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ABSTRACT

Scientific discoveries have traditionally been communicated through written papers, but

these documents pose challenges for computer understanding due to the inherent ambiguity

and variability of natural languages. Consequently, valuable knowledge and groundbreaking

insights often remain buried within an overwhelming volume of publications, rendering them

undiscoverable, inaccessible, and unusable for both humans and machines. While efforts

have been made to construct scientific databases and repositories from these papers, these

initiatives typically rely on laborious and error-prone manual extraction processes, which

are not scalable to keep up with the millions of papers published annually. The inability to

efficiently extract experimental data from existing literature poses a significant obstacle that

hinders the adoption of cost-effective, safe, and data-driven simulations to inform traditional

experiments across multiple disciplines.

To address this challenge and enable disciplines to leverage data-based simulations for

cheaper, safer, and easier insights and guidance, Natural Language Processing (NLP) meth-

ods have emerged as a promising solution. Leveraging advanced machine learning techniques,

NLP empowers computers to analyze, comprehend, and derive meaningful information from

the ever-expanding scientific literature.

This work explores various methodologies for automatically extracting precise and struc-

tured information from unstructured scientific text. Major contributions include a model-

in-the-loop pipeline for rapid training data annotation without relying on domain experts,

special features designed to adapt classical named entity recognition and relation extrac-

tion models to scientific texts, a foundational large language model for science with up to

770M parameters, a joint graph-language model for processing semi-structured data, as well

as several real-world applications. By investigating these techniques, we seek to demon-

strate their potential in facilitating real-world scientific research and enabling researchers

to efficiently leverage the vast knowledge accumulated in literature for accelerated scientific

breakthroughs.
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CHAPTER 1

INTRODUCTION

1.1 Research Question

This thesis aims to answer the following research question:

Can Natural Language Processing models make scientific facts in publications more dis-

coverable, accessible, and usable?

1.2 Thesis Statement

The scientific process has long relied on publication as a means of documenting and

disseminating results. The data accumulated in scientific publications may be of great value

to future research as references and building blocks. Discovering and extracting the data from

past publications is nevertheless a tedious task. Traditional keyword-based article searches

(such as Google Scholar) are limited in granularity. A piece of data that a scientist needs

may be buried under thousands of other papers on the same topic. The scientists would still

need to sift through large volumes of papers to locate just the data they need. However, the

variability and ambiguity inherent in natural language and the unstructured nature of such

data make them undiscoverable, inaccessible, and unusable.

In this thesis, I investigate Natural Language Processing (NLP) techniques to understand

if they can automatically extract scientific facts from scholarly publications. I develop models

targeting individual tasks in the IE pipeline as well as explore the use of more generalizable

large language models (LLMs). I apply the developed models on downstream scientific

applications and evaluate the use of the extracted data on researchers’ workflows.
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1.3 Introduction and Motivation

The continuous growth of scientific knowledge and the rapid advancements in various

fields has led to an unprecedented increase in the volume of scientific publications—estimated

to be over 5M per year [23]. These publications serve as the primary medium for dissemi-

nating new research findings and theories, which enables researchers to build upon existing

knowledge and advance their respective fields. However, the sheer volume of published work

has led to an information overload [32], making it increasingly difficult for researchers to stay

up-to-date with the latest developments and to apply computational methods that require

large amounts of data (e.g., deep neural networks) on their research. This has motivated

the need for new approaches to manage and extract value from the ever-growing body of

scientific literature.

In response to this challenge, Natural Language Processing (NLP) methods have emerged

as a promising solution. NLP is a subfield of artificial intelligence that deals with the devel-

opment of algorithms and methods to analyze, understand, and generate human language.

Through the use of advanced machine learning techniques, NLP enables computers to process

and extract meaningful information from large volumes of text. In the context of scientific

publications, NLP techniques can be applied to a wide range of tasks, such as information

extraction [87, 130, 83], text summarization [3, 16], and classification [49]. These appli-

cations have the potential to greatly enhance the efficiency and effectiveness of knowledge

discovery in the scientific community, allowing researchers to focus on their core research

while benefiting from the distilled insights provided by NLP tools.

This thesis aims to investigate NLP techniques to help the extraction of data from scien-

tific publications, with the goal of making historical research data discoverable, accessible,

and usable for future researchers.

Research questions:

1. How can we automatically extract accurate structured information from unstructured

2



text in scientific publications?

1.1. How to identify which scientific entities (e.g., materials, molecules) are discussed

in a paper?

1.2. How to extract the attributes relevant to an entity in a paper?

1.3. How can LLMs be used to improve scientific information extraction?

2. Can a scientific LLM help in real-world scientific research?

2.1. How to apply LLMs on scientific Information Extraction?

2.2. How can scientists make use of the extracted data?

The major contributions of this dissertation include:

1. Data

1.1. Data collection: a rapid model-in-the loop data annotation workflow

1.2. Data cleaning: an efficient text deduplication pipeline

2. Models

2.1. Classical Deep Learning models that target each individual component of the

scientific information extraction workflow and work in tandem to extract scientific

entities and values from literature

2.2. Transformer-based LLMs that are specifically designed to process scientific con-

texts. The tradeoffs of various parameters and the model prediction performance

are also investigated.

3. Applications

3.1. Drug-like molecule discovery from coronavirus research
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3.2. Material Descriptor Database (MDDB), which contains approximately 3M de-

scriptors for 50k inorganic materials

3.3. Hydrogen-capable molecule discovery based on LLM embeddings

1.4 Formalization

Given a scientific article A, which comprises texts S = {s1, s2, . . . , sm}, tables T =

{t1, t2, . . . , tp}, and figures F = {f1, f2, . . . , fq}, extract all scientific entities E = {e1, e2, . . . , en}

and their properties P = {p11, p12, . . . , p1k, p21, . . . , pnk} from S.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Overview of the Scientific Information Extraction Workflow

Three common steps are involved in a Scientific Information Extraction (SciIE) pipeline

(Fig. 2.1): data preprocessing, curation and annotation, and learning.

The first step, preprocessing, is to break down scientific articles into chunks of clean text

for later steps. In addition to text in the body of an article, scientific documents may also

have figures, tables, and publisher embellishments (e.g., logos, running titles, page numbers).

The first step in preprocessing is thus to parse the document and extract the body text. This

is particularly complicated in science due to the complex formats of scientific articles. While

tables and figures may also contain valuable facts, extracting information from them relies

on a completely different set of technologies, such as computer vision, which are beyond the

scope of this thesis. Interested readers may refer to [18, 69, 37, 56] for relevant research. After

document parsing, texts are then split into smaller units. This step is called tokenization.

Sentence tokenization splits passages into sentences, which is the expected input format

for many later steps. Word tokenization further splits sentences into tokens to reduce the

entropy of the vocabulary. Once text are extracted and cleaned, the next step is to create

the tools that allow for so-called intelligent processing of the language. In principle, it should

be possible to manually define rules to perform each of the tasks just listed. For example,

units can be identified by matching words that optionally begin with k, m, or M and end

with a character from a known list (e.g., m, s, Ω). The complexity of human language,

however, is too high to allow for the enumeration of a complete set of rules except in trivial

cases (e.g., units). Rather, the modern approach is to use ML techniques to learn such rules

automatically from many examples.

The second major step in performing IE is curating and annotating enough data to train

ML models for each SciIE subtask. Tokenized texts are first selected and annotated to form
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Figure 2.1: The three steps in a Scientific Information Extraction (SciIE) pipeline: Pre-
processing (blue), data curation (orange), and learning (green). Components marked with a
red alarm symbol are particularly challenging.
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(a) Text Classification (b) Named Entity Recognition

(c) Relation Extraction

Figure 2.2: Example tasks in SciIE (visualized with Prodi.gy [94]): (a) Classifying sentences
based on whether they mention polymers, (b) recognizing named entities such as polymers,
and (c) identifying relations between named entities (e.g., polymers, properties, property
values).

a so-called gold standard training set for supervised models. Labels could be per example

(sentence) or per token, depending on the task. A sentence could be given the label “True”

or “False” if we simply want to classify whether it mentions any polymer. If we want to

find out which polymers are mentioned in a sentence, then each word will need a separate

label indicating whether it is a polymer or not. Annotation is where human intelligence is

injected and it sets the performance ceiling for the models trained on the annotated data.

The annotation process is usually costly, and time-consuming, and is especially difficult for

scientific data due to the expertise required, the limited bandwidth of the people who do

have the expertise, and the rarity of desired data across the scientific literature.

The final step in the pipeline is model learning. Traditional rule- and heuristic-based

methods do not require learning. However, statistical models are the most widely used

nowadays because of performance and adaptability advantages. Machine learning models for

NLP are classified into two categories: supervised and unsupervised models. Most models

used in IE are supervised, meaning labels are required to accompany the training data.
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State-of-the-art techniques use neural networks that automatically account for the context

of a word (e.g., recurrent, convolutional networks) and are flexible enough to express the

exquisitely complicated model forms required for expressing language [82, 68].

The entire process of extracting information from text is often accomplished by a pipeline

of complementary tools rather than a single program that produces data directly from tok-

enized text. The steps in these pipelines often include (Fig. 2.2):

1. Text Classification assigns a label or score to an entire block of text. For example,

they could determine whether a block of text is an abstract or whether it contains the

desired data.

2. Named Entity Recognition (NER) classifies whether a word or phrase belongs to a

specific category. Categories could be broad (e.g., noun) or specific (e.g., place name,

polymer).

3. Relationship Extraction produces pairs of named entities that are connected by a cer-

tain relationship. A common example of IE in materials science and engineering is

to associate words that are materials with those that are property names. Complex

relationships can then be built from multiple pair relationships, such as the material

“iron” has property “density” with value “7.9 g/cc.”

In the following sections, we will carefully examine the major challenges faced by SciIE,

including the scarcity of labeled data, the sparsity of interested information in publications,

and the difficulties of applying ML or DL models trained on general corpora to scientific

texts.
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2.2 Challenges of Scientific Information Extraction

2.2.1 The Computer-(un)friendly Formats of Scientific Texts

The data needed to train or use NLP models are texts, ideally clean, well-formed texts

that can be easily ingested by computers (and humans). Many generic NLP datasets exist,

such as the CoNLL-2003 dataset for training Named Entity Recognition (NER) models [123]

and the TACRED dataset for relation extraction models [139]. One common feature of these

NLP datasets is that they are distributed as plain text and have well-defined homogeneous

internal formats. For example, in the CoNLL dataset, each word is placed on a separate line

with an empty line at the end of each sentence, and on each line, the word is followed by three

tags: a part-of-speech tag, a syntactic tag, and a named entity tag. Such structured datasets

can be fed into a model with only a few lines of code and without any extra pre-processing.

Feeding scientific literature to models, unfortunately, is quite a different story.

Useful documents in material engineering are stored in a few different kinds of docu-

ments each with different processing challenges. Specification sheets and handbooks often

express data in tabular formats instead of natural language and are best treated with special-

purpose software tailored to their specific formats given the predictable form in which data

are expressed. Information from journal articles, conference proceedings and technical report

are held in text in a variety of document formats. Older articles are often only available

as scanned images whereas more modern articles are expressed in a variety of digital for-

mats. This multitude of formats for engineering text presents a major barrier to extracting

knowledge.

Portable Document Format files (PDFs), commonly used for sharing papers, maintain a

fixed layout, but lack structural information, making it difficult to programmatically discern

different elements like body text and page numbers. Older PDFs often require Optical

Character Recognition (OCR) due to being scanned images. The extraction of text from

scientific papers in PDF format is complicated by their complex layouts, such as double-
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Title𝑥

𝑦

Lorem ipsum

dolor sit amet

consectetur

adipiscing

elit, sed do

eiusmod

tempor

incididunt

<!DOCTYPE html>
<html>
<head>
<title>Title</title>
</head>
<body>

<h1>First Heading</h1>
<p>First paragraph.</p>

</body>
</html>

Figure 2.3: PDF (left) files are designed to capture page layout, while HTML (right) files
are designed to save logical structure. It is thus much easier to identify which parts of a file
are the desired body texts with the help of HTML tags.

column formats, and the presence of non-textual elements like publisher names. Tools like

LA-PDFText [96] and GROBID [39] claim to be designed specifically for scientific literature

in PDF formats. However, as they employ machine-learning-based approaches to classify

and stitch together text blocks into coherent sections, they are not universally effective due

to varying typesetting styles. On the other hand, HTML, increasingly popular in web-based

technology, offers easier text extraction due to clear tagging of page elements, making it a

preferred format for many studies. HTML’s adaptability and straightforward tagging system

simplify the identification of paper sections, thus eliminating the guesswork required with

PDFs. This has led to its use in various research projects for extracting and analyzing

data [80, 120, 121, 117].

2.2.2 The Need for (and Lack of) Training Data

Modern artificial intelligence (AI) methods derives their “intelligence” from the data

on which they are trained. No model architecture, regardless of its sophistication, can do

better than random guessing without training data. Moreover, having the data itself is
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often not sufficient. Many models are created for predictive purposes, i.e., to respond to a

query: “Given x, predict y.” Having the data (x) alone is of limited utility without the

corresponding labels (y). Such models are called supervised models and modern machine

learning tools can require thousands of examples of (x, y) pairs.

The dearth of training data in materials engineering can be simply attributed to IE in

materials being in its beginnings, though there are ways to rapidly accelerate developing the

training sets. In this section, we first examine methods for curation of labeled training data,

discussing the difficulties involved and presenting progresses towards solving the difficulties.

Then, we discuss models that can train on data without labels (unsupervised models) and

analyze their strengths and limitations. Fig. 2.4 shows a summary of the pros and cons of

different solutions to the data collection and annotation problem.

2.2.3 The Sparsity of Information of Interest in Literature

SciIE must address a challenging range of scales. At one extreme, according to a biblio-

graphical study on global publications from 2000 to 2018 by the National Science Foundation

(NSF) [131], the scientific literature published in that time span encompasses some 35.5M

articles, which ultimately we would like to analyze in their entirety. At the other extreme,

the literature associated with individual disciplines and subdisciplines, each characterized

by distinct vocabularies and conventions for communicating information, are much smaller.

For example, the same study finds that the materials science literature encompasses 1.1M

articles during that period: 3.1% of the total. A particular subdiscipline, such as polymer

science, accounts for just a portion of those 1.1M articles, of which a yet smaller subset

contain information relevant to any specific question.

Thus, even if we can identify the relevant publications accurately and efficiently, the

sparsity of interesting information in text can be yet another obstacle to efficacious IE from

scientific literature [97, 112]. One study on extracting glass transition temperature (Tg)

shows that only 64 (0.67%) of 9518 sentences in 31 papers from Macromolecules contain
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Training Data Collection

Harvesting
Existing Data

Pros:

1) Minimum effort
required

Cons:

1) Such data may be
unavailable in the
desired domain

Examples:

1) Polymer Handbook [12]
2) PPPDB [118]

Crowd
Sourcing

Pros:

1) A fast, scalable way
to get large
amounts of data

2) Relatively low cost

Cons:

1) Requires careful
decomposition of
megatasks
into microtasks

2) Quality of collected
data may vary

Examples:

1) Annotating disease
mentions in abstracts [126]

2) Digitizing satellite
images [45]

Computer-aided
Data Collection

Pros:

1) Reduces or eliminates
manual workload

2) Interactively and iteratively
receives human input

Cons:

1) Updating model after
each loop takes time

2) Efficiency and effectiveness
depend on model quality

Examples:

1) Rule and dictionary-
based methods [136, 138]
2) Model-in-the-pipeline [35, 54]
3) Model-in-the-loop [117, 47, 73]

Distant-supervised and
Unsupervised Methods

Pros:

1) No manual labeling
required

Cons:

1) Output can be
uninformative and/or
incoherent.

2) Standardization and
normalization required.

Examples:

1) Standford OpenIE [5]
2) TextRunner [137]

Figure 2.4: Comparison of data collection and annotation solutions: Harvesting existing data
takes the least effort if such data is available; crowdsourcing is the most straightforward,
but requires careful task decomposition; computer-aided methods reduce manual workload
but quality may vary; distant-supervised and unsupervised methods do not require manual
labeling but may produce ambiguous or incoherent labels.
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both a polymer and its Tg value [81]. The remaining 99.33% of sentences are just noise

for this task. Such imbalance is rare in standard NLP datasets that most state-of-the-art

models are designed for and trained on, but will be common in extracting data from other

materials engineering literature For comparison, the widely used SemEval 2010 Task 8 rela-

tion extraction dataset only has 17.63% and 16.71% of “Other” sentences (i.e., not belonging

to known relations in the dataset) in the training and test set, respectively [44]. Extracting

information of such sparsity will be difficult for ML/DL models. The high percentage of

noise in texts will lead to more false positives and thus diluting the extraction results. To

avoid this problem, it is advisable to apply a filtering step during preprocessing to remove

as much noise as possible before feeding the texts to an IE model.

Fig. 2.5 provides a review of the techniques developed to filter out noisy texts from

traditional intuitive heuristic-based methods to modern statistical model-based methods.

2.2.4 The Difficulties of Applying Models Trained on General Corpora to

Scientific Text

It is standard practice in most applications of NLP to re-use ML models trained on plenti-

fully available text (e.g., websites, newspapers), with only retraining performed to adapt the

models to new domains. For general NLP, there are many datasets (e.g., Penn Treebank [75],

CoNLL [107], OntoNotes [129]), pre-trained word vectors (e.g., GloVe [92], FastText [78]),

and pre-trained models (e.g., BERT [26], Turing-NLG [101]) available online. However, their

training corpora are usually taken from general sources such as newspapers [75], Twitter

posts [105], online reviews [74], and Wikipedia pages [31] rather than scientific publications.

In addition to common obstacles like long-distance dependencies [114] and polysemant disam-

biguation [124], the unique terminologies and language styles used in scientific publications

pose unique challenges to the IE problem and make model re-use problematic. Elsevier has

conducted an evaluation of OpenIE systems on two datasets: one consisting of 200 sentences

randomly selected from Wikipedia, and the second made up of 220 sentences from the sci-
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Text Filtering

Heuristic Methods

Article Structure Filtering

Pros:
1) Can quickly remove large chunks of irrelevant text
2) Computationally inexpensive

Cons:
1) Ineffective for articles not strictly following

conventional structures

Examples:
1) Filtering HTML texts by tags
2) A multi-pass approach for PDF files [15]

Sentence-level Filtering

Pros:
1) More fine-grained than Article Structure filtering.
2) Computationally inexpensive

Cons:
1) Requires more manually-defined rules than

Article Structure Filtering
2) Recall is often lower than statistical methods.

Examples:
1) Rule- and pattern-base sentence filtering [10, 20, 85]

Statistical Models

Classification Models

Pros:
1) Better recall than rule-based methods

Cons:
1) Requires additional labeled data

Examples:
1) SVN, KNN, naive Bayes [93, 95]

Subjectivity Analysis

Pros:
1) Solving the problem from a unique perspective

often neglected by other methods

Cons:
1) Need to be used in conjunction with other

methods to achieve the best performance
2) Requires additional labeled data

Examples:
1)Applying subjectivity analysis in IE [99, 98, 132, 133]

Data Programming

Pros:
1) Does not require that rules be independent

or highly accurate
2) Simple to implement

Cons:
1) Requires additional labeled data

Examples:
1) ELSIE [81]

Figure 2.5: Comparison of text filtering techniques. Heuristic methods are simple to im-
plement, and often achieve higher precision but lower recall. Statistical models are more
complex, and commonly have higher recall but lower precision.
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entific literature for the 10 most published disciplines. Extractions were checked manually

by five humans to guarantee evaluation accuracy, and the results showed that the extractors

perform better on encyclopedic sentences (54% precision) than on scientific sentences (34%

precision) [40].

Many IE challenges observed in other fields of science will certainly also be challenges

in materials engineering. There is plenty of terminology that is not specific to materials

engineering and yet is critical to understanding the content of materials text. In previous

work, we have also encountered many challenges in that the same materials can be referred to

by different names (e.g., trade names, specification number, composition), which complicates

both learning language models and organizing extracted data. Long-distance dependencies

are also common in materials article, such as when the processing path for a material is

described in a separate section from where its properties are discussed. Journal articles

require significant training for humans to understand well, and it is similar for machines.

Fig. 2.6 lists the many gaps that prevent state-of-the-art NLP models from reaching their

full potential on scientific literature, as well as techniques proposed to bridge the gaps.

2.3 Related Work

2.3.1 Named Entity Recognition

Named entity recognition has been a widely studied since the 1990s. It has attracted

much attention because it is an essential step of extracting structured information from free

text. Earlier works are mostly either rule-based or requires an extensive ontology, since those

methods are less computationally intensive. With the emergence of hardware-accelerated

computing, such as GPU and TPU, deep learning NER models have gained tremendous

traction.

Early NER approaches often rely on crowdsourcing [134, 113] or rule-based systems [108,

62]. AQL, used in IBM’s SystemT, allows users to define rules for query optimization. How-
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Applying Generic NLP Resources to SciIE

Standard datasets

Difficulty level: High

1) Datasets compiled from
news articles, web pages, etc.
cannot be used to develop
or test SciIE Models

Solutions

1) Compile SciIE datasets
from scientific texts

Examples

1) CoNLL-2003 [123]

Pre-trained embeddings

Difficulty level: Medium

1) Many words in scientific
articles have the same
meaning as in generic texts

2) Some terminologies may be
unique to their domain

Solutions

1) Train word embeddings
on scientific texts to
enrich the pre-trained
embeddings.

