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ABSTRACT

This dissertation focuses on efficiently learning the optimal dynamic mechanism when the

agents’ valuations can be characterized by a Markov Decision Process (MDP). In Chapter 1,

we provide a high-level motivation for our problem setting, discussing the motivations for

combining theoretical Reinforcement Learning (RL) with dynamic mechanism design. In

subsequent chapters, we provide three representative problems at the intersection of these

two fields. These chapters vary in terms of the difficulty of designing the optimal mechanism,

the generality of function approximation, and the RL setup considered, providing a high-level

overview of recent advances along this interdisciplinary research direction.

In particular, in Chapter 2, we show how the revenue maximizing, incentive compatible,

and ex-post individually rational mechanism can be learned computationally and sample

efficiently, when the single buyer’s type distribution is governed by a tabular MDP. In Chap-

ter 3, we provide an online learning algorithm that learns the optimal second-price auction

with reserve prices with rOp
?
T q regret, even if the participating buyers behave strategi-

cally. In Chapter 4, we show that the welfare-maximizing, ex-ante incentive compatible, and

ex-ante individually rational mechanism can be obtained under general function approxi-

mation setting using only a pre-collected data set, with no additional interactions with the

environment.
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CHAPTER 1

A GENERAL INTRODUCTION

Sequential decision making processes, in particular Markov Decision Processes (MDPs), have

long attracted researchers for their ability to capture time-based and state-based dynamics

in human decision making [Puterman, 1990, White, 1993]. In recent years, development of

computational and theoretical methods leads to an unprecedented amount of interest in the

topic, as we can now efficiently learn MDPs both in theory and in practice [Auer et al.,

2008, Kakade, 2001, Li, 2017, Sewak, 2019]. These new tools gave rise to the vibrant field of

Reinforcement Learning (RL), which has seen great empirical success in games (the colloquial

sense) such as Go [Chen, 2016a, Silver et al., 2017, 2016], Atari games [Mnih et al., 2013],

and StarCraft II [Vinyals et al., 2019]. RL has also been applied in high risk real-world

control problems, ranging from self-driving cars [Liang et al., 2018, Spielberg et al., 2019]

to even nuclear fusion [Degrave et al., 2022]. Even ChatGPT, arguably the most popular

machine learning project in early 2023, uses RL under the hood, as it incorporates human

feedback in training via reinforcement learning with human feedback [Choi et al., 2023, Guo

et al., 2023].

It is then no wonder that MDP and RL have also been used in real-world economics

problems such as tax policies [Zheng et al., 2020, 2021] and business applications such as

bargaining on eBay [Green and Plunkett, 2022]. Indeed, the state-based and time-based

structure that MDP captures better reflect the sequential nature of human behavior in real

life, where earlier actions and earlier history affect agents’ later decision making and shaping

the agents earlier history would then undoubtedly affect their later behavior.

Of course, computer scientists are far, far from the only people who have made this

basic observation about human decision making. In economics and operations research, the

field of dynamic mechanism design studies allocating and pricing goods when agents’ types

evolve over time [Bergemann and Välimäki, 2019, Gallien, 2006, Doepke and Townsend,
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2006, Kakade et al., 2013], with widespread applications ranging from sponsored search

auctions [Mirrokni et al., 2018, Shen et al., 2020] to pricing Wi-Fi at Starbucks [Parkes and

Singh, 2003, Friedman and Parkes, 2003].

Applications of dynamic mechanism design often depend heavily on the assumption that

the transition dynamic of the agents’ types is known beforehand, yet the assumption can be

unrealistic in practice. The problem is further complicated by the nature of MDP, where

transition probabilities depend on the action taken. While observational studies can be

used to efficiently estimate type distributions in the stationary setting or the Markov chain

setting, a reasonable justification for assuming the type distributions are known a priori,

for MDPs simply observing the outcomes of arbitrarily chosen actions is insufficient, a well-

known result that highlights the difficulty of RL compared to the stationary setting [Osband

and Van Roy, 2016].

It is then natural to bring together dynamic mechanism design and RL by using tech-

niques from the latter to learn the optimal dynamic mechanisms for MDPs. To our dismay,

existing results are limited, with existing works that are either lacking in theory or not fully

indicative the nuances of dynamic mechanism design.

