies, leading to higher quality of care.

However, oncologists may also face coordination costs that limit their ability to specialize.

These include the types of challenges that many organizations face, including contracting,

incentive, and agency issues. The optimal team size and degree of specialization balance

the benefits of greater specialization with the increased coordination costs of larger teams.

Becker and Murphy [1992] postulate that increasing general knowledge increases the returns

to specialization and pushes the equilibrium worker to a more specialized role in a larger

team. We aim to estimate this relationship empirically.

To do so, we combine a novel collection of historical cancer guidelines data with a 21-year

panel of Medicare claims data. We proxy the growth in clinically relevant knowledge with

the increase in the length of comprehensive cancer guidelines. We construct a simulated

instrument of exposure to knowledge growth. In this instrument, we sum the increase in

guidelines across all fields of cancer that a physician works in. As such, this instrument

combines two sources of variation: differences in the sets of cancer subfields that physicians

work in and the differential rates of knowledge growth observed across these subfields.

This simulated instrument suffers from omitted variables bias, as noted generally of

formula instruments in Borusyak and Hull [2020a]. In particular, oncologists who work in

more fields are mechanically more exposed to higher levels of knowledge growth. To purge

this bias, we recenter this simulated instrument using the general approach developed by

Borusyak and Hull [2020a]. Our recentering procedure eliminates the correlation between
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the simulated instrument and key physician observables, including physicians’ region size

and the number of other oncologists in the same organization.

We then test how exposure to knowledge growth influences oncologist specialization. Our

primary measure of specialization is a physician-level Herfindahl–Hirschman index (HHI)

calculated over the share of clinical management work in each cancer subfield. Oncologists

who start specialized become significantly more specialized in response to knowledge growth.

In contrast, oncologist who start out as general oncologists do not become more specialized

in response to knowledge growth. Such findings indicate the possibility of high coordination

costs in oncology when interpreted through the framework of Becker and Murphy [1992].

First, we contribute to the literature on specialization. Explanations for specialization

are as old as economics itself [Smith, 1776]. In a seminal paper, Becker and Murphy [1992]

hypothesized that specialization is limited by coordination costs and the extent of general

knowledge. They model an increase in general knowledge as an increase in the returns to time

spent learning skills to do specific subtasks of production. They then show that their model

predicts that specialization and team size will increase if the amount of general knowledge

increases. This seminal work establishes a model but does not include an empirical analysis.

To our current knowledge, the proposed project would be the first to empirically test the

predictions of this foundational model.

This work also contributes to the health economics literature on the causes of medical

specialization. Specialization has been increasing in medicine for the last century [Dalen

et al., 2017]. Baumgardner [1988b] shows that market size influences the scope of practice,

showing that general practitioners perform a narrow range of activities in larger markets.

Meltzer and Chung [2010] show that specialization between two types of clinical settings

is driven by how frequently the same patients use both settings. To our knowledge, we

contribute the first robust empirical examination of the extent to which knowledge growth

contributes to growing specialization.
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We also contribute to the literature about the consequences of knowledge growth. [Jones,

2009] documents that a growing “burden on knowledge” on inventors, who are knowledge

producers, leads to greater specialization in fields with deeper knowledge. We extend the in-

vestigation of the “burden of knowledge” to physicians, who are primarily users of knowledge

[Jain et al., 2019]. Our results suggest that the burden of knowledge weighs less heavily on

users than on producers of knowledge.

Finally, this work contributes a novel examination of the cumulative impact of technolog-

ical change to an extensive empirical literature on the consequences of technological change

in medicine. Most of this literature focuses on single technologies, each with varied economic

impacts on providers and patients Skinner [2011], Chandra et al. [2014], Skinner and Staiger

[2015], Arrow et al. [2020]. Our work is novel in that it considers the cumulative effect of

technology on the organization of production in healthcare.

3.2 Data

3.2.1 Guidelines Data

To measure growth in knowledge, we create a novel dataset of historical cancer guidelines data

from the National Comprehensive Cancer Network. The National Comprehensive Cancer

Network (NCCN) is a prominent “not-for-profit alliance of 33 leading cancer centers devoted

to patient care, research, and education” [NCCN, 2023a]. In 1996, they started releasing

treatment guidelines for common types of cancer. In 2001, they released the first “complete

library” of cancer treatment guidelines [NCCN, 2023b]. The NCCN guidelines are the leading

set of cancer treatment guidelines. They represent an expert consensus on approaches to

cancer treatment and are updated multiple times a year to reflect the most up-to-date

evidence. They are widely used by oncologists; Per one survey, “96% of oncologists think

that the NCCN guidelines are important to use when making decisions about patient care”
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[McGivney, 2008].

The guidelines contain recommendations for all stages of the cancer treatment process,

including “diagnosis, imaging, drug therapies, radiation, [and] surgery” [McGivney, 2008].

All of this information is relevant to medical oncology, as oncologists have two key roles in

cancer care. The first role is managing “systemic therapies”, primarily drug treatments like

chemotherapy. The second role is to serve as the central node in a network of other specialists

who may be involved in a patient’s cancer care, e.g., cancer surgeons or pathologists. As

such, oncologists are trained in “comprehensive” cancer care management and must stay up

to date with the high-level recommendations for all types of cancer treatments [Popescu

et al., 2014].

The guidelines serve as a proxy for the volume of relevant clinical knowledge. The

guidelines are organized anatomically, with separate documents for different cancer types,

such as breast and colorectal cancer. We proxy the volume of knowledge in a given year for

a type of cancer as the page length of the first set of guidelines per year for that cancer type.

This proxy relies on several key assumptions to be a valid measure of the volume of knowl-

edge. First, this proxy assumes that each page represents an equal volume of knowledge.

Reassuringly, over the main time period for our research design (2008-2014), the formatting

of the guidelines was unchanged, suggesting that increases in page length result from more

content, not changes in formatting. Second, the proxy assumes that any relevant knowledge

not included in the guidelines is either exactly proportional to the volume of information the

guideline pages contain or remains constant over time. For example, the guidelines may not

include all relevant information about a chemotherapy drug, but we assume it contains a

consistent share of the information about each drug. Similarly, the cancer treatment guide-

lines are built on a foundation of pre-existing knowledge in fields like internal medicine. We

assume that the relevant volume of knowledge in internal medicine does not substantially

increase over this time. Therefore, the change in the length of guidelines reflects the full

110



change in the volume of relevant knowledge.

3.2.2 Medicare Claims Data

We also use a 21-year panel of Medicare claims data. Medicare provides federally sponsored

health insurance coverage for disabled adults and most U.S. adults over sixty-five. This age

group bears the highest cancer incidence in the U.S., making it the ideal population to study

cancer care for Disease Control and Prevention [2019]. We use a 20% sample of Medicare

Part B Claims from 1999-2019.

Using this data, we construct an annual panel of oncologists who meet minimum patient

counts. First, we restrict our sample to physicians whose most commonly listed specialty in

a year is Hematology, Medical Oncology, or Hematology-Oncology. For our main analysis,

we restrict to a balanced panel of oncologists from 2008 to 2014 who meet minimum patient

volumes as described below.

Next, we measure which types of cancer an oncologist manages. For this, we restrict our

sample to the evaluation and management claim lines billed by each oncologist. As such, this

restricts our sample to instances where the oncologist managed care and decision-making for

a patient, which requires high-level medical knowledge and judgment.

We then assign each evaluation and management visit to a cancer type based on the

patient’s primary cancer type. We determine a patient’s primary cancer as the specific

type of cancer for which they have the most diagnosis codes in that year from any type of

procedure. For example, if a patient has diagnosis codes for both “Unspecified” cancer and

breast cancer, they are considered to have breast cancer. If an oncologist sees that patient,

they are denoted as having managed a breast cancer patient. Among this sample, we further

restrict to physicians who evaluated and managed at least 25 unique cancer patients in that

year. This minimum patient count ensures that our measurements are based on a sufficient

patient volume to capture a significant share of the types of cancer an oncologist treats.
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We also measure the share of time they spend managing each type of cancer. Each claim

line in our sample contains an evaluation and management HCPCS code, which we map

to work Relative Value Units (wRVUs). Work Relative Value Units are measures Medicare

uses to estimate the amount of physician work various HCPCS codes require. In the context

of evaluation and management codes, work Relative Value Units reflect the expected time

required to perform various types of evaluation and management. We use this to proxy the

share of time that each oncologist spends managing each type of cancer, which we use later

to measure physician specialization.

3.2.3 Medicare Data on Provider Practice and Specialty

We also use the Medicare Data on Provider Practice and Specialty (MD-PPAS) to measure

physician characteristics. This variable allows us to observe the physician’s birth year and

back out their age at the start of our panel period. It also contains the top two Tax ID num-

bers from which each oncologist bills. Multiple physicians can share the same tax ID number,

which implies they are in the same organization or group practice. As such, this variable

provides information about if a physician is a solo provider or in a bigger organization.

3.2.4 Measuring relevant knowledge growth for each oncologist

Next, we combine the Medicare claims and guidelines data to measure our key treatment

variable, the growth in relevant knowledge for each oncologist. First, for each oncologist, we

determine the set of cancer types they manage in a baseline year, in this case, 2008. The set

of cancers for oncologist i in 2008 can denoted with Ci. Each cancer, c, has an increase in

relevant guideline page count ∆kc over the following five years (2009 to 2014). We assume

that the full guideline and change in guidelines for cancer c is relevant to a physician if they

treat cancer c in the baseline year. With this assumption, we can calculate oncologist i’s

exposure to knowledge growth as ∆ki =
∑

Ci
∆kc.
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For example, suppose oncologist i treats only lung and breast cancer in 2008. Also,

suppose that over the following five years, the lung cancer guidelines increased by 50 pages

( ∆klung = 50) and the breast cancer guidelines increased by 100 pages (∆kbreast = 100).

Then, oncologist i would be exposed to 150 pages of knowledge growth over the following

five years (2009 to 2014).

We custom group ICD-9 diagnosis codes to map from cancer types treated in claims to

guidelines. ICD-9 diagnosis codes are too granular to be used directly as types of cancer

treated. For example, they contain separate codes for breast cancer in the right breast versus

the left breast. We wish to group these into the category of “breast cancer”.

We create a set of custom diagnosis code groupings that align with how cancers are

grouped in guidelines. We start with a list of cancer diagnosis codes from the Clinical

Classification Software (CCS). The CCS also has groupings to the level of cancer type, but

these groupings have several challenges that we rectify with our custom grouping. First, we

drop the CCS diagnosis codes for cancer treatment and consider only those for specific types

of cancer. Second, we make our groupings more specific. For example, the CCS groupings

classify colon cancer of “unknown behavior” as an “unknown” cancer type. We classify this as

colon cancer. Third, we make our custom grouping more granular to align with the guidelines

as much as possible. We divide the CCS category of “Leukemia” into “Myeloid Leukemia”

and “Lymphocytic Leukemia” (guidelines are even further split by acute and chronic within

each subtype of leukemia). Lastly, we rearrange groupings that are misaligned with clinical

groupings. For example, the CCS groupings group rectal cancer with anal cancer. However,

guidelines group rectal cancer with colon cancer into a single set of guidelines for colorectal

cancer. Our custom grouping mirrors the guidelines, with a single category for colorectal

cancer. These mappings are based on ICD-9 codes. In mid-2015, the claims data switches

from ICD-9 to ICD-10 codes. In these years, we map from ICD-10 to ICD-9 codes, then to

our custom cancer grouping.
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Notably, these groupings are largely anatomical, which mirrors the primary dimension of

cancer subtyping. The anatomical origin of the source of the cancer is the first dimension

along which cancers are grouped in guidelines and diagnosis code groupings. For example,

breast cancers are cancers where the origin tumor site is the breast. Leukemias are cancers

that originate from the white blood cells of the immune system. Within each anatomical

origin, there are further subclassifications along numerous other dimensions, e.g., stage and

biomarkers. However, we are reassured that anatomic origin is the first dimension along

which cancers are initially subtyped by the fact that NCCN guidelines, which leading cancer

care organizations create, are also organized anatomically. This observation suggests that our

measures of cancer types align with how the field of oncology distinguishes among subtypes.

3.2.5 Measuring Physician specialization

Next, we discuss how we measure our outcome of interest: oncologist specialization. Our

main measure is a Herfindahl–Hirschman Index (HHI) over the share of time that an on-

cologist spends managing each type of cancer. We calculate HHI as follows, where Tic is

time (proxied by work RVUs) that oncologist i spends managing cancer c and Ti is the total

time they spend managing cancer: HHIi = 10, 000
∑

C

(
Tic
Ti

)2
. Observe that HHIi has

a maximum value of 10,000, achieved if an oncologist spends all their time managing one

type of cancer. If an oncologist divides their time equally between two types of cancer, then

HHIi is 5,000. With four cancers equally split, HHI is 2,500, and with five, it is 2,000.

The lower limit of HHIi is 0, which is approached as an oncologist spends an infinitesimally

small amount of time on an infinite number of cancer types.

This measure has several key advantages. First, HHI is continuous and based on the

work that an oncologist performs in a year. This measure contrasts with more common

measures of specialization, which are often based on job titles. Second, it is sensitive to

subtle intensive margin changes in specialization. The measure will capture if an oncologist
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shifts towards focusing on one particular type of cancer, even if they do not entirely stop

seeing other types of cancers. As such, it can capture differences in specialization for the

same worker over time and across workers with identical job titles.

3.3 Identification

The following section discusses our identification strategy. We regress changes in special-

ization on exposure to knowledge growth. Our proxy of exposure to knowledge growth is

a formula instrument and suffers from omitted variables bias. We discuss our approach to

remove this bias by recentering the instrument for expected exposure to knowledge growth.

3.3.1 Estimating Equation

First, we discuss the main estimating equation. Denote physician i’s change in specialization

between 2009 and 2014 as ∆HHIi. Denote their exposure to knowledge growth as ∆ki.

Recall that exposure to knowledge growth is calculated as ∆ki =
∑

Ci
∆kc, where Ci is

the set of cancers that physician i treats in 2008 and ∆kc is the change in page length

for each type of cancer between 2009 and 2014. Also, denote the vector of other physician

characteristics as Xi. The main estimating equation is as follows:

∆HHIi = β∆ki + θXi + ϵi

We estimate this equation using ordinary least squares with robust standard errors.

This estimating equation has several key features. First, the outcome uses within physi-

cian variation in specialization over time. This within-physician design requires a balanced

panel. It also allows for specialization to respond immediately to knowledge growth. If the

specialization response is highly lagged, that may attenuate our estimates.

The main coefficient of interest is β, the effect of knowledge growth on specialization. β
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is estimated using variation in exposure to knowledge growth (∆ki), which is a simulated or

“Bartik-style” instrument.