Examples

1) Global Vectors
(GloVe) [123]

2) Synthesis Project
Word Vectors [57, 58]

Pre-trained language models

Difficulty level: Medium

1) Recent language models are
pre-trained on millions or billions
of texts, but with no special focus
on scientific articles.

Solutions

1) Pre-trained language models
can be fine-tuned on a
scientific corpus. Fine tuning
requires significantly less data
and computational power
compared to the initial training.

Examples

1) BERT [26]
2) SciBERT [9]

Figure 2.6: Challenges with applying generic NLP methods to SciIE: Datasets compiled from
non-scientific sources cannot be applied to train SciIE models; word embeddings pre-trained
on generic texts need to be enriched with embeddings trained on scientific texts to include
terminologies; pre-trained language models requires fine-tuning on scientific texts to achieve
better understanding of domain-specific language.
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ever, rule-based systems require manual effort and depend on rule quality. Hybrid human-

machine systems improve results by applying heuristics to filter results and manually verify-

ing rule-based extraction results, but they have limitations in recovering false negatives[76].

Domain-specific ontologies can be another way to match named entities [88, 103, 33]. The

feasibility, however, depends on the availability of comprehensive ontologies, which is in-

creasingly challenging with the rapid growth of publications. High NER accuracy is achieved

in biomedicine due to structured databases and unique identifiers, allowing researchers to

explore advanced models like machine learning classifiers [30, 13], but few other scientific

communities have achieved such a high level of standardization.

Classical machine learning-based approaches, such as decision tree and KNN classifiers,

show promise for NER. Recurrent neural networks (RNNs) are widely used for sequence-

based tasks but suffer from catastrophic forgetting for NLP tasks [53, 119]. LSTM networks,

with gates controlling information flow, offer improvements. Bidirectional LSTM can read

text in both directions, enhancing context understanding, but LSTM only uses the infor-

mation at the last step in the prediction of the following step. Attention-based models re-

tain information at every step, preventing information loss, and automatically assign higher

weights to the outputs that contribute more to the correct predictions.

2.3.2 Generic Information Extraction in NLP

It is standard practice in most applications of NLP to re-use ML models trained on

plentifully available text (e.g., websites, newspapers), with only retraining performed to

adapt the models to new domains. For general NLP, there are many datasets (e.g., Penn

Treebank [75], CoNLL [107], OntoNotes [129]), pre-trained word vectors (e.g., GloVe [92],

FastText [78]), and pre-trained models (e.g., BERT [26], Turing-NLG [101]) available online.

However, their training corpora are usually taken from general sources such as newspapers,

Twitter posts, online reviews, and Wikipedia pages rather than scientific publications. In

addition to common obstacles like long-distance dependencies [114] and polysemant disam-
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biguation [124], the unique terminologies and language styles used in scientific publications

pose unique challenges to the IE problem and make model re-use problematic. Elsevier has

conducted an evaluation of OpenIE systems on two datasets: one consisting of 200 sentences

randomly selected from Wikipedia, and the second made up of 220 sentences from the sci-

entific literature for the 10 most published disciplines. Extractions were checked manually

by five humans to guarantee evaluation accuracy, and the results showed that the extractors

perform better on encyclopedic sentences (54% precision) than on scientific sentences (34%

precision) [40].

The performance gap between general and scientific IE can be attributed to the plethora

of terminologies that are critical to understanding the content of the scientific text. For

instance, the same materials can be referred to by different names (e.g., trade names, spec-

ification number, composition), which complicates both learning language models and or-

ganizing extracted data. Long-distance dependencies are also common in scientific articles,

such as when the processing path for a material is described in a separate section from

where its properties are discussed. Journal articles require significant training for humans

to understand well, and it is similar for machines.

2.3.3 Scientific Masked Language Models

Masked Language Models (MLMs), such as BERT and RoBERTa, have been highly

successful in a variety of IE tasks, including text classification, named entity recognition,

and relation extraction. BERT’s phenomenal success in understanding natural language

texts has attracted attention from the science community, where valuable knowledge is being

created at a rate faster than scientists can reasonably process. Thus, the use of BERT-like

transformer models for automated knowledge extraction from literature is of great interest

to the community. The original BERT model, however, was pretrained (and evaluated) on

the general corpus, the context, terminology, and writing styles of which varies vastly from

that of scientific literature. A number of efforts have been made to adapt BERT to various
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science domains, primarily by pretraining new BERT models on domain-specific corpora.

SciBERT [9] focuses on two domains: biomedical and computer science. Based on the

BERT-Base architecture, the four SciBERT models are pretrained on 82% biomedical and

18% computer science texts, for a total of 3.17B words, sourced from SemanticScholar [4].

The four models are cased and uncased versions of SciBERT-BaseVocab and SciBERT-

SciVocab. SciBERT-BaseVocab, similar to BioBERT, uses the original BERT vocabulary

and continual pretrains from BERT-Base. SciBERT-SciVocab, trains BERT-Base from

scratch using a new vocabulary built from the scientific pretraining corpus. The SciBERT

variants outperform BERT-Base by an average of 1.66% on biomedical tasks and an average

of 3.55% on computer science tasks.

BioBERT [64] is a BERT model for biomedical text. BioBERT added bio-focused texts,

namely 4.5B words of abstracts from PubMed and another 13.5B words of full-text articles

from PubMedCentral, to the original BERT pretraining corpus. At the time of writing,

BioBERT’s latest version is v1.2. BioBERT shares the same architecture with BERT-Base

and is trained on a cased corpus. Compared to the original BERT model, BioBERT achieves

improvements of 0.62% on biomedical named entity recognition, 2.80% on biomedical relation

extraction, and 12.24% on biomedical question answering.

PubMedBERT [41], another BERT-Base model targeting the biomedical domain, is also

pretrained on text from PubMed and PubMedCentral. Whereas BioBERT starts with a

pretrained BERT-Base model that is pretrained further with biomedical specific text, Pub-

MedBERT trains a new BERT-Base model from scratch on only text from PubMed and

PubMedCentral. As a result, the vocabulary used in PubMedBERT varies significantly from

that used in BERT and BioBERT. PubMedBERT is an uncased model. The pretraining

corpus contains 3.1B words from PubMed abstracts and 13.7B words from PubMedCentral

articles. PubMedBERT achieves state-of-the-art performance on the Biomedical Language

Understanding and Reasoning Benchmark, outperforming BERT by 1.16%.

MatBERT [127] is a materials science-specific model pretrained on 2M journal articles
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(8.8B tokens). Experimental results show that it consistently outperforms BERT-Base and

SciBERT models on recognizing materials science entities related to solid states, doped

materials, and gold nanoparticles, with ∼10% increase in F1 score compared to BERT-Base,

and a 1% to 2% improvement compared to SciBERT.

These prior works demonstrate how pretraining BERT models on a domain-specific cor-

pus can improve performance on downstream tasks in that domain. However, as scientific

literature corpora grow in size and access to more powerful computing platforms enables

larger model architectures, pretraining new language models for each scientific domain will

become prohibitively expensive. Thus, there remains a need for larger, multi-disciplinary

BERT models that harness the increased availability of pretraining text, available for do-

main scientist to adapt (i.e., fine tune) to their unique needs.

2.3.4 Causal Language Models

Although MLMs have shown great results in many scientific NLP tasks as discussed

above, the recent emergence of Causal Language Models (CLMs), such as GPT-3 [14], GPT-

4 [89], and their chatbot application, ChatGPT, may make it seem that the utility of MLMs

for science has diminished.

CLMs are designed to generate coherent and fluent text by predicting the next word in

a sequence of words. CLMs use an autoregressive architecture, which means that the model

generates one word at a time, conditioning on the previously generated words. The goal

of CLMs is to learn the probability distribution over all possible next words in a sequence,

given the previously generated words. CLMs are particularly useful for language generation

tasks such as text completion, machine translation, and summarization.

However, the performance improvements of CLMs are primarily a function of the model

size and compute budget, as they tend to be two to three magnitudes larger than popular

MLMs such as BERT and require compute budgets not available to the average researcher.

Furthermore, the generative nature of CLMs makes them ill-suited for scientific IE tasks.
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CLMs may “hallucinate” information rather than extracting them from the input because

their architecture allows the output to comprise any token from their vocabulary, not just

the ones from the input sequence. CLMs’ strength in generating fluent text makes model

hallucinating especially troublesome for scientific IE tasks. While the false positive extraction

results from MLMs are wrong spans of tokens from the input and are often incoherent, CLMs

can make up seemingly coherent texts that are factually untrue, and spotting such errors

requires careful manual validation by domain experts, which defeats a major purpose of

automatic IE for science.
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CHAPTER 3

RAPID TRAINING DATA COLLECTION

As described in Section 2.2.2, the effectiveness of modern AI techniques relies heavily

on the data used for training. Because most SciIE tasks are supervised in nature, both the

input data (x) and their corresponding labels (y) are essential. Training such models in

modern machine learning typically requires a large number of (x, y) pairs.

In many scientific domains, IE applications are in their early stages, and as a result, there

are few annotated training datasets available. In this chapter, we will examine methods

for curation of labeled training data, discuss the difficulties involved and present progress

towards addressing these challenges.

3.1 Model-in-the-loop Training Data Collection

We demonstrate in Figure 3.1 how to address the lack of labeled training data with

an example of assembling a set of human- and machine-labeled data for druglike molecules

from the CORD-19 corpus [128]. In describing this process, we refer to paragraphs labeled

automatically via a heuristic or model as silver and to silver paragraphs for which labels have

been corrected by human reviewers as gold. We use the Prodigy machine learning annotation

tool [94] to manage the review process: reviewers are presented with a silver paragraph, with

putative drug entities highlighted; they click on false negative and false positive words to add

or remove the highlights and thus produce a gold paragraph. Prodigy saves the corrected

labels in standard NER training data format.

Our algorithm involves three main phases, as follows. In the first bootstrap phase, we

assemble an initial test set of gold paragraphs for use in subsequent data acquisition. We

create a first set of silver paragraphs by using a simple heuristic: we select N0 paragraphs

from CORD-19 that contain one or more words in DrugBank with an Anatomical Therapeu-

tic Chemical Classification System (ATC) code,label those words as drugs, and ask human
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Figure 3.1: Overview of the training data collection workflow, showing the three phases
described in the text and with the parameter values used in the study reported here. Each
phase pulls paragraphs from the CORD-19 dataset (blue dashed line) according to the Select
criterion listed in its shaded box. Phases B and C repeatedly update the weights for the
NER model (green arrows) that they use to identify and label uncertain paragraphs; human
review (yellow and gold arrows) corrects those silver paragraphs to yield gold paragraphs.
Total human review work is ∼278+600+960=1838 paragraphs.

reviewers to correct both false positives and false negatives in our silver paragraphs, creating

gold paragraphs.

In the subsequent build test set phase, we repeatedly use all gold paragraphs obtained so

far to train an NER model; use that model to identify and label additional silver paragraphs,

and engage human reviewers to correct false positives and false negatives, creating additional

gold paragraphs. We repeat this process until we have Nt initial gold paragraphs.

In the third build labeled set phase, we repeatedly use an NER model trained on all

human-validated labels obtained to date, with the Nt gold paragraphs from the bootstrap

phase used as a test set, to identify and label promising paragraphs in CORD-19 for addi-

tional human review. To maximize the utility of this human effort, we present the reviewers

only with paragraphs that contain one or more uncertain words, i.e., words that the NER

model identifies as drug/non-drug with a confidence in the range [min, max]). We continue

this process of model retraining, paragraph selection and labeling, and human review until
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the F-1 score improves by less than ϵ.

The behavior of this algorithm is influenced by six parameters: N0, N , Nt, ϵ, min, and

max. N0 and N are the number of paragraphs that are assigned to human reviewers in the

first and subsequent steps, respectively. Nt is the number of examples in the test set. ϵ

is a threshold that determines when to stop collecting data. The min and max determine

the confidence range from which words are selected for human review. In the experimental

studies described below, we used N0=278, N=120, Nt=500, ϵ=0, min=0.45, and max=0.55.

The NER model used in the model-in-the-loop annotation workflow to score words might

also be viewed as a parameter. In the work reported here, we use SpaCy exclusively for that

purpose, as it integrates natively with the Prodigy annotation tool and trains more rapidly

We first need to decide which SpaCy model to use for model-in-the-loop annotation. Model

size is a primary factor that affects training time and prediction performance. In general,

larger models tend to perform better, but require both more data and more time to train

effectively. As our model-in-the-loop annotation strategy requires frequent model retraining,

and furthermore will (initially at least) have little data, we hypothesize that a smaller model

may be adequate for our purposes.

To explore this hypothesis, we study the performance achieved by the SpaCy medium

and large models [48] on our initial training set of 278 labeled paragraphs. We show in

Figure 3.2 the performance achieved by the two models as a function of number of training

epochs. Focusing on the harmonic mean of precision and recall, the F-1 score (a good

measure a model’s ability to recognize both true positives and true negatives), we see that

the two models achieve similar prediction performance, with the largest difference in F-1

score being around 2%. As the large model takes over eight times longer to train per epoch,

we select the medium model for model-in-the-loop data collection.

This semi-automated method saves time and effort for human reviewers because they are

only asked to verify labels that have already been identified by our model to be uncertain,

and thus worth processing. Furthermore, we find that we do not need to engage biomedical

24



Algorithm 1: Model-in-the-loop Annotation Workflow

1 C := randomized paragraphs(CORD) ; // Prepare CORD-19 paragraphs

/* A) Bootstrap: Identify first silver paragraphs */

2 D := {s : s ∈ DrugBank & ATC(s)} ; // Extract names from DrugBank

3 P0 := {p : p = next(C & p ∩ D ≠ ∅} & |P0| = N0 ; // Assemble first silver

set

4 B = verify(P0) ; // Verify labels; initialize bootstrap set

/* B) Build test set: Expand on bootstrap set from (A) */

5 while |B| < Nt do
6 M := NER(train = 0.6B, test = 0.4B ; // Train: 60-40 train-test split

7 P := {p : p = next(C & ∃w ∈ p : M(w) ∈ [min, max])} & |P| = N ; // Next

silver

8 V := verify(P) ; // Engage crowd to verify labels

9 B := B ∪ V ; // Add corrected paragraphs to bootstrap set

10 end
11 T = B[: Nt] ; // Initialize test set to first Nt examples

12 G = B[Nt :] ; // Initialize gold set to any remaining examples

/* C) Build labeled set: Use test set from (B) to evolve model */

13 while F-1 score improvement > ϵ do
14 M := NER(train = G, test = T ; // Train on G, test on T
15 P := {p : p = next(C & ∃w ∈ p : M(w) ∈ [min, max])} & |P| = N ; // Next

silver

16 V := verify(P) ; // Engage crowd to verify labels

17 G := G ∪ V ; // Add corrected paragraphs to gold set

18 end
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professionals to label drugs in text: untrained people, armed with contextual information

(and online search engines), can spot drug names in text with accuracy comparable to that

of experts.

We provide further details on the three phases of the algorithm in the following, with

numbers in the list referring to line numbers in Algorithm 1.

A) Bootstrap

1 We start with the 2020-03-20 release version of the CORD-19 corpus, which contains

44 220 papers [128]. We create C, a random permutation of its paragraphs from which

we will repeatedly fetch paragraphs via next(C).

2 We bootstrap the labeling process by identifying as D the 2675 items in the DrugBank

ontology with a Anatomical Therapeutic Chemical Classification System (ATC) code

attached (eliminating many, but not all, drug-like molecule entities).

3 We create an initial set of silver paragraphs, P0, by selecting N0 paragraphs from C

that include a word from D.

4 We engage human reviewers to remove false positives and label false negatives in P0,

yielding an initial set of gold paragraphs, B.

B) Build test set

5 We expand the test set that we will use to evaluate the model created in the next

phase, until we have Nt validated examples.

6 We train the NER model on 60% of the data collected to date and evaluate it on the

remaining 40%, to create a new trained model, M, with improved knowledge of the

types of entities that we seek.

7 We use the probabilities over entities returned by the model to select, as our N new

silver paragraphs, P , paragraphs that contain at least one uncertain word (see above).
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8 We engage human reviewers to convert these new silver paragraphs, P , to gold, V .

9 We add the new gold paragraphs, V , to the bootstrap set B.

11–12 Having assembled at least Nt validated examples, we select the first Nt as the test set,

T , and use any remaining examples to initialize the new gold set, G.

C) Build labeled set

13 We assemble a training set G, using the test set T assembled in the previous phases

for testing. This process continues until the F-1 score stops improving.

14–17 Same as Steps 6–9, except that we train on G and test on T . Human reviewers are

engaged to review new silver paragraphs and produce new gold paragraphs, which are

then added to G instead of T .

3.2 Data-Performance Tradeoffs of the Model-in-the-loop

As noted in Section 3.1, our model-in-the-loop annotation workflow requires repeated

retraining of a SpaCy model. Thus we conducted experiments to understand how SpaCy

prediction performance is influenced by model size, quantity of training data, and amount

of training performed.

3.2.1 Model Size

We first need to decide which SpaCy model to use for model-in-the-loop annotation.

Model size is a primary factor that affects training time and prediction performance. In

general, larger models tend to perform better, but require both more data and more time

to train effectively. As our model-in-the-loop annotation strategy requires frequent model

retraining, and furthermore will (initially at least) have little data, we hypothesize that a

smaller model may be adequate for our purposes.
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To explore this hypothesis, we study the performance achieved by the SpaCy medium

and large models [48] on our initial training set of 278 labeled paragraphs. We show in

Figure 3.2 the performance achieved by the two models as a function of number of training

epochs. Focusing on the harmonic mean of precision and recall, the F-1 score (a good

measure a model’s ability to recognize both true positives and true negatives), we see that

the two models achieve similar prediction performance, with the largest difference in F-1

score being around 2%. As the large model takes over eight times longer to train per epoch,

we select the medium model for model-in-the-loop data collection.

0 2 4 6 8 10 12 14 16 18 20
Epoch

0
10
20
30
40
50
60
70
80
90

F-
1 

sc
or

e 
(%

)

Md precision
Md recall
Md F-1

Lg precision
Lg recall
Lg F-1

Figure 3.2: Precision, recall, and F-1 scores of medium and large SpaCy models trained on
278 examples.

3.2.2 Amount of Training Data

As data labeling is expensive in both human time and model training time, it is valuable

to explore the tradeoff between time spent collecting data and prediction performance. To

this end, we manually labeled a set of 500 paragraphs selected at random from CORD-19

[128] as a test set. Then, we used that test set to evaluate the results of training models

on increasing numbers of the paragraphs produced by our human-in-the-loop annotation

process. In addition to the SpaCy model that is used as the model-in-the-loop, another
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Figure 3.3: Training curves for the SpaCy and Keras models for different number of examples
collected.

NER model built with Keras (detailed in Section 4.1) was also trained and evaluated on the

same data to act as a control group and to corroborate that the SpaCy model’s performance

was within expectations. Figure 3.3 shows their F-1 score curves as we scale from 0 to 1000

training samples. With only 100 training examples, SpaCy and Keras-LSTM achieve F-1

scores of 57% and 66%, respectively. SpaCy performs better than Keras-LSTM with fewer

training examples (i.e., less than 300), after which Keras-LSTM overtakes it and maintains

a small but steady 2–3% advantage as the number of examples increases.

We stopped collecting training data after 1000 examples. We see in Figure 3.3 that

the performance of the SpaCy and Keras-LSTM models is essentially the same with 1000

training examples as with 700 examples, with the F-1 score even declining when the number

of available examples increases to 800 or 900. At 1000 examples the F-1 score is greatest

for both models. We conclude that the 1000 training examples, along with the other 500

withheld as the test set, are best-suited to train our models. There are 4244 and 1861 entities

in the training and test set, respectively.
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3.2.3 Training Epochs

Prediction performance is also influenced by the number of epochs spent in training. The

cost of training is particularly important in a model-in-the-loop setup, as human reviewers

cannot work while an model is offline for training.
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Figure 3.4: Loss, precision, recall, and F-1 of SpaCy model during training for 100 epochs
on 278 paragraphs.

Figure 3.4 shows the progression of the loss, precision, recall, and F-1 values of the SpaCy

model during 100 epochs of training with the initial 278 examples. We can see that the best

F-1 score is achieved within 10 to 20 epochs. Increasing the number of epochs does not

result in any further improvement. Indeed, F-1 score does not tell us all about the model’s

performance. Sometimes training for more epochs could lead to lower loss values while other

metrics (such as precision, recall, or F-1) no longer improve. That would still be desirable

because it means the model is now more “confident,” in a sense, about its predictions.

However, that is not the case here. As shown in Figure 3.4, after around 40 epochs the loss

begins to oscillate instead of continuing downwards, suggesting that in this case training for

100 epochs does not result in a better model than only training for 20 epochs.
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3.3 Data Collection Results

3.3.1 Performance of Human Annotators

Recognizing drug-like molecules is a difficult task even for humans, especially non-medical

professionals (such as our non-expert annotators). To assess the accuracy of the annotators,

we asked three people to examine 96 paragraphs, with their associated labels, selected at

random from the labeled examples. Two of these reviewers had been involved in creating the

labeled dataset; the third had not. For each paragraph, each reviewer decided independently

whether each drug molecule entity was labeled correctly (a true positive), was labeled as a

drug when it was not (a false positive), or was not labeled (a false negative). If all three

reviewers agreed in their opinions on a paragraph (the case for 88 of the 96 paragraphs),

we accepted their opinions; if they disagreed (the case for eight paragraphs), we engaged an

expert.