Due to the limits of existing works, the dissertation focuses on answering the following

central question

Can we provide an efficient algorithm for learning the “optimal” dynamic mechanism in the

single agent setting, where the agent’s type evolve according to an MDP?

The remaining chapters are devoted to three different variants of the problem, organized

as follows. More specifically, in Chapter 2, we define optimal as the revenue-maximizing,

dynamic incentive compatible (IC), and ex-post individually rational (IR) mechanism. We

focus on tabular MDPs, where action is defined as the allocation the buyer receives, state

is some feature variable dubbed public context, and the buyer’s private types is drawn from

a distribution parameterized by the public context. The learning setup is PAC RL, with
2



the goal of outputting a near-optimal mechanism using only polynomially many interactions

with the environment, with high probability. We emphasize that the term PAC RL is a bit

of a misnomer: in PAC learning, the samples are i.i.d. generated from some distribution,

whereas typically PAC RL allows the learner to use different policies to generate sample

trajectories from the environment (see Dann et al. [2018], for instance). Nevertheless, we use

the term to differentiate it from online RL, discussed in the sequel. The chapter is adapted

from a currently unpublished manuscript and the result of a collaboration with Haifeng Xu

and Song Zuo.

In Chapter 3, we define optimal as the revenue-maximizing multi-phase second price

auction with reserve prices. We focus on linear MDPs, where action is decomposed into two

components, with the first being the reserve price, and the second being the type of the item

being sold at that particular step. State is again some feature variable that parameterizes

the buyers’ private types. The learning setup is online RL, where we aim to minimize regret

throughout the interactions with strategic agents. The chapter is adapted from Ai et al.

[2022], a collaboration with Rui Ai, Zhuoran Yang, Zhaoran Wang, and Michael I. Jordan.

In Chapter 4, we define optimal as the welfare maximizing, incentive compatible, and

ex-ante IR mechanism. We focus on a general function approximation setting, where we

only assume that the relevant value functions can be approximated sufficiently well by some

function class. Particularly, we assume that the participating agents’ types are fixed, but

their valuation functions depend on some arbitrary state and action that evolve according to

an MDP. The setup considered is offline RL, where we only assume the existence of an pre-

collected dataset, and aims to recover a near-optimal mechanism with no further interactions

with the environment. The chapter is adapted from Lyu et al. [2022b], a collaboration with

Zhaoran Wang, Mladen Kolar, and Zhuoran Yang.

We hope that the three chapters can highlight the number of possible open questions in

the intersection between RL and dynamic mechanism design. Due to the changing notions

3



of optimality, function approximation assumption, and learning setup, it is hard to provide

a concrete mathematical overview of these problems, encompassing all three chapters. Nev-

ertheless, we highlight three important threads connecting these chapters, and hope that the

discussion demonstrates the inherent cohesiveness of the chapters.

Complexity of mechanism design. From front to back, the optimal mechanism becomes

easier and easier to characterize. The most complicated dynamic mechanism is constructed in

Chapter 2, requiring a novel revelation-style argument for describing the optimal mechanism.

In Chapter 3, mechanism design is simplified by the fact that we only focus on the optimal

multi-phase second price auction with reserve prices, which is IC and IR by well-known

results, with the key challenge being simultaneously learning (1) the best policy for choosing

which item to sell at each step, conditioned on the state, and (2) the optimal reserve price

for each state and item sold, under the condition that the buyers are strategic and may bid

untruthfully. The dynamic VCG mechanism being learned in Chapter 4 is the easiest to

characterize, depending only on the welfare-maximizing policy and, for each agent, a price

to be paid.

Generality of function approximation. From front to back, we allow the underlying

MDP to be more general. In Chapter 2, we only focus on tabular MDPs, requiring that

both the state and action spaces are finite. In Chapter 3, the assumption is weakened, as

we assume a linear MDP, which loosely translates to the assumption that the transition

dynamics and the valuation distributions are linear in some feature vector for the state and

action. In Chapter 4, the assumption is further weakened, and we only assume the existence

of some arbitrary function class that can sufficiently accurately describe the value functions.