Variation in exposure to knowledge growth (∆ki) comes from two sources. The first source

of variation is that physicians work in different sets of cancer subfields. For example, some

treat breast cancer, some treat leukemia, and some treat both. This variation is analogous

to variation in industry shares in a Bartik instrument. The second source of variation is

that different cancer subfields have different amounts of knowledge growth. For example,

leukemia may have more knowledge growth than breast cancer, so physicians who treat only

leukemia are more exposed to knowledge growth than those who treat only breast cancer.

This variation is analogous to variation in industry-level shocks in a Bartik instrument.

3.3.2 Recentering instrument to correct for omitted variables bias

Importantly, simulated instruments generally suffer from omitted variables bias, which must

be corrected for to estimate accurate causal effects [Borusyak and Hull, 2020b]. In this

context, the omitted variables bias arises from the fact that physicians who treat more types

of cancer are mechanically exposed to more knowledge growth. For example, someone who

treats only breast cancer will be less exposed to knowledge growth than someone who treats

both breast cancer and leukemia. The breast cancer only oncologist may differ in many

important ways from the oncologist who treats both cancers. For example, breast cancer

only oncologists may be more likely than general oncologists to work at a large medical center

that enables such specialization. Oncologists in large medical centers may have different

specialization trends than those in solo practice for reasons unrelated to knowledge growth.

This variation in organization size will be correlated with both exposure to knowledge growth

(∆ki) and with change in specialization (∆HHIi), leading to omitted variables bias in the

estimate of β.

We address this omitted variables bias using the recentering approach proposed by
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Borusyak and Hull [2020b]. This approach removes the non-random exposure to knowl-

edge growth that drives the omitted variables bias. In our case, the non-random exposure

results from the breast cancer specialist being predictably less exposed to knowledge growth

than the generalist.

To remove the non-random variation, we estimate expected exposure to knowledge growth

(E[∆ki]) and remove it from realized exposure to knowledge growth ∆ki. Our measure of

realized exposure to knowledge growth, ∆ki, can be decomposed into two components.

∆ki = E[∆ki]︸ ︷︷ ︸
OVB

+ ∆k̃i︸︷︷︸
Remaining Variation

The first component, E[∆ki], is the expected exposure to knowledge growth and contains

the omitted variables bias. The second component is the remaining variation and is assumed

to be exogenous and uncorrelated with other factors that impact specialization except for

knowledge growth.

This expression can be rearranged as follows:

∆k̃i = ∆ki − E[∆ki]

=
∑
Ci

(∆kc − E[∆kc])

We can estimate the residual exposure to knowledge growth, ∆k̃i, by subtracting the

expected exposure (E[∆kc]) from the realized exposure (∆ki). Realized exposure (∆ki)

is calculated exactly from our data. Calculating expected exposure to knowledge growth

(E[∆kc]) requires us to make assumptions about the expected knowledge growth per cancer

subtype E[∆kc]. In the next section, we will discuss how we construct this expectation and

the implications for the substance of the identification assumptions.

Once we have this expectation, we can then substitute our realized exposure, ∆ki, with
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the residual exposure, ∆k̃i, for an unbiased and efficient estimate of β, as below:

∆HHIi = β∆k̃i + θXi + ϵi

The formal identification assumption here is that this residual exposure to knowledge

growth is uncorrelated with the contents of the error term, including omitted variables

(∆k̃i ⊥ ϵi). The real-world content of this mathematical assumption depends on exactly

how we form our expectation of knowledge growth by cancer type (E[∆kc]).

3.3.3 Estimating Expected Knowledge Growth by Cancer Type

This section discusses different assumptions around expected knowledge growth by cancer

type and the corresponding identification assumptions.

Our first approach assumes all cancer fields have the same expected knowledge growth.

Specifically, we assume that E[∆kc] = µ̂ where µ̂ is the mean page increase across cancer

types, weighted by the number of oncologists who manage that cancer type. Let ni denote

the number of cancer types that an oncologist treats. ∆k̃i is estimated as follows:

∆k̃i =
∑
Ci

(∆kc − µ̂)

= ∆ki − niµ̂

This approach is equivalent to controlling for the number of cancers an oncologist treats

[Borusyak and Hull, 2020b]. Essentially, it compares doctors who treat the same number of

cancers. The variation in ∆k̃i arises because oncologists vary in the composition of the set

of cancers they treat, holding the set size constant, and some cancers have more innovation

than others.

Critically, this approach assumes that cancer-level knowledge shocks are unpredictable
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and uncorrelated with physician sorting. We are particularly concerned that cancer-level

knowledge shocks are not entirely unpredictable. A key concern is that more common cancers

likely draw more investment in innovation [Acemoglu and Linn, 2004b]. In addition, more

common cancers may also support more growth in specialization for the oncologists who

work in that field since it is easier to find sufficient patients. Addressing this potential bias

motivates our next approach.

Our second approach allows expected knowledge growth to vary with cancer character-

istics. Acemoglu and Linn [2004b] finds that conditions with more potential patients had

more innovation. Budish et al. [2015] finds that cancers with surrogate endpoints have more

innovation. We incorporate both of these factors into our estimate of expected knowledge

growth, E[∆kc]

Specifically, using a Poisson regression, we predict the expected amount of knowledge

growth for a cancer type based on these cancer characteristics. Let pc denote the share of can-

cer patients in Medicare with each type of cancer in 2008. Also, define ec as an indicator for if

a cancer type has surrogate endpoints per Budish et al. [2015] (ec = 1(surrogate endpoints)).

We include both of these in a Poisson regression to predict the expected page count increase

for each type of cancer, as follows:

E[ln∆k] = β0 + β1ec + β2pc + β3ecpc

Note that this equation also controls for knowledge shocks shared across all cancer types

(loaded on β0)

Denote the predicted knowledge growth from this regression as ∆k̂c. Then ∆k̃i is esti-

mated as follows:

∆k̃i =
∑
Ci

(∆kc −∆k̂c) (3.1)

This approach controls for the number of cancers an oncologist treats, weighting each cancer
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by the expected innovation.

This approach makes several key assumptions. First, it assumes that the volume of

patients, presence of secondary endpoints, and shared knowledge shocks are the key factors

correlated to highly predictable variation in innovation across cancer types. Any residual

variation in knowledge growth by cancer type is unrelated to oncologists’ specialization

decisions except through its direct effect on specialization. We attribute the residual variation

to randomness and uncertainty in the research and development process, e.g., some clinical

trials fail and others succeed. In the next section, we empirically test if this recentering

approach purges measurable omitted variables bias.

3.4 Descriptive Patterns

In this section, we describe key characteristics of our sample and patterns of specialization

over time.

3.4.1 Knowledge growth

Analysis of historical guidelines reveals that cancer treatment guidelines have become many

times longer since 2002. Figure 3.1a displays the length of guidelines between 2000 and 2020

on average and for selected cancer types. Appendix Table 3.8 lists the page count for each

type of guideline in 2002 and 2020. The total length of guidelines has increased over five-fold

in this period, from 1,075 pages in 2002 to 5,760 pages in 2020.

This growth in guidelines may be driven by many factors, but at least one is an explosion

in the number of drugs available to treat cancer. The number of FDA-approved anti-cancer

drugs increased from 90 in 2002 to 243 in 2020. Figure 3.1b displays the number of U.S.

Food and Drug Administration approved anti-cancer drugs over time. Not only has the

total number of drugs been increasing steadily over time, the rate at which new drugs are

introduced has been accelerating. Data on anti-cancer drugs is from Pantziarka et al. [2021]
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and uses Anatomical Therapeutic Chemical Level 5 classifications to define individual drugs.

3.4.2 Physician Summary Statistics

Next, we describe summary statistics for our balanced panel of physicians from 2008 to 2014.

Table 3.1 shows summary statistics for key variables of interest for a balanced panel of 4,854

oncologists. On average, they see 69 unique cancer patients in the baseline year, 2008. On

average, they see 15 distinct types of cancer, but some see as few as one type of cancer, and

others see as many as 27 types. Their average age at the beginning of the panel is 50 years

old. The mean oncologist HHI is 2,737. Over half of oncologists are in the largest one-fifth

of hospital referral regions by population. On average, 20 other oncologists work at their

Tax ID numbers, but this can be as low as zero and as high as 245.

In the initial year, the total length of NCCN guidelines is 1,595 pages, but only 1,014

pages of these are relevant to each oncologist, on average. Over the following five years, the

total and relevant number of guidelines more than double, increasing by 1,745 pages in total

and 1,088 relevant pages on average.

3.4.3 Trends in Oncologist Specialization Over Time

Next, we characterize the distribution of oncologist specialization over time. Figure 3.2 shows

the 10th, 25th, 50th, 75th, and 90th percentile of oncologist HHI between 1999 and 2019. It

also plots the HHI overall, using all evaluation and management services from oncologists.

Several striking trends stand out.

First, there is a sharp, discontinuous decline in HHI at all points in the distribution

between 2014 and 2016, corresponding to the switch from ICD-9 to ICD-10 midway through

2015. This clear trend break motivates the decision to end our main balanced panel in 2014,

which prevents coding changes from contaminating our estimates of change in HHI.

Second, the typical oncologist has not become substantially more specialized over time.
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Median specialization and below is flat or declining slightly over this period. The distribu-

tion’s 10th, 25th, and 50th percentiles are all close to each other and the HHI of the field.

This result suggests that most oncologists are “general” oncologists who see a similar dis-

tribution of cancer patients as the field overall. The 75th percentile becomes slightly more

specialized, but this increase is modest. This percentile of physician HHI increases by a

modest 158 points between 1999 and 2014 and another 182 points between 2016 and 2019.

This lack of growth in specialization is surprising, given the explosive growth in knowledge

and treatment options for cancer over these 21 years.

In contrast, subspecialized oncologists have become dramatically more specialized over

time. The 90th percentile of oncologist HHI increases by over 1000 HHI points from 1999 to

2014 and another 371 points from 2016 to 2019.

These contrasting time trends suggest that “generalist” and “specialist” oncologists may

respond to knowledge growth differently. Specialists may respond; generalists likely do not.

3.4.4 Differences Between More and Less Specialized Oncologists

We split our sample into “generalist” and “specialist” oncologists to understand how they

differ and to later test if they respond differently to knowledge growth. Table 3.2 shows the

characteristics of each group in our balanced panel. We define generalists as those below

the 75th percentile of physician HHI in the initial year of the panel. We define specialists as

those at or above the 75th percentile of the distribution.

Substantial differences are present between these two groups in the baseline year. In

2008, specialists have an average HHI of 4,637, over double that of the generalists, who

have an HHI of 2,104 on average. Specialists are also slightly lower volume; they see 59

unique patients per year in the dataset, compared to 73 for the generalists. Specialists are

also slightly more concentrated in big cities and work in slightly larger organizations. These

differences are consistent with large firms and large markets facilitating specialization.
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3.5 Results

In this next section, we discuss the results. First, we evaluate our measures of exposure

to knowledge growth for their correlation with omitted variables and strength. Next, we

test for the effect of knowledge growth on specialization using the recentered instrument for

specialist and generalist oncologists.

3.5.1 Instrument Correlation with Omitted Variables

In this section, we evaluate our measures of exposure to knowledge growth. We find that the

unadjusted measure strongly correlates with omitted variables, but the Poisson recentered

measure removes this correlation. The Poisson recentered measure is also a strong instrument

for the unadjusted measure. Both of these findings make the Poisson recentered measure

our preferred measure.

First, we test if our measures of exposure to knowledge growth correlate with observable

omitted variables that likely contribute to omitted variables bias. We follow the strategy in

[Borusyak and Hull, 2020b] to test for such correlations. We regress our unadjusted measure

(∆ki) and recentered measures (∆k̃i) of physician-level exposure to knowledge growth on key

physician characteristics. These characteristics are market size (measured as the population

of the physician’s hospital referral region or HRR), firm size (proxied as the number of other

oncologists at their tax ID numbers), and physician age, all in the baseline year.

These variables are all sources of concern about omitted variables bias. Table 3.3 shows

the results for regressions of the raw measure (∆ki), mean recentered measure (∆k̃i,mean),

and Poisson recentered measure (∆k̃i,Poisson) on these omitted variables for the population

overall. Appendix tables 3.9 and 3.10 show the results separately for specialist and generalist

oncologists.

As hypothesized, the unadjusted measure of knowledge growth is significantly correlated

with all three regressors. For example, an increase in the HRR population of 1 million
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is associated with a decrease in exposure to knowledge growth of -23.1 pages (σ = 1.9)

Physicians in larger markets likely treat fewer types of cancer and are mechanically exposed to

less innovation. A regression using this unadjusted measure of exposure to knowledge growth

will also inappropriately compare physicians in larger and smaller markets. These physicians

may have different specialization trends for reasons unrelated to knowledge growth. Overall,

the three regressions explain about 5% of the variation in exposure to knowledge growth.

These results substantiate concerns about omitted variables bias in formula instruments and

suggest that the recentering procedure is necessary for unbiased estimation.

The mean recentered measure of knowledge growth is substantially less correlated with

all three regressors (market size, firm size, and physician age). For example, the correlation

with market size is still significant but much weaker, with a coefficient of 5.7 (σ = 0.8). The

regressors now explain only 1.6% of the variation in exposure to knowledge growth.

Finally, the Poisson recentered measure of knowledge growth largely purges all correlation

between the measure and the regressors. The correlation with market size is much smaller

and statistically indistinguishable from zero at -.05 (σ = .51). The same is true for our

proxy of firm size. In the regression on the unadjusted measure, the coefficient is -.56

(sigma = .08). The coefficient shrinks for the Poisson adjustment measure and is statistically

indistinguishable from zero at -.01 (σ = .02).

The magnitude of the correlation with physician age has also decreased substantially.

Unfortunately, there is still a modest correlation, with a coefficient of -.561 (σ = .01). In other

words, a 60-year-old oncologist is predicted to be exposed to 17 fewer pages of knowledge

growth than a 30-year-old oncologist (on a mean exposure to knowledge growth of 1,088

pages). The combined regressors explain about .5% of the total variation in exposure to

knowledge growth. As such, this correlation’s size and explanatory power is small. We

control for age in later specifications.

Overall, the Poisson recentering procedure nearly eliminates the correlation between the
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exposure to knowledge growth and observable omitted variables. The fact that the corre-

lation with observable predictors of exposure has been largely eliminated reassures us that

the correlation with unobservable predictors has also largely been eliminated. The Poisson

recentered measure is our favored measure of exposure to knowledge growth.

3.5.2 Instrument Strength

Next, we test if our Poisson recentered measure of knowledge growth is a “strong” instrument

for the unadjusted measure. We have removed variation in this measure by recentering; how

much remains?

To assess this, we regress our Poisson recentered measure (∆k̃i,Poisson) on our unadjusted

measure. (∆ki) in a “quasi-first stage” regression. This regression is not a true first-stage

regression because we do not use the predicted values in a second-stage regression to estimate

the coefficient of interest. Rather, we use the recentered measure ∆k̃i,Poisson directly to

measure the coefficient of interest, per [Borusyak and Hull, 2020b]. However, the “quasi-

first stage” regression can inform us about the extent of the variation that remains after

recentering.