This process revealed a total of 257 drug molecule entities in the 96 paragraphs, of which

the annotators labeled 201 correctly (true positives), labeled 49 incorrectly (false positives),

and missed 34 (false negatives). The numbers of true positives and false negatives do not

sum up to the total number of drug molecules because in some cases an annotator labeled

not to a drug entity but the entity plus extra preceding or succeeding word or punctuation

mark (e.g. “sofosbuvir,” instead of “sofosbuvir”) and we count such occurrences as false

positives rather than false negatives. In this evaluation, the non-expert annotators achieved

an F-1 score of 82.9%.

3.3.2 Effects of Training Data Quality on Model Performance

We described in the previous section how the review of 96 paragraphs labeled by the non-

expert annotators revealed an error rate of about 20%. This raises the question of whether

model performance could be improved with better training data. To examine this question,

we compare the performance of our models when trained on original vs. corrected data. As
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we only have 96 corrected paragraphs, we restrict our training sets to those 96 paragraphs

in each case.

We sorted the 96 paragraphs in both datasets so that they are considered in the same

order. Then, we split each dataset into five subsets for K-fold cross validation (K=5), with

the first four subsets having 19 paragraphs each and the last subset having 20. Since K is set

to five, the SpaCy and Keras models are trained five times. In the i -th round, each model is

trained on four subsets (excluding the i -th) of each dataset. The i -th subset of the corrected

dataset is used as the test set. The i -th subset of the original dataset is not used in the i -th

round.

We present the K-fold cross validation results in Tables 3.1 and 3.2. The models per-

formed reasonably well when trained on the original dataset, with an average F-1 score only

2% less than that achieved with the corrected labels. Given that the expert input required

for validation is hard to come by, we believe that using non-expert reviewers is an acceptable

tradeoff and probably the only practical way to gather large amounts of training data.

Table 3.1: K-fold (K=5) validation of the SpaCy model on 96 paragraphs with original vs.
corrected labels. The first five rows are the results of each fold; the last row is the average
F-1 score of the five folds.

Original labels Corrected labels

Precision Recall F-1 Precision Recall F-1

100.0 25.6 40.7 100.0 20.9 34.6
93.8 50.6 65.7 88.9 53.9 67.1
93.0 63.5 75.5 92.0 73.0 81.4
76.5 45.2 57.1 68.6 61.4 64.8
98.9 92.3 95.5 99.2 92.1 95.5

Average 66.9 Average 68.7

3.4 Analysis of Human and Model Errors

In this section, we explore the contexts in which human annotators and models make

mistakes. Specifically, we study the tokens that appear most frequently near to incorrectly
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Table 3.2: K-Fold (K=5) validation of the Keras-LSTM model on 96 paragraphs with original
vs. corrected labels. The first five rows are the results of each fold; the last row is the average
F-1 score of the five folds.

Original Labels Corrected Labels

Precision Recall F-1 Precision Recall F-1

88.5 53.5 66.7 80.6 69.1 74.4
70.6 57.8 63.6 90.2 59.1 71.4
70.0 67.7 68.9 82.9 47.5 60.4
80.8 55.3 65.6 80.8 51.2 62.7
78.1 56.8 65.8 75.0 67.9 71.3

Average 66.1 Average 68.0

labeled entities. To investigate the effects of immediate and long-distance context, we control,

as window size, the maximum distance between a token and a entity for that token to be

considered as “context” for that entity.

One difficulty with this analysis is that the most frequent tokens identified in this way were

mostly stop words or punctuation marks. For instance, when the window size is set to three,

the 10 most frequent tokens around mislabeled words are, in descending order, “comma(,),”

“and,” “mg,” “period(.),” “right parenthesis()),” “with,” “of,” “left parenthesis((),” “is,”

and “or.” Only “mg” is neither a stop word nor punctuation mark.

Those tokens provide little insight as to why human reviewers might have made mistakes,

and furthermore are unlikely to have influenced reviewer decisions. Thus we exclude stop-

words and punctuation marks when providing, in Table 3.3, lists of the 10 most frequent

tokens within varying window sizes of words that were incorrectly identified as molecules by

human reviewers.

We see that there are indeed several deceptive contextual words. With a window size

of one, the 10 most frequent tokens include “oral,” “dose,” and “intravenous.” It is under-

standable that an untrained reviewer might label as drugs words that immediately precede

or follow such context words. Similar patterns can be seen for window sizes of three and five.

Without background knowledge to draw from, non-experts are more likely to rely on their

experience gained from labeling previous paragraphs. One may hypothesize that after the
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reviewers have seen a few dozen to a few hundred paragraphs, those deceptive contextual

words must have left a deep impression, so that when those words re-appear they are likely

to label the strange unknown word close to them as a drug.

Table 3.3: The 10 most frequent tokens, excluding stopwords and punctuation marks, within
various window sizes around entities incorrectly labeled by human reviewers.

Window size = 1 Window size = 3 Window size = 5

# Token Count Token Count Token Count

1 300 4 mg 19 mg 23

2 oral 3 once/day 7 daily 8

3 dose 3 treatment 6 treatment 8

4 intravenous 2 300 5 once/day 7

5 500 2 treated 4 300 7

6 intravenously 1 oral 4 oral 6

7 include 1 once 4 recipients 5

8 Both 1 dose 4 treated 4

9 resistance 1 cidofovir 3 twice 4

10 treatment 1 resistance 3 include 4

To investigate this hypothesis, we also explored the most frequent words around drug

entities that are correctly labeled by human reviewers: see Table 3.4. Interestingly, we

found overlaps between the lists in Tables 3.3 and 3.4: in all, three, four, and two overlaps

for window sizes of one, three, and five, respectively, when treating all numerical values as

identical. This finding supports our hypothesis that those frequent words around real drug

entities may confuse human reviewers when they appear around non-drug entities.

We repeat this comparison of context words around human and model errors while con-

sidering stopwords and punctuation marks. Tables 3.5 and 3.6 show the 20 most frequent

tokens in each case. We see that 20–25% of the tokens in Table 3.5, but only 5–10% of those

in Table 3.6, are not stop words or punctuation marks. As the model only learns its word

embeddings from the input text, if a token often co-occurs with drug entities in the training

corpus the model will treat it as an indication of drug entities near its presence, regardless

of whether or not it is a stopword. This apparently leads the model to make incorrect in-

ferences. Humans, on the other hand, are unlikely to think that stopword such as “the” is
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Table 3.4: The 10 most frequent tokens, excluding stop words and punctuation marks, within
various window sizes around entities correctly labeled by human reviewers.

Window size = 1 Window size = 3 Window size = 5

# Token Count Token Count Token Count

1 resistance 176 Tetracycline 230 Tetracycline 230
2 treatment 9 resistance 177 resistance 178

3 mM 4 Trimethoprim 118 Trimethoprim 118

4 oral 3 treatment 11 treatment 14

5 after 3 20∼ 7 20∼ 8

6 analogue 3 Figure 5 placebo 7

7 responses 3 concentration 5 effects 6

8 antibiotics 2 compared 4 Figure 6
9 exposure 2 100 4 KLK5 6

10 pharmacokinetics 2 mM 4 matriptase 6

Table 3.5: The 20 most frequent tokens, including stop words and punctuation marks, within
various window sizes around entities incorrectly labeled by human reviewers. Words that
are neither stop words nor punctuation words are in boldface.

Window size = 1 Window size = 3 Window size = 5

# Token Count Token Count Token Count

1 , 27 , 49 , 74

2 . 14 and 21 . 28

3 and 14 mg 19 and 28

4 with 8 . 18 mg 23

5 ( 7 ) 13 ) 21

6 is 7 with 10 of 18

7 of 6 of 10 ( 17

8 was 6 ( 9 with 13

9 or 4 is 9 to 12

10 300 4 or 7 the 11

11 oral 3 once/day 7 a 11

12 has 3 a 7 in 10

13 to 3 the 6 is 9

14 [ 3 was 6 or 9

15 dose 3 to 6 daily 8

16 intravenous 2 treatment 6 was 8
17 in 2 in 5 treatment 8

18 may 2 300 5 ] 8

19 500 2 be 4 once/day 8

20 a 2 treated 4 were 7
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Table 3.6: The 20 most frequent tokens, including stop words and punctuation marks, within
various window sizes around entities incorrectly labeled by the Keras model. Words that are
neither stop words nor punctuation words are in boldface.

Window size = 1 Window size = 3 Window size = 5

# Token Count Token Count Token Count

1 , 166 , 347 , 468

2 ( 86 and 126 and 176

3 and 81 ( 117 ( 162

4 of 58 ) 89 ) 143

5 ) 30 of 85 of 130

6 to 28 the 73 the 121
7 or 24 to 60 to 85
8 . 22 . 48 in 75

9 mM 18 with 44 with 72

10 with 17 a 41 . 68
11 in 15 in 37 a 62

12 for 15 or 35 was 52
13 is 14 was 33 or 47
14 as 14 mM 32 is 43

15 the 13 is 31 for 42

16 was 12 as 29 that 37

17 that 11 that 25 mM 36

18 [ 11 by 22 by 35

19 treatment 9 for 22 as 32

20 a 9 [ 22 were 31

indicative of drug entities, no matter how frequently they appear together.

3.5 Data Availability and Formats

We have made our annotated training data, trained models, and the results of applying

the models to the CORD-19 corpus publicly available online. [8].

In order to facilitate training of various models, we published the training data in two

formats—an unsegmented version in line-delimited JSON (JSONL) format, and a segmented

version in Comma Separated Value (CSV) format. The JSONL format contains the most

comprehensive information that we have collected on the paragraphs in the dataset. We
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choose JSONL format rather than a JSON list because it allows for the retrieval of objects

without having to parse the entire file. A JSON object in the JSONL file has the following

structure:

• text: The original paragraph stored as a string without any modification.

• tokens: The list of tokens from text after tokenization.

– text: The text of the token as a string.

– start: The index of the first character of the token in text.

– end: The index of the first character after the token in text.

– id: Zero-based numbering of the token.

• spans: The list of spans (sequences of tokens) that are labeled as named entities

(drugs)

– start: The index of the first character of the span in text.

– end: The index of the first character after the span in text.

– token start: The index of the first token of the span in text.

– token end: The index of the last token of the span in text.

– label: The label of the span (“drug”)

Another commonly adopted labeling scheme for NER datasets is the “IOB” labeling

scheme, in which the original text is first tokenized and each token is assigned a label “I,”

“O,” or “B.” The label “B(eginning)” means the corresponding token is the first in a named

entity. A label “I(nside)” is given to every token in a named entity except for the first token.

All other tokens gets the label “O(utside)” which means they are not part of any named

entity. The aforementioned JSONL data are converted according to the IOB scheme and

stored in Comma Separated Value (CSV) files with one training example per line. Each line

consists of two columns: a first of tokens that made up of the original texts, and a second of
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the corresponding IOB labels for those tokens. In addition to a different labeling scheme, the

samples in the CSV files are segmented, meaning that each sentence is treated as a training

sample instead of an entire paragraph. This structure aligns with that used in standard

NER training sets such as CoNLL03 [107].
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CHAPTER 4

SCIENTIFIC INFORMATION EXTRACTION WITH DEEP

NEURAL NETWORKS

In this chapter, we tackle the SciIE problem step-by-step. First, we identify all the

entities of interest with an NER model, and then determine the relations between entities

with a Relation Extraction model. We present experimental results on a variety of domains

to demonstrate the generalizability of the proposed SciIE pipeline.

4.1 Named Entity Recognition (NER)

We first describe the specific extraction problems and then present the Bidirectional

LSTM and Lexicon-infused LSTM models used in this work.

4.1.1 Problem Definition

Given a paper, comprised of sections containing natural language text, our task is to

identify scientific named entities of interest.

For example, in materials science publications researchers publish facts about polymers,

such as their melting point or glass transition temperature. A crucial first step in extracting

these facts is the need to identify polymer names. When given the following text from a

materials science paper, the goal is to extract the polymer “polystyrene”.

“...For instance, O’Shea et al. prepared bromo-terminated polystyrene (PS-Br)

by ATRP, which was then treated with potassium phthalimide followed by the

hydrazinolysis in order to obtain amino-terminated polystyrene (PS-NH2)...”

In social science publications our task is slightly different. Here researchers explore

hypotheses and make assertions based on analysis of known datasets. Unfortunately, the

datasets used are often embedded in the natural language text of the paper rather than
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cited like other artifacts. Thus, when given the following paragraph from a social science

paper, we aim to extract the title of the dataset, i.e. “Longitudinal Study of American

Youth.”

“...With this deficit looming, efforts to understand the factors that contribute

to degree attainment have redoubled. This article is a piece of that effort. By

analyzing data from 3279 individuals who participated in the Longitudinal Study

of American Youth, this study examines the relative importance of personal, peer,

and parent educational expectations in the degree attainment of students 15 years

after high school graduation...”

For biomedical research, our task is to identify potential drug-like molecules for the SARS-

CoV-2 virus from past publications. In this task, the goal is not simply finding any drug-like

molecule, but the ones that have been discussed in coronavirus contexts. For example, when

given the following paragraph from a biomedical paper, we aim to extract the name of the

drug “Ribavirin”

“This is a retrospective cohort study of critically ill patients with laboratory-

confirmed MERS from 14 hospitals in Saudi Arabia diagnosed between September

2012 and January 2018. We evaluated the association of Ribavirin with 90-day

mortality and MERS coronavirus (MERS-CoV) RNA clearance using marginal

structural modeling to account for baseline and time-varying confounders.”

4.1.2 A Lexicon-infused Bidirectional LSTM with CRF Model

The Long-Short Term Memory (LSTM) network has been applied to a variety of natural

language processing tasks including language modeling [115], speech recognition [38], as well

as named entity recognition [17]. One major advantage that LSTM has over other traditional

methods is that it does not require any specific (and often manually selected) features. A

label, “B,” “I,” or “O” is assigned to every word in the training corpus. “B” is assigned to
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the first word in a named entity as well as single-word named entities, while “I” marks the

rest of a multi-word entity. Non-named entity words are given the label “O.”

It is a simple sequential neural network model with one input (embedded text) and one

output(predicted label). The Bi-LSTM network evaluates every word based on the words

around it in the input text, and outputs the label that it considers the most likely. This,

however, means that the network has no awareness of the validity of the label sequence that

it generates so it may output sequences such as “OIO”, which makes no sense under the

”BIO” labeling scheme.

To penalize invalid label sequences, a Conditional Random Field (CRF) layer is added

on top of the Bi-LSTM network, as shown in Fig. 4.1. Rather than considering the words

in the input text one by one, the CRF also takes the context into account, which makes it

suitable for tasks that involves sequences of input/output samples. The CRF layer tries to

find patterns in the labels from the training data, and assigns penalties to the predictions

that mismatch.

To further improve the accuracy of our model, an external source of knowledge, DB-

pedia [6], is introduced. Simply put, DBpedia is a structured version of Wikipedia, which

consists of categorized entries on people, organizations, locations, etc. By encoding these

information and feeding it to the LSTM, the network can achieve a whole other level of

understanding of the internal structure of named entities. With the addition of external

lexicons, the neural network is no longer a strictly sequential model, as there are two inputs,

one for the embedded text, one for the one-hot encoded lexicon features (which will be dis-

cussed in detail in the following section). A Concatenation layer is added to the network to

combine these two inputs together and feed the concatenated vector to LSTM, as illustrated

in Fig. 4.1.

For example, without the external lexicon, the LSTM can only learn about the order

of the words, and seeing ”poly(vinyl methyl ether)” in the training data would not give

it a lot of hint that ”poly(ethylene glycol)” is also a polymer. However, with the external
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Figure 4.1: The model with external lexicon knowledge.

Table 4.1: An example of encoding external knowledge from DBpedia

The U.S. Bureau of Labor Statistics Industry Injury and Illness Data reveals that · · ·
LOC O B O O O O O O O O O O O · · ·
ORG O B I I I I O O O O O O O · · ·

knowledge from DBpedia, the LSTM will learn that vinyl methyl ether and ethylene glycol are

both chemical compounds and they both follow the pattern ”poly([chemical compounds])”.

Therefore the network will be more likely to recognize ”poly(ethylene glycol)” as a polymer

even though it has never seen it before. To encode the knowledge from the external lexicon,

the same ”BIO” annotation as described above is used, as shown in Table 4.1. It can be seen

from the table that there can be overlapping between multiple classes. Within each class

overlapping is also possible. For example, “US Bureau of Labor Statistics” and “Bureau of

Labor Statistics” are both present in the Organization lexicon. In such cases the longest

match is used.
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4.1.3 Model Features

The input we have on hand is a series of words. The neural network, however, requires

numerical data (i.e. vectors) to compute. Therefore, it is necessary to find proper numerical

representations for words in the corpus.

FastText Word Embedding Model

The FastText model from Facebook [11] provides a flexible architecture for encoding word

embeddings compared to its predecessors such as CBOW [77] and Skipgram [79]. Aside from

representing a word based on its contexts, it also makes use of character n-grams. Words are

mapped to character n-grams, which are then embedded in vectors. The n-gram vectors will

make up a part of the embeddings for the words that do not appear frequently enough and

thus do not have enough context in the training corpus. The addition of n-gram embeddings

also greatly helps when the target word is not in the vocabulary of the pre-trained word

embeddings. There is little that classic methods such as CBOW or Skip-gram can do when

faced with an unknown word. They may either give it a random vector or the average of

all the other vectors in the vocabulary, but, unsurprisingly, such a vector does not reflect

the actual meaning of the out-of-vocabulary word. FastText, meanwhile, can capture the

meaning of an unknown word better by making a word vector out of its character n-grams.

Lexicon Features

The current ontology of DBpedia has over 4.2 million entries in 774 classes. Matching

all of them to the training and testing corpus is a rather computationally intensive task.

Appending the one-hot encodings of the “BIO” labelling for all the classes to a word vector

will result in an extra 774 × 3 = 2322 dimensions, but for each word vector most of these

dimensions will be zero. In other words, the concatenated vector will be very sparse and

inefficient to compute. This is undesirable because it defeats the purpose of word embedding.
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To avoid diluting the dense word vector too much, only the few DBpedia classes that

are relevant to the NER task at hand should be used. For example, to identify polymers,

“Chemical Elements”, “Chemical Compounds”, and “Chemical Substance” are potentially

helpful classes so we should look for entries only from these classes in the training and testing

corpus.

4.1.4 Experimental Analysis

Data

In the sociology domain, The Inter-university Consortium for Political and Social Re-

search (ICPSR) provides a large number of manually curated relationships between datasets

and papers in the field of social science, from which we obtained a “gold standard” dataset of

publication-dataset relationships. ICPSR has indexed over 72,000 papers, out of which 6,368

are used in our evaluation. These papers are chosen because they are hosted by Elsevier,

which provides an easy-to-use API to obtain the full text of publications in JSON format.

The 6,368 papers are 8-2 split. 80% of the papers are used as training data, while the rest

20% are reserved for testing. Further, we crawled the full list of datasets that are indexed

by ICSPR, which includes 60,566 dataset names.

For the materials science domain, a corpus of 100 materials science publications is gath-

ered and manually labeled. Each paper was reviewed by 2 people to tag polymers, and

when disagreement arose a third more senior domain expert made the final judgement. This

materials science corpus includes 7,092 sentences that have at least one polymer.

For the biomedical domain, 1500 paragraphs from the CORD-19 dataset [128] were an-

notated using the Rapid Training Data Collection method described in Chapter 3.
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Table 4.2: SciNER on polymer dataset

# NER Task Precision Recall F1 Score

1
SciNER with FastText
Word Vectors

89.55% 92.26% 0.9088

2
CDE (NLP module only) on
material science dataset

54.26% 58.28% 0.5620

3
CDE (NLP+regex+dictionary)
on material science dataset

65.08% 58.66% 0.6170

Table 4.3: SciNER on drug molecule dataset

# NER Task Precision Recall F1 Score

4
SciNER with FastText
Word Vectors

86.65% 75.08% 0.8045

5
SpaCy (web md) NER
on the drug molecule dataset

86.64% 69.88% 0.7736

Table 4.4: SciNER on sociology dataset

# NER Task Precision Recall F1 Score

6
SciNER with FastText
Word Vectors

0.8253% 0.8704% 0.8473

4.1.5 Experimental Results

In this section, the proposed model is applied to three NER tasks in different domains to

demonstrate its effectiveness and generalizability. Table 4.2, 4.3, and 4.4 shows the precision,

recall, as well as the F1 score for each task.

The lexicon-infused Bi-LSTM architecture is applied to three NER tasks in different

domains to demonstrate its effectiveness and generalizability.

The first task is to identify polymers in materials science publications (Table 4.2). The

lexicon-infused Bi-LSTM achieved a F1 score of 0.9088, better than that of the comparison

group, ChemDataExtractor (CDE), which is the state-of-the-art model for recognizing chem-

ical entities [116]. CDE combines machine learning with classic rule-based approaches such

as regular expression, dictionary matching, etc. When tested only with its NLP module, it
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gets an F1 score of 0.5620. Using its entire pipeline the score increases to 0.6170, In either

case, SciNER manages to beat CDE by about 50%.

The second task is extracting druglike molecules from COVID-19 research articles. We

used the data collection methods described in Section 3 to collect a training set, and trained

both SpaCy and lexicon-infused Bi-LSTM NER models to recognize and extract drug-like

molecules in text. We find that the trained en core web md SpaCy model achieved a F-1

score of 77.3%, while our model achieved a F-1 score of 80.5%, outperforming SpaCy.