Difficulty of exploration exploitation trade-off. From front to back, we gradually

reduce the emphasis on exploration and focus more on exploitation. The PAC-RL setting

4



in Chapter 2 does not consider exploitation at all, as the only goal is to output a near-

optimal mechanism at the end of algorithm. We do note it is nearly trivial to obtain an

online RL algorithm by adapting the PAC RL one we obtained using the explore-then-

commit framework discussed in [Lyu et al., 2022a], albeit with a looser regret bound. For

the online RL setting in Chapter 3, we focus on obtaining the tightest regret bound possible,

necessitating various techniques employed to better balance exploration and exploitation,

discussed in the sequel. Finally, for Chapter 4, we forgo exploration altogether and instead

focus on how to best exploit a pre-collected dataset, with no additional interactions with the

environment.

We hope that our discussion can provide general insights for future researchers working on

the intersection of RL and mechanism design. By “tuning” these three factors contributing to

the overall hardness of the problem, researchers can either make existing results more broadly

applicable and thereby interesting, or develop novel results under a simplified setting for a

seemingly impossible problem. With the discussion in mind, we proceed with the rest of the

dissertation.
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CHAPTER 2

PAC RL FOR REVENUE MAXIMIZING DYNAMIC

MECHANISM IN TABULAR MDPS

2.1 Introduction

How should a monopolistic seller (she) sell an item to a buyer (he), when the buyer’s later

demands are affected by the earlier allocations he receives? For example, consider an airline

trying to price tickets to popular travel destinations over the course of a year. If the airline

set the prices too low early in the year, passengers may splurge more initially but will be

less likely to travel to expensive destinations towards the end of the year: their demand for

travel has been fulfilled early on. As an another example, consider a new restaurant pricing

a prix-fixe menu, i.e. one where a multi-course meal is offered at a pre-determined price, for

the year when the restaurant opens. It may be more favorable for the restaurateur to lower

the prices first to promote its brand, and then raise these prices in order to increase total

revenue.1

A blessing of modern technology is the subjective data that can be used to gauge consumer

demand. Instead of having to survey its customers on how likely they are to travel, the

airline may use data from search engines to accurately estimate consumer demand level.

The restaurateur may use the number of social media followers or its ratings on review

platforms to gauge valuation distribution. The existence of such data ensures that, while

the buyer’s later valuation distribution are affected by earlier allocations, it is possible to

accurately estimate these distributions using publicly available information. An approach

these sellers could take is to first understand how their pricing strategy alters the evolution of

these observable public data, which we call public contexts, and then estimate the valuation

distribution conditioned on these contexts.

1. This can be done via discount, rather than truly changing the price values on the menu.
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Nevertheless, the key challenge behind both settings is the fact that later public context

and valuation distributions can both depend on earlier allocations. It is not always clear

whether lowering prices earlier on increases or decreases later demand. Unlike seasonal trends

in demands that can be estimated accurately by simply recording the valuation distributions

in each time period, it is imperative for the seller to also explore different mechanisms. Should

she set the prices moderately high initially to ensure that there will be sufficient demand

later on? Or should she lower the prices to drum up demand? These questions cannot be

answered by using only observational data and often require actual experimentation with

different strategies, naturally leading to reinforcement learning.

The challenges of learning optimal mechanisms naturally arise in large-scale Internet

applications as well. For instance, consider the spot instance 2 pricing problem faced by

Amazon Web Services (AWS) [Agmon Ben-Yehuda et al., 2013], where dynamic pricing has

been used. Holding substituting services’ prices fixed, we may view AWS as a monopo-

listic seller of cloud computing instances to a group of buyers. The company can gauge

the ground-truth valuation distribution by examining the current demand level for spot in-

stances. Increasing allocation by lowering prices may attract more customers, but those

attracted may be less willing-to-pay, as it is possible for them to be only interested in paying

low prices. Reducing allocation, on the other hand, could drive away customers that are

willing to pay more for earlier access to these spot instances, leading them to favor com-

peting services. Fortunately, these changes in buyers’ valuations can be estimated via user

bids and demand level. Using these publicly observable features as the public context, the

seller can model buyer valuation’s evolution via a MDP framework, faithfully representing

the effect of its allocation policy on next-step valuation distribution.