Figure 3.3 shows a binned scatter plot of the regression of the Poisson recentered measure

(∆k̃i,Poisson) on the unadjusted measure (∆ki). Appendix figures 3.7a and 3.7b show the

same results separately for specialist and generalist oncologists. The recentered measure is

a highly significant predictor of the unadjusted measure (β = 0.77; σ = .04). The overall

R2 of the regression is 5.6%, which suggests that the recentered measure removes 94.4% of

the variation in the unadjusted measure. However, the F statistic is 306, suggesting that

the recentered measure is a “strong instrument” for the unadjusted measure by traditional

metrics.
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3.5.3 Estimates of Main Effects

Next, we estimate the effect of exposure to knowledge growth on physician specialization. All

our estimates presented here use the Poisson recentered measure of exposure to knowledge

growth in a balanced panel of oncologists from 2008 to 2014.

Figure 3.4 shows binned scatter plots and key regression estimates for the univariate rela-

tionship between the exposure to knowledge growth and change in specialization separately

for specialist and generalist oncologists.

Figure 3.4a shows this relationship for oncologists who start in the top 25% of the initial

specialization distribution, or “specialist” oncologists. The relationship between exposure to

knowledge growth and increased specialization is large and significant. For every 100-page

increase in relevant guidelines, these oncologists increase their specialization by 219 HHI

points (σ = 75). Relative to baseline means, this represents a 4% increase in HHI for a 12%

increase in relevant guidelines. Table 3.4 shows the regression table of results, adding fixed

effects for age bin, hospital referral region, and tax ID size. The coefficient estimates and

standard errors are unchanged after age and region-fixed effects are added. The coefficient

estimate is slightly attenuated after adding fixed effects for Tax ID size, falling just below

the threshold for significance at the 10% level (137.5, σ = 84.0). This pattern suggests

that organization size mediates some of this relationship between knowledge growth and

specialization.

Notably, the increases in specialization are driven by intensive margin changes in spe-

cialization. We test the effect of knowledge growth on extensive margin specialization -

the count of unique types of cancer treated. Appendix table 3.6 displays the results for

a regression of the change in the unique types of cancer treated by an oncologist on that

oncologists’ exposure to knowledge growth for specialized oncologists. The estimate is sta-

tistically indistinguishable from zero. The estimates are precise enough to rule out that

exposure to 100 more pages of guidelines reduces the count of cancer types managed by one

126



or more. Specialized oncologists do not become more specialized on the extensive margin;

the observed changes in HHI must be driven by changes on the intensive margin. In other

words, specialized oncologists focus their practice more on some types of cancer but do not

entirely stop seeing other types. This pattern could reflect oncologists continuing to see

established patients but limiting their new patients to those with cancers in a narrower area

of specialization.

Next, we consider how knowledge growth impacts general oncologists. Figure 3.4b shows

the relationship between exposure to knowledge growth and HHI for oncologists starting in

the bottom 75% of the initial specialization distribution, or “general” oncologists. In contrast

to the results for specialists, general oncologists do not become specialized in response to

knowledge growth. The estimated effect on HHI is more precise than the effects for specialists

and statistically indistinguishable from zero at β = −17.4 (σ = 23.3). Table 3.5 shows the

regression table of results, adding fixed effects for age bin, hospital referral region, and tax

ID size. After adding these fixed effects, the coefficient estimates and standard errors are

again unchanged. The coefficient estimate is still statistically indistinguishable from zero.

In addition, there is no effect on the count of cancer types treated (results in figure 3.7)

Appendix figure 3.8 and appendix table 3.12 replicates the above analysis for oncologists

overall. In aggregate, the effect of knowledge growth on both HHI and the count of cancer

types treated is not significantly different from zero.

3.6 Discussion

This section discusses possible reasons for the heterogeneous response to knowledge growth

in the context of classic theoretical constraints to specialization. We focus on two potential

constraints to specialization: market size and coordination costs.

Smith [1776] was the first in a long line of many economists to observe that in many

contexts, specialization is limited by the extent of the market. If the extent of the market
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limits specialization, then workers should not become more specialized in response to knowl-

edge growth. Instead, oncologist specialization should increase with market size. Figure 3.5a

shows this theoretical relationship.

Becker and Murphy [1992] highlight that coordination costs between specialized workers

may also limit specialization. On the one hand, workers become more productive as they

become more specialized. On the other hand, production becomes split between greater

numbers of workers, leading to higher coordination costs and ultimately constraining spe-

cialization. If coordination costs are a binding constraint in our setting, the oncologist

specialization will remain flat across market size. Figure 3.5a shows this theoretical relation-

ship.

In this framework, workers should become more specialized in response to knowledge

growth, as knowledge growth raises the returns to specialization and thus increases the opti-

mal degree of specialization. Of course, market size constraints may also bind for sufficiently

small markets. In that case, specialization will increase only in large markets with sufficient

market size to support the new, higher optimal level of specialization. Figure 3.5a also shows

this theoretical prediction. Lastly, even within the Becker and Murphy [1992] framework,

workers may not respond to knowledge growth appreciably if the returns to specialization

are very low or coordination costs are very high. In that case, specialization will remain

constant across space, even with substantial knowledge growth.

Each of these constraints to specialization produces differing predictions about the degree

of specialization over market size and time. Next, we attempt to ascertain which theories are

most consistent with the data and, thus, which constraints might be driving the observed

heterogeneous responses to knowledge growth. We graph the median and 90th percentile of

specialization by market size quintile in 1999 and 2014 in Figure 3.6a. Figure 3.6b shows

the same graph for 2016 and 2019.

Based on these graphs, the median oncologist seems highly constrained by coordination
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costs. Median specialization remains entirely flat across the distribution of market size in

1999. The median oncologist is not more specialized in the largest markets than the median

in the smallest markets. This pattern is highly consistent with coordination costs limiting

the specialization for the typical oncologist, as in Becker and Murphy [1992]. This pattern

is the same in 2014, 2016, and 2019. The specialization of the median oncologist stays the

same over time, too, even though there has been explosive growth in the volume of knowledge

throughout this 21-year period. That suggests that either the returns to specialization are

quite low or coordination costs are quite high in this context.

We find it somewhat implausible that low returns to specialization drive oncologists’ lack

of response to knowledge growth. An extensive body of literature documents that physician

human capital is highly domain-specific and decays rapidly, consistent with high returns to

specialization. Anecdotally, physicians at top academic hospitals are typically sub-specialists

Gesme and Wiseman [2011], Graham et al. [2021] Perusing the physician directories of top

cancer hospitals confirms this observation. The observation that top-ranked cancer hospitals

largely employ cancer specialists suggests (but, of course, does not prove) that specialization

has meaningful returns to quality. There may be low returns to specialization, but it seems

unlikely to us, given that oncology is a rapidly changing and highly knowledge-intensive

medical field.

Notably, the patterns for highly specialized oncologists suggest a different set of con-

straints to specialization. In our results, specialist oncologists respond to knowledge growth

by becoming more specialized. This pattern implies that they are also constrained by coor-

dination costs, as in Becker and Murphy [1992]. However, the finding that they respond to

knowledge growth suggests that these specialists face either higher returns to specialization

or lower coordination costs than generalists.

Figure 3.6a also displays the 90th percentile of specialization by market size quintile in

1999 and 2014. Figure 3.6a shows it for 2016 and 2019.
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Both Figure 3.6a and 3.6b show that the 90th percentile of physician specialization is

rising over time, but only in the largest markets. In 1999, the 90th percentile of specialization

is nearly the same in the largest markets as in the smallest ones, hovering just over 4,000 HHI

points. By 2014, the 90th percentile of specialization has risen in the largest markets to over

5,500 HHI points and fallen in the smallest markets to roughly 3,500. The specialization gap

between the top and bottom 20% of markets is over 2,000 HHI points. Between 2016 and

2019, 90th percentile specialization rises even further in the largest markets, while remaining

unchanged in the smallest markets.

Together, these results suggest that specialized oncologists are constrained by both coor-

dination costs and market size. They become more specialized when knowledge grows, but

only when they work in sufficiently large markets. The cross-sectional patterns in Figure 3.6

also suggest that economics of scale in subspecialization are growing over time.

3.7 Conclusion

Oncology is a field with rapid, overwhelming knowledge growth. In this paper, we examine

how this growth in knowledge impacts worker specialization. Studying a balanced panel of

oncologists, we observe that the typical oncologist is a general oncologist and does not become

more specialized in response to knowledge growth. The median oncologist in large and

small markets remains a generalist. We interpret these findings to suggest that coordination

costs for most oncologists are very high, limiting their scope to achieve the gains from

specialization. However, we also find that ex-ante specialized oncologists become significantly

more specialized in response to knowledge growth. However, only specialized oncologists

in large markets become more specialized. This pattern suggests that knowledge growth

increases market-level economies of scale in knowledge work.
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3.8 Exhibits

Figure 3.1: Oncology has experience massive increases in available knowledge and technolo-
gies

(a) Oncology treatment guidelines have become
considerably longer
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(b) The number of FDA-approved anti-cancer drugs
has greatly increased
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Notes: Panels a and b show the growth in cancer guideline length and pharmaceutical treatments over time. Panel a displays
the page count of the first set of treatment guidelines in each year from the National Comprehensive Cancer Network Clinical
Practice Guidelines in Oncology. Panel b displays the number of unique anti-cancer drugs, where unique drugs are distinguished
by unique Anatomical Therapeutic Chemical Level 5 Classification Codes. Note that the sample is limited to drugs with direct
anti-cancer uses which are approved by the U.S. Food and Drug Administration. It does not include combinations of drugs,
drugs used for cancer symptom relief or diagnosis, or unapproved drugs that are being investigated. The data in this panel is
from Pantziarka et al. [2021].
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Figure 3.2: Specialized Oncologists are Growing More Specialized Over Time

Notes: This figure shows the distribution of physician-level Herfindahl––Hirschman index (HHI), a measure of specialization, from 1999-2019.
All physicians in the sample are hematologist-oncologists, oncologists, or hematologists who saw at least 25 unique cancer patients in the year
in a 20% sample of Medicare Part B claims. Physician HHI is calculated within physician using shares of time spent evaluating and managing
different types of cancer. Time is proxied using the work Relative Value Units for each evaluation and management HCPCS code. The 10th, 25th,
50th, 75th, and 90th percentile are displayed and labeled. The dashed grey line represents the HHI of the field overall. The trend break in 2015
is attributed to the switch in diagnosis coding schemes, from ICD-9 to ICD-10, and 2015 is dropped from the graph for visual clarity. Overall,
the 10th, 25th, and 50th percentile of oncologists see a roughly representative distribution of patients, suggesting they are “general” oncologists.
As such, most oncologists remain generalists over this period. However, the most specialized oncologists, those near the 90th percentile of the
distribution, become substantially more specialized over time.
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Figure 3.3: Quasi first stage suggests recentered instrument (∆k̃i) is a strong “instrument”
for unadjusted instrument (∆ki)

Notes: This figure shows the results for a quasi first stage regression of the recentered measure of exposure to
knowledge growth on the unadjusted measure. It displays a binned scatter plot and key regression outputs
for the bivariate relationship between the raw measure and the Poisson recentered measure of physician-
level exposure to knowledge growth. The raw measure of physician level exposure to knowledge growth
is calculated using the cancer types a physician treated in 2008 and the subsequent growth in knowledge
in those fields over the next five years (2009-2014), based on realized changes in guideline lengths. In the
Poisson recentered measure, the predicted exposure to knowledge growth is subtracted from raw exposure
to knowledge growth. Predicted exposure is estimated based on the cancer types a physician treats in
2008 and the predicted, rather than realized, growth in knowledge over the next five years. The predicted
knowledge growth for each type of cancer is estimated based on a Poisson regression of the number of
Medicare patients with the cancer types in 2008, an indicator for if the cancer type has well-established
surrogate endpoints, and the interaction of the two. Regression standard errors are robust. All physicians in
the sample are hematologist-oncologists, oncologists, or hematologists who evaluated and managed at least
25 unique cancer patients in a 20% sample of Medicare Part B claims in 2008, 2009 and 2014.

133



Figure 3.4: Knowledge growth increases specialization only for those who start specialized

(a) Knowledge growth increases specialization for oncologists who
start specialized (b) But not for general oncologists

Notes: Panels a and b shows binned scatterplots and key regression estimates for the univariate relationship between the Poisson recentered
exposure to knowledge growth and change in specialization. Panel a shows this relationship for oncologists who start in the top 25% of the initial
specialization distribution based on a Herfindahl––Hirschman index (HHI) over types of cancer managed in 2009. Panel b shows this relationship
for oncologists who start in the bottom 75% of the initial specialization distribution based on a Herfindahl––Hirschman index (HHI) over types
of cancer managed in 2009. Exposure to knowledge growth. In the Poisson recentered measure, the predicted exposure to knowledge growth is
subtracted from raw exposure to knowledge growth. Predicted exposure is estimated based on the cancer types a physician treats in 2008 and
the predicted, rather than realized, growth in knowledge over the next five years. The predicted knowledge growth for each type of cancer is
estimated based on a Poisson regression of the number of Medicare patients with the cancer types in 2008, an indicator for if the cancer type
has well-established surrogate endpoints, and the interaction of the two. Regression standard errors are robust. All physicians in the sample
are hematologist-oncologists, oncologists, or hematologists who evaluated and managed at least 25 unique cancer patients in a 20% sample of
Medicare Part B claims in 2008, 2009 and 2014.
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Figure 3.5: Growth in knowledge (∆k) can increase market-level economies of scale

(a) Market Size and Coordination Cost Constraints to
Specialization Lead to Different Patterns of Specializa-
tion By Market Size
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(b) When Both Constraints Are Exist, More Knowledge
Can Lead to Larger Spatial Differences in Specialization
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Notes: Panels a and b show theoretical predictions. Panel a predicted relationship between specialization
and market size if specialization is constrained by coordination costs and if it is constrained by market
size. Panel b shows the change in the relationship between specialization and market size when knowledge
increases in a world where both coordination costs and market size constrain specialization.
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Figure 3.6: Median Specialization is Stable Over Time and Across Market Size, but Extreme
Specialization is Increasing in Largest Markets

(a) 1999—2014
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(b) 2016—2019
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Notes: Panels a and b show the median and 90th percentile of oncologist specialization by 2000 market
size quintile. Panel a shows these values for 1999 and 2014, while Panel b shows these values for 2016 and
2019. We separate these two time periods because diagnosis coding changed in 2015, the year between the
two periods. Physician specialization is measured using HHI over the types of cancer that the physician
evaluated and managed in that year. All physicians in the sample are hematologist-oncologists, oncologists,
or hematologists who evaluated and managed at least 25 unique cancer patients in the year.
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Table 3.1: Summary Statistics for Balanced Panel of Oncologists (2008-2014)