Finally, we applied the model to sociology, a domain outside of natural sciences. The

task is to identify datasets mentioned in Social Science articles. SciNER with FastTest word

embeddings achieved an F1 score of 0.8473. It shows that our proposed model adapts well

to different domains.

4.2 Relation Extraction with Syntax Tree Parsing

After identifying the entities being discussed in text, the next step in the IE pipeline is

to determine relations between entities: the Relation Extraction (RE) step,

Traditional RE methods are based on manually defined features and rules [34]. More

recently, attention-based statistical models have shown promise [109]. However, RE on sci-

entific texts poses unique challenges: the vocabulary includes domain-specific terminologies,

acronyms, and abbreviations, and the sentences are longer and more complex with many

modifiers and clauses. We aim to address these challenges in our model.

Position embeddings capture the relative positions of words in a sentence. They are

commonly used in RE models due to the intuition that words that are closer together are

more likely to be related [109]. This assumption, however, is not always the case, especially in

complex sentences with many modifiers or clauses between entities. Dependency parsing, on

the other hand, identifies the relation between modifier words and “head words” in a sentence

by means of syntactic analysis. After dependency parsing, a sentence can be represented as

a tree with the words as nodes and the dependency paths as edges. The tree is a connected,
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undirected graph, so Dijkstra’s Algorithm can find the shortest path between any two nodes,

which captures the semantic relations better than relative positions (Fig. 4.2) [27]. We

encode the dependency parsing information as a feature for each word by concatenating the

index of its head word and the lengths of its shortest paths to the two entities.

Polystyrene  

NOUN

has 

AUX

a 

DET

glass 

NOUN

transition 

NOUN

temperature  

NOUN

of 

ADP

100 

NUM

° 

NOUN

C . 

NOUN

(5) (-4)Posi�onal Embedding

Dependency Path (2) (2)

Figure 4.2: Comparison of Positional Embedding and Dependency Path: In the example, the
relative position of the words (Polystyrene, temperature) is 5, while the lengths of shortest
dependency path between the two words is 2.

Fig. 4.2 illustrates the advantages of dependency paths over simple relative positional

embeddings: In the sentence “Polystyrene has a glass transition temperature of 100°C”,

the relative position between the words Polystyrene and temperature is 5, but the shortest

path between the same words in the dependency tree has a length of 2, so it captures the

close semantic relations between the two words better than positional embeddings. In our

model, we encode the information from dependency parsing as a feature for each word by

concatenating the index of its head word and the lengths of the shortest path to the two

entities.

Neural networks assume all words are of equal importance. Attention mechanisms are

used as a way of highlighting important input data. In traditional RE models, the attention

layer computes attention weights for each word in a sentence based on the word’s embedding

and the embeddings of the two entity words in the sentence. This is based on the assumption

that there is a salient connection between the entity words and the relation terms. In our
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model we also take the relation term into consideration. The relation terms are stripped

of stop words (e.g., “FEATURE OF” becomes “FEATURE”), and for each word, a new

attention weight is calculated based on its embeddings and embeddings of the relation terms.

Concatenating the new and the traditional attention weights produces the final attention-

based feature of a word.

Word Embedding POS Positional 
Embedding

Dependency 
Path

Convolution

Attention

Max Pooling

Fully Connected

Softmax

Figure 4.3: Model Architecture

Fig. 4.3 shows the overall model architecture. The inputs are the concatenation of four

features: word embeddings, Part-of-Speech tags, positional embeddings, and dependency

path features. The inputs are fed into a convolutional network to extract sentence features.

Neural networks by default assume all words are of equal importance, so the attention

mechanism is needed to highlight words that are more indicative of the relations present in

a sentence. The attention layer takes word embeddings as inputs. For each word in an input

sentence, it calculates attention weights between it and every entity in the sentence. The

outputs from the attention layer and the convolutional network are concatenated and taken

as inputs to a dense layer, after which a softmax is applied to generate the final probability

distribution of the input sentences over the potential relation types.

We evaluate our model on the Scientific Information Extraction Relation Extraction

dataset [1]. This is the same dataset that is used by SciBERT [9]. The dataset includes
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gold standard annotations for 4648 sentences from scientific publications, including 3219 in

the training set, 455 in the development set, and 974 in the test set. Table. 4.5 shows the

number of sentences that consists of each type of relations in the training, development, and

test set.

Table 4.5: The number of sentences in each type of relations (COMPARE, CONJUNCTION,

EVALUATE-FOR, FEATURE-OF, PART-OF, USED-FOR) in the training, development, and test
set

COMP CONJ EVAL FEAT HYPO PART USED
TRAIN 166 400 313 173 298 179 1690
DEV 29 59 50 32 44 27 214
TEST 38 123 91 59 67 63 533
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Figure 4.4: Precision, recall, and F1 score of the the proposed model and the traditional RE
model on each type of relation in the dataset.

Our model consistently outperformed the traditional approach (Fig. 4.4). The macro-

average F1 of our model and the traditional model across all relation types is 0.681 and 0.606,

respectively. The weighted-average F1 is 0.755 and 0.682. The micro-averaged-F1, or the

overall accuracy, is 0.747 and 0.672. Both models perform noticeably better on identifying the

“Used-For” relation, likely due to its large proportion in the dataset (Table 4.5). Our method

improves upon traditional models by incorporating Dependency Parse information, relation-

term attention, and specialized word embeddings. Our model outperformed a traditional

model by up to 0.073 weighted-average F1.
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CHAPTER 5

LARGE LANGUAGE MODELS FOR SCIENCE

Transformer-based large language models (LLMs) such as BERT [25] have delivered im-

pressive results for a variety of tasks. These models show particular promise for a range of

scientific tasks, such as automating extraction of facts from literature, classifying and tagging

abstracts, and deriving relationships between scientific entities. As a result, there have been

several domain-specific (e.g., PubMedBERT [41], MatSciBERT) and general science (e.g.,

SciBERT) models trained by the community. These models show impressive performance

on many NLP tasks; however, each model is limited with respect to the breadth of its focus,

including the SciBERT model that is primarily trained on computer science and biomedical

data.

We train a series of scientific language models, called ScholarBERT, on a large, mul-

tidisciplinary scientific corpus consisting of 225B tokens to understand the effects of model

size, data size, as well as pretraining and finetuning epochs on downstream task performance.

We find that for information extraction tasks, the primary application for scientific language

models, the performance gains by training a larger model for longer with more data are not

robust—they are highly dependent on the individual tasks.

5.1 Data

5.1.1 The Public Resource Dataset

We pretrain the ScholarBERT models on a dataset provided by Public.Resource.Org,

Inc. (“Public Resource”), a nonprofit organization based in California. This dataset was

constructed from a corpus of 85M journal article PDF files, from which the Grobid tool,

version 0.5.5, was used to extract text Grobid is “a machine learning library for extracting,

parsing and re-structuring raw documents such as PDF into structured XML/TEI encoded

documents with a particular focus on technical and scientific publications” [39]. We used
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the XML/TEI encoded documents, not the underlying PDF files. Not all extractions were

successful, because of corrupted or badly encoded PDF files. We successfully extracted text

from 75 496 055 articles from 178 928 journals in the Dataset. We work here with text from

∼75M articles in this dataset, For most articles, we also extracted metadata, such as the

title, authors, a DOI, and other descriptive information. and categorize them using their

journal titles to obtain the distribution of the articles by domain – 45.3% biomedicine, 23.1%

technology, 20.0% physical sciences, 8.4% social sciences, and 3.1% arts & humanities.

5.1.2 The PILE dataset

The Pile is a vast English text dataset, consisting of 22 high-quality datasets, designed to

train large-scale language models. It includes both established natural language processing

datasets and newly introduced ones. The Pile can be used not only to train large language

models but also as a benchmark for the generalization ability and cross-domain knowledge

of language models. The dataset’s size is 825.18 GiB, making it an excellent resource for

language model development [36]. Notable models trained on the PILE dataset include

GPT-2 and GPT-3 from OpenAI. Among its 22 datasets, a number of them are primarily

science-focused, such as ArXiv and PubMed.

5.1.3 Deduplication of the Training Corpora

As a single corpus is limited in size and domain, having just one corpus is often not

enough to train a large language model with billions of parameters. Therefore, combining

texts from multiple sources is a common technique to efficiently collect a vast and diverse

training corpus. However, as the corpora are collected from a variety of sources, they may

contain duplicates of the same article or articles that share large portions of their text (such

as preprints and published articles). Having unknown duplicates in the training corpus will

bias the model towards the overrepresented data, consume unnecessary compute cycles and

memory, and produce overfit models that end up memorizing those specific instances rather
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than learning the underlying patterns. Therefore, deduplication is a necessary step before

the corpus can be used in training. Even the same article may appear slightly differently in

various sources due to variations in typesetting, publisher copyright statements, etc. Strict

string matching will fail to detect such duplicates. A better way to measure the “similarity”

of two documents is the Jaccard Similarity Score, which is defined as

Jaccard(S, T ) =
| S ∩ T |
| S ∪ T |

where S and T are the sets of tokens (i.e., words) of two input texts, respectively. With the

Jaccard similarity score, we can set a threshold above which two documents will be considered

to be duplicates. However, a brute-force method comparing every pair of documents will

take O(N2) time, so it is not computationally feasible for a large collection of texts.

To detect duplicated texts effectively and efficiently, we applied a technique called ”min-

hashing”, which compresses large sets in such a way that we can still deduce the similar-

ity of the underlying sets from their compressed versions. By combining minhashing with

”locality-sensitive hashing (LSH)”, which focuses on pairs that are likely to be similar with-

out investigating every pair, we can achieve sub-linear performance, making deduplicating a

corpus as large as PILE and PRD a possibility [65].

The overall process consists of three main steps: 1) precompute minhash signatures for

every document, 2) build an LSH index for the corpus, and 3) query the index for potential

duplicates.

Step 1. Precompute minhash signatures

To compute the minhash for every document, we first construct a characteristic matrix,

as shown in Table 5.1, where the columns are the documents and the rows are the tokens

in the documents. If a token appears in a document, it will have a ‘1’ in the corresponding

location in the matrix, otherwise it will be ‘0’. After a random permutation of the rows,
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Table 5.1: A minhash characteristic matrix for 3 documents T1, T2, T3. a – d are the tokens
in the documents. The rows are randomly permutated. A ‘1’ in the matrix means the token
exists in that document, whereas a ‘0’ indicates the opposite.

T1 T2 T3
b 1 0 0
a 0 1 0
d 1 0 1
c 1 1 1

the minhash value for a document is the number of the first row in which the column has a

‘1’. It can be formally proved that the probability that the minhash function for a random

permutation of rows produces the same value for two documents equals the Jaccard similarity

of those documents [65].

Computing the minhashes involves randomly permutating the matrix, but in practice

the number of rows in the matrix will be in the millions, equal to the number of distinct

tokens in the corpus. Picking a random permutation and sorting the rows according to the

permutation are computationally infeasible. We can simulate a permutation by a random

hash function that maps row numbers to as many buckets as there are rows. To calculate the

probability that the minhash function for a random permutation of rows produces the same

value for two documents, we pick n random hash functions instead of n random permutations.

Computing the minhashes is a time-consuming process due to heavy I/O (i.e., reading

every file in the corpus). To speed up the process, our implementation is parallelized such

that the documents are distributed to all CPU cores to compute their minhash signatures,

and the main process will save all the returned signatures in a pickle file.

Each minhash signature is stored together with a key that provides a unique identifier for

a document in the corpus. In our implementation, the key consists of the name of the source

file where the document is stored and the line number that indicates where the document

starts within that source file.
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Step 2. Build the LSH index

With the minhash characteristic matrix built, computing Jaccard similarities for every

pair of documents still takes O(N2) time because minhashing does not reduce the time

complexity for the pairwise comparison. Intuitively, we want to compare only the pairs that

are above some lower bound in similarity, without investigating every pair. This is called

locality-sensitive hashing (LSH) or near-neighbor search. We can divide the signature matrix

into b bands consisting of r rows each. We shall normally assume that two vectors hash to

the same bucket if and only if they are identical. We consider a pair of documents to be

potential duplicates if and only if the signatures agree in all the rows of at least one band,

and we will only compute the Jaccard Similarities for pairs of documents that meet this

requirement. In this way, detecting duplicates in a large corpus with N documents can be

achieved in less than O(N) (sublinear) time.

The threshold parameter controls the lower bound of similarity above which a pair of

documents would be considered duplicates. Note that the threshold is decided when building

the index and it is not possible to change the threshold at query time without building

another index. Therefore, selecting an appropriate threshold is the key to minimize false

positive and false negative detection. We experimented with threshold values of 0.6, 0.7,

0.8 and 0.9. As an evaluation, we randomly checked 20 pairs of documents predicted to be

duplicates with each threshold value. With the threshold at 0.6, the false detection rate

(FDR) was 45%; as the threshold increased to 0.7, the FDR dropped to 15%. When the

threshold was set to 0.8 and 0.9, the FDR is 0%, but at 0.9, all the detected pairs were

exact matches, which defeated the purpose of applying Jaccard Similarity in the first place.

Therefore, the threshold is chosen to be 0.8.

Technically, the index can be stored as an in-memory object. However, to enable paral-

lelization and data persistency, Redis is used as the storage layer for the LSH index. The

index will consume roughly twice as much memory as the minhash signatures do, so the

index for a very large corpus might exceed the available RAM of a compute node, in which
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case the signatures need to be partitioned and saved into different indices on different nodes.

When Redis is used as the storage backend instead of an in-memory data structure, it is

important to set a specific basename for the LSH index. This is necessary because multiple

indices may be stored in the same Redis database. To query an index stored in Redis, the

same basename must be used to initialize the LSH object. Otherwise, queries will always

result in empty responses.

Step 3: Query for duplicates

In the last step, we read minhash signatures from Step 1 and query them against the

LSH index built in Step 2.

The code is parallelized so that the signatures are distributed to all CPU cores. The

query returns duplicated documents as tuples, in which the first element is always the key

of the minhash signature used to query the index, and the second element is the key of a

duplicate document found in the index.

Result: Deduplication of PRD and PILE

The deduplication pipeline was tested on the PRD dataset and PILE dataset. PILE

contains documents from a variety of sources, many of which are not scientific articles and

are unlikely to find duplicates in the ArXiv dataset. Therefore, only the ”ArXiv” and

”PubMed Central” subsets of PILE were searched for deduplication with ARXIV.

There are 85 million files in the PRD dataset, and 8 million files in the science subsets of

PILE. 93 204 documents in ARXIV were found to have at least 1 duplicate in the ArXiv and

PubMed Central subsets of PILE. 70 788 documents in the ‘ArXiv‘ and ‘PubMed Central‘

subsets of PILE were found to have at least 1 duplicate in PRD. In total, there are 90 296

pairs of duplicated documents.
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5.1.4 ScholarBERT Pretraining

We randomly sample 1%, 10%, and 100% of the Public Resource dataset to create PRD 1,

PRD 10, and PRD 100. We pretrain ScholarBERT models on these PRD subsets by using

the RoBERTa pretraining procedure, which has been shown to produce better downstream

task performance in a variety of domains [70].

Figure 5.1: Pretraining loss plots for the ScholarBERT models listed in Table 5.5. The
vertical dashed lines indicate the approximate locations of the iteration checkpoints selected
for evaluation.

Tokenization

The vocabularies generated for PRD 1 and PRD 10 differed only in 1–2% of the tokens;

however, in an initial study, the PRD 100 vocabulary differed from that of PRD 10 by 15%.

A manual inspection of the PRD 100 vocabulary revealed that many common English words

such as “is,” “for,” and “the” were missing. We determined that these omissions were an

artifact of PRD 100 being sufficiently large to cause integer overflows in the unsigned 32-

bit-integer token frequency counts used by HuggingFace’s tokenizers library. For example,

“the” was not in the final vocabulary because the token “th” overflowed. Because WordPiece
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Table 5.2: Pretraining corpora used by models in this study. The domains are
Bio=biomedicine, CS=computer science, Gen=general, Materials=materials science and en-
gineering and Sci=broad scientific.

Name Description Domain Tokens

Wiki English-language Wikipedia articles [51] Gen 2.5B
Books BookCorpus [141, 51]: Full text of 11038 books Gen 0.8B
SemSchol 1.14M papers from Semantic Scholar [19], 18% in CS, 82%

in Bio
Bio, CS 3.1B

PubMedA Biomedical abstracts sampled from PubMed [41] Bio 3.1B
PubMedB Biomedical abstracts sampled from PubMed [64] Bio 4.5B
PMC Full-text biomedical articles sampled from PubMedCen-

tral [41]
Bio 13.7B

MatSci 2M peer-reviewed materials science journal articles [125] Materials 8.8B
Battery 0.4M battery-related publications [49] Materials 5.2B
PRD 1 1% of the English-language research articles from the Pub-

lic Resource dataset
Sci 2.2B

PRD 10 10% of the English-language research articles from the Pub-
lic Resource dataset

Sci 22B

PRD 100 100% of the English-language research articles from the
Public Resource dataset

Sci 221B

iteratively merges smaller tokens to create larger ones, the absence of tokens like “th” or

“##he” means that “the” could not appear in the final vocabulary.

We modified the tokenizers library to use unsigned 64-bit integers for all frequency

counts, and recreated a correct vocabulary for PRD 100. Interestingly, models trained on

the PRD 100 subset with the incorrect and correct vocabularies exhibited comparable per-

formance on downstream tasks.

BERT Pretraining

BERT pre-training is performed in two phases that train with maximum sequence lengths

of 128 and 512, respectively [25]. Typically, the first phase is used for the majority of pre-

training steps (90% in the original BERT) because longer sequences are more expensive due

to the quadratic complexity of the attention mechanism. WordPiece embedding is used with

a vocabulary of 30 000. The BERT pre-training processes optimizes for two tasks, masked

language modeling (MLM) and next sentence prediction (NSP). In MLM, a small percentage,
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generally 15%, of tokens in the input sequence are randomly masked with the [MASK] token

and the model is asked to predict the masked tokens. In downstream tasks, however, [MASK]

is not a token that appears, so for the tokens selected for masking, 80% are actually masked

with the [MASK] token, 10% are replaced by a random token in the vocabulary, and 10% are

not changed. Each input sequence contains two sentences where there is a 50% chance the

second sentence is the actual next sentence in the document otherwise the second sentence

is a random sentence from the training corpus. For the NSP tasks, the model must predict

if the second sentence is the actual next sentence or a random one. The NSP task aims to

improve performance in downstream tasks that use the relationship between sentences, such

as question answering.

RoBERTa Optimizations

RoBERTa introduces the following optimizations for improving BERT pretraining per-

formance [70]. 1) It uses a single phase training approach whereby all training is performed

with a maximum sequence length of 512. 2) Unlike BERT which randomly introduces a

small percentage of shortened sequence lengths into the training data, RoBERTa does not

randomly use shortened sequences. 3) RoBERTa uses dynamic masking, meaning that each

time a batch of training samples is selected at runtime, a new random set of masked to-

kens is selected; in contrast, BERT uses static masking, pre-masking the training samples

prior to training. BERT duplicates the training data 10 times each with a different random,

static masking. 4) RoBERTa does not perform Next Sentence Prediction during training.

5) RoBERTa takes sentences contiguously from one or more documents until the maximum

sequence length is met. 6) RoBERTa uses a larger batch size of 8192. 7) RoBERTa uses

byte-pair encoding (BPE) rather than WordPiece. 8) RoBERTa uses an increased vocabu-

lary size of 50 000, 67% larger than BERT. 9) RoBERTa trains for more iterations (up to

500 000) than does BERT-Base (31 000).

We adopt RoBERTa training methods, with three key exceptions. 1) Unlike RoBERTa,
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we randomly introduce smaller length samples because many of our downstream tasks use

sequence lengths much smaller than the maximum sequence length of 512 that we pretrain

with. 2) We pack training samples with sentences drawn from a single document, as the

RoBERTa authors note that this results in slightly better performance. 3) We use WordPiece

encoding rather than BPE, as the RoBERTa authors note that BPE can result in slightly

worse downstream performance.

Hardware and Software Stack

Table 5.3: Pretraining hyperparameters. All ScholarBERT variants use the same pre-
training hyperparameters.

Hyperparameter Value

Steps 33 000
Optimizer LAMB

LR 0.0004
LR Decay Linear

LR Warmup Steps 0.06%
Batch Size 32 768

Precision FP16
Weight Decay 0.01

Attention Dropout 10%
Hidden Dropout 10%

Hidden Activation GELU

We perform data-parallel pretraining on a cluster with 24 nodes, each containing eight

40 GB NVIDIA A100 GPUs. In data-parallel distributed training, a copy of the model is

replicated on each GPU, and, in each iteration, each GPU computes on a unique local mini-

batch. At the end of the iteration, the local gradients of each model replica are averaged

to keep each model replica in sync. We perform data-parallel training of ScholarBERT

models using PyTorch’s distributed data-parallel model wrapper and 16 A100 GPUs. For

the larger ScholarBERT-XL models, we use the DeepSpeed data-parallel model wrapper

and 32 A100 GPUs. The DeepSpeed library incorporates a number of optimizations that

improve training time and reduced memory usage, enabling us to train the larger model in
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roughly the same amount of time as the smaller model.