A different setting that nevertheless shares similar underlying problem structure is online

2. Spot instances are idle cloud computing resources that not currently used by any users. These instances
are priced dynamically by AWS based on predicted market demand, often at a considerably lower price but
with lower priority when other contracted demands come [Agmon Ben-Yehuda et al., 2013, George et al.,
2019, Baughman et al., 2019].
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advertising where an ad exchange platform sells advertising opportunities to an advertiser.

In this case, both the advertiser’s targetting user population and demographic information

about each Internet user are public and dynamically changing contexts. They help the

platform to estimate the advertiser’s willingness to pay and thus to better price the advertiser.

The evolution of the advertiser’s valuation distribution then naturally follows the following

MDP structure. If he is allocated the ad spot, the user population he has already captured

is updated. This may facilitate the advertiser’s value to transit to a different one due to

his potentially switching target of audience. This contributes to the new public context

about the advertiser, to whom the platform proceeds to sell the next ad opportunity. In

such applications, our MDP formulation is crucial for capturing such transition dynamics,

as a context variable is necessary for recording the audience that the advertiser has already

reached, and the public context’s evolution is affected by both the current public context

and the allocation the advertiser receives.

Our contributions. Motivated by the applications above, we formalize and study a dy-

namic mechanism design problem where the buyer’s valuation distributions is described by

a Markov Decision Process (MDP), with past allocation outcomes as the “decision”. We

aim to find the direct, incentive-compatible (IC), and ex-post individually rational (ex-post

IR) dynamic mechanism with maximal revenue. To address the practical challenge that the

seller may not know in advance how allocations affect later valuations, we also study the

natural machine learning problem on how to efficiently learn an optimal mechanism through

interacting with the environment. Towards that end, we present three major findings, as

detailed below.

First, we introduce a natural dynamic design problem in an MDP environment and show

a revelation-principle-style characterization. That is, it is without loss of generality to con-

sider a family of mechanisms we call Augmented Bank Account Mechanism (ABAM). ABAM

significantly generalizes the previously known bank account mechanism (BAM) [Mirrokni

8



et al., 2016a, 2020]. Specifically, BAMs were developed for situations where past trajectory

does not affect future environment parameters such as buyer value distribution. Hence, they

only need to track buyer’s total surplus thus far (i.e., the “bank account”), and does not

need to track past item allocations to the buyer neither the public context. However, in our

MDP setup, past allocations affect both future context and buyer valuations. Therefore, to

optimize aggregated utility and also to account for buyer’s incentive, our mechanism need

to additional track past allocations, hence the name “augmented” bank account mechanism.

Notably, this augmentation is not a trivial modification — it makes both the revenue maxi-

mization and enforcing dynamic incentive compatibility much more challenging. To address

these challenges, the ABAM has to carefully design the payment rule that can accurately

account for the impact of untruthful reporting on both current-step utility and expected fu-

ture utility. Built upon these changes to the mechanism, we prove that ABAMs can achieve

optimal revenue in our setting. On the technical side, core to this proof is a non-trivial gen-

eralization of the family of “symmetric mechanisms”, first introduced in in [Mirrokni et al.,

2020], to the novel and more challenging MDP setting. The generalization is meticulously

constructed to keep track of the effects of earlier allocations, while also taking care avoiding

violating the timing of interactions in our setting.

Second, built upon the revelation principle above, we develop an algorithm to compute an

(additive) ϵ-optimal mechanism in time polynomial in the input size and 1{ϵ when the MDP’s

transition probabilities are known beforehand.3 This result requires us to go significantly

beyond earlier results for settings with independent valuations across time (e.g., [Ashlagi

et al., 2023, Mirrokni et al., 2016b]). For these settings, the key idea shared by previous

approaches is to show that the seller’s expected continuation revenue is a concave function of

the buyer’s expected continuation utility. This crucial property then allows them to construct

a polynomially-sized piece-wise linear approximation to the expected continuation revenue.