Mean SD Min Max N

N 4,854
Unique Patients (2008) 69 33 25 297 4,854
Count of Cancer Types (2008) 15 4 1 27 4,854
HHI (2009) 2,737 1,452 954 10,000 4,854
Guideline Length (2009) 1,789
Relevant Guideline Length (2009) 1,159 242 42 1,702 4,854
Change in Length of Guidelines (2009-2014) 1,745
Change in Length of Relevant Guidelines (2009-2014) 1,088 225 24 1,612 4,854
Share in Largest 20% of Regions 1 0 0 1 4,854
Count Oncologists at Main Tax ID (2008) 19 40 1 219 4,854
Physician age (2008) 49 9 30 77 4,854

Notes: This table shows summary statistics for a balanced panel of oncologists from 2008 to 2014. All physicians in the sample are hematologist-
oncologists, oncologists, or hematologists who evaluated and managed at least 25 unique cancer patients in a 20% sample of Medicare Part B
claims in 2008, 2009 and 2014. More information about each variable is calculated is detailed in section 3.2.
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Table 3.2: Specialized Oncologists Work in Larger Regions and Organizations than General Oncologists (2008-2014)

Top 25% Most Specialized Docs Other 75%
Mean Std Mean Std

N 1,214 3,640
Unique Patients (2008) 59 (29) 73 (34)
Count of Cancer Types 13 (5) 16 (3)
HHI (2009) 4,637 (1,729) 2,104 (460)
Share in Largest 20% of Regions 0.63 (0.48) 0.50 (0.50)
Count Oncologists at Main Tax ID (2008) 25 (41) 17 (40)
Physician age (2008) 50 (9) 49 (9)
NCI Cancer Center Zip 0.16 (0.37) 0.04 (0.18)
Relevant Guideline Length (2008) 860 (279) 1,065 (165)
Change in Length of Relevant Guidelines (2009-2014) 932 (283) 1,139 (174)

Notes: This table compares key summary statistics for “specialist” and “general” oncologists. Specialist oncologists are defined as those in the top
25% of the specialization distribution as measured by a Herfindahl—-Hirschman index (HHI) over types of cancer managed in 2009. Specialist
oncologists are defined as those in the bottom 75% of the specialization distribution as measured by a Herfindahl—-Hirschman index (HHI) over
types of cancer managed in 2009. All physicians in the sample are hematologist-oncologists, oncologists, or hematologists who evaluated and
managed at least 25 unique cancer patients in a 20% sample of Medicare Part B claims in 2008, 2009 and 2014. More information about how
each variable is detailed in section 3.2.
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Table 3.3: Physician characteristics become substantially less predictive of exposure to knowledge growth after recentering

(1) (2) (3)
Unadjusted Remove physician Remove expected

(∆ki) variation (∆k̃i) cancer variation (∆k̃i)

Region population (millions) -23.10 5.649 -0.0669
(1.909) (0.805) (0.511)

Count oncologists at main org -0.537 0.0792 0.0165
(0.0881) (0.0411) (0.0240)

Physician age in 2008 0.976 -0.772 -0.561
(0.362) (0.170) (0.112)

Observations 4,854 4,854 4,854
R-squared 0.055 0.016 0.005
Recentered Yes Yes

Notes: This table shows the results of a regression of exposure to knowledge growth on observable physician characteristics. The physician
characteristics include the population of the physicians’ Hospital Referral Region in millions, the number of other oncologists at the Tax IDs that
they work at, and the physicians age. All physician characteristics are from 2008, the baseline year for the panel. In Column 1, the outcome
variable is the raw measure of physician level exposure to knowledge growth based on the cancer types they treat in 2008 and the subsequent
growth in knowledge in those fields over the next five years (2009-2014), based on changes in guideline lengths. In Column 2, the outcome
variable is the mean recentered version of the measure of exposure to knowledge growth. In this measure, predicted exposure to knowledge
growth is subtracted from raw exposure to knowledge growth. Predicted exposure is estimated as the number of cancer types treated times the
mean knowledge growth per cancer type, weighted by the number of oncologists who treat the cancer type. In Column 3, the outcome variable
is a Poisson recentered version of the measure of exposure to knowledge growth. As in Column 2, predicted exposure to knowledge growth is
subtracted from raw exposure to knowledge growth. However, the predicted knowledge growth for each type of cancer is estimated based on
a Poisson regression of the number of Medicare patients with the cancer types in 2008, an indicator for if the cancer type has well-established
surrogate endpoints, and the interaction of the two. All physicians in the sample are hematologist-oncologists, oncologists, or hematologists who
evaluated and managed at least 25 unique cancer patients in a 20% sample of Medicare Part B claims in 2008, 2009 and 2014. All regression
standard errors are robust.
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Table 3.4: Knowledge growth increases specialization for oncologists in the top 25% of the initial specialization distribution

(1) (2) (3) (4)
Recentered (∆k̃i) Add Age FE Add HRR FE Add Tax ID Size FE

Increase in Guideline Length (100 Pages) 196.2 195.5 187.7 159.7
(73.58) (73.87) (82.04) (83.33)

Observations 1,163 1,163 1,163 1,163
R-squared 0.006 0.008 0.135 0.148
Age FE Yes Yes Yes
HRR FE Yes Yes
Tax ID Size FE Yes

Notes: This table shows regression estimates for the relationship between exposure to knowledge growth and change in specialization for oncologists
who start in the top 25% of the initial specialization distribution. Specialization is measured using a Herfindahl—-Hirschman index (HHI) over
types of cancer managed in 2009. The measure of exposure to knowledge growth is the Poisson recentered version of this measure. Column 1
shows the coefficient estimate for the univariate regression. The regression standard errors are robust. Columns 2, 3 and 4 add fixed effects for
the physicians age group, hospital referral region and the number of other oncologists at their Tax IDs, respectively. In the Poisson recentered
measure of exposure to knowledge growth, predicted exposure to knowledge growth is subtracted from raw exposure to knowledge growth. Raw
exposure to knowledge growth is calculated as the total increase in the page count of guidelines over 2009 to 2014 for the types of cancers a
physician treats in 2008. Predicted exposure is estimated based on the cancer types a physician treats in 2008 and the predicted, rather than
realized, growth in knowledge over the next five years. The predicted knowledge growth for each type of cancer is estimated based on a Poisson
regression of the number of Medicare patients with the cancer types in 2008, an indicator for if the cancer type has well-established surrogate
endpoints, and the interaction of the two. All physicians in the sample are hematologist-oncologists, oncologists, or hematologists who evaluated
and managed at least 25 unique cancer patients in a 20% sample of Medicare Part B claims in 2008, 2009 and 2014.
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Table 3.5: Knowledge growth does not increase specialization for oncologists in the bottom 75% of the initial specialization
distribution

(1) (2) (3) (4)
Recentered (∆k̃i) Add Age FE Add HRR FE Add Tax ID Size FE

Increase in Guideline Length (100 Pages) -16.71 -16.40 -8.400 -9.892
(23.33) (23.40) (25.03) (24.89)

Observations 3,623 3,623 3,623 3,623
R-squared 0.000 0.000 0.077 0.078
Age FE Yes Yes Yes
HRR FE Yes Yes
Tax ID Size FE Yes

Notes: This table shows regression estimates for the relationship between exposure to knowledge growth and change in specialization for oncologists
who start in the bottom 75% of the initial specialization distribution. Specialization is measured using a Herfindahl—-Hirschman index (HHI)
over types of cancer managed in 2009. The measure of exposure to knowledge growth is the Poisson recentered version of this measure. Column
1 shows the coefficient estimate for the univariate regression. The regression standard errors are robust. Columns 2, 3 and 4 add fixed effects for
the physicians age group, hospital referral region and the number of other oncologists at their Tax IDs, respectively. In the Poisson recentered
measure of exposure to knowledge growth, predicted exposure to knowledge growth is subtracted from raw exposure to knowledge growth. Raw
exposure to knowledge growth is calculated as the total increase in the page count of guidelines over 2009 to 2014 for the types of cancers a
physician treats in 2008. Predicted exposure is estimated based on the cancer types a physician treats in 2008 and the predicted, rather than
realized, growth in knowledge over the next five years. The predicted knowledge growth for each type of cancer is estimated based on a Poisson
regression of the number of Medicare patients with the cancer types in 2008, an indicator for if the cancer type has well-established surrogate
endpoints, and the interaction of the two. All physicians in the sample are hematologist-oncologists, oncologists, or hematologists who evaluated
and managed at least 25 unique cancer patients in a 20% sample of Medicare Part B claims in 2008, 2009 and 2014.
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Table 3.6: For specialized oncologists, knowledge growth does not reduce the number of types of cancers managed

(1) (2) (3) (4)
Recentered (∆k̃i) Add Age FE Add HRR FE Add Tax ID Size FE

Increase in Guideline Length (100 Pages) -0.0790 -0.117 -0.0318 -0.0469
(0.143) (0.143) (0.158) (0.159)

Observations 1,163 1,163 1,163 1,163
R-squared 0.000 0.008 0.158 0.161
Age FE Yes Yes Yes
HRR FE Yes Yes
Tax ID Size FE Yes

Notes: This table shows regression estimates for the relationship between exposure to knowledge growth and the number of cancers managed for
specialized oncologists. Specialized oncologists are defined as oncologists in the top 25% of the specialization distribution in 2009, measured using
a Herfindahl—-Hirschman index (HHI) over types of cancer managed. The measure of exposure to knowledge growth is the Poisson recentered
version of this measure. Column 1 shows the coefficient estimate for the univariate regression. The regression standard errors are robust. Columns
2, 3 and 4 add fixed effects for the physicians age group, hospital referral region and the number of other oncologists at their Tax IDs, respectively.
In the Poisson recentered measure of exposure to knowledge growth, predicted exposure to knowledge growth is subtracted from raw exposure
to knowledge growth. Raw exposure to knowledge growth is calculated as the total increase in the page count of guidelines over 2009 to 2014
for the types of cancers a physician treats in 2008. Predicted exposure is estimated based on the cancer types a physician treats in 2008 and
the predicted, rather than realized, growth in knowledge over the next five years. The predicted knowledge growth for each type of cancer is
estimated based on a Poisson regression of the number of Medicare patients with the cancer types in 2008, an indicator for if the cancer type has
well-established surrogate endpoints, and the interaction of the two. All physicians in the sample are hematologist-oncologists, oncologists, or
hematologists who evaluated and managed at least 25 unique cancer patients in a 20% sample of Medicare Part B claims in 2008, 2009 and 2014.
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Table 3.7: For general oncologists, knowledge growth does not reduce the number of types of cancers managed

(1) (2) (3) (4)
Recentered (∆k̃i) Add Age FE Add HRR FE Add Tax ID Size FE

Increase in Guideline Length (100 Pages) -0.105 -0.139 -0.135 -0.129
(0.0776) (0.0773) (0.0813) (0.0814)

Observations 3,623 3,623 3,623 3,623
R-squared 0.000 0.018 0.127 0.129
Age FE Yes Yes Yes
HRR FE Yes Yes
Tax ID Size FE Yes

Notes: This table shows regression estimates for the relationship between exposure to knowledge growth and the number of cancers managed for
general oncologists. General oncologists are defined as oncologists in the bottom 75% of the specialization distribution in 2009, measured using
a Herfindahl—-Hirschman index (HHI) over types of cancer managed. The measure of exposure to knowledge growth is the Poisson recentered
version of this measure. Column 1 shows the coefficient estimate for the univariate regression. The regression standard errors are robust. Columns
2, 3 and 4 add fixed effects for the physicians age group, hospital referral region and the number of other oncologists at their Tax IDs, respectively.
In the Poisson recentered measure of exposure to knowledge growth, predicted exposure to knowledge growth is subtracted from raw exposure
to knowledge growth. Raw exposure to knowledge growth is calculated as the total increase in the page count of guidelines over 2009 to 2014
for the types of cancers a physician treats in 2008. Predicted exposure is estimated based on the cancer types a physician treats in 2008 and
the predicted, rather than realized, growth in knowledge over the next five years. The predicted knowledge growth for each type of cancer is
estimated based on a Poisson regression of the number of Medicare patients with the cancer types in 2008, an indicator for if the cancer type has
well-established surrogate endpoints, and the interaction of the two. All physicians in the sample are hematologist-oncologists, oncologists, or
hematologists who evaluated and managed at least 25 unique cancer patients in a 20% sample of Medicare Part B claims in 2008, 2009 and 2014.

143



3.9 Additional exhibits
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Figure 3.7: Quasi first stage suggests recentered instrument (∆k̃i) is a strong “instrument” for unadjusted instrument (∆ki)

(a) Specialized Oncologists (b) General Oncologists

Notes: Panels a and b show the results for a quasi first stage regression of the recentered measure of exposure to knowledge growth on the
unadjusted measure. Panel a displays the results for specialized oncologists, defined as those in the top 25% of the specialization distribution
in 2009, as measured by a Herfindahl––Hirschman index over types of cancers managed. Panel b displays the results for general oncologists,
defined as those in the bottom 75% of the specialization distribution. Both figures display a binned scatter plot and key regression outputs for
the bivariate relationship between the raw measure and the Poisson recentered measure of physician-level exposure to knowledge growth. The
raw measure of physician level exposure to knowledge growth is calculated using the cancer types a physician treated in 2008 and the subsequent
growth in guideline length in those fields over the next five years (2009-2014). In the Poisson recentered measure, the predicted exposure to
knowledge growth is subtracted from raw exposure to knowledge growth. Predicted exposure is estimated based on the cancer types a physician
treated in 2008 and the predicted growth in knowledge for each cancer type over the next five years. The predicted knowledge growth for each
type of cancer is estimated based on a Poisson regression of the number of Medicare patients with the cancer types in 2008, an indicator for if
the cancer type has well-established surrogate endpoints, and the interaction of the two. Regression standard errors are robust. All physicians in
the sample are hematologist-oncologists, oncologists, or hematologists who evaluated and managed at least 25 unique cancer patients in a 20%
sample of Medicare Part B claims in 2008, 2009 and 2014.
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Figure 3.8: Knowledge growth does not increase specialization on average

Notes: Figure 3.8 shows a binned scatter plot and key regression estimates for the univariate relationship
between the Poisson recentered exposure to knowledge growth and change in specialization across all oncol-
ogists. In the Poisson recentered measure, the predicted exposure to knowledge growth is subtracted from
raw exposure to knowledge growth. Predicted exposure is estimated based on the cancer types a physician
treats in 2008 and the predicted, rather than realized, growth in knowledge over the next five years. The
predicted knowledge growth for each type of cancer is estimated based on a Poisson regression of the number
of Medicare patients with the cancer types in 2008, an indicator for if the cancer type has well-established
surrogate endpoints, and the interaction of the two. Regression standard errors are robust. All physicians in
the sample are hematologist-oncologists, oncologists, or hematologists who evaluated and managed at least
25 unique cancer patients in a 20% sample of Medicare Part B claims in 2008, 2009 and 2014.
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Table 3.8: The length of cancer treatment guidelines has increased substantially over time
for many types of cancer

Year 2002 2020
Site

ALL 0 117
AML 23 138
Anal 9 55
Bladder 40 113
Bone 25 96
Breast 52 223
Breast Risk 22 64
Breast Screening 33 77
CML 24 80
CNS 51 165
Cervical 24 86
Colon 20 188
Esophageal 19 154
GTN 0 40
Gastric 18 125
Hairy Cell 0 24
Head And Neck 86 233
Hepatobiliary 32 151
Hodgkins 30 85
Kaposi 0 39
Kidney 14 64
Lung 68 294

Year 2002 2020
Site

MDS 22 91
MPN 0 101
Mastocytosis 0 67
Mesothelioma 0 46
Myeloma 27 95
NHL 49 658
Neuroendocrine 46 141
Ovarian 26 371
Pancreatic 23 160
Penile 0 49
Prostate 18 167
Prostate Detection 22 63
Rectal 18 167
Sarcoma 31 146
Skin 58 358
Small Bowel 0 48
Testicular 34 78
Thymic 0 41
Thyroid 69 136
Uterine 42 108
Vulvar 0 58
All 1,075 5,760

Notes: Figure 3.8 displays the page count of the first set of treatment guidelines in 2002 and 2020 from the
National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology. The NCCN
considered the 2002 guidelines to be a “complete library” of oncology guidelines [NCCN, 2023b]. However,
in the years since, they have added guidelines for additional types of cancer.