We train in FP16 with a batch size of 32 768 for ∼33 000 iterations (Table 5.3). To achieve

training with larger batch sizes, we employ NVIDIA Apex’s FusedLAMB [86] optimizer, with

an initial learning rate of 0.0004. The learning rate is warmed up for the first 6% of iterations

and then linearly decayed for the remaining iterations. We use the same masked token

percentages as are used for BERT. Training each model requires roughly 1000 node-hours,

or 8000 GPU-hours.

Fig. 5.1 depicts the pretraining loss for each ScholarBERT model. We train each

model past the point of convergence and take checkpoints throughout training to evaluate

model performance as a function of training time.

5.2 Vector space analysis of models prior to fine tuning

Fine-tuning steps are necessary for adapting models to various downstream tasks. How-

ever, these steps also modify the models by introducing new, out-of-sample data that were

not considered during pre-training. We designed experiments to evaluate the extent to which

BERT-based model representations of scientific and scholastic contexts match our intuitions

about the relationship between entities and disciplines.

We introduce a novel method for performing this evaluation. This method leverages

vector representations of entities generated by BERT-based models prior to fine tuning.

For a particular model, we can generate such vectors for all entities that appear in the

training corpus. The resulting vector space is then the given model’s representation of that

scientific literature. Similarly, the vectors for entities for a particular scientific domain (e.g.,

biomedicine) constitute the model’s representation of that domain. Furthermore, the average

of those vectors yields a domain vector for that domain.

As described by Kozlowski et al. [60], a difference vector can be constructed for any two

domains by subtracting one domain vector from the other. We can then evaluate the model’s

understanding of scientific entities by projecting each entity vector in the two domains onto
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the difference vector. If the projected vectors clustered around their respective end of the

difference vector, then we can conclude that the the model’s representation accords with

our scientific and scholastic intuitions. Compared to traditional dimension reduction and

clustering methods, such as PCA with K-Means, this evaluation method is more accurate

because the semantics of the reduced dimension (i.e., the difference vector) is known to us,

so that it is possible to evaluate not only whether the model can tell entities from different

domains apart, but also whether the model maps each entity to the correct domain.

We now provide details on how we construct and apply the entity vectors, domain vectors,

and difference vectors referred to above.

We extract, from the pre-trained BERT models without fine-tuning, an entity vector for

each named entity in annotated NER datasets in Biomedical, Chemistry, Materials Science,

Computer Science, and Social Science. We generate each such entity vector in a hierarchical

fashion. First, we generate a word vector for each token in the text corpus. A variety of

methods have been used to extract “word vectors” from BERT: for example, by using the

average of the last two to four hidden layers [25]. In our experiments, we take the average

of the last four hidden layers as the vector for a token, yielding vectors of dimension 1024.

Given that BERT vectors are contextual by design, different occurrences of the same

token will often be represented by distinct word vectors. Thus, for each occurrence of a

specific named entity, we generate an entity occurrence vector by averaging the word vectors

of the one or more tokens that make up the named entity. We average the entity occurrence

vectors for the zero or more occurrences of the named entity in the corpus to obtain the

final entity vector. In the end, a total of 34 019 biomedical, 19 980 chemistry, 2508 computer

science, and 120 sociology entity vectors are collected.

Having computed entity vectors for the entities, we then average the entity vectors for

appropriate subsets of the associated entities to create a domain vector for each of four do-

mains: Biomedicine (BC5CDR + JNLPBA + NCBI-Disease), Computer science (SciERC),

Chemistry (ChemdNER), and Sociology (Coleridge).
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To evaluate the representational fidelity of the various BERT-based models, we draw

inspiration from Kozlowski et al. [60], who evaluate cultural associations of named entities

in large corpora encoded in word embedding models. Analogously, in this paper we evaluate

the domain associations of named entities. To do this, we construct a difference vector for

each pair of domains, A and B, as follows:

−−−−→
diffA,B =

−−−−−−→
domainA−

−−−−−−→
domainB (5.1)

The high-dimensional entity vectors and domain vectors that we obtain from our BERT

models make it difficult to visualize and compare the representations of different domains,

but the proximity of any pair of vectors can be represented by the angle between them. All

word vectors are normalized so that they lie on the surface of the same hypersphere, and their

distance on the hypersphere, a scalar, is proportional to the the angle between them [66, 60].

This reducing of proximity to a scalar value permits visualization and evaluation of differences

between domains, as we show in the following.

For each difference vector d =
−−−−→
diffA,B for a pair of domains A and B, we then compute,

for each entity in A and B, a vector projection of the entity’s entity vector e onto d:

projde =

(
e · d
|d|2

)
d =

(
e · d
|d|

)
d

|d|

This projection produces a vector with dimension 1024. Importantly, for a given d, the

vectors produced via this projection for all entities point in the same direction such that

only their magnitudes, defined as follows, differ:

proj scalarde =
e · d
|d|
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All vectors are then normalized so that they are on the same hypersphere, and the scalar

projection of two vectors is equal to their cosine similarity such that:

similarity(d, e) =
d · e

|d| × |e|

Figures 5.2 display results obtained when this method is applied to each of the 12 domain

pairs. In each case, we expect that if the model represents domain entity associations with

fidelity to our scientific intuitions, then domain A entities should fall on the positive range,

whereas the entities in domain B should fall on the negative. (The opposite would be the

case if domain vectors A and B are switched in computing the difference vector.)

One reasonable concern might be that, because a difference vector d is computed as the

average of a set that includes the entity vectors, the position of each entity vector e on d

would be a function of its distance from itself. To avoid this concern, we define an alternative

difference vector,
−−−−−→
diffA,B,e, that removes the entity being projected from the difference vector

calculation so that the difference vector is independent of the current entity vector:

−−−−−→
diffA,B,e =


mean

({−−−−−−→
DomainA

}
\ {−→e }

)
− mean

({−−−−−−→
DomainB

})
, if e ∈ DomainA

mean
({−−−−−−→

DomainA
})

− mean
({−−−−−−→

DomainB
}
\ {−→e }

)
, if e ∈ DomainB

(5.2)

We show results obtained with this alternative definition in Figures 5.3. For ScholarBERT

models, we see similar results to Figures 5.2, which is intuitive since if all vectors in a

domain point largely to the same direction, then removing one vector will not significantly

move the average vector and thus the difference vector and the projection results will stay

about the same. For other models, the dots in Figures 5.3 are shifted by some distance

compared to Figures 5.2. This happens when different vectors in a domain point in different

directions; thus removing one vector moves the average vector by some degree and thus shifts

the projection (i.e., cosine similarity between each vector and the difference vector). This
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Figure 5.2: Difference vector = avg(domainA entities) – avg(chemistry entities)

64



Figure 5.3: As Fig. 5.2, except that the similarity for each entity e is with the difference

vector
−−−−−−−−−−−−→
diffX, Chemistry, e as computed with Eq. 5.2, i.e., one in which e is not considered.
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comparison further demonstrates the advantage of ScholarBERT models in understanding

and creating proper representations for scientific entities.

Upon further investigation of the various training parameters of ScholarBERT, we have

discovered that the selection of the optimizer plays a vital role in the model’s ability to discern

the entity domains. Replacing the LAMB optimizer with the traditional Adam optimizer led

to significantly decreased separations between entities in different domains. The discovery

lends further support to the notion that LAMB is better than Adam or AdamW for training

large models and demonstrates the importance of appropriate parameter selection in training

an effective LLM.

5.3 ScholarBERT Performance on Downstream Scientific Tasks

We first perform sensitivity analysis across ScholarBERT pretraining dimensions to de-

termine the trade-off between time spent in pretraining versus finetuning. We also compare

the downstream task performance of ScholarBERT to that achieved with other BERT

models. Details of each evaluation task are in Section 5.3.2.

5.3.1 Sensitivity Analysis

We save checkpoints periodically while pretraining each ScholarBERT(-XL) model.

In this analysis, we checkpoint at ∼0.9k, 5k, 10k, 23k, and 33k iterations based on the

decrease of training loss between iterations. We observe that pretraining loss decreases

rapidly until around 10 000 iterations, which marks the end of the “rapid learning” phase.

further training to convergence (roughly 33 000 iterations) yields only small decreases of

training loss: see Fig. 5.1.

To measure how downstream task performance is impacted by pretraining and finetuning

time, we finetune each of the checkpointed models for 5 and 75 epochs. We observe that: (1)

The under-trained 0.9k-iteration model sees the biggest boost in the F1 scores of downstream
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tasks (+8%) with more finetuning, but even with 75 epochs of finetuning the 0.9k-iteration

models’ average F1 score is still 19.9 percentage points less than that of the 33k-iteration

model with 5 epochs of finetuning. (2) For subsequent checkpoints, the performance gains

from more finetuning decreases as the number of pretraining iterations increases. The average

downstream task performance of the 33k-iteration model is only 0.39 percentage points higher

with 75 epochs of finetuning than with 5 epochs. Therefore, in the remaining experiments,

we use the ScholarBERT(-XL) model that was pretrained for 33k iterations and finetuned

for 5 epochs.

Table 5.4: NER F1 scores for each model. Models are finetuned five times for each dataset
and the average result is presented. Underlined results represent the F1-scores of models
trained on in-distribution data for the given task, and bolded results indicate the best per-
forming model on that task. SB = ScholarBERT. Task domain: Biomedical = {BC5CDR,
JNLPBA, NCBI-Disease, ChemDNER}, CS = {SciERC}, Materials = {MatSciNER}, Soci-
ology = {Coleridge}, Multi-Domain = {ScienceExam}.

Domain Biomedical CS Materials Multi-Domain Sociology
Dataset BC5CDR JNLPBA NCBI-Disease ChemDNER SciERC MatSciNER ScienceExam Coleridge Mean

BERT-Base 85.36 72.15 84.28 84.84 56.73 78.51 78.37 57.75 74.75
BERT-Large 86.86 72.80 84.91 85.83 59.20 82.16 82.32 57.46 76.44

SciBERT 88.43 73.24 86.95 85.76 59.36 82.64 78.83 54.07 76.16
PubMedBERT 89.34 74.53 87.91 87.96 59.03 82.63 69.73 57.71 76.11

BioBERT 88.01 73.09 87.84 85.53 58.24 81.76 78.60 57.04 76.26
MatBERT 86.44 72.56 84.94 86.09 58.52 83.35 80.01 56.91 76.10

BatteryBERT 87.42 72.78 87.04 86.49 59.00 82.94 78.14 59.87 76.71
SB 1 87.27 73.06 85.49 85.25 58.62 80.87 82.75 55.34 76.08

SB 10 87.69 73.03 85.65 85.80 58.39 80.61 83.24 53.41 75.98
SB 100 87.84 73.47 85.92 85.90 58.37 82.09 83.12 54.93 76.46

SB 10 WB 86.68 72.67 84.51 83.94 57.34 78.98 83.00 54.29 75.18
SB 100 WB 86.89 73.16 84.88 84.31 58.43 80.84 82.43 54.00 75.62
SB-XL 1 87.09 73.14 84.61 85.81 58.45 82.84 81.09 55.94 76.12

SB-XL 100 87.46 73.25 84.73 85.73 57.26 81.75 80.72 54.54 75.68

5.3.2 Finetuning

We finetuned the ScholarBERT models and the state-of-the-art scientific models listed

in Table 5.5 on NER, relation extraction, and sentence classification tasks.

The extant BERT-based models used for evaluations include:

1. BERT-Base and BERT-Large [25], with ∼110M and ∼340M parameters, as transformer-

based masked language models conditioned on both the left and right contexts. Both

are pretrained on the English Wikipedia + BooksCorpus datasets.
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Table 5.5: Characteristics of the 14 BERT models considered in this study. The BERT-
Base architecture has 12 layers, hidden size of 768, and 12 heads; BERT-Large has 24
layers, hidden size of 1024, and 16 heads [25]; the BERT-XL architecture has 36 layers,
hidden size of 1280, and 20 heads. Details of the pretraining corpora are in Table 5.2. The
domains are Bio=biomedicine, CS=computer science, Gen=general, Mat=materials science
and engineering, and Sci=broad scientific.

Model Architecture Pretraining Method Casing Pretraining Corpus Domain Tokens

BERT Base BERT-Base BERT Cased Wiki + Books Gen 3.3B
SciBERT BERT-Base BERT Cased SemSchol Bio, CS 3.1B
PubMedBERT BERT-Base BERT Uncased PubMedA + PMC Bio 16.8B
BioBERT 1.2 BERT-Base BERT Cased PubMedB + Wiki + Books Bio, Gen 7.8B
MatBERT BERT-Base BERT Cased MatSci Mat 8.8B
BatteryBERT BERT-Base BERT Cased Battery Mat 5.2B
BERT Large BERT-Large BERT Cased Wiki + Books Gen 3.3B
ScholarBERT 1 BERT-Large RoBERTa-like Cased PRD 1 Sci 2.2B
ScholarBERT 10 BERT-Large RoBERTa-like Cased PRD 10 Sci 22B
ScholarBERT 100 BERT-Large RoBERTa-like Cased PRD 100 Sci 221B
ScholarBERT 10 WB BERT-Large RoBERTa-like Cased PRD 10 + Wiki + Books Sci, Gen 25.3B
ScholarBERT 100 WB BERT-Large RoBERTa-like Cased PRD 100 + Wiki + Books Sci, Gen 224.3B
ScholarBERT-XL 1 BERT-XL RoBERTa-like Cased PRD 1 Sci 2.2B
ScholarBERT-XL 100 BERT-XL RoBERTa-like Cased PRD 100 Sci 221B

2. SciBERT [9] follows the BERT-Base architecture and is pretrained on data from two

domains, namely, biomedical science and computer science. SciBERT outperforms

BERT-Base on finetuning tasks by an average of 1.66% and 3.55% on biomedical tasks

and computer science tasks, respectively.

3. BioBERT [64] is a BERT-Base model with a pretraining corpus from PubMed abstracts

and full-text PubMedCentral articles. Compared to BERT-Base, BioBERT achieves

improvements of 0.62%, 2.80%, and 12.24% on biomedical NER, biomedical relation

extraction, and biomedical question answering, respectively.

4. PubMedBERT [41], another BERT-Base model targeting the biomedical domain, is

also pretrained on PubMed and PubMedCentral text. However, unlike BioBERT, Pub-

MedBERT is trained as a new BERT-Base model, using text drawn exclusively from

PubMed and PubMedCentral. As a result, the vocabulary used in PubMedBERT varies

significantly from that used in BERT and BioBERT. Its pretraining corpus contains

3.1B words from PubMed abstracts and 13.7B words from PubMedCentral articles.

PubMedBERT achieves state-of-the-art performance on the Biomedical Language Un-
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derstanding and Reasoning Benchmark, outperforming BERT-Base by 1.16% [41].

5. MatBERT [125] is a materials science-specific model pretrained on 2M journal articles

(8.8B tokens). It consistently outperforms BERT-Base and SciBERT in recognizing

materials science entities related to solid states, doped materials, and gold nanopar-

ticles, with ∼10% increase in F1 score compared to BERT-Base, and a 1% to 2%

improvement compared to SciBERT.

6. BatteryBERT [49] is a model pretrained on 400 366 battery-related publications (5.2B

tokens). BatteryBERT has been shown to outperform BERT-Base by less than 1% on

the SQuAD question answering task. For battery-specific question-answering tasks, its

F1 score is around 5% higher than that of BERT-base.

NER is a common token-level task in SciIE. The NER tasks used for evaluations are

listed below.

1. BC5CDR [67]: An NER dataset identifying diseases, chemicals, and their interac-

tions, generated from the abstracts of 1500 PubMed articles containing 4409 annotated

chemicals, 5818 diseases, and 3116 chemical-disease interactions, totaling 6283 unique

entities.

2. JNLPBA [59]: A bio-entity recognition dataset of molecular biology concepts from

2404 MEDLINE abstracts, consisting of 21 800 unique entities.

3. SciERC [72]: A dataset annotating entities, relations, and coreference clusters in

500 abstracts from 12 AI conference/workshop proceedings. It contains 5714 distinct

named entities.

4. NCBI-Disease [28]: Annotations for 793 PubMed abstracts: 6893 disease mentions, of

which 2134 are unique.

5. ChemDNER [61]: A chemical entity recognition dataset derived from 10 000 abstracts

containing 19 980 unique chemical entity mentions.
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6. MatSciNER [125]: 800 annotated abstracts from solid state materials publications

sourced via Elsevier’s Scopus/ScienceDirect, Springer-Nature, Royal Society of Chem-

istry, and Electrochemical Society. Seven types of entities are labeled: inorganic mate-

rials (MAT), symmetry/phase labels (SPL), sample descriptors (DSC), material prop-

erties (PRO), material applications (APL), synthesis methods (SMT), and characteri-

zation methods (CMT).

7. ScienceExam [111]: 133K entities from the Aristo Reasoning Challenge Corpus of 3rd

to 9th grade science exam questions.

8. Coleridge [21]: 13 588 entities from sociology articles indexed by the Inter-university

Consortium for Political and Social Research (ICPSR).

The sentence-level downstream tasks are relation extraction on the ChemProt (biology)

and SciERC (computer science) datasets, and sentence classification on the Paper Field

(multidisciplinary) and Battery (materials) dataset:

1. ChemProt consists of 1820 PubMed abstracts with chemical-protein interactions an-

notated by domain experts [91].

2. SciERC, introduced above, provides 4716 relations [72].

3. The Paper Field dataset [9], built from the Microsoft Academic Graph [110], maps

paper titles to one of seven fields of study (geography, politics, economics, business,

sociology, medicine, and psychology), with each field of study having around 12K

training examples.

4. The Battery Document Classification dataset [49] includes 46 663 paper abstracts, of

which 29 472 are labeled as battery and the other 17 191 as non-battery. The labeling

is performed in a semi-automated manner. Abstracts are selected from 14 battery

journals and 1044 non-battery journals, with the former labeled “battery” and the

latter “non-battery.”
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F1 scores for each model-task pair, averaged over five runs, are shown in Tables 5.4

and 5.6. For NER tasks, we use the CoNLL NER evaluation Perl script [106] to compute F1

scores for each test.

Table 5.6: F1 scores for each model on Relation Extraction (SciERC, ChemProt) and Sen-
tence Classification (PaperField, Battery) tasks. Models are finetuned five times for each
dataset and the average result is presented. Underlined results represent the F1-scores of
models trained on in-distribution data for the given task, and bolded results indicate the
best performing model on that task. SB = ScholarBERT. Task domain: Biomedical =
{ChemProt}, CS = {SciERC}, Materials = {Battery}, Multi-Domain = {Paperfield}.

Domain CS Biomedical Multi-Domain Materials
Dataset SciERC ChemProt PaperField Battery Mean

BERT-Base 74.95 83.70 72.83 96.31 81.95
BERT-Large 80.14 88.06 73.12 96.90 84.56

SciBERT 79.26 89.80 73.19 96.38 84.66
PubMedBERT 77.45 91.78 +73.93- 96.58 84.94

BioBERT 80.12 89.27 73.07 96.06 84.63
MatBERT 79.85 88.15 71.50 96.33 83.96

BatteryBERT 78.14 88.33 73.28 96.06 83.95
ScholarBERT 1 73.01 83.04 72.77 94.67 80.87

ScholarBERT 10 75.95 82.92 72.94 92.83 81.16
ScholarBERT 100 76.19 87.60 73.14 92.38 82.33

ScholarBERT 10 WB 73.17 81.48 72.37 93.15 80.04
ScholarBERT 100 WB 76.71 83.98 72.29 95.55 82.13
ScholarBERT-XL 1 74.85 90.60 73.22 88.75 81.86

ScholarBERT-XL 100 80.99 89.18 73.66 95.44 84.82

Tables 5.4 and 5.6 show the results, from which we observe: (1) With the same training

data, a larger model does not always achieve significant performance improvements. BERT-

Base achieved F1 scores within 1 percentage point of BERT-Large on 6/12 tasks; SB 1

achieved F1 scores within 1 percentage point of SB-XL 1 on 7/12 tasks; SB 100 achieved F1

scores within 1 percentage point of SB-XL 100 on 6/12 tasks. (2) With the same model size,

a model pretrained on more data cannot guarantee significant performance improvements.

SB 1 achieved F1 scores within 1 percentage point of SB 100 on 8/12 tasks; SB 10 WB

achieved F1 scores within 1 percentage point of SB 100 WB on 7/12 tasks; SB-XL 1 achieved

F1 scores within 1 percentage point of SB-XL 100 on 10/12 tasks. (3) Domain-specific

pretraining cannot guarantee significant performance improvements. The Biomedical domain

is the only domain where we see the on-domain model (i.e., pretrained for the associated
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domain; marked with underlines; in this case, PubMedBERT) consistently outperformed

models pretrained on off-domain or more general corpora by more than 1 percentage point

F1. The same cannot be said for CS, Materials, or Multi-Domain tasks.

Table 5.7 shows average F1 scores with standard deviations for the NER tasks, each com-

puted over five runs; Fig. 5.4 presents the same data, with standard deviations represented

by error bars. Table 5.8 and Fig. 5.5 show the same for sentence classification tasks. The sig-

nificant overlaps of error bars for NCBI-Disease, SciERC NER, Coleridge, SciERC Sentence

Classification, and ChemProt corroborate our observation in Section 5.3 that on-domain

pretraining provides only marginal advantage for downstream prediction over pretraining on

a different domain or a general corpus.