3. This is also called a Fully Polynomial Time Approximation Scheme (FPTAS).
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Then near-optimal mechanism can by found via dynamic programming. Unfortunately, such

approach fails in our MDP setting because the seller’s expected continuation revenue here

depends on not only buyer’s expected continuation utility but also the allocation probability

of each type. A similar approach of discretization as in Mirrokni et al. [2016b] will lead

to an approximated continuation revenue function that is the product of a piecewise linear

function in expected utility and a linear function in the allocation rule. However, since

both expected utility and allocation rule are decision variables, the resulting approximation

revenue function is a piece-wise bilinear function, making it intractable to optimize. To

bypass these challenges, we resort to a refined analysis of the properties of continuation

revenue in our setting. Specifically, employing a generalized variant of the envelope theorem

by Milgrom and Segal [2002], we are able to show that the continuation revenue is sufficiently

smooth in the allocation level. Using the observation, our proposed algorithm simultaneously

discretize the allocation level and continuation revenue, using only polynomially many pieces.

Finally, we study the situation without knowing the underlying MDP in advance. Lever-

aging the above computational algorithm, we develop an efficient reinforcement learning

algorithm to learn an ϵ-optimal, approximately IC, and approximately ex-post IR mecha-

nism, using polynomially many samples in polynomial time.4 We stress that, whereas typical

RL approaches look to learn a near-optimal Markovian policy, the optimal mechanism in our

setting is non-Markovian. In particular, the allocation, per-step payment, and spend rules

of an ABAM are all non-Markovian, requiring special care when designing a learning al-

gorithm. Moreover, we also need to guarantee that the learned non-Markovian spend rule

yields a mechanism that is approximately IC and approximately ex-post IR. To address these

challenges, we carefully relax the dynamic program for solving the optimal mechanism, which

allows us to isolate the estimation errors to the spend rules alone. As approximate IC and

4. We are aware that for static setups of mechanism design, there is a quite general black-box reduction
from ϵ-BIC mechanism to an exactly BIC mechanism modulo negligible revenue loss Cai et al. [2021].
However, it appears unclear whether such a reduction exits for our dynamic mechanism design setup, which
is an intriguing open problem.
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approximate ex-post IR guarantees all require on high-accuracy estimates of the spend rule,

we draw inspiration from “reward-free reinforcement learning” to ensure that the spend rule

is estimated sufficiently well with polynomially many samples [Jin et al., 2020a]. Specifi-

cally, we are able to show that, loosely speaking, so long as there exists some policy that can

reach the context with non-negligible probability, then the corresponding spend rule will be

estimated well, despite its non-Markovian nature. Careful analysis of the error terms shows

that the constraint violation at each public context is small, as long as there exists some

dynamic mechanism that can easily reach the context. Conversely, we show that IC and

ex-post IR are not violated significantly, unless the context occurs rarely under all possible

dynamic mechanisms. Specifically for the approximate-IC guarantee, our results imply that

the amount a buyer may gain from untruthful reporting is bounded uniformly for all bidding

policies, and the amount is independent of either the learned mechanism or the optimal

mechanism itself.

Related Works. Our work subscribes to the rich line of research on optimal dynamic mech-

anism design [Krähmer and Strausz, 2015, Mirrokni et al., 2016b, Papadimitriou et al., 2016,

Deng et al., 2019, Mirrokni et al., 2020, Bergemann and Välimäki, 2010, Kakade et al., 2013,

Kanoria and Nazerzadeh, 2014, Athey and Segal, 2013]. Particularly, [Mirrokni et al., 2016a,

2020, Ashlagi et al., 2023] are among the first works to pursue the revenue-maximizing, IC,

and ex-post IR mechanism in dynamic mechanism design, focusing on the setting where the

buyer’s valuation distribution may change over time. However, in their models, the buyer’s

value is not affected by his previous allocations. Following this line of work, Deng et al.

[2021] offer a more general treatment of the problem, allowing additional constraints such as

the buyer’s budget. However, their results do not imply computationally efficient algorithms

for computing near-optimal mechanisms in our setting neither show how such a mechanism

could be efficiently learned. In the same vein, Pavan et al. [2014] characterize the first-order

optimality conditions for a very general setup of dynamic mechanism design. However, their
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results are not computational neither learning-theoretic. Another loosely related line of work

studies “Markovian buyers” [Battaglini, 2005, Ouyang et al., 2015, Garrett, 2016], where the

buyer’s valuation is assumed to evolve according to a Markov process, as opposed to a Markov

Decision Process. Compared to our setting, this line of work omits the challenges caused

by the dependence of valuation distribution on earlier allocations, and often do not consider

efficient computing or learning algorithms. We refer interested readers to [Bergemann and

Välimäki, 2019] for additional discussions on related concepts in dynamic mechanism design.