147



Table 3.9: For specialized oncologists, physician characteristics become substantially less predictive of exposure to knowledge
growth after recentering

(1) (2) (3)
Unadjusted Remove physician Remove expected

(∆ki) variation (∆k̃i) cancer variation (∆k̃i)

Region population (millions) -37.78 5.036 0.0634
(4.496) (1.679) (0.972)

Count oncologists at main org -1.141 0.171 0.0133
(0.253) (0.0833) (0.0441)

Physician age in 2008 1.261 -0.466 -0.797
(0.875) (0.351) (0.227)

Observations 1,213 1,213 1,213
R-squared 0.128 0.017 0.010
Recentered Yes Yes

Notes: This table shows the results of a regression of exposure to knowledge growth on observable physician characteristics for specialized
oncologists. Specialized oncologists are defined as oncologists in the top 25% of the specialization distribution in 2009, measured using a
Herfindahl—-Hirschman index (HHI) over types of cancer managed. The physician characteristics include the population of the physicians’
Hospital Referral Region in millions, the number of other oncologists at the Tax IDs that they work at, and the physicians age. All physician
characteristics are from 2008, the baseline year for the panel. In Column 1, the outcome variable is the raw measure of physician level exposure
to knowledge growth based on the cancer types they treat in 2008 and the subsequent growth in knowledge in those fields over the next five years
(2009-2014), based on changes in guideline lengths. In Column 2, the outcome variable is the mean recentered version of the measure of exposure
to knowledge growth. In this measure, predicted exposure to knowledge growth is subtracted from raw exposure to knowledge growth. Predicted
exposure is estimated as the number of cancer types treated times the mean knowledge growth per cancer type, weighted by the number of
oncologists who treat the cancer type. In Column 3, the outcome variable is a Poisson recentered version of the measure of exposure to knowledge
growth. As in Column 2, predicted exposure to knowledge growth is subtracted from raw exposure to knowledge growth. However, the predicted
knowledge growth for each type of cancer is estimated based on a Poisson regression of the number of Medicare patients with the cancer types
in 2008, an indicator for if the cancer type has well-established surrogate endpoints, and the interaction of the two. All physicians in the sample
are hematologist-oncologists, oncologists, or hematologists who evaluated and managed at least 25 unique cancer patients in a 20% sample of
Medicare Part B claims in 2008, 2009 and 2014. All regression standard errors are robust.
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Table 3.10: For general oncologists, physician characteristics become substantially less predictive of exposure to knowledge
growth after recentering

(1) (2) (3)
Unadjusted Remove physician Remove expected

(∆ki) variation (∆k̃i) cancer variation (∆k̃i)

Region population (millions) -9.590 3.966 -0.250
(1.481) (0.861) (0.609)

Count oncologists at main org -0.0555 -0.00741 0.0115
(0.0673) (0.0449) (0.0288)

Physician age in 2008 1.343 -1.003 -0.492
(0.322) (0.189) (0.129)

Observations 3,641 3,641 3,641
R-squared 0.016 0.013 0.004
Recentered Yes Yes

Notes: This table shows the results of a regression of exposure to knowledge growth on observable physician characteristics for general oncologists.
General oncologists are defined as oncologists in the bottom 75% of the specialization distribution in 2009, measured using a Herfindahl—-
Hirschman index (HHI) over types of cancer managed. The physician characteristics include the population of the physicians’ Hospital Referral
Region in millions, the number of other oncologists at the Tax IDs that they work at, and the physicians age. All physician characteristics are
from 2008, the baseline year for the panel. In Column 1, the outcome variable is the raw measure of physician level exposure to knowledge growth
based on the cancer types they treat in 2008 and the subsequent growth in knowledge in those fields over the next five years (2009-2014), based on
changes in guideline lengths. In Column 2, the outcome variable is the mean recentered version of the measure of exposure to knowledge growth.
In this measure, predicted exposure to knowledge growth is subtracted from raw exposure to knowledge growth. Predicted exposure is estimated
as the number of cancer types treated times the mean knowledge growth per cancer type, weighted by the number of oncologists who treat the
cancer type. In Column 3, the outcome variable is a Poisson recentered version of the measure of exposure to knowledge growth. As in Column 2,
predicted exposure to knowledge growth is subtracted from raw exposure to knowledge growth. However, the predicted knowledge growth for each
type of cancer is estimated based on a Poisson regression of the number of Medicare patients with the cancer types in 2008, an indicator for if the
cancer type has well-established surrogate endpoints, and the interaction of the two. All physicians in the sample are hematologist-oncologists,
oncologists, or hematologists who evaluated and managed at least 25 unique cancer patients in a 20% sample of Medicare Part B claims in 2008,
2009 and 2014. All regression standard errors are robust.
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Table 3.11: Knowledge growth does not detectably increase specialization for oncologists overall

(1) (2) (3) (4)
Recentered (∆k̃i) Add Age FE Add HRR FE Add Tax ID Size FE

Increase in Guideline Length (100 Pages) 29.30 27.96 44.02 45.12
(26.88) (26.95) (28.36) (28.35)

Observations 4,842 4,842 4,842 4,842
R-squared 0.000 0.001 0.061 0.062
Age FE Yes Yes Yes
HRR FE Yes Yes
Tax ID Size FE Yes

Notes: This table shows regression estimates for the relationship between exposure to knowledge growth and change in specialization for all
oncologists. The measure of exposure to knowledge growth is the Poisson recentered version of this measure. Column 1 shows the coefficient
estimate for the univariate regression. The regression standard errors are robust. Columns 2, 3 and 4 add fixed effects for the physicians age
group, hospital referral region and the number of other oncologists at their Tax IDs, respectively. In the Poisson recentered measure of exposure
to knowledge growth, predicted exposure to knowledge growth is subtracted from raw exposure to knowledge growth. Raw exposure to knowledge
growth is calculated as the total increase in the page count of guidelines over 2009 to 2014 for the types of cancers a physician treats in 2008.
Predicted exposure is estimated based on the cancer types a physician treats in 2008 and the predicted, rather than realized, growth in knowledge
over the next five years. The predicted knowledge growth for each type of cancer is estimated based on a Poisson regression of the number of
Medicare patients with the cancer types in 2008, an indicator for if the cancer type has well-established surrogate endpoints, and the interaction
of the two. All physicians in the sample are hematologist-oncologists, oncologists, or hematologists who evaluated and managed at least 25 unique
cancer patients in a 20% sample of Medicare Part B claims in 2008, 2009 and 2014.
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Table 3.12: For all oncologists, knowledge growth does not reduce the number of types of cancers managed

(1) (2) (3) (4)
Recentered (∆k̃i) Add Age FE Add HRR FE Add Tax ID Size FE

Increase in Guideline Length (100 Pages) -0.0813 -0.115 -0.106 -0.113
(0.0680) (0.0677) (0.0706) (0.0707)

Observations 4,842 4,842 4,842 4,842
R-squared 0.000 0.014 0.106 0.106
Age FE Yes Yes Yes
HRR FE Yes Yes
Tax ID Size FE Yes

Notes: This table shows regression estimates for the relationship between exposure to knowledge growth and the number of cancers managed for
all oncologists. The measure of exposure to knowledge growth is the Poisson recentered version of this measure. Column 1 shows the coefficient
estimate for the univariate regression. The regression standard errors are robust. Columns 2, 3 and 4 add fixed effects for the physicians age
group, hospital referral region and the number of other oncologists at their Tax IDs, respectively. In the Poisson recentered measure of exposure
to knowledge growth, predicted exposure to knowledge growth is subtracted from raw exposure to knowledge growth. Raw exposure to knowledge
growth is calculated as the total increase in the page count of guidelines over 2009 to 2014 for the types of cancers a physician treats in 2008.
Predicted exposure is estimated based on the cancer types a physician treats in 2008 and the predicted, rather than realized, growth in knowledge
over the next five years. The predicted knowledge growth for each type of cancer is estimated based on a Poisson regression of the number of
Medicare patients with the cancer types in 2008, an indicator for if the cancer type has well-established surrogate endpoints, and the interaction
of the two. All physicians in the sample are hematologist-oncologists, oncologists, or hematologists who evaluated and managed at least 25 unique
cancer patients in a 20% sample of Medicare Part B claims in 2008, 2009 and 2014.
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CHAPTER 4

ACCURACY AND INTERPRETABILITY IN GOVERNMENT

PAYMENT ALGORITHMS

4.1 Introduction

Algorithmic predictions are used in government decision-making to determine the flow of

billions of public dollars. These algorithms commonly rely on regression models to predict

values such as property values for tax purposes or a patient’s annual total healthcare ex-

penditures in public health insurance. Policymakers often face a trade-off between using

simple, transparent statistical models and achieving higher predictive accuracy. While ma-

chine learning techniques offer potentially increased prediction accuracy, they often require

policymakers to use complex non-parametric models.

Medicare Advantage exemplifies this tension. In Medicare Advantage, risk adjustment

modifies payment amounts to health insurers based on expected patient costs, in order to

address the “market for lemons”, or adverse selection. In 2021, its risk adjustment formulas

determined the allocation of over $300 billion, or 1% of US GDP [Statista Research Depart-

ment, 2022, Cubanski and Neuman, 2023]. Given the program’s scale, even small changes

to these formulas can change the allocation of billions in public funds.

Given the vast public funds involved, simple and interpretable risk adjustment is a key

policymaker objective. For example, during the first 15 years of Medicare Advantage, Medi-

care used a model with only a few demographic variables, known as the “Demographic Model”.

This model was used even though it explained minimal variation in spending (roughly 1%).

However, evidence mounted that this too-simple model contributed to selection and substan-

tially increased Medicare’s costs. Ultimately, Medicare added diagnosis information to risk

adjustment and created the current Hierarchical Condition Category (HCC) model [McGuire

et al., 2011]. Although this model added complexity, the developers of the HCC model still
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emphasized that preserving interpretability and parsimony were central design of the model

[Pope et al., 2004]. More recently, in reports to Congress, Medicare has emphasized that

risk adjustment models should be transparent, interpretable, and clinically meaningful with

“face-validity” [MedPAC, 2014, 2021], likely because this makes them more defensible in the

face of public scrutiny.

However, the program’s current risk adjustment techniques have been criticized for their

inaccuracy, leading to over- and under-payments [Rose et al., 2017, Zink and Rose, 2020,

MedPAC, 2021]. Such payment discrepancies distort market dynamics and compromise

healthcare access for vulnerable populations [Geruso and Layton, 2017]. The HCC model

and associated policy reforms appear to have mitigated selection [Newhouse et al., 2015] but

the remaining selection continues to be substantial, costly, and harmful to patients [Ryan

et al., 2023, Zhu et al., 2023]. A 2017 review concluded that despite theoretical and practical

challenges, improvements to risk adjustment offer “the best tool we have to address selection

across plans in competitive health insurance markets” [Geruso and Layton, 2017].

Machine learning provides an avenue toward more accurate risk adjustment to address se-

lection. However, machine learning models are frequently complex and hard to understand,

causing them to fall short of stated yet mathematically informal interpretability require-

ments.

In light of these challenges, this paper aims to empirically examine the trade-off be-

tween the accuracy and interpretability of risk adjustment models in Medicare Advantage.

Specifically, I evaluate whether machine learning models, despite their complexity, offer im-

provements in prediction accuracy that justify their use.

To measure this trade-off, I introduce a formal measure of model complexity tailored for

government payment policy. I argue that model complexity (or lack of interpretability) is

best proxied in this context as the number of coefficients in a model. This proxy assumes

that the number of coefficients reflects the number of objects, or “cognitive chunks,” that
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stakeholders consider when interpreting a risk adjustment model.

Using Medicare claims data, I fit and evaluate multiple risk adjustment models. These

models include both conventional and machine learning models, and they are fitted on Medi-

care claims data using standard risk adjustment variables. The models use the same un-

derlying variables and differ solely in their functional forms. For each model, I estimate its

complexity and out-of-sample accuracy.

The results show the clear trade-off between model accuracy and complexity. I find that

the non-linear models provide the largest improvements in accuracy. A gradient-boosted

tree changes mean absolute error (MAE) by $-1,352 (CI: $-1,392, $-1,316) relative to the

current Medicare model, the HCC model. This is roughly three-fourths the size as past

model changes. I also find that predictions from the gradient-boosted tree are more stable

in the presence of simulated upcoding than predictions from the HCC model. However,

this model also increases complexity dramatically, to 187,389, from 113 in the current HCC

model.

To assess whether this increased complexity is justifiable, I use past changes in Medicare

risk adjustment to estimate a range of plausible preferences of accuracy relative to complexity.

I find that policymakers have accepted model changes that reduce MAE by $17.97 per

additional coefficient. New models provide a reduction of $0.00722 per additional coefficient.

As such, for new models to be acceptable, policymakers would need to be willing to accept

model changes that are considerably less efficient at reducing error than they have in the

past. These conclusions are robust to using mean squared error and relaxing preference

assumptions about the disutility of complexity. They are limited to the extent that greater

accuracy reduces selection incentives. As a whole, these findings suggest that standard

machine learning models alone are unlikely to provide acceptable solutions to current issues

with risk adjustment accuracy.

This work has several contributions. First, it provides a direct comparison between cur-
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rent and proposed risk adjustment models for Medicare Advantage. While prior research has

suggested the potential for machine learning models to improve the accuracy of risk adjust-

ment in Medicare Advantage [Rose, 2016, Park and Basu, 2018, Kan et al., 2019, McGuire

et al., 2021, Zink and Rose, 2020, Irvin et al., 2020], these studies rely on different datasets,

typically commercial claims data that cover a younger, healthier population. They also often

focus on risk adjustment in other settings, such as ACA exchanges. Given that individuals

on Medicare exhibit more complex patterns of health conditions and spending, the value-add

of machine learning is expected to be higher in this setting. Therefore, the conclusion—that

machine learning is not worth the additional complexity—is more compelling, as it comes

from a direct comparison with standard Medicare Advantage models where the value-add is

expected to be larger.