Figure 5.4: NER F1 scores with standard deviations represented by error bars.
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Table 5.7: NER F1 scores for each of 14 models (rows), when the model is finetuned on
eight different domain datasets and the resulting finetuned model applied to that dataset’s
associated NER task (columns). In each case, we give the average value and its standard
deviation over five runs.

BC5CDR JNLPBA NCBI-Disease SciERC

BERT-Base 85.36 ± 0.189 72.15 ± 0.118 84.28 ± 0.388 56.73 ± 0.716
BERT-Large 86.86 ± 0.321 72.80 ± 0.299 84.91 ± 0.229 59.20 ± 1.260
SciBERT 88.43 ± 0.112 73.24 ± 0.184 86.95 ± 0.714 59.36 ± 0.390
PubMedBERT 89.34 ± 0.185 74.53 ± 0.220 87.91 ± 0.267 59.03 ± 0.688
BioBERT 88.01 ± 0.133 73.09 ± 0.230 87.84 ± 0.513 58.24 ± 0.631
MatBERT 86.44 ± 0.156 72.56 ± 0.162 84.94 ± 0.504 58.52 ± 0.933
BatteryBERT 87.42 ± 0.308 72.78 ± 0.190 87.04 ± 0.553 59.00 ± 1.174
ScholarBERT 1 87.27 ± 0.189 73.06 ± 0.265 85.49 ± 0.998 58.62 ± 0.602
ScholarBERT 10 87.69 ± 0.433 73.03 ± 0.187 85.65 ± 0.544 58.39 ± 1.643
ScholarBERT 100 87.84 ± 0.329 73.47 ± 0.210 85.92 ± 1.040 58.37 ± 1.845
ScholarBERT 10 WB 86.68 ± 0.397 72.67 ± 0.329 84.51 ± 0.838 57.34 ± 1.199
ScholarBERT 100 WB 86.89 ± 0.543 73.16 ± 0.211 84.88 ± 0.729 58.43 ± 0.881
ScholarBERT-XL 1 87.09 ± 0.179 73.14 ± 0.352 84.61 ± 0.730 58.45 ± 1.614
ScholarBERT-XL 100 87.46 ± 0.142 73.25 ± 0.300 84.73 ± 0.817 57.26 ± 2.146

ChemDNER MatSciNER ScienceExam Coleridge

BERT-Base 84.84 ± 0.004 78.51 ± 0.300 78.37 ± 0.004 57.75 ± 1.230
BERT-Large 85.83 ± 0.022 82.16 ± 0.040 82.32 ± 0.072 57.46 ± 0.818
SciBERT 85.76 ± 0.089 82.64 ± 0.054 78.83 ± 0.004 54.07 ± 0.930
PubMedBERT 87.96 ± 0.094 82.63 ± 0.045 69.73 ± 0.872 57.71 ± 0.107
BioBERT 85.53 ± 0.130 81.76 ± 0.094 78.60 ± 0.072 57.04 ± 0.868
MatBERT 86.09 ± 0.170 83.35 ± 0.085 80.01 ± 0.027 56.91 ± 0.434
BatteryBERT 86.49 ± 0.085 82.94 ± 0.309 78.14 ± 0.103 59.87 ± 0.398
ScholarBERT 1 85.25 ± 0.063 80.87 ± 0.282 82.75 ± 0.049 55.34 ± 0.742
ScholarBERT 10 85.80 ± 0.094 80.61 ± 0.747 83.24 ± 0.063 53.41 ± 0.380
ScholarBERT 100 85.90 ± 0.063 82.09 ± 0.022 83.12 ± 0.085 54.93 ± 0.063
ScholarBERT 10 WB 83.94 ± 0.058 78.98 ± 1.190 83.00 ± 0.250 54.29 ± 0.080
ScholarBERT 100 WB 84.31 ± 0.080 80.84 ± 0.161 82.43 ± 0.031 54.00 ± 0.425
ScholarBERT-XL 1 85.81 ± 0.054 82.84 ± 0.228 81.09 ± 0.170 55.94 ± 0.899
ScholarBERT-XL 100 85.73 ± 0.058 81.75 ± 0.367 80.72 ± 0.174 54.54 ± 0.389

5.3.3 Discussion

Here we offer possible explanations for the three observations above. (1) The nature of

the task is more indicative of task performance than the size of the model. In particular, with

the same training data, a larger model size impacts performance only for relation extraction

tasks, which consistently saw F1 scores increase by more than 1 percentage point when going
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Table 5.8: Sentence classification F1 scores for each of 14 models (rows), when the model
is finetuned on one of four different domain datasets and the finetuned model is applied to
that dataset’s associated sentence classification task (columns). In each case, we give the
average value and its standard deviation over five runs.

SciERC ChemProt PaperField Battery

BERT-Base 74.95 ± 1.596 83.70 ± 0.472 72.83 ± 0.082 96.31 ± 0.087
BERT-Large 80.14 ± 2.266 88.06 ± 0.353 73.12 ± 0.125 96.90 ± 0.156
SciBERT 79.26 ± 0.498 89.80 ± 0.263 73.19 ± 0.046 96.38 ± 0.153
PubMedBERT 77.45 ± 0.964 91.78 ± 0.096 73.93 ± 0.099 96.58 ± 0.148
BioBERT 80.12 ± 0.179 89.27 ± 0.281 73.07 ± 0.074 96.06 ± 0.200
MatBERT 79.85 ± 0.121 88.15 ± 0.026 71.50 ± 0.135 96.33 ± 0.106
BatteryBERT 78.14 ± 0.550 88.33 ± 0.939 73.28 ± 0.022 96.06 ± 0.437
ScholarBERT 1 73.01 ± 0.248 83.04 ± 0.150 72.77 ± 0.060 94.67 ± 0.671
ScholarBERT 10 75.95 ± 0.203 82.92 ± 0.792 72.94 ± 0.182 92.83 ± 3.758
ScholarBERT 100 76.19 ± 1.592 87.60 ± 0.324 73.14 ± 0.085 92.38 ± 5.789
ScholarBERT 10 WB 73.17 ± 1.254 81.48 ± 1.705 72.37 ± 0.115 93.15 ± 1.763
ScholarBERT 100 WB 76.71 ± 2.114 83.98 ± 0.252 72.29 ± 0.048 95.55 ± 0.272
ScholarBERT-XL 1 74.85 ± 1.497 90.60 ± 0.246 73.22 ± 0.009 88.75 ± 4.035
ScholarBERT-XL 100 80.99 ± 0.900 89.18 ± 0.499 73.66 ± 0.113 95.44 ± 0.100

Figure 5.5: Sentence classification F1 scores from Table 5.8, with standard deviations repre-
sented by error bars.
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from smaller models to larger models (i.e., BERT-Base to BERT-Large, SB 1 to SB-XL 1,

SB 100 to SB-XL 100). In contrast, the NER and sentence classification tasks did not see

such consistent significant improvements. (2) Our biggest model, ScholarBERT-XL, is

only twice as large as the original BERT-Large, but its pretraining corpus is 100X larger.

The training loss of the ScholarBERT-XL 100 model dropped rapidly only in the first

∼10k iterations (Fig. 5.1), which covered the first 1/3 of the PRD corpus, thus it is possible

that the PRD corpus can saturate even our biggest model. [55, 46]. (3) Finetuning can

compensate for missing domain-specific knowledge in pretraining data. While pretraining

language models on a specific domain can help learn domain-specific concepts, finetuning

can also fill holes in the pretraining corpora’s domain knowledge, as long as the pretraining

corpus incorporates the characteristics specific to the finetuning dataset.

5.4 Combining ScholarBERT and Graph Models for

Semi-structured Extraction

Knowledge bases (KBs), such as relational databases and knowledge graphs, are used

in many applications to embed human knowledge, recommendation systems [29] and digital

assistants [50, 140] are a few examples. However, building KBs manually is expensive, so

extracting relations from semi-structured pages on the web can be a more efficient method for

building extensive KBs [71]. The Internet Movie Database, for example, has over 10 million

pages with detailed information on films and TV episodes [52]. In the science domain, online

KBs such as PubMed [100], PolyInfo [90] and Polymer Property Predictor and Database [122]

provide useful knowledge in their respective domains. These pages are “semi-structured”

because they are automatically populated into an HTML template from a database, and

the page structure conveys semantic information. Although the data is often presented in a

homogeneous structure within each KB, extracting information from a large number of KBs

is still a challenging task because of the heterogeneous structures defined by various KBs.
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Relation extraction is the task of extracting triples of (subject, predicate, object) such as

(Polystyrene, glass transition temperature, 100◦C) from texts. RE methods can be classified

as either ClosedIE or OpenIE. ClosedIE methods only extract objects for pre-defined pred-

icates, while OpenIE methods extract predicates from the text. However, OpenIE outputs

can be noisy due to language ambiguity and variability. The “schema alignment” problem,

or the difficulty of matching extracted predicates to predefined relations, has limited the use

of OpenIE in production. Our goal is to solve schema alignment while extracting tuples.

Existing methods rely on domain-specific training data or produce noisy outputs. We fo-

cus here on extracting targeted relations from semi-structured web pages given only a short

description of the relation. Semi-structured pages are a rich resource of such information

since they are most likely populated from a back-end database into a front-end template.

amassed vast amounts of human knowledge as it tightly integrates into every aspect of our

life, yet the data exists in a chaotic and heterogeneous manner. Extracting relations from

semi-structured pages poses many challenges. Manual curation is laborious and costly. Au-

tomated methods rely on domain-specific training data or produce noisy outputs that require

post-processing to reconcile. We present GraphScholarBERT, an open-domain information

extraction method based on a joint graph and language model structure. GraphScholar-

BERT can generalize to previously unseen domains without additional data or training and

produces only clean extraction results matched to the search keyword.

Large Language Models (LLMs) have shown exceptional performance on many IE tasks [25,

24, 102], but they are limited to unstructured text. In this section, we propose a novel Ope-

nIE model, GraphScholarBERT, that combines the graph model’s strength in recognizing

structures with the LLM’s ability to understand semantics. GraphScholarBERT takes a tar-

get relation keyword and a short textual description of the relation as inputs, and extracts

¡relation, value¿ tuples matching the target relation from semi-structured webpages in a zero-

shot manner. GraphScholarBERT can scale to unknown relations without any retraining or

finetuning, and it does the extraction and schema alignment in one step to produce clean
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results. Experiments show that GraphScholarBERT can improve extraction F1 scores by

as much as 34.8% compared to previous work in a zero-shot domain and zero-shot website

setting.

5.4.1 Problem Definition

W is a semi-structured webpage on an entity T (which we assume has already been

identified, for example, from the <title> tag of an HTML webpage). Given W and a

short textual description D of a target relation K, extract all relations of T as tuples V =

{(r1, v1), (r2, v2), . . .} from W , where ri is a relation (predicate) that is or is a synonym of

K and vi is a value (object) corresponding to ri.

5.4.2 Methodology

On a semi-structured webpage, the semantics and the structure of the text are equally

important indicators of potential relations. Therefore, an effective solution must be capable

of handling both parts equally well.

As shown in Fig. 5.6, GraphScholarBERT consists of two components: a graph model

(left) and an LLM (right). The LLM takes the concatenation of K,D, ri, vi as inputs. It is

good at capturing the semantics of the text, but it also needs the layout of the webpage to

predict if (ri, vi) is a valid pair. Therefore, we augment the LLM with a graph model, which

takes a web page’s Document Object Model (DOM) tree as input and extracts DOM features

and visual features for every text node and supplies them to the classification head of the

LLM. Text embeddings are not used in the graph model because its message propagation

process would dilute and confuse the semantics of the text. Instead, the semantic features are

used by the LLM in combination with the graph features to predict whether the extracted

value v is valid for the extracted relation and whether the extracted relation matches the

search keyword K.
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Figure 5.6: The GraphScholarBERT model architecture

Graph Model

Extracting ¡relation, value¿ node pairs can be viewed as an edge classification problem for

graph models. We pretrained the graph model on classifying whether an edge connects two

nodes that make up a true ¡relation, value¿ pair. For this purpose, the post-graph convolution

edge features are given to a Multi-Layer Preceptron (MLP) for binary classification (Fig. 5.6).

After pretraining, the MLP is discarded and the rest of the graph model is frozen. The edge

features are provided to the classification head of the LLM as extra input features.

To construct a graph for a webpage, each DOM node is represented as a node in the

graph with 3 features:

• tag: The one-hot encoded HTML tag of the node (“div”, “li”, etc.);

• index: The index of the current node among its siblings;

• text freq: the average number of occurrences of the node’s text per page within the

website.
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<html>

<head> <body>

<title> <div> <div> <li>

<li>

Figure 5.7: Graph representation of a webpage. DOM node attributes propagate bi-
directionally through the black edges but not the dashed orange edges (“virtual edges”),
which are only used for classification.

Edges connect each node to its parent, children, and immediate siblings (Fig. 5.7). Some

relation-value pairs may exist in other types of connections. Adding all possible pairwise

edges would be inefficient, so we only add a virtual edge between two nodes (K and V ) if

and only if all four conditions are met:

• they are within h hops of each other;

• both contains text with length in [lmin, lmax] (to filter out text too long or too short

to be a relation or value);

• the text freq of K > m (as ri tends to be common on semi-detailed pages of the

same website);

• the text freq of V < n (as vi would likely vary from page to page).

The virtual edges are hidden from the graph model’s message-passing process to avoid
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skewing the structure of the webpage. Edge features include:

• Node features of K and V ;

• Distance (number of hops) between K and V ;

• Differences in the horizontal and vertical coordinates between K and V ;

• Differences in the heights and widths of the bounding boxes of K and V . The features

are updated post-graph convolution for every edge including virtual edges.

The Language Model

We adapted Next Sequence Prediction (NSP) to solve the relation extraction and schema

alignment problem in one step. In our approach, NSP is used to predict whether two sen-

tences, one consisting of the search keyword K and the description D (Sentence A) and the

other consisting of text in nodes K and V connected by an edge in the previous step (Sen-

tence B), form a true relation-value pair based on both the text features (from the LLM)

and the edge features of the edge connecting K and V (from the graph model).

5.4.3 Experimental Evaluation

GraphScholarBERT is designed for scalability so it is tested in a zero-shot setting on

previously unseen websites. We compare its performance to a heuristic baseline and the

methods introduced in Section 2.3 where available and test its ability to extract relations

from websites within the same vertical, transfer knowledge from one vertical to another, and

examine the impact of training data and different model components on overall performance.

To evaluate our model, we conducted experiments using three publicly available datasets,

Structured Web Data Extraction (SWDE) [43] and expanded SWDE [71], and PPPDB [122]

(Table 5.9). We compare GraphScholarBERT’s performance to a heuristic baseline and the
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methods introduced in Section 2.3 where available. The experiments were conducted on a

cloud computing provider for ∼ 20 GPU-hours with one V100 GPU.

Table 5.9: Statistics of the SWDE, Retail, and Expanded SWDE datasets used in the ex-
periments.

Dataset Verticals
Websites

per Vertical
Webpages

per Website
Annotated

Relations/Website
SWDE 4 10 ∼200-2000 3-5

Expanded SWDE 3 10 ∼400-2000 5-30
PPPDB 1 2 ∼25 3-5

Table 5.10: Examples of search keywords and descriptions used as inputs. The “Ground
Truth Relations” column lists the expressions used by different websites to represent the
same relation. The search keywords and descriptions are manually provided. The search
keywords are usually synonyms or hypernyms of the ground truth relations.

Search Keyword Short Description Ground Truth Relations
fuel economy The fuel economy of an automobile relates distance traveled by a vehicle and the amount of fuel consumed. MPG, Gas Milage, EPA Fuel Economy

price The price of is the amount of money expected, required, or given in payment for something. Price, MSRP, Starting MSRP
finish type The finish is the surface appearance of a manufactured material or object Surface Type, Texture/finish

compatibility Compatibility is the ability of one computer, piece of software, etc. to work with another App Compatible, Compatible Platform(s)
glass transition temperature The glass transition temperature is the temperature at which a material transitions from a hard state into a rubbery state Tg(K)

Flory-Huggins parameter The Flory-Huggins interaction parameter quantifies the interaction between different types of molecules in a polymer mixture χ, χN

Intra-vertical Extraction

The intra-vertical experiments replicated the scenario where prior knowledge of the en-

tities and relations in the target vertical was available and could be used to train the model

in order to extract new information from a previously unseen website in the same vertical.

In each vertical, we randomly selected a number of websites of which the total number of

webpages are around 50% of all webpages in said vertical and used these websites as train-

ing data, while the remainder made up the test set. For SWDE and Extended SWDE, the

Graph model is randomly initialized and the LLM is the pre-trained Bert-base model. For

the PPPDB dataset, the Graph model inherits the pre-trained weights from SWDE since the

sample size is too small to train the graph model from scratch. ScholarBERT-100 is selected

as the LLM model due to its science-focused pretraining.

Table 5.11, 5.12, 5.13 shows the intra-vertical extraction performance on the SWDE,

expanded SWDE, and PPPDB datasets respectively. For each dataset, the performance of
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Table 5.11: Intra- and inter-vertical OpenIE extraction performances on the SWDE dataset.

Auto Book Camera Movie Average
Method Vertical Precision Recall F-1 Score Precision Recall F-1 Score Precision Recall F-1 Score Precision Recall F-1 Score F-1 Score

Heuristic Baseline - 0.07 0.19 0.10 0.12 0.18 0.14 0.27 0.52 0.36 0.13 0.22 0.16 0.19
GraphScholarBERT Intra 0.65 1.00 0.78 0.92 0.70 0.79 0.95 0.96 0.96 0.70 1.00 0.83 0.84
GraphScholarBERT Inter 0.66 1.00 0.79 0.90 0.52 0.66 0.79 0.78 0.79 0.96 0.85 0.90 0.79

Table 5.12: Intra- and inter vertical OpenIE extraction performances on the expanded SWDE
dataset.

Movie NBA Player University Average
Method Vertical Precision Recall F-1 Score Precision Recall F-1 Score Precision Recall F-1 Score F-1 Score

Heuristic Baseline - 0.23 0.16 0.14 0.19 0.37 0.25 0.15 0.11 0.13 0.17
WEIR Intra 0.14 0.1 0.12 0.08 0.17 0.11 0.13 0.18 0.15 0.13

OpenCeres Intra 0.71 0.84 0.77 0.74 0.48 0.58 0.65 0.29 0.4 0.58
ZSCeres Intra 0.49 0.51 0.50 0.47 0.39 0.42 0.50 0.49 0.50 0.47
WebKE Intra - - 0.76 - - 0.64 - - 0.34 0.58
ZSCeres Inter 0.43 0.42 0.42 0.48 0.49 0.48 0.49 0.45 0.47 0.46

GraphScholarBERT Intra 0.71 0.92 0.80 0.69 0.79 0.74 0.52 0.67 0.59 0.71
GraphScholarBERT Inter 0.65 0.88 0.75 0.52 0.71 0.60 0.44 0.61 0.51 0.62

the GraphScholarBERT model was compared to the baseline as well as existing methods

(including SOTA) from literature where available. GraphScholarBERT was able to achieve

the highest F-1 score on average (0.72) across all datasets. On the expanded SWDE dataset

it outperformed previous SOTA methods by as much as 22.4% as shown in Table 5.12.

Inter-vertical Extraction

The intra-vertical experiments showed promising performance, but for scalability, we

do not want to build models for every vertical. Moreover, oftentimes labeled data was not

available in the desired vertical. So transferring knowledge learnt from one vertical to another

is vital for scalability. In this section, the experiments were conducted in a K-fold fashion.

The model was trained on all verticals except the one currently used for testing. For the

inter-vertical experiments, we trained GraphScholarBERT on all verticals except the one

being tested. GraphScholarBERT performed the best, with an average F-1 score of 0.66

Table 5.13: Intra- and inter-vertical OpenIE extraction performances on the PPPDB dataset.

Glass Transition Temperature Flory-Huggins parameter Average
Method Vertical Precision Recall F-1 Score Precision Recall F-1 Score F-1 Score

Heuristic Baseline - 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GraphScholarBERT Intra 0.87 0.55 0.67 0.68 0.49 0.57 0.62
GraphScholarBERT Inter 0.82 0.55 0.66 0.61 0.48 0.54 0.60

82



across all datasets (Table 5.11, 5.12), 5.13. On the expanded SWDE, its F-1 score exceeded

previous methods by 34.8%. GraphScholarBERT’s average F-1 was 5.33 points higher in the

intra-vertical tests than in the inter-vertical tests on the same datasets, as expected since

the webpages in the intra-vertical training data were more similar to the test pages. The

PPPDB dataset has seen the smallest gap between intra- and inter-vertical tests because the

webpages in its verticals (Glass Transition Temperature and Flory-Huggins parameter) are

the most similar compared to the webpages from different verticals in SWDE or Expanded

SWDE.

Error Analysis

Table 5.14 shows the three best and three worst target relations in terms of F-1 scores

for the SWDE and Extended SWDE datasets, from which we make three observations.

(i) The model tends to perform better when there is a strong semantic relationship

between the object and the predicate. E.g., the values for the relation “engine” often contains

“horsepower” or “turbo”. Such words are uncommon in other relations, so the model can

easily match them to their corresponding relation.

(ii) The model struggles with relations with broad potential values. E.g., the values

for “model” and “ISBN13” are alphanumeric strings; relations such as “keyword” can have

numerous possible values. In such cases the model cannot eliminate false positives effectively

by semantics, leading to low precision.