Our work is also related to, but drastically different from, the line of recent work com-

bining reinforcement learning (RL) with dynamic mechanism or information design [Wu

et al., 2022, Ai et al., 2022, Lyu et al., 2022b, Min et al., 2022, Liu et al., 2022, Zu et al.,

2021, Mansour et al., 2022, Simchowitz and Slivkins, 2023]. Of these works, some features

a “factorized” action space, where one component of the seller’s action affects only the later

valuation distributions, but not the current step’s IC constraints, and the other component

focuses on only the current step’s IC constraints, without considering the later steps’ valu-

ation distribution [Ai et al., 2022, Min et al., 2022]. Some assumes that a new participant

arrives at every step of the underlying MDP and leaves immediately after [Wu et al., 2022].

Both setups significantly reduce the difficulty of designing an optimal IC mechanism, leading

to easier-to-characterize optimal mechanisms that are also easier to learn via RL. On the

other hand, while works such as [Mansour et al., 2022, Simchowitz and Slivkins, 2023] do

not feature similar simplifying assumptions, their setting is drastically different from ours.

In our setting, the learner is a monopolistic seller whose aim is to maximize revenue. In this

line of work, however, the learner is simply trying to learn the optimal policy in some MDP,

whose challenge lies in incentivizing agents to explore via strategically revealing information

to these agents. While they provide efficient learning algorithms, these algorithms shed little

light on how a revenue-maximizing mechanism could be recovered.

Finally, our techniques for learning optimal mechanisms is inspired by the line of work
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on reward-free RL, pioneered by Jin et al. [2020a], with later works improving sample-

complexity [Zhang et al., 2021b, Li et al., 2023] or extending the results into more general

function approximation settings [Wang et al., 2020b, Wagenmaker et al., 2022, Zhang et al.,

2021a]. While we utilize the design idea of Jin et al. [2020a], it is far from being straightfor-

ward to convert reward-free exploration guarantees to approximate IC guarantees, a technical

contribution of our work.

Notations and Terminology. We use } ¨ }8 to denote the ℓ8-norm. For two non-negative

functions f, g, we say fpnq “ Opgpnqq if there exists some c ą 0, n0 ą 0 such that fpnq ď

cgpnq for all n ě n0. We use rO when the logarithmic factors are ignored. Finally, we say a

mechanism is ϵ-optimal if the expected revenue it achieves is at least OPT ´ ϵ, where OPT

is the maximum expected revenue that can be achieved by any exactly IC, IR, and direct

mechanism.

2.2 Preliminaries

We use the tuple pS,Θ,X , H,Pq to describe the MDP that governs the evolution of the

buyer’s valuation distribution. Particularly, S is the space for the public context at each

step, Θ is the buyer’s type space, X “ t0, 1u is the seller’s allocation space, where xh “ 0

means that the seller does not sell the item to the buyer at step h and xh “ 1 means the

seller does sell the item. We use H to denote the horizon. Let PS “ tS ˆ X Ñ ∆pSquH

and PΘ “ tS Ñ ∆pΘquH denote the transition kernel, where for each h P rHs, PS
h p¨ | sh, xhq

is the distribution over the public context sh`1 at h ` 1, conditioned on the public context

sh and realized allocation xh at step h. The buyer then draws his private type θh`1 from

a distribution dependent on sh`1, i.e. θh`1 „ PΘ
h`1p¨|sh`1q. For convenience, we let P “

tPS ,PΘu and assume without loss of generality that s1 is deterministic, that is, the initial

context is always fixed at some s1.