This paper also contributes to the literature identifying trade-offs in the design of health

insurance risk adjustment formulas. Ellis and McGuire [2007] observe a trade-off between

“fit” (accuracy), “power,” and “balance” generated by different risk adjustment formulas.

Zink and Rose [2020] observe a trade-off between global accuracy and accuracy for certain

patient subgroups in risk adjustment. Layton et al. [2018] argue that risk adjustment should

maximize a welfare-grounded objective function, rather than R2, highlighting a trade-off

between accuracy and welfare. This paper contributes by identifying a key trade-off between

accuracy and interpretability, which arises due to governance constraints on risk adjustment.

This study also has broader implications for policy settings in the US and internationally.

Risk adjustment is used widely in US healthcare policy, with roughly two-thirds of Medicare

and Medicaid dollars allocated via risk-adjusted payments, totaling over $1 trillion annually

[Medicare Trustees, 2022, KFF, 2023]. Other countries, including Germany, Netherlands,

Switzerland, and Chile [Kautter et al., 2014, Henriquez et al., 2023], also employ risk adjust-

ment in their publicly regulated health insurance markets. Payment formulas are also used

to assess property taxes in the US and worldwide [Norregaard, 2013, Berry, 2021]. Hence,

155



the trade-off between accuracy and complexity is broadly relevant, and these findings can

inform efforts to incorporate machine learning into payment policy in those settings as well.

This work also introduces a new domain application to the machine learning interpretabil-

ity literature. Existing research has considered model interpretability across numerous do-

mains [Rudin, 2019] but payment policy remains relatively unexplored despite its growing

importance in the US and other countries. Rose [2016] and McGuire et al. [2021] consider

how to simplify risk adjustment, but their motivation is to reduce opportunities for gaming,

not to improve interpretability. They arrive at a different measure, which leads to substan-

tially different conclusions about the complexity and policy feasibility of machine learning

models. More broadly, this paper highlights that interpretability is a key barrier to using

machine learning in payment policy and identifies it as an important domain for future

research.

4.2 Complexity in risk adjustment

4.2.1 Risk adjustment accuracy

The goal of risk adjustment is not perfect accuracy but rather to maximize accuracy condi-

tional on using only “appropriate” variation. Broadly, appropriate variation is variation that

contributes to selection incentives (i.e., higher expected costs) but does not lead to manip-

ulation or moral hazard by insurance companies. This distinction is operationalized, albeit

imperfectly, by including only variables with “appropriate” variation in risk adjustment, such

as demographics and health conditions, and excluding ones with inappropriate variation, like

past spending [Geruso and Layton, 2017].
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4.2.2 The need for interpretability

Maintaining model interpretability and face validity is also a policy priority. Risk adjustment

rate setting controls the flows of vast amounts of public funds to private companies, so

these models are subject to intense public scrutiny. Medicare publicly releases all model

parameters, a contrast to other policy algorithms, such as bail decisions, where parameters

are often proprietary [Rudin, 2019]. Tweaks in models are closely followed by trade press

and private companies, down to small changes in coefficient values.1 As such, this need for

transparent, face-valid models appears to stem from political and governance constraints.

Medicare risk adjustment also has additional requirements, or what the machine learn-

ing literature refers to as “auxiliary criteria.” For example, per reports to Congress, risk

adjustment must have face validity, a criterion I interpret as having two parts. First, a

model should be interpretable, and second, upon interpretation, it must pass unspecified

“sniff tests.” These auxiliary criteria are not fully formalized and therefore are not included

in the objective function. Interpretability allows the Centers for Medicare and Medicaid

Services (CMS) to ex-post assess—and, if needed, to enforce—these auxiliary criteria that

have not been included in the objective function [Doshi-Velez and Kim, 2017].

The presence of auxiliary criteria also explains why a simple rule like “minimize mean

squared error” is an insufficient criterion by which to judge alternative risk adjustment mod-

els. Narrowly focusing on MSE makes one liable to generate models that do not meet

necessary auxiliary criteria and are therefore acceptable to policymakers.

Of note, I must clarify what impact, if any, interpretability has on gaming incentives.

Interpretability will likely worsen selection incentives if it necessitates simpler, less accurate

models, as discussed above. However, it is theoretically ambiguous how complex, non-linear

models change the incentives to upcode.

1. To quote one recent trade press article: “How will ... the changes in the proposed coefficients financially
impact your organization? ... The time to act is now! CMS will be accepting commentary through Friday,
March 3, 2023” [James et al., 2023].
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4.2.3 Measure of model complexity

This study introduces a precise measure of model complexity, defined here as non-interpretability,

for payment policy contexts: the number of coefficients in a model. Simply put, the model

asks how many parameters are necessary to generate the full range of predictions.

For linear models, this measure is the L0 norm, or the number of non-zero coefficients.

For example, a linear model with an intercept and a coefficient for female would have a

complexity of two.

For tree-based models, this measure of complexity is determined by the number of unique,

feasible decision paths, or equivalently, the number of combinations of variable values that

lead to distinct predictions. For example, consider a regression tree that splits only sex and

then, for men only, the presence of heart failure. This model can be represented with three

coefficients: one for women, one for men with heart failure, and one for men without heart

failure. Each coefficient represents the predicted spending for each group, giving the model

a complexity of three.

The approach to calculating complexity differs subtly for tree-based models like gradient-

boosted trees and random forests, which are both collections of trees where the predictions

of each tree are combined in sums or averages. Consider a second tree that splits only on

sex and then, for women only, on the presence of diabetes. This second tree also has an

individual complexity of three. However, only four coefficients are needed to express the

predictions made by combining trees, one for each of the following groups: men with and

without heart failure and women with and without diabetes. As such, the combined trees

have a complexity of four.

4.2.4 Strengths and limitations of the complexity measure

Why is the number of coefficients an appropriate measure of model complexity (or non-

interpretability) in this context? The machine learning interpretability literature argues
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that interpretability should be considered through an explanation’s basic units or “cognitive

chunks” [Doshi-Velez and Kim, 2017], which are domain specific [Rudin, 2019, Doshi-Velez

and Kim, 2017]. These cognitive chunks reflect the complexity of explaining a model, not

fitting it. In risk adjustment, coefficients vary payment rates, which makes them likely to be

highly cognitively salient to stakeholders. In addition, coefficients have interpretable labels,

e.g., heart failure [CMS, 2023], suggesting that stakeholders are inspecting and interpreting

the model at this level. Lastly, the HCC model developers used the number of coefficients

as an informal measure of model complexity, observing that the HCC model was relatively

parsimonious at “fewer than 200 parameters” [Pope et al., 2004].

There are two key limitations. First, the evidence for this measure is based on secondary

interpretation of policy documents and papers. Definitive assessment requires human sub-

jects research [Doshi-Velez and Kim, 2017], which is outside this paper’s scope.

Second, this definition is a measure of global complexity, the model’s overall complex-

ity, to use parlance from Doshi-Velez and Kim [2017]. It does not directly measure local

complexity, the complexity of explaining individual payment decisions. A measure of local

complexity would be desirable given that policymakers often need to justify individual deci-

sions. Unfortunately, it is difficult to pin down reasonable and comparable measures of local

complexity across models because the interpretation of any set of coefficients depends on the

structure of the rest of the model.

4.2.5 Alternative measures of model complexity

An alternative measure of global model complexity is the number of substantive input vari-

ables used in a model, as in Rose [2016], McGuire et al. [2021]. Under this definition, a linear

model with 100 input variables would be considered equally interpretable as a random forest

with the same 100 input variables and hundreds of thousands of interaction terms. This is

because this definition does not count interaction terms in the salient cognitive chunks. I ar-
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gue that this is an incomplete assessment of what matters to stakeholders in risk adjustment.

Interaction terms impact payments, so stakeholders are likely to demand explanations that

account for them. This makes such terms highly relevant cognitive chunks when assessing

interpretability.

Definitive arbitration of the saliency of interaction terms would require human subject

experiments [Doshi-Velez and Kim, 2017]. But in the absence of such experiments, circum-

stantial evidence will have to suffice. The original developers of the HCC model specifically

considered the clinical face-validity of interaction terms, implying they believe interactions

are subject to interpretation and scrutiny [Pope et al., 2004].

One other measure of global model complexity from a related literature is the number of

unique potential predictions of a model [Kleinberg and Mullainathan, 2019]. This definition

argues the salient object is the prediction itself and that the process used to arrive at the

prediction is irrelevant. According to this definition, a linear model with 100 indicator

variables has a complexity of 1.3× 1030 (2100, or one nonillion possible unique predictions).

A fully saturated tree-based model will have the same number of possible predictions, though

most tree-based models will have fewer. As such, the linear model is weakly more complex

than the random forest. This definition of complexity, when applied to the models used by

Medicare policymakers, suggests that Medicare policymakers are currently using a maximally

complex model. Therefore, they have no distaste for complexity whatsoever, rendering this

exercise unnecessary.

Why not just try to explain non-interpretable models rather than require interpretable

models? Simplified explanations of complex models are necessarily inaccurate; if they were

perfectly accurate, they would be complex. As such, the explanation must be wrong some-

times and is therefore not entirely trustworthy or transparent [Rudin, 2019].

160



4.3 Medicare data

Next, I discuss the data used. The analysis uses Medicare fee-for-service claims data, which

include diagnoses and the amount paid for each service. Using these data, I closely, though

not identically, follow the sample selection and variable creation procedures used in Medicare

Advantage risk adjustment models. The predictor variables include demographics and health

conditions in 2018. The outcome variable is annualized healthcare spending in 2019.

I restrict all models to standard Medicare risk adjustment variables so that they use

variation already deemed acceptable by Medicare. As such, the new models differ from

standard models primarily in their functional form, not in the variation they can use.

Appendix 4.9 provides more details on the data, sample selection, and variable construc-

tion.

The sample is split into a training set (80%), a validation set (10%), and a test set

(10%). Models are fit in the training set, and model performance is currently evaluated on

the validation set. The test set remains untouched and is available for future use.

The sample includes 4,002,909 individuals, of which 3,202,327 are included in the training

sample. Appendix Tables 4.2 and 4.2 show summary statistics for the training and validation

samples. The average patient has 2.60 (SD = 3.56) payment-relevant health conditions. The

average annualized spending is $13,449.85 (SD = $35,441.55).

4.4 Model fitting and evaluation

I first fit risk adjustment models using standard and machine learning models. Then, for each

model, I measure the model complexity using the number of coefficients and evaluate model

accuracy using out-of-sample MAE. Last, I evaluate the trade-off between accuracy and

complexity by estimating the marginal reduction in error per additional model coefficient.
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4.4.1 Model specifications

Broadly, I fit three types of models: standard Medicare models, alternative linear models,

and tree-based models.

Standard models: First, I refit standard Medicare models in my sample. This ap-

proach allows me to make a direct comparison between standard and new models that is

uncontaminated by any potential differences in the underlying data used in model fitting.

The fitted models include the Demographic model and the HCC model.

Alternative linear models: I include a selection of parametric models using OLS

and lasso, designed to incorporate health condition interactions and reduce overfitting. To

account for comorbidities, I fit an OLS model which interacts health conditions with counts of

other comorbidities. I refer to this as the “HCCxCount” model. I include both the HCC and

HCCxCount variables in Lasso regression as well. Lasso regression is a standard model for

reducing overfitting. It sets some coefficients to zero if they provide insufficient explanatory

power while biasing the remaining coefficients toward zero [Hastie et al., 2009].

Non-parametric (tree-based) machine learning models: I also fit non-parametric

tree-based models—specifically, regression trees, random forests, and gradient-boosted trees.

The single regression tree model is the simplest type of tree model. It splits the data into

groups based on column values (e.g., males with heart failure and without diabetes) and

generates a prediction for each group. Random forests fit multiple trees, each on random

samples of the data and columns, and then average the predictions across trees. Random

forests have performed well in risk adjustment models in commercial claims data [Rose, 2016].

Gradient-boosted trees fit regression trees sequentially, with each tree fit on the residuals of

the previous tree [Hastie et al., 2009]. Gradient-boosted trees have been used successfully to

predict heart attacks, bail violations, and missed diagnoses [Mullainathan and Obermeyer,

2021, Kleinberg et al., 2018, Chan et al., 2022].

These models allow for flexible functional forms and variable interactions, allowing them
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to capture complex, non-linear interactions. Often, they yield higher-quality predictions

than linear models [Hastie et al., 2009, Rose, 2016]. I train two versions of each model, one

that minimizes MSE and another that minimizes MAE. Appendix 4.10 provides more details

about model fitting and tuning.

4.4.2 Model accuracy

The primary accuracy metric I use is MAE, defined as the prediction’s average distance from

the realized value (
∑n

i
|yi−ŷi|

n ). A key advantage of this measure is its meaningful units: a

10-unit decrease in MAE indicates that predictions are, on average, $10 more accurate per

person. Additionally, MAE treats all errors equally, unlike metrics based on squared error.

However, one disadvantage is that MAE differs from MSE, the metric that most linear

models are trained on. To address this, in Appendix 4.12 I replicate the main results with

MSE as the accuracy metric. In addition, for the main analysis, I assume that improved

accuracy serves as a sufficient proxy for reduced selection incentives. The robustness of this

assumption is evaluated in the results section.

To generate confidence intervals for model accuracy, I use a bootstrapping approach.

Specifically, I generate 100 samples of the validation dataset, drawn with replacement. I

then calculate the metrics of interest for each sample and use the 2.5% and 97.5% percentile

values as 95% confidence interval bounds. This “quasi-Monte Carlo” approach, adapted

from Park and Basu [2018], provides confidence intervals while preserving computational

feasibility.

4.4.3 Model complexity

I measure model complexity as described previously. For linear models, model complexity is

measured by the L0 norm, or the number of non-zero coefficients. For non-parametric, tree-

based models, model complexity is measured as the number of unique and feasible decision
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paths. Equivalently, this measure is the number of combinations of variable values that lead

to distinct predictions. For single trees, I measure this exactly as the number of “leaves,” or

terminal nodes, on the tree. For random forests and gradient-boosted trees, I estimate this

as the number of unique predictions in the training data due to computational limitations.

This estimate provides a lower bound to the model’s complexity.

4.4.4 Marginal value of additional complexity

How should policymakers decide how to trade off complexity versus accuracy? For this

analysis, I assume model complexity and accuracy are two of the many factors that policy-

makers value and that they have a constant marginal utility of both. I then consider relative

preferences between the two, holding all else equal.

The returns to complexity can be characterized as the marginal increase in accuracy per

marginal increase in complexity. Policymakers will accept (or at least seriously consider)

new models if the returns to complexity, in terms of error reduction, are sufficiently large.