(iii) The amount of noise on a webpage can significantly affect the performance. While

GraphScholarBERT had a low F-1 score on “price” from the camera vertical in SWDE, it

had little problem extracting “salary” for NBA players in expanded SWDE. Both values

were dollar amounts, but webpages about cameras may have many other dollar values such

as MSRP and discount, whereas on a page about an NBA player, the only dollar value

present around the “salary” node is the salary amount.
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Table 5.14: The top (green) and bottom (orange) 3 relations in SWDE and Expanded SWDE
datasets based on inter-vertical extraction performance of the GraphScholarBERT model.

SWDE Expanded SWDE
Search Keyword Precision Recall F-1 Score Search Keyword Precision Recall F-1 Score

engine 1.0 1.0 1.0 MPAA rating 0.84 0.96 0.90
fuel economy 0.99 1.0 1.0 salary 0.88 0.90 0.89

director 1.0 0.94 0.97 highest degree 0.82 0.76 0.79
ISBN13 0.71 0.70 0.70 keyword 0.36 0.65 0.46
model 0.30 0.99 0.46 tuition 0.34 0.55 0.42
price 0.24 1.0 0.39 room and board 0.19 0.76 0.30

Table 5.15: Ablation results on the SWDE dataset.

Auto Book Camera Movie Average
Method Precision Recall F-1 Score Precision Recall F-1 Score Precision Recall F-1 Score Precision Recall F-1 Score F-1 Score

GraphScholarBERT 0.66 1.00 0.79 0.9 0.52 0.66 0.79 0.78 0.79 0.96 0.85 0.9 0.79

- Graph Features
0.54 1.00 0.70 0.91 0.41 0.57 0.94 0.60 0.73 0.91 0.91 0.91 0.73

(-0.12) (0.00) (-0.09) (+0.01) (-0.11) (-0.09) (+0.15) (-0.18) (-0.06) (-0.05) (+0.06) (+0.01) (-0.06)

- 1/3 training examples
0.79 0.65 0.71 0.83 0.30 0.44 0.42 0.61 0.50 0.70 0.92 0.79 0.61

(+0.13) (-0.35) (-0.08) (-0.07) (-0.22) (-0.22) (-0.37) (-0.17) (-0.29) (-0.26) (+0.07) (-0.11) (-0.18)

- 2/3 training examples
0.54 1.00 0.70 0.94 0.24 0.38 0.67 0.24 0.35 0.63 0.98 0.76 0.55

(-0.11) (0.00) (-0.09) (+0.04) (-0.28) (-0.28) (-0.12) (-0.54) (-0.44) (-0.36) (+0.07) (-0.14) (-0.24)

Ablation

Table 5.15 shows the changes in extraction performance when the graph features were

removed and when reducing the amount of data used to pretrain the graph model. In ev-

ery ablation case, the average F-1 score on the SWDE dataset dropped by 6 to 24 points.

Interestingly, when the graph component was pretrained on less data, the model performed

worse than having no graph component at all. Even without the graph features, the LLM

could recognize a lot of false inputs based on the semantics only. As an example, for the

target relation “price”, the LLM could predict (“MSRP”, “Charles Dickens”) and (“author”,

“Charles Dickens”) were not valid extractions due to the mismatched semantics. Neverthe-

less, an under-trained graph component could provide noise, rather than helpful features, to

the language model, thus interfering with the language model’s ability to make the correct

final prediction.
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Summary

GraphScholarBERT is an OpenIE model for extracting relations from the Web. We

framed the task of extraction relations from webpages as a Next Sentence Prediction problem

for a language model, which we augmented with a graph model to extract DOM features from

webpages. Experimental results showed that GraphScholarBERT outperformed previous

work by as much as 34.8% F1.
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CHAPTER 6

REAL-WORLD SCIENTIFIC INFORMATION EXTRACTION

APPLICATIONS

Having developed the various models for SciIE, we now investigate how they can con-

tribute to real-world scientific research. Here we evaluated their performance on three down-

stream tasks: finding potential drug-like molecules for the SARS-CoV-2 coronavirus, building

an inorganic materials property database, and predicting the hydrogen-carrying capabilities

of molecules.

6.1 Drug Molecule Screening

The Coronavirus Disease (COVID-19) pandemic, caused by transmissible infection of the

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in more than

700 million of diagnosed cases and nearly 7 million deaths worldwide [22]; In the early-stages

of the pandemic it was crucial to quickly identify effective treatments via discovery of new

drugs and repurposing of existing drugs. Here, we used our methods to explore automatic

identification of drug candidates being studied in the scientific literature.

The magnitude of the pandemic led to an enormous number of academic publications

related to COVID-19 research since early 2020. Many of these articles are collated in the

COVID-19 Open Research Dataset Challenge (CORD-19) collection [2, 128]. With approxi-

mately 200k articles, the collection is far too large for humans to read. Thus, tools are needed

to automate the process of extracting relevant data, such as drug names, testing protocols,

and protein targets. Such tools can save domain experts significant time and effort.

6.1.1 Automated Drug Extraction

With no labeled data available, we first applied our model-in-the-loop training data

collection pipeline described in Chapter 3. In total, we have labeled 1500 paragraphs from
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the CORD-19 corpus as training data. We then trained a SpaCy and a Keras LSTM model

(see Chapter 3.1 and Chapter 4.1 for details on the models) on the labeled examples before

applying the trained models to the entire CORD-19 corpus (2020-10-04 version with 198 875

articles) to identify potential drug-like molecules. Processing a single article takes only a few

seconds; we adapted our models to use data parallelism to enable rapid processing of these

many articles.
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Figure 6.1: Percentage of detected entities that are also found in DrugBank, when running
either on all words found by our model or on just the balanced subset, and with “found”
defined as either a full or partial match.

We ran the SpaCy model on two Intel Skylake 6148 processors with a total of 40 CPU

cores; this run took around 80 core-hours and extracted 38 472 entities. We ran the Keras

model on four NVidia Tesla V100 GPUs; this run took around 40 GPU-hours and extracted

121 680 entities. We recorded for each entity the number of times that it has been recognized

by each model, and used those numbers as a voting mechanism to further determine which

entities are the most likely to be actual drugs. In our experiments, “balanced” entities (i.e.,

those whose frequency of detection by the two models are within a factor of 10 of each

other) are most likely to appear in the DrugBank list. As shown in Figure 6.1, we sorted all

extracted entities in descending order by their total number of detections by both models and
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compared the top 100 entities to DrugBank. We found that only 77% were exact matches to

drug names or aliases, or 86% if we included partial matches (i.e., the extracted entity is a

word within a multi-word drug name or alias in DrugBank). In comparison, among the top

100 “balanced” entities, 88% were exact matches to DrugBank, or 91% with partial matches.

Although DrugBank provides a reference metric to evaluate the results, it is not an

exhaustive list of known drugs. For instance, remdesivir, a drug that, in the early phases

of the pandemic, was proposed as a potential cure for COVID-19, is not in DrugBank.

We manually checked via Google searches the top 50 “balanced” and top 50 “imbalanced”

entities not matched to DrugBank, and found that 70% in the “balanced” list are actual

drugs, but only 26% in the “imbalanced” list. Looking at the false positives in these top 50

lists, the “balanced” false positives are often understandable. For example, in the sentence

“ELISA plate was coated with . . . and then treated for 1h at 37.8C with dithiothreitol . . . ”,

the model mistook the redox reagent dithiothreitol for a drug entity, probably due to its

context “treated with.” On the other hand, we found no such plausible explanations for

the false positives in the “imbalanced” list, where most false positives are chemical elements

(e.g., silver, sodium), amino acids (e.g., cysteine, glutamine), or proteins (e.g., lactoferrin,

cystatin).

Finally, we compared our extraction results to the drugs being used in clinical trials,

as listed on the U.S. National Library of Medicine website ([84]) at the time. We queried

the website with “covid” as the keyword and manually screened the returned drugs in the

“Interventions” column to remove stopwords (e.g., tablet, injection, capsule) and dosage

information (e.g., 2.5mg, 2.5%) to only keep the drug names. Then we compared the top 50

most frequently appeared drugs to the automatically extracted drugs from literature. The

“balanced” entities extracted by both models matched to 64% of the top 50 drugs in clinical

trial, whereas the “imbalanced” entities only matched to 6% in the same list.

The results discussed here are available in the repository described in Section 3.5.
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6.1.2 Validating the Utility of Identified Molecules

We are interested to evaluate the relevance to COVID research of the molecules that

we extracted from CORD19. To that end, we compared our extracted molecule list against

ZINC and Drugbank sets that a group of scientists at Argonne National Laboratory had used

for computational screening. We found that our list contained an additional 3591 molecules

not found in their screening sets (filtered by their canonical SMILE strings). Applying their

methods to screen those 3591 molecules for docking against a main coronavirus protease,

3CLPro, revealed that 18 had docking scores in the top 0.1% of the 6.6M ZINC molecules

that they had screened previously [104]—significantly more than the 4 that we would expect

by chance.

As reported by Bubuji et al [7], researchers have leveraged the outputs of our models

in a computational screening pipeline that leverages HPC resources at scale, coupled with

multiple artificial intelligence and simulation-based approaches (including leads from NLP),

to identify high-quality therapeutic compounds to screen experimentally.

6.2 Mining Material Properties from Literature

As described in the previous chapter, the ScholarBERT model was pretrained on PRD, a

corpus of 85M English-language research articles spanning a variety of disciplines, including

materials science. Since PRD was not available to the public, we, with privileged access to

this large corpus, are in a unique position to contribute to materials data mining and accel-

erated materials discovery by applying the fine-tuned ScholarBERT model on the unlabeled

material science articles in PRD.

We use the Solid State Dataset [130] consisting of 800 hand-labeled materials science ab-

stracts to evaluate the performance of our models on downstream named entity recognition

tasks. The abstracts contain at least one inorganic material and a synthesis or characteri-

zation method for inorganic materials. These abstracts are labeled on an entity-level into
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seven different entity types including inorganic materials (MAT), symmetry/phase labels

(SPL), sample descriptors (DSC), material properties (PRO), material applications (APL),

synthesis methods (SMT), and characterization methods (CMT).

We extracted materials and their related descriptors of the above types from PRD and

will publish the extracted data in a searchable database, which can save valuable time for

scientists and can serve as building blocks for data-driven materials research.

Before we can apply ScholarBERT to extract materials and properties from PRD, the

first step is to find all the materials science articles in PRD. Unfortunately, PRD’s metadata

is severely lacking. For instance, 36% of the articles in PRD do not have DOIs, and it

does not include subject or discipline of the articles. Therefore, we incorporated detailed

metadata from CrossRef [63], which does include a “subject” field. Essentially, we matched

PRD articles to CrossRef entries by their DOIs if they exist in PRD’s metadata. If not,

we try to match by the article’s title and the surname of the first author. Eventually, 49M

articles in PRD successfully found corresponding metadata in CrossRef.

Next, the ScholarBERT model fine-tuned on the Solid State Dataset was applied to the

materials articles in PRD. The extraction job was executed on Polaris with 16 Nvidia A100

GPUs and overall it took 108 GPU hours. We successfully extracted 3.04M descriptors for

49.9k materials. Since the PRD does not offer ground truth annotations, a manual evaluation

was conducted on 300 material-descriptor pairs randomly selected from the extraction results,

and the accuracy rate was determined to be 84%. A few examples are shown in Table 6.1.

After careful evaluation of the extracted results, we make them publicly available via the

ALCF Community Data Co-Op portal at https://acdc.alcf.anl.gov/mddb, which offers

the following query functions:

1. Search for materials with specified descriptor(s)

2. Search for the descriptors associated with specified material(s)

3. Search for articles that contain specified descriptor(s)
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Table 6.1: Extracted materials and descriptors

Material Descriptor Value Eval
ZnO Sample Descriptor nanocolumn arrays T
ZnO Property electrical resistivities T

silicon Sample Descriptor nanonets T
silicon Property depletion region charge density T
copper Synthesis Method calcinations T
copper Sample Descriptor perforated T
copper Application vacuum housing F
copper Property adhesion mechanism T

graphene Characterization pseudo - second - order model F
graphene Property EB T

4. Search for articles that contain specified material(s)

For the article search function, the returned results include the title, authors, DOI, abstract,

and URL where available. The web interface is shown in Fig. 6.2.

Fig. 6.2 is the search page of the database, where users can browse all entries or search

by material name, descriptor type, descriptor value, or any combination of the three fields.

The reference provided includes metadata, including title, author, and DOI, on the articles

from which the entry is extracted. The articles are linked to their publisher sites via the DOI

service (e.g., https://doi.org/[article doi]) where available. If the user wishes to dive

deeper into an entry, they can click on the blue paper titles to open a link to its reference

page.

6.3 Context-based Molecule Discovery

The third application of ScholarBERT is discovering molecules capable of carrying hy-

drogen. Traditionally, such discoveries are made by humans enumerating lists of things to

test or coming up with their own ideas for interesting molecules. Here we relied on Scholar-

BERT’s representations for molecules discussed in the PRD corpus to find the most likely

hydrogen-capable molecules. To do so, we assembled three sets of molecule names.

• Known – 78 known hydrogen carrier molecules
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Figure 6.2: The Web interface for the Solid State Material Database, which allows users
to search by material name, descriptor type, and/or descriptor value. In this example, the
search term is “thermoelectric”. Relevant materials and references are returned.
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• Relevant – 577 molecules that are structurally similar to Known

• Random – 111 randomly selected molecules from PubChem

We collected the InChIKey and common names for every molecule. InChIKeys are de-

rived from a longer representation called an InChI (International Chemical Identifier) and can

uniquely and precisely identify chemical substances, but common names are more frequently

used in papers due to their general readability. An InChIKey (e.g., “UFULAYFCSOUIOV-

UHFFFAOYSA-N”) often has more than one common name (e.g., “mercaptoethylamine”

and “cysteamine”). In the following discussions, a “molecule” refers to the chemical sub-

stance uniquely identified by an InChIKey. Multiple common names corresponding to the

same InChIKey are regarded as the same molecule.

6.3.1 Qualitative Method

The first task is to rank the molecules in Relevant and Random by their similarity to the

Known molecules. Note that the three datasets do not contain any structural information

about the molecules, only their identifiers and names. With the molecule names, we first

found their context in PRD via string matching. A context is a sentence in PRD that contains

the molecule name. Table 6.2 shows the metadata on the three datasets. On average, the

Known set has two orders of magnitude more contexts per molecule than the Relevant and

Random sets, which is not surprising since the molecules known to be hydrogen-capable are

more likely to be discussed in papers. Although the difference in the number of contexts

per molecule among the three datasets is huge, we do not believe the imbalance would cause

problems for the evaluation because the absolute number of contexts per molecule is large

enough to generate meaningful contextualized embeddings for the molecules.

After collecting the contexts for the molecules from PRD, the contexts were given to

ScholarBERT to extract ScholarBERT’s representation of each molecule. Specifically, for

each context, we took the average output of the last four encoder layers in ScholarBERT,
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Table 6.2: Metadata on the three molecule datasets

Dataset Molecules Contexts Contexts per Molecule
Known 78 89001285 1141042
Relevant 577 8636019 14967
Random 111 4662134 42001

and extracted the vectors corresponding to the token(s) that made up the molecule name

in the context. If the molecule name was split into multiple tokens after ScholarBERT’s

tokenization, we took the average of the vectors for the individual tokens as the ScholarBERT

embedding for the molecule in this context. The average vector of all contexts for said

molecule is taken as ScholarBERT’s representation of this molecule based on its contexts

in PRD. As a qualitative evaluation of the ScholarBERT contextualized embeddings, we

randomly selected 10% of the contexts for the molecules in the Known set and plotted

a t-SNE plot. We can see that the contexts of the same molecule (and thus having the

same color) are mostly clustered together after being reduced from 1024 dimensions to 2-

dimensional space by t-SNE.

The next step in our qualitative evaluation is to compute pairwise cosine similarity

between the Known molecules and the Relevant+Random molecules. Then, the Rele-

vant+Random molecules are sorted by their cosine similarity to the Known molecules.

Fig. 6.4 and Fig. 6.5 show several examples of known molecules and their top candidates

from the Random and the Relevant set according to ScholarBERT.

We can see that ScholarBERT does a passable job finding similar molecules from the

random set. We do see that it favors finding molecules with 5- and 6-member rings, though

with features we didn’t expect like halogens ScholarBERT does a much better job when we

reduce the search space to those with structural similarity. We see that molecules with 5-

member rings, for instance, are found to be similar structurally and in how they are described

in the literature via ScholarBERT.
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Figure 6.3: t-SNE plot with 10% of contexts in the Known set

Figure 6.4: Each column shows a Known molecule on the bottom and its top candidate
molecule from the Random set on the top
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Figure 6.5: Each column shows a Known molecule on the bottom and its top candidate
molecule from the Relevant set on the top

6.3.2 Quantitative Method

In the previous section, we conducted only a qualitative evaluation of the ScholarBERT-

suggested hydrogen-carrier molecules for the Context-based Molecule Discovery project. De-

termining the ground truth of whether a molecule can carry hydrogen requires sophisticated

synthesis procedures in a wet lab, which is costly and has limited bandwidth. Therefore, we

turn to computational methods for a quantitative evaluation. Most of such computational

methods are based on machine learning models, which has shown biases towards known

hydrogen-capable molecules, probably due to memorization from their training data. A

more objective computational method is Density Functional Theory (DFT). It is a widely

used computational method in quantum chemistry that provides a framework for under-

standing the electronic structure of molecules. DFT calculations can provide information

on molecular geometries, binding energies, and electronic properties, which can be used to

calculate a molecule’s hydrogen adsorption energies and determine its ability to carry hydro-

gen. But DFT calculations are computationally demanding, especially for a large collection

of complex materials. In the following experiments, we randomly selected 32 Relevant and

32 Random molecules and calculated their energy capacities and costs of storing hydrogen

using DFT. This data was used as the ground truth of the molecules’ hydrogen-storage

performance. Ideally, a high-performing hydrogen-capable molecule should have both high

capacity and low cost.

We extracted ScholarBERT embeddings for all 78 Known molecules as well as the 64
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candidate molecules from the Relevant and the Random sets using the method described in

Section 6.3.1. The ScholarBERT embeddings are based on the contexts of the molecules in

the PRD corpus.

Previous work has investigated using word embeddings to predict molecules’ thermoelec-

tric performance by comparing the cosine similarity between a molecule’s embedding and

the embedding for the center word, which was “thermoelectric” in their case [135]. To obtain

ScholarBERT’s ranking of the candidate molecules on their hydrogen-carrying capability, we

took the following steps:

1. Extract the embedding for our center word, “hydrogen”, from ScholarBERT. Similar to

previous work [135], the center word embedding is context-free, i.e., the input sequence

to ScholarBERT contains only the center word.

2. Compute the cosine similarity between the 64 candidate molecule embeddings and the

center word embedding.

3. Rank the candidate molecules based on their cosine similarity scores. Since each can-

didate set has 32 molecules, the rankings are from 0 to 31, with 0 being the most

under-performing hydrogen-capable molecule (i.e., having the lowest cosine similarity

score) and 31 being the highest-performing hydrogen-capable molecule (i.e., having the

highest cosine similarity score). This is the ranking predicted by ScholarBERT.

To quantitatively evaluate the molecule rankings predicted by ScholarBERT, we com-

puted the Spearman’s rank correlation coefficient (ρ) between ScholarBERT’s ranking and

the ranking based on the ground truth DFT values. ρ is a measure of statistical dependence

between two variables. It assesses how well the relationship between two variables can be de-

scribed using a monotonic function. Spearman’s correlation evaluates the ranks of the data

rather than their raw values, which makes it especially suitable for data that isn’t normally
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Table 6.3: Spearman’s correlation between the ground truth rankings and the ScholarBERT-
predicted rankings with “hydrogen” as the center word. Detailed rankings are provided in
Table 6.5 and 6.6.

Molecule Set
Spearman’s Correlation

on Capacity

Spearman’s Correlation

on Cost

Relevant Molecules -0.12 -0.08

Random Molecules 0.05 -0.26

distributed or when the relationship between variables isn’t linear. Its formula is given by

ρ = 1 − 6 ×
∑

d2

n(n2 − 1)

where d is the difference between the ranks for each pair of observations, and n is the number

of observations.

Since there were two ground truth values for every molecule, the capacity and the cost,

there were two ground truth rankings as well. We calculated Spearman’s correlation between

the predicted ranking and each of the ground truth rankings.

Table 6.3 lists the correlation scores. The ground truth rankings by capacity and cost,

and ScholarBERT-predicted rankings, are listed in Table 6.5 and Table 6.6. From Table 6.3

we can observe that the model correctly predicted negative correlations between the cost and

the ranking for both the Relevant and the Random molecules. It also correctly predicted a

positive correlation between the capacity and the ranking on the Random set. In contrast

to the prior research where a robust correlation approximating 0.4 was observed, our study

found markedly weaker correlations, with the highest recorded value being −0.26. This

disparity can be primarily attributed to the choice of the center word. Previous investigations

focused on the thermoelectric attributes of molecular structures, employing ”thermoelectric”

as the center word. This term is notably unambiguous, with its usage in literature being

predominantly uniform. Conversely, our research selects ”hydrogen” as the central term, a

word that is employed in a considerably more diverse array of contexts within the scientific
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literature, extending beyond its role as an energy storage medium. Its applications span a

multitude of fields including catalysis, nanotechnology, and metallurgy. Hence, the approach

of gauging a molecule’s capacity to carry hydrogen by measuring its cosine similarity to the

embedding of ”hydrogen” is less likely to yield optimal results like those in previous studies.