Medicare’s risk adjustment approach has evolved from the simpler Demographic model

to the more accurate but complex HCC model. I use this transition to estimate bounds on

preferences for complexity relative to accuracy. I estimate the marginal reduction in error

per marginal coefficient from this change. I interpret this value as a revealed preference

measure of error reduction per additional coefficient that policymakers are willing to accept.

Next, I estimate the error reduction per additional coefficient for new models. Focusing

on models on the Pareto frontier, I compute the marginal reduction in error per marginal

increase in coefficients for each model. I then compare this value with the value from past

model changes. For robustness, I also consider alternative functional forms of preferences

over complexity.
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4.5 Results

In this section, I first estimate the accuracy and complexity of each model. One model

significantly reduces error relative to the current Medicare model but it also substantially

increases the number of coefficients. The reduction in error per additional coefficient is

much less than that of past changes to Medicare models, suggesting that policymakers would

likely not find this model preferable to the status quo. The results are robust to alternative

accuracy measures, alternative preference assumptions, and upcoding. They are limited to

the extent that accuracy is a sufficient proxy for selection incentives.

4.5.1 Model accuracy and complexity

Figure 4.1 displays the prediction accuracy for different models, and Figure 4.2 shows their

varying levels of complexity. Figure 4.3 outlines the Pareto frontier of accuracy and com-

plexity.

Among models on the Pareto frontier, complexity increases with accuracy. A prediction

of the mean has a single parameter and therefore a complexity of 1. The average MAE is

$15,792 (CI:15,683, 15,907). The Demographic model increases complexity to 13 coefficients

and reduces MAE by $-540.20 (CI:$-553.70, $-525.90), or -3.4%. The HCC model adds more

complexity, raising it to 113 coefficients. The additional complexity earns a larger decrease

in MAE, reducing it by $-2,337 (CI:$-2,370, $-2,307), or -15%, relative to the mean.

The HCCxCount model achieves modest improvements in performance with modest in-

creases in complexity. It increases complexity to 184. It also reduces MAE, but this reduction

is not significantly different of that from HCC model ($-0.87; CI:$-7.24, $4.63).

The gradient-boosted tree trained on MAE reduces error the most, by $-3,690 (CI:$-3,714,

$-3,667), or -23%, relative to the mean. This is a difference of $-1,352 (CI:$-1,392, $-1,316)

relative to the HCC model. The change from the HCC model to the gradient-boosted tree is

almost as large (roughly three-fourths the size) as the change from the Demographic to the
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HCC model, suggesting it is economically significant. However, this error reduction comes

with an enormous degree of complexity: 187,389, or 165,831% that of the HCC model.

4.5.2 Marginal value of complexity

Is this increase in accuracy worth the large increase in complexity? To assess, I assume

constant marginal utility for both accuracy and complexity. I use past changes in risk

adjustment to infer bounds on relative preferences between the two. I find that policymakers

would need to be willing to accept model changes that are considerably less efficient at

reducing error than they have in the past for new models to be acceptable.

I first estimate a bound on acceptable changes. The HCC model reduces MAE by $17.97

per additional coefficient relative to the Demographic model. The transition from HCC to

Demographic model was adopted, which suggests that policymakers are willing to accept at

least this rate of error reduction.

Figure 4.4 displays the marginal reduction in error per marginal increase in coefficients

for Pareto models. The reduction in error falls with each additional increase in complexity.

The gradient-boosted tree (MAE) improves accuracy substantially, but inefficiently. Due

to its complexity, it reduces error by a comparatively tiny amount per coefficient: $0.00722

, relative to the next best model (and similarly, $0.0072 relative to the HCC model). This is

only 0.04% of reduction in error per additional coefficient from the transition to the HCC

model. For this model to be acceptable, policymakers would have to be willing to accept a

tiny fraction of the error reduction per coefficient than they have for past model changes.

4.5.3 Robustness

Next, I evaluate the robustness of these results with respect to alternative preference as-

sumptions, measures of accuracy, and selection incentives. I find that they are largely robust

to alternative assumptions that increase policymakers’ tolerance of marginal complexity. I
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also find that they are robust to alternative measures of accuracy, but that accuracy is an

imperfect proxy for selection incentives. Finally, I find that the improved accuracy is likely

robust to upcoding.

Alternative preference assumptions

I consider alternative preference assumptions which progressively relax policymaker distaste

for complexity. First, I assume policymakers care about the relative percentage increase in

complexity. Then the return to complexity for the gradient-boosted tree is only 0.57% of

the return from the switch to the HCC model. Second, I assume policymakers care about

log complexity. Then the return to complexity is 23.5% of the return from the switch to

the HCC model. Even with mild distaste for complexity, policymakers would need to accept

much lower returns to complexity than before.

Alternative measures of accuracy

I next assess how the results change when using MSE to measure accuracy since MAE and

MSE weight error differently. Appendix Figures 4.6, 4.7, and 4.8 present the main analyses

using MSE instead of MAE. The results are extremely similar. Again, gradient-boosted trees

(this time trained on MSE) provide the largest reduction in MSE. The returns to complexity

are remain low; policymakers would need to accept and error reduction per coefficient of

14.03, which is considerably less than past accepted changes of 1.403e+06.

Accuracy and selection incentives

Next, I assess the extent to which greater accuracy is a sufficient proxy for reduced selection

incentives. Appendix Figure 4.9 shows the performance of different models on a range of

selection incentive measures. The measures are calculated overall and for patient subgroups
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thought to be subject to strong selection incentives, such as those with multiple chronic

conditions [Zink and Rose, 2020, MedPAC, 2021]2.

The extent to which accuracy proxies for selection incentives depends on the type of

selection. For example, one selection incentive measure is the scope for selection conditional

on risk score, as measured by the sum of positive residuals, which is highlighted by Brown

et al. [2014]. The gradient-boosted tree (MAE) substantially reduces the scope for this

type of selection overall. It also greatly reduces differences across subgroups, reducing the

incentive to select certain subgroups of patients. However, other metrics provide a different

result. One such metric is tail risk, the probability that a patient’s costs substantially exceed

predictions, which is highlighted by Park and Basu [2018]. I find that the gradient-boosted

tree (MAE) increases tail risk overall and increases differences across subgroups, creating

larger incentives to avoid certain subgroups. As such, the main results are limited to the

extent that accuracy proxies for the dominant types of selection, which the literature is

inconclusive on.

Robustness to Upcoding

One key limitation of the main analysis is that it considers model accuracy without consider-

ing strategic diagnosis coding. However, strategic diagnosis coding is prevalent in Medicare

Advantage [Geruso and Layton, 2020]. This limitation stems from using the Medicare claims

data as they do not contain strategic diagnosis coding.

To understand how upcoding might affect model accuracy, I estimate the increase in

predicted spending when adding a specific diagnosis to a patient’s record, which also cap-

tures the returns from such upcoding. I focus on a subset of diagnoses listed in industry

promotional material as the “biggest HCC coding opportunities” [RCX Rules, 2023]. Fig-

ure 4.5 shows the distributions of predicted spending increases for both the HCC model

2. Appendix 4.11 provides more details on the methods.
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and gradient-boosted tree trained on MAE. Appendix Figure 4.10 replicates this with the

gradient-boosted tree trained on MSE.

I find that the HCC model consistently shows higher increases in predicted spending.

For the six diagnoses, upcoding in the HCC model raises spending by several thousand

dollars more than in the gradient-boosted tree. This observation suggests that the gradient-

boosted trees generate more stable, and therefore more accurate, predictions in the presence

of upcoding and lower incentives to upcode.

4.6 Discussion

Gradient-boosted trees improve accuracy relative to standard risk adjustment models, con-

sistent with results from other settings and features of gradient-boosted trees. However, they

increase complexity to a degree that they are unlikely to be acceptable to policymakers. Key

limitations of this work are that it does not test all potential model functional forms and

uses accuracy as a proxy for varied selection incentives.

Why do the gradient-boosted trees offer such large increases in accuracy and complexity,

and to what extent is this surprising? Regarding accuracy, gradient-boosted trees have

consistently proven to be the best at structured machine learning problems. For example,

at Kaggle, an online platform where people compete to solve machine learning problems,

gradient-boosted trees were found to win the most competitions for supervised learning

problems across a range of domains [Harasymiv, 2015, Nielsen, 2016]. Regarding complexity,

gradient-boosted trees impose minimal functional form assumptions, which allows them to

capture non-linear relationships but also requires many more parameters. In addition, they

are ensembles of multiple trees, which greatly increases parameters relative to using a single

tree or linear model.

Another reason why the gradient-boosted trees perform well is that they are fit to op-

timize MAE, while the linear models are optimizing MSE. While this could seem an unfair
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comparison, it highlights a key strength of this type of model. Standard linear models are

largely tied to the objective of minimizing MSE. In contrast, gradient-boosted trees can tar-

get any custom objective that is a function of y and ŷ, leading them to perform better at

that objective. This is a useful feature given recent literature suggesting alternative objective

functions for risk adjustment [Layton et al., 2018, Zink and Rose, 2020].

The results show that for gradient-boosted trees to be acceptable, policymakers would

need to accept substantially lower returns to complexity than they have in the past. This

finding is robust to alternative preference assumptions that reduce the marginal distaste for

complexity and to different accuracy metrics. Thus, more accurate machine learning models

can be reasonably rejected as improvements over current models, assuming policymakers’

dislike of complexity has not fallen dramatically over time. Policymakers would need to

be over a hundred times more tolerant of complexity than they have currently revealed

themselves to be for these models to be acceptable.

One limitation of this study is that I have not tested every possible functional form that

could use these variables. While other models (or versions of these models) may exist that

provide similar accuracy for much less complexity, they would need to provide the observed

increase in accuracy with less than 1/100th of the additional complexity of the models I

examine. This degree of improvement seems unlikely to result from functional form changes

alone. Therefore, standard machine learning methods are likely insufficient to substantially

improve risk adjustment accuracy without increasing complexity to unacceptable levels.

Another limitation is that accuracy is an imperfect proxy for varied types of selection

incentives. In line with past literature, I find that the optimal model depends on the relative

importance of different types of selection and the data moment used to proxy it [Park and

Basu, 2018, Zink and Rose, 2020]. While this study is not the first to observe the limitations

of minimizing prediction error as an approach to risk adjustment [Layton et al., 2018, Zink

and Rose, 2020, Geruso and Layton, 2017], this method remains the conventional approach
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[MedPAC, 2021]. Geruso and Layton [2017] review a number of these challenges and con-

clude that despite its limitations, conventional risk adjustment remains among the best tools

available to address selection, as evidenced by its wide adoption.

4.7 Conclusion

This paper examines the trade-off between accuracy and interpretability in risk adjustment

models for Medicare Advantage. I find that although interpretability is a documented crite-

rion, it has been previously informal and unquantified in the context of payment policy. To

address this, I introduce a concrete measure of model complexity (or non-interpretability).

By quantifying interpretability in this context, I formalize an important auxiliary criterion,

enabling the formal objective to be more fully specified. Using the same data and variables

employed in Medicare Advantage risk adjustment, I assess both traditional and machine

learning models. My analysis reveals that machine learning models can significantly en-

hance prediction accuracy and improve robustness to upcoding but introduce unprecedented

levels of complexity. These models provide very small increases in accuracy relative to their

increase in complexity. As such, they would require policymakers to accept substantially

smaller reductions in error per additional coefficient than they have in the past. Most likely,

policymakers would not consider these models improvements over the status quo. As such,

when accounting for auxiliary criteria in policy contexts, like interpretability, the optimal

choice of models is likely to change meaningfully. Consequently, future research should ex-

plore how to use the advances offered by machine learning in ways that align with policy

constraints in this critical domain.
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4.8 Exhibits

Figure 4.1: Difference in MAE of Model Predictions Relative to Predicting the Mean
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Notes: This graph shows the change in MAE for model predictions relative to predicting the mean. The x-axis shows the names
of various models, ordered by increasing complexity. The “Hierarchical Condition Category” model is the current Medicare
risk adjustment model. Models with “MAE” or “MSE” after their name indicate the objective function that the model was
trained on, mean absolute error or mean squared error. The y-axis shows the reduction in the out-of-sample MAE, relative to
always predicting the mean. MAE is calculated out of sample in 10% of the available data. The point estimate of MAE for
each model is represented by the round marker. Standard errors are calculated with bootstrapped samples in the out-of-sample
data. Ninety-five percent confidence intervals are shown as black bars; note that they are narrower than the height of the round
markers. The values in parentheses are the percentage reductions in MAE relative to always predicting the mean.
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Figure 4.2: Model Complexity
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the names of various models. The “Hierarchical Condition Category (HCC)” model is the current Medicare
risk adjustment model. Models with “MAE” or “MSE” after their name indicate the objective function that
the model was trained on, mean absolute error or mean squared error. The y-axis shows the “complexity,”
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Figure 4.3: Pareto Frontier of Accuracy (MAE) and Complexity (Number of Coefficients)
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Notes: This graph shows a scatterplot of the accuracy and complexity of different risk adjustment models.
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model accuracy as measured by MAE out of sample. The black line shows the Pareto frontier of accuracy
and complexity. The improving direction is toward the origin, or left and down, toward zero MAE and zero
complexity.
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Figure 4.4: Marginal Change in MAE per Coefficient by Model for Subset of Pareto Models
in Terms of Complexity and MAE
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per additional model coefficient for each pair of models. The dotted horizontal gray line shows the marginal
decrease in MAE per additional model coefficient for past risk adjustment model changes, specifically the
change from the Demographic to the HCC model. These past changes were acceptable to policymakers.
The more accurate, more complex models offer a much smaller decrease in MAE per additional coefficient.
For these new models to be acceptable, policymakers would have to be willing to accept much smaller error
reduction per coefficient than they have in the past.
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Figure 4.5: Increase in Predicted Patient Cost from Upcoding

(a) Diabetes with Chronic Conditions (HCC 19) (b) Morbid Obesity (HCC 22)

(c) Rheumatoid Arthritis (HCC 40) (d) Coagulation Defects (HCC 48)

(e) Congestive Heart Failure (HCC 85) (f) Specified Heart Arrhythmias (HCC 96)

Notes: Panel a shows the distribution of the change in predicted patient costs from adding diabetes with
chronic complications (HCC 19) to patient records without HCC 19. If the patients have HCC 17 or HCC 18,
milder types of diabetes, on their record, then those are set to zero. If they do not have HCC 17 or 18, their
count of HCCs is increased by one, and any relevant diabetes interaction terms are set to one. The x-axis
contains bins for the change in predicted spending. The y-axis shows the fraction of patients in the validation
sample who fall into the bin. Bins with 10 or fewer individuals are suppressed per CMS requirements. Panels
b, c, d, e, and f show the same analysis for adding morbid obesity (HCC 22), rheumatoid arthritis (HCC
40), coagulation defects (HCC 48), congestive heart failure (HCC 85), and heart arrhythmias (HCC 96),
respectively.
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4.9 Sample and variable construction

Data overview. The Medicare data contain records of healthcare usage and diagnoses. I

use diagnoses from the Carrier (physician services), Home Health, Outpatient (outpatient

facility fees), and MedPAR (inpatient facility fees) claims files. I calculate spending from

these same files.