Some might argue that a more narrowly defined center word should have been selected.

However, it is crucial to acknowledge that any methodology that excessively depends on

the arbitrary manual selection of a pivotal feature is unreliable at best. This limitation

underscores the need for a more systematic approach in such analyses.

If we are not to select a center word arbitrarily, what shall we compute the cosine similar-

ity to? The Known set of molecules provides a gold standard of hydrogen-capable molecules.

We can use a candidate molecule’s cosine similarity to the Known molecules as a more

objective prediction of its ability to carry hydrogen. The improved workflow is as follows.

1. Extract the embedding for all 78 molecules in the Known set from ScholarBERT with

the same process for the candidate molecules. (See Section. 6.3.1)

2. Compute the cosine similarity between the 64 candidate molecule embeddings and the

Known molecule embeddings, outputting a similarity matrix of shape 64 × 78.

3. For each row in the similarity matrix, keep only the maximum value and discard the

other elements. After this step, each molecule will have one scalar value as its score.

4. Rank the candidate molecules based on their scores. Since each candidate set has 32

molecules, the rankings are from 0 to 31, with 0 being the most under-performing

hydrogen-capable molecule (i.e., having the lowest cosine similarity score) and 31 be-

ing the highest-performing hydrogen-capable molecule (i.e., having the highest cosine

similarity score). This is the ranking predicted by ScholarBERT.

5. Compute the Spearman’s correlation between the ScholarBERT rankings and the

ground truth rankings based on capacity and cost.
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In addition to ScholarBERT, we repeated the steps above for several widely-used LLMs

to make a comparison. Bert [25] is the foundational general-purpose LLM that inspired

many domain-specific Bert-based models such as MatSciBert [42], which was pretrained on

a MatSci-specific corpus and is also used in the previous work on thermoelectric perfor-

mance [135]. Besides the encoder models, the most prominent decoder model, ChatGPT,

is also evaluated on the same task, with the prompt below. Note that ChatGPT’s output

is unstable due to its generative nature. It often takes several attempts to make it output

the ranking as opposed to offering guidance on evaluating a molecule’s hydrogen-carrying

capacity. ChatGPT does not work on InChIKeys, saying it could not identify the molecules

without a database for reference, so we instead provide SMILES strings. These strings in-

herently contain structural information about the molecules and thus give ChatGPT a slight

edge. None of the LLMs are fine-tuned. In-context learning is also not used in the case of

ChatGPT ensuring a fair comparison.

Table 6.4 shows the Spearman’s correlation between the LLM-predicted rankings and the

ground truth rankings by every model on every set of molecules. We can observe that, in

general, the LLMs’ predictions are more strongly correlated with the ground truth ranking

by cost than the ranking by capacity, meaning the LLM embeddings are better at predict-

ing the cost of storing hydrogen with molecules than predicting the molecule’s capacity for

hydrogen. Especially on the Relevant set of molecules, none of the LLM-predicted rankings

had the correct sign (+) of the correlation on capacity. Bert-large, although achieving the

highest correlation score of 0.13 on capacity with the Random molecule set, demonstrated a

substantially weaker correlation compared to those concerning cost. In terms of the correla-

tion scores on cost, ScholarBERT-predicted rankings got the strongest correlation (−0.42)

with the ground truth rankings on both the Relevant and the Random molecules. MatSciB-

ert is trailing not far behind benefiting from its in-domain pretraining. Bert’s correlation

scores on cost got the wrong sign for both sets of molecules, while ChatGPT only got the

sign correct for the Random set, but its score is only 1/3 of ScholarBERT.
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Table 6.4: Spearman’s Correlation between the LLM-predicted rankings and the ground
truth rankings by capacity and cost. The numbers in bold are the strongest correlation
with the correct sign. The scholarBERT-predicted rankings on both the Relevant and the
Random set have the strongest correlation with the ground truth rankings by cost. The
ground truth rankings are listed in Table 6.5 and 6.6, while the LLM-predicted rankings are
listed in Table 6.7 and 6.8.

Relevant Molecules Random Molecules

Model
Correlation

on Capacity

Correlation

on Cost

Correlation

on Capacity

Correlation

on Cost

Bert-large -0.08 0.19 0.13 0.18

MatSciBert -0.02 -0.40 0.06 -0.34

ScholarBERT -0.01 -0.42 0.09 -0.42

ChatGPT 4.0 turbo -0.06 0.10 -0.20 -0.12

In summation, the study corroborates the applicability of domain-specifically pretrained

LLMs in predicting the hydrogen-carrying capabilities of molecules. The findings bolster

the hypothesis that LLM embeddings can implicitly encode material properties through

pretraining on domain-specific texts, positing the use of LLMs as a feasible alternative to

conventional quantum chemistry calculations in material property prediction.

Prompt:

Please rank the following 32 molecules based on their potential as a hydrogen-

storage material, with 0 being the least-performing and 31 being the highest-

performing material. Output one molecule per line. Output the molecule in the

same order as the input, followed by its ranking.

NC(N)=Nc1ccccc1

CN(C)Cc1ccccc1

· · ·

CC(=O)Nc1ccc2ccccc2c1

Cc1cc(-c2ccccc2)ccc1N
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ChatGPT:

To rank these 32 molecules based on their potential as hydrogen-storage mate-

rials, I will evaluate each molecule’s structure, focusing on factors such as the

presence of hydrogen-binding sites, molecular weight, and structural configura-

tions that could potentially enable hydrogen storage. This analysis is theoretical

and assumes general principles of hydrogen storage; actual performance would

need experimental verification.

Here’s the theoretical ranking of the provided molecules based on their potential

as hydrogen-storage materials:

NC(N)=Nc1ccccc1 - Ranking: 25

CN(C)Cc1ccccc1 - Ranking: 24

O=N+c1ccc(-c2ccccc2)cc1 - Ranking: 26

COc1ccc2[nH]ccc2c1 - Ranking: 23

c1ccc(-c2n[nH]c(-c3ccccc3)n2)cc1 - Ranking: 22

c1ccc(-c2cc3ccccc3[nH]2)cc1 - Ranking: 21

Cn1cnc2ccccc21 - Ranking: 19

Cc1nccn1C - Ranking: 18

c1ccc(-c2nc3ccccc3[nH]2)cc1 - Ranking: 17

c1ccc2[nH]c(-c3ccncc3)nc2c1 - Ranking: 16

Cn1c(-c2ccccc2)cc2ccccc21 - Ranking: 15

c1ccc(-c2c[nH]c3ccccc23)cc1 - Ranking: 14

c1ccc(-c2n[nH]c3ccccc23)cc1 - Ranking: 13

c1cc(-c2nnc(-c3ccncc3)o2)ccn1 - Ranking: 12

CCC(CO)NCc1ccccc1 - Ranking: 11

c1ccc(CN2Cc3ccccc3C2)cc1 - Ranking: 10

Cn1nc(-c2ccccc2)nc1-c1ccccc1 - Ranking: 9

Nc1ccccc1-c1nc(-c2ccccc2)n[nH]1 - Ranking: 8
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c1ccc(-c2nc(-c3ccccc3)n(CC3CC3)n2)cc1 - Ranking: 7

c1ccc(Cn2cc(-c3ccccc3)nn2)cc1 - Ranking: 6

CCCn1cccn1 - Ranking: 5

Cc1nc(C)c(C(=O)Nc2ccc3ccccc3c2)s1 - Ranking: 4

O=c1[nH]c(-c2ccccc2)nc2ccccc12 - Ranking: 3

CC(=O)Nc1ccc(-c2ccccc2)cc1 - Ranking: 2

CCCn1ccnc1 - Ranking: 1

CCn1ccnc1 - Ranking: 27

CN(C)c1cccc2ccccc12 - Ranking: 28

CCCCn1ccnc1 - Ranking: 29

c1ccc(-c2cnc[nH]2)cc1 - Ranking: 30

Cn1nccc1-c1ccccc1 - Ranking: 31

CC(=O)Nc1ccc2ccccc2c1 - Ranking: 32

Cc1cc(-c2ccccc2)ccc1N - Ranking: 20

This ranking is based on theoretical considerations of molecular structure and

general knowledge of hydrogen storage chemistry. Actual hydrogen storage ca-

pabilities of these molecules should be assessed through experimental studies or

detailed computational modeling for accurate evaluation.
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Table 6.5: Rankings for 32 molecules in the Relevant set. The embedding rank is based on
the cosine similarity between the ScholarBERT embedding of the molecule name and the
embedding of the word “hydrogen”.

Molecule
Rank by

Capacity (wt%H2)

Rank by

Cost

Rank by

Embedding

QRJZGVVKGFIGLI-UHFFFAOYSA-N 12 19 2

XXBDWLFCJWSEKW-UHFFFAOYSA-N 6 28 21

BAJQRLZAPXASRD-UHFFFAOYSA-N 16 31 5

DWAQDRSOVMLGRQ-UHFFFAOYSA-N 7 17 7

KPKQWXGFEKRQQA-UHFFFAOYSA-N 29 11 12

KLLLJCACIRKBDT-UHFFFAOYSA-N 30 27 10

FGYADSCZTQOAFK-UHFFFAOYSA-N 13 5 20

GIWQSPITLQVMSG-UHFFFAOYSA-N 5 2 18

DWYHDSLIWMUSOO-UHFFFAOYSA-N 27 21 26

UYWWLYCGNNCLKE-UHFFFAOYSA-N 25 10 29

SFWZZSXCWQTORH-UHFFFAOYSA-N 19 26 23

XZNGTBLWFCRXKR-UHFFFAOYSA-N 31 25 17

MXBKCOLSUUYOHT-UHFFFAOYSA-N 28 9 25

FFGFSQOCKQVECP-UHFFFAOYSA-N 24 7 8

PGFBTQBTIYCCFJ-UHFFFAOYSA-N 1 29 24

FGTWRFGVFTTZOI-UHFFFAOYSA-N 9 30 14

TWAVESNVRDYFLI-UHFFFAOYSA-N 21 13 3

MPAXYIQTWKSSLZ-UHFFFAOYSA-N 20 6 11

AZUGGAWLONCYIU-UHFFFAOYSA-N 10 14 6

GANAQXGHGKBVKP-UHFFFAOYSA-N 22 16 9

BDMFEFZOOOYCKN-UHFFFAOYSA-N 3 0 4

CXTLAWSTWSPWGT-UHFFFAOYSA-N 8 12 1

VDULOAUXSMYUMG-UHFFFAOYSA-N 26 18 0

SVLDILRDQOVJED-UHFFFAOYSA-N 18 22 13

IYVYLVCVXXCYRI-UHFFFAOYSA-N 2 3 19

IWDFHWZHHOSSGR-UHFFFAOYSA-N 4 4 28

AJUXDFHPVZQOGF-UHFFFAOYSA-N 11 24 27

MCMFEZDRQOJKMN-UHFFFAOYSA-N 0 1 30

XHLKOHSAWQPOFO-UHFFFAOYSA-N 23 20 16

NLHYNCJBWXKZGP-UHFFFAOYSA-N 14 8 22

DIEOESIZLAHURK-UHFFFAOYSA-N 15 15 31

WAFBISYQIGCOQU-UHFFFAOYSA-N 17 23 15
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Table 6.6: Rankings for 32 molecules in the Random set. The embedding rank is based on
the cosine similarity between the ScholarBERT embedding of the molecule name and the
embedding of the word “hydrogen”.

Molecule
Rank by

Capacity (wt%H2)

Rank by

Cost

Rank by

Embedding

ZCFFYALKHPIRKJ-UHFFFAOYSA-N 24 15 5

VYZAHLCBVHPDDF-UHFFFAOYSA-N 9 8 7

GLDQAMYCGOIJDV-UHFFFAOYSA-N 22 4 16

LBVGYISYZIEXDQ-UHFFFAOYSA-N 8 28 3

BIHWLSDQBFEANX-UHFFFAOYSA-N 23 7 18

QDEQBRUNBFJJPW-UHFFFAOYSA-N 29 18 21

RJZCPVOAAXABEZ-UHFFFAOYSA-N 0 19 26

CXTLAWSTWSPWGT-UHFFFAOYSA-N 28 13 2

VMMLGWBHJYHQFS-LBXGSASVSA-N 13 20 6

NTAHMPNXQOYXSX-NJWHXGCDSA-N 3 23 9

MLSGRWDEDYJNER-UHFFFAOYSA-N 17 11 20

OLBNOBQOQZRLMP-UHFFFAOYSA-N 19 24 12

ZCINTQHDIUHMKK-UHFFFAOYSA-N 7 29 8

BVSPJPNNLDIUFE-UHFFFAOYSA-N 15 3 31

BVVWUNAJSHTQLD-UHFFFAOYSA-N 12 5 0

HSMLEDGQPDVPFW-UHFFFAOYSA-N 18 9 1

QZDSXQJWBGMRLU-UHFFFAOYSA-N 16 6 25

BMCUQYLZVGVDCW-UHFFFAOYSA-N 14 2 27

DWNBPRRXEVJMPO-RZBQNFRCSA-N 2 27 13

DMZOKBALNZWDKI-MATMFAIHSA-J 4 14 28

RFLHUYUQCKHUKS-JUODUXDSSA-M 6 0 22

ODWCIKPDKSFORR-UHFFFAOYSA-N 20 1 30

XIHDWURQMYWEBZ-ZMHPAJMFSA-N 5 17 10

PMZSDQGYELHPDH-UHFFFAOYSA-N 32 26 19

CWKYKJQWSSZVDF-UHFFFAOYSA-N 26 21 11

UKPXULFIISGBHG-UHFFFAOYSA-N 21 30 4

GHSRMSJVYMITDX-UHFFFAOYSA-N 10 32 23

MFYLRNKOXORIPK-UHFFFAOYSA-N 31 31 24

OIQXFRANQVWXJF-UHFFFAOYSA-N 11 22 14

SOODLDGRGXOSTA-UHFFFAOYSA-N 27 16 29

DNUYOWCKBJFOGS-UHFFFAOYSA-N 25 10 17

HRRDCWDFRIJIQZ-UHFFFAOYSA-L 30 12 15
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Table 6.7: Rankings for 32 molecules in the Relevant set by LLMs. The rank of a molecule
is based on the maximum cosine similarity between its embedding by the LLM and the
embeddings of the Known molecules by the same LLM.

Molecule
Rank by

Bert

Rank by

MatSciBert

Rank by

ScholarBERT

Rank by

ChatGPT

QRJZGVVKGFIGLI-UHFFFAOYSA-N 0 20 4 25

XXBDWLFCJWSEKW-UHFFFAOYSA-N 11 1 2 24

BAJQRLZAPXASRD-UHFFFAOYSA-N 18 2 1 26

DWAQDRSOVMLGRQ-UHFFFAOYSA-N 8 12 14 23

KPKQWXGFEKRQQA-UHFFFAOYSA-N 7 11 29 22

KLLLJCACIRKBDT-UHFFFAOYSA-N 20 19 24 21

FGYADSCZTQOAFK-UHFFFAOYSA-N 25 22 30 19

GIWQSPITLQVMSG-UHFFFAOYSA-N 12 18 20 18

DWYHDSLIWMUSOO-UHFFFAOYSA-N 1 7 10 17

UYWWLYCGNNCLKE-UHFFFAOYSA-N 9 31 12 16

SFWZZSXCWQTORH-UHFFFAOYSA-N 30 0 26 15

XZNGTBLWFCRXKR-UHFFFAOYSA-N 26 21 23 14

MXBKCOLSUUYOHT-UHFFFAOYSA-N 13 23 8 13

FFGFSQOCKQVECP-UHFFFAOYSA-N 27 27 18 12

PGFBTQBTIYCCFJ-UHFFFAOYSA-N 31 14 11 11

FGTWRFGVFTTZOI-UHFFFAOYSA-N 28 26 7 10

TWAVESNVRDYFLI-UHFFFAOYSA-N 15 15 19 9

MPAXYIQTWKSSLZ-UHFFFAOYSA-N 10 10 13 8

AZUGGAWLONCYIU-UHFFFAOYSA-N 19 24 22 7

GANAQXGHGKBVKP-UHFFFAOYSA-N 29 5 25 6

BDMFEFZOOOYCKN-UHFFFAOYSA-N 16 16 16 5

CXTLAWSTWSPWGT-UHFFFAOYSA-N 21 3 0 4

VDULOAUXSMYUMG-UHFFFAOYSA-N 2 30 3 3

SVLDILRDQOVJED-UHFFFAOYSA-N 24 6 5 2

IYVYLVCVXXCYRI-UHFFFAOYSA-N 3 25 27 1

IWDFHWZHHOSSGR-UHFFFAOYSA-N 14 28 28 27

AJUXDFHPVZQOGF-UHFFFAOYSA-N 5 8 15 28

MCMFEZDRQOJKMN-UHFFFAOYSA-N 23 29 31 29

XHLKOHSAWQPOFO-UHFFFAOYSA-N 4 13 21 30

NLHYNCJBWXKZGP-UHFFFAOYSA-N 6 9 9 31

DIEOESIZLAHURK-UHFFFAOYSA-N 22 4 17 32

WAFBISYQIGCOQU-UHFFFAOYSA-N 17 17 6 20
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Table 6.8: Rankings for 32 molecules in the Random set by LLMs. The rank of a molecule
is based on the maximum cosine similarity between its embedding by the LLM and the
embeddings of the Known molecules by the same LLM.

Molecule
Rank by

Bert

Rank by

MatSciBert

Rank by

ScholarBERT

Rank by

ChatGPT

ZCFFYALKHPIRKJ-UHFFFAOYSA-N 5 1 2 5

VYZAHLCBVHPDDF-UHFFFAOYSA-N 10 7 14 2

GLDQAMYCGOIJDV-UHFFFAOYSA-N 17 20 26 1

LBVGYISYZIEXDQ-UHFFFAOYSA-N 20 6 1 3

BIHWLSDQBFEANX-UHFFFAOYSA-N 15 3 9 4

QDEQBRUNBFJJPW-UHFFFAOYSA-N 2 8 7 2

RJZCPVOAAXABEZ-UHFFFAOYSA-N 16 4 8 1

CXTLAWSTWSPWGT-UHFFFAOYSA-N 7 21 27 3

VMMLGWBHJYHQFS-LBXGSASVSA-N 11 23 31 5

NTAHMPNXQOYXSX-NJWHXGCDSA-N 14 13 19 6

MLSGRWDEDYJNER-UHFFFAOYSA-N 1 25 30 3

OLBNOBQOQZRLMP-UHFFFAOYSA-N 25 10 15 2

ZCINTQHDIUHMKK-UHFFFAOYSA-N 19 0 6 2

BVSPJPNNLDIUFE-UHFFFAOYSA-N 23 9 12 1

BVVWUNAJSHTQLD-UHFFFAOYSA-N 6 24 28 4

HSMLEDGQPDVPFW-UHFFFAOYSA-N 30 31 4 3

QZDSXQJWBGMRLU-UHFFFAOYSA-N 8 14 17 1

BMCUQYLZVGVDCW-UHFFFAOYSA-N 21 28 24 2

DWNBPRRXEVJMPO-RZBQNFRCSA-N 13 11 0 5

DMZOKBALNZWDKI-MATMFAIHSA-J 0 29 29 6

RFLHUYUQCKHUKS-JUODUXDSSA-M 22 12 18 4

ODWCIKPDKSFORR-UHFFFAOYSA-N 3 30 25 7

XIHDWURQMYWEBZ-ZMHPAJMFSA-N 18 26 5 3

PMZSDQGYELHPDH-UHFFFAOYSA-N 26 2 3 2

CWKYKJQWSSZVDF-UHFFFAOYSA-N 27 19 13 3

UKPXULFIISGBHG-UHFFFAOYSA-N 4 27 20 1

GHSRMSJVYMITDX-UHFFFAOYSA-N 24 5 16 2

MFYLRNKOXORIPK-UHFFFAOYSA-N 29 18 11 2

OIQXFRANQVWXJF-UHFFFAOYSA-N 12 16 10 4

SOODLDGRGXOSTA-UHFFFAOYSA-N 28 15 21 3

DNUYOWCKBJFOGS-UHFFFAOYSA-N 31 22 23 4

HRRDCWDFRIJIQZ-UHFFFAOYSA-L 9 17 22 3
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CHAPTER 7

CONCLUSION

The proliferation of academic publications has rendered the identification of salient sci-

entific discoveries within these unstructured textual sources an insurmountable challenge for

researchers. Concealed within these texts are large quantities of scientific data that may lead

to potentially groundbreaking scientific findings or serve as the basis for future scientific inves-

tigations. Conventional methodologies employed to extract such scientific knowledge depend

heavily on labor-intensive manual curation of publications to pinpoint critical information,

a tactic that is neither economical nor efficacious.

In response to this challenge, I have initially devised neural network architectures that

target the individual components of a scientific information extraction pipeline, ranging

from named entity recognition to relation extraction. Subsequently, following the advent

of Transformer-based language models, we introduced ScholarBERT, a Masked Language

Model pre-trained on a multidisciplinary scientific corpus. In addition to the models, I have

also developed pipelines to collect and preprocess the data that is crucial for training high-

quality language models. The developed models have been applied to real-world downstream

tasks, such as COVID drug molecule screening, material descriptor extraction, and context-

based molecular discovery, showing their contribution to real-world scientific problems that

would otherwise be slow, laborious, or costly to conquer, and therefore, make scientific facts

in publications more discoverable, accessible, and usable.
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