Sample selection. The sample selection is as follows. Individuals must have been

enrolled in both Medicare Part A and B for all of 2018 and at least one month of 2019.

They are included if they are 65 years or older and qualified for Medicare by age, and

they are excluded if they have end-stage renal disease or enrolled in Medicaid or Medicare

Advantage at any time between 2018 and 2019. Individuals are also excluded if their gender

is unknown or their state of residence is not a US state (e.g., a territory). Medicare also

restricts its sample to those for whom Medicare is a primary payer and subsets the sample

based on whether a patient is institutionalized long term. I cannot observe these variables,

but I assume the vast majority of patients have Medicare as a primary payer and are not

institutionalized.

Spending calculations. To calculate total patient spending, I add up all spending by

Medicare, the patient, and other sources across all files in 2019. Spending is annualized by

the number of months the patient was enrolled in Medicare Part A and B. I do not perform

any price adjustments. Prices in Medicare are administratively set and vary slightly across

geography due to geographic adjustments and other rate-setting tools. However, this price

variation is small compared to variation in private insurance prices, and it does not drive

meaningful variation in spending [CBO, 2022, Gottlieb et al., 2010a].

Note that Medicare risk adjustment takes the additional step of dividing total spending

by mean spending such that spending outcomes are a percentage of mean spending (e.g.,

200% of the mean). I do not implement this step, which keeps outcome units in 2019 dollars

and aids in interpretability. The difference does not otherwise affect the results.
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Predictor variable structure for non-parametric models. The machine learning

models use the same variables as the standard HCC model. However, certain variables are

formatted differently for the non-parametric models (tree, random forest, gradient-boosted

tree) than in the HCC linear model. Broadly, variables are formatted as single variables

(e.g., age, sex) rather than as a series of saturated indicators with pre-specified interactions.

• Age. Age information is binned into the same groupings as used in the HCC model.

However, age group is provided to the model as a single ordinal variable, containing

an ordered group number, rather than as a series of indicator variables interacted with

sex. This preserves the ordinal information in the age group variable.

• Sex. Sex is provided to the machine learning models as a single binary variable rather

than as a series of indicator variables interacted with the age group. This allows sex to

be interacted with any variable in the process of model fitting rather than restricting

it to interactions with the age group.

• HCC groupings. Each HCC grouping (e.g., diabetes of any severity) is provided to

the machine learning models as a single indicator variable rather than as a series of

interaction variables between specified HCC groupings. This allows HCC groupings

to be interacted with any other HCC grouping or variable rather than restricting the

interaction to a specified subset of other HCC groupings.

4.10 Model fitting and tuning

This section discusses the implementation of risk adjustment model fitting in greater detail

to aid in replicability. The code is available upon request.
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4.10.1 Standard Medicare Models

Demographic and HCC Models. The Demographic model uses five-year age bins inter-

acted with sex indicators. This HCC model adds 86 hierarchical health condition indicators,

7 health condition interactions, and health condition count indicator variables for counts 4

through 10+. I use the 2023 V24 model version and fit it for community-dwelling, aged,

non-disabled, non-Medicaid beneficiaries [CMS, 2023].

Validation of recalibrated Medicare models To verify the reliability of the Medicare

models used in this analysis, I confirm that the recalibrated Medicare models have a very

similar in-sample R2 to the R2 reported by Medicare. Medicare reports indicate an R2 of

0.77% for the Demographic model, slightly lower than the R2 of 1.61% in this sample. For

the V24 HCC model, Medicare reports indicate an R2 of 12.57, slightly higher than the R2 of

11.03% in this sample [MedPAC, 2021]. I attribute the small differences in R2 to differences

in sample year and construction and to the inherent variance in the R2 estimates.

4.10.2 Alternative linear models:

I include a selection of parametric models using OLS and lasso, designed to incorporate

health condition interactions and reduce overfitting.

Lasso. The first model employs lasso regression with standard HCC model coefficients.

Lasso regression is a standard model for reducing overfitting and therefore improving out-

of-sample performance. Like linear regression, it minimizes MSE but adds a constraint on

the max value of the sum of the absolute values of coefficients. As a result, it sets some

coefficients to zero if they provide insufficient explanatory power while biasing the remaining

coefficients toward zero [Hastie et al., 2009].

Of note, the lasso implements an L1 penalized sparse regression (limits the sum of the

absolute value of coefficients). The ideal regression here would implement an L0 constraint,

which limits the number of non-zero coefficients. However, L0 regression is notoriously
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computationally inefficient and likely infeasible on a dataset of this size [Bertsimas et al.,

2016, Hazimeh and Mazumder, 2020].

Lasso regressions are fit using Scikit-Learn [Pedregosa et al., 2011]. The optimal sparsity

parameter for lasso is determined via cross-validation using the approach implemented in

Pedregosa et al. [2011], “LassoCV.”

“HCCxCount” model Another variant I introduce is “HCCxCount,” with linear and

lasso regression versions. This set of models is motivated by the observation that Medicare

risk adjustment still consistently underpredicts costs for patients with multiple comorbidities

and is known to inadequately account for comorbidity interactions [MedPAC, 2021]. These

models add a set of regression variables that multiply each HCC indicator with the total

count of HCCs, allowing the effect of health conditions on costs to increase with a patient’s

overall comorbidity burden. They also include standard HCC, HCC interaction, HCC count,

and demographic variables. I fit both a standard linear regression and a lasso regression with

these variables.

4.10.3 Tree-Based Machine Learning Models

All machine learning models are fit using Scikit-Learn [Pedregosa et al., 2011] except for

gradient-boosted trees, which are fit using XGBoost [Chen and Guestrin, 2016].

Regression tree and random forest. The hyperparameters are determined via a ran-

dom search of hyperparameter values, and selected hyperparameters are those that generate

models that perform best in threefold cross-validation. The models are trained to mini-

mize either MSE or MAE, and they are evaluated in cross-validation accordingly. Once the

best set of hyperparameters are chosen, the model is refit with these parameters on the full

training dataset.

Gradient-boosted regression tree. The hyperparameter tuning process is the same as

for regression trees and random forest, with one additional step. Once the best set of hyper-
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parameters are chosen, the model is refit with these parameters on the full training dataset

with early stopping criteria. Early stopping prevents the model from fitting additional trees

once additional trees stop improving out-of-sample fit.

4.11 Selection incentives analysis

The main text’s analysis focuses on the trade-off between complexity and accuracy. In that

context, I assume that a lower MAE serves as a sufficient statistic for both improved accuracy

and reduced selection incentives. Figure 4.9 evaluates the validity of this assumption.

In addition to estimating MAE, I also calculate several common measures of selection

incentives pulled from the literature, both overall and for select patient subgroups. This

section describes the methods for this analysis and key results.

I first calculate MAE for different subgroups of patients where there is plausible means

and motivation for selection. Evaluated subgroups include individuals with chronic men-

tal health disorders, chronic substance use disorders, multiple chronic conditions, and no

chronic conditions. The first three consistently cost more than predicted, while the last one

consistently costs less [Zink and Rose, 2020, MedPAC, 2021].

To construct these groups, I use “chronic condition” variables taken from the Master

Beneficiary Summary File Chronic Conditions and Other Chronic Conditions files. These

variables are constructed using diagnoses from multiple years of claims data and prescription

information [ResDAC, 2023]. They differ from the standard HCC health condition variables,

which use only diagnoses from one year of claims data. As such, these chronic condition

variables contain additional information that likely predicts spending and may be available

to insurance plans. However, because these variables are not included in risk adjustment

models, they reflect dimensions along which insurance companies have the incentives and

means to influence patient selection. These considerations make them important factors for

assessing selection incentives.
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Figure 4.9a shows the MAE for these patient subgroups for different risk adjustment mod-

els. Overall, the MAE within each subgroup largely declines as model complexity increases,

reaching its lowest with the gradient-boosted tree (MAE).

The first type of selection incentive I consider is selection conditional on predicted risk.

Some patients may incur a lot of costs, yet their predicted costs could be even higher. These

patients represent opportunities for positive selection. The sum of positive residuals captures

the potential opportunity for positive selection [Brown et al., 2014]. Figure 4.9b shows the

results by subgroup. Interestingly, the sum of positive residuals holds roughly constant or

declines as model complexity increases. It drops dramatically with the gradient-boosted

tree (MAE), both overall and by subgroup, and leads to much smaller differences across

subgroups.

The second type of selection is selection to avoid tail risk. If insurance companies have

some risk aversion, they will avoid patients with a high risk of costing substantially more than

predicted and be less concerned about small deviations from predicted costs. Figure 4.9c

shows the probability that a patient costs over twice as much as predicted, following Park

and Basu [2018]. Broadly, differences in tail risk across groups are narrow with more complex

models. The one exception to this is the gradient-boosted tree (MAE), which raises tail risk

particularly for high-cost groups and leads to larger group-level differences.

The last type of selection incentive I examine is selection by risk, e.g., by expected com-

pensation. Some patient groups consistently incur costs that exceed their predicted values.

This discrepancy is typically measured as the net compensation for a group, representing

the expected loss or gain per patient (
∑

i ŷi−
∑

i yi
N ). Accordingly, I calculate net compensa-

tion for various subgroups under different risk adjustment models. Figure 4.9d shows the

results. The HCC model successfully narrows differences across groups in net compensation

relative to predicting the mean. The gradient-boosted tree (MAE) leads to negative net

compensation overall and larger differences across subgroups.
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4.12 Additional exhibits

Table 4.1: Training Sample Summary Statistics

Mean StdDev
Variable

Age 75.62 7.50
Female 0.56 0.50
Count of HCCs 2.60 3.56
Annualized Spending 13,449.85 35,441.55
Mortality Rate 0.04 0.19

Notes: This table shows summary statistics for the data the models are trained on. The count of HCCs
is the count of HCCs per person. These are determined based on diagnosis codes in claims in 2018, the
“base year.” Annualized spending and death rates are calculated in 2019, the “outcome year” for prospective
payments.

Table 4.2: Validation Sample Summary Statistics

Mean StdDev
Variable

Age 75.61 7.50
Female 0.56 0.50
Count of HCCs 2.61 3.57
Annualized Spending 13,512.97 38,587.86
Mortality Rate 0.04 0.19

Notes: This table shows summary statistics for the validation data, i.e., the data where model accuracy is
assessed out of sample. It is analogous to Table , which shows summary statistics for the training data. The
count of HCCs is the count of HCCs per person and is determined based on diagnosis codes in claims in
2018, the “base year.” Annualized spending and death rates are calculated in 2019, the “outcome year” for
prospective payments.
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Figure 4.6: Difference in MSE of Model Predictions Relative to Predicting the Mean
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Notes: This graph shows the change in the MSE for model predictions relative to predicting the mean. It
is analogous to Figure , but shows MSE rather than MAE. The x-axis shows the names of various models,
ordered by increasing complexity. The “Hierarchical Condition Category” model is the current Medicare risk
adjustment model. Models with “MAE” or “MSE” after their name indicate the objective function on which
the model was trained, the mean absolute error, or the mean squared error. The MSE is calculated out
of sample in 10% of the available data. The point estimate is the round marker, and standard errors are
calculated with bootstrapped samples in the out-of-sample data. Ninety-five percent confidence intervals are
shown as black bars; note that in some cases they are narrower than the height of the round markers. The
values in parentheses are the percentage reductions in the MSE relative to always predicting the mean.
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Figure 4.7: Marginal Change in MSE per Coefficient by Model for Subset of Pareto Models
in Terms of Complexity and MAE
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Notes: This figure restricts attention to models that are on the Pareto frontier of the mean squared error
(MSE) and complexity. It is analogous to Figure but uses MSE rather than MAE. The x-axis lists model
pairs in order of increasing complexity, and the y-axis shows the marginal decrease in the MSE per additional
model coefficient for each pair of models. The dotted horizontal gray line shows the marginal decrease in
the MSE per additional model coefficient for past risk adjustment model changes, specifically the change
from the Demographic to the HCC model. I assume that model changes that offer less than 10% of this
decrease are not acceptable to policymakers. As such, none of the models that are more complex than the
HCC model are worth their additional complexity.
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Figure 4.8: Pareto Frontier of Accuracy (MSE) and Complexity (Number of Coefficients)
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Notes: This graph shows a scatterplot of the accuracy and complexity of different risk adjustment models.
It is analogous to figure but shows MSE rather than MAE. The x-axis, in log scale, shows model complexity,
measured as the number of coefficients. The y-axis shows model accuracy as measured by the mean squared
error (MSE) out of sample. The black line shows the Pareto frontier of accuracy and complexity. The
improving direction is toward the origin, or left and down, toward zero MSE and zero complexity.
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Figure 4.9: Alternative Measures of Model Performance and Selection Incentives by Model and Patient Subgroup
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Notes: Panel a shows MAE on the y-axis for specified patient groups by risk adjustment model. Groups include patients with 0 chronic conditions, 2+ chronic conditions,
mental health disorders, and substance use disorders, as identified by the Medicare Master Beneficiary Summary File Chronic Conditions and Other Conditions Files.
These variables are based on multiple prior years of claims diagnosis data and prescription data, unlike the HCC variables, which are based only on one prior year of claims
diagnosis data. Risk adjustment models are ordered on the x-axis by increasing complexity. Panel b is the same but with the sum of positive residuals on the y-axis.
Panel c shows the tail risk, or the probability that realized expenditures substantially (2x) exceeds predicted spending and, therefore, payments. Panel d is similar but
shows net compensation for the specified patient subgroups on the y-axis.
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Figure 4.10: Increase in Predicted Patient Cost from Upcoding

(a) Diabetes with Chronic Conditions (HCC 19) (b) Morbid Obesity (HCC 22)

(c) Rheumatoid Arthritis (HCC 40) (d) Coagulation Defects (HCC 48)

(e) Congestive Heart Failure (HCC 85) (f) Specified Heart Arrhythmias (HCC 96)

Notes:
Panel a shows the distribution of the change in predicted patient costs from adding diabetes with chronic complications (HCC
19) to patient records without HCC 19. It is analogous to Figure a but shows results for a gradient-boosted tree trained to
minimize MSE, rather than MAE. If the patients have HCC 17 or HCC 18, milder types of diabetes, on their record, then those
are set to zero. If they do not have HCC 17 or 18, their count of HCCs is increased by one, and any relevant diabetes interaction
terms are set to one. The x-axis contains bins for the change in predicted spending. The y-axis shows the fraction of patients in
the validation sample who fall into the bin. Bins with 10 or fewer individuals are suppressed per CMS requirements. Panels b,
c, d, e, and f show the same analysis for adding morbid obesity (HCC 22), rheumatoid arthritis (HCC 40), coagulation defects
(HCC 48), congestive heart failure (HCC 85), and heart arrhythmias (HCC 96), respectively.
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