We focus on direct mechanisms and let the buyer’s report space be Θ. The interaction
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Figure 2.1: Visualization of the Transition Dynamics. Dashed lines denote correlation and
solid arrows denote conditional independence.

between the buyer and the seller can then be summarized as follows. When h “ 1, the

initial public context s1 is realized and the buyer receives his private type θ1. For all

h P rHs, the public context realizes at sh P S and the buyer receives his type θh P Θ. The

buyer then reports, potentially untruthfully, to the seller his type as pθh P Θ. The seller,

having observed the public context sh and received the reported type pθh, chooses her action

xh „ Berpχhp¨qq and price ph “ ψhp¨q according to some mechanism Mpχ, ψq. The buyer

realizes his instantaneous utility and the next step’s context is given by sh`1 „ PS
h p¨|sh, xhq.

Before we characterize the mechanism, we define the history available to the seller at each

step h P rHs, which we denote by pηp1,h´1q to reflect the fact that the history is dependent

on the reported type pθ rather than the actual private type itself. Particularly, we let

pηh “ psh, pθh, xhq, for all h P rHs,

and use Hh to denote the space of all histories with length h. Additionally, we let H “

YH
h“1Hh. Under the definition, the tuple ppηp1,h´1q, shq captures all the publicly available

“historical” variables, save for the buyer’s current step’s report, that the buyer may include

as inputs to the mechanism χhppηp1,h´1q, sh,
pθhq and ψhppηp1,h´1q, sh,

pθhq. For convenience,

we let ηp1,h´1q denote the history when the buyer is truthful in the first h´ 1 steps. At each

step h, the buyer’s utility is uhppηp1,h´1q, sh,
pθh; θhq “ θhErxhs´ph “ θhχhppηp1,h´1q, sh,

pθhq´

ψhppηp1,h´1q, sh,
pθhq, where the expectation is taken over the randomness of xh, the current

step’s allocation.
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The buyer’s expected continuation utility for any arbitrary bidding policy b is then

U
bph`1,Hq

h ppηp1,h´1q, sh,
pθhq “ E

pη
bph`1,Hq

ph`1,Hq
,xh

«

H
ÿ

τ“h`1

uτ ppη
bph`1,Hq

p1,τ´1q
, sτ , bτ ppη

bph`1,Hq

p1,τ´1q
, sτ , θτ q; θτ q

ff

,

where we let pηb denote the history under a specific bidding policy b. We highlight the fact

that U also takes expectation over the current step’s allocation outcome xh, as the buyer

cannot observe the realized outcome when attempting to maximize his future expected utility

at each step. For convenience we let U denote the expected future utility when the buyer

reports truthfully.

For any mechanism M we let UtlpMq denote the expected episodic utility attained

under the mechanism and UtlpM|ηph,h1qq denote the expected episodic utility conditioned

on the history ηph,h1q, both under the assumption that the buyer is truthful. Particularly

UtlpM|ηph,h1qq “

Eη1
p1,h´1q

,s1
h

«

H
ÿ

τ“1

uτ pη1
p1,τ´1q

, s1
τ , θ

1
τ ; θ

1
τ q|ps1, θ1, x1

qph,h1q “ ps, θ, xqph,h1q

ff

.

Let UtlpM|ηph,h1´1q, sh1 , θh1q be analogously defined whenever we wishes to take into con-

sideration the realized public context and private type at step h1. We note that

UtlpM|ηph,h1´1q, sh1 , θh1q “ Exh1

”

UtlpM|ηph,h1qq

ı

.

With these definitions in mind, we now formalize two key desiderata that an ideal mechanism

should satisfy: dynamic incentive compatibility and ex-post individual rationality.

Dynamic Incentive Compatibility. Our definition of dynamic incentive compatibility

is directly adapted from [Mirrokni et al., 2020], where the seller’s goal is to incentivize

the buyer to report truthfully regardless of his prior history. As the buyer does not know
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the realizations of future public contexts nor private types, he considers his current-step

utility u in addition to the continuation utility Ū . We formalize the definition below and

refer interested readers to [Mirrokni et al., 2016a, 2020] for additional discussions on the

constraint.

Definition 2.2.1 (Dynamic Incentive Compatibility). We say a mechanism M is dynamic

incentive compatible (IC) if for any step h P rHs, history pηp1,h´1q, context sh, deviating

report pθh, and bidding strategy in subsequent steps bph`1,Hq, we have

uhppηp1,h´1q, sh, θh; θhq ` Uhppηp1,h´1q, sh, θhq

ě uhppηp1,h´1q, sh,
pθh; θhq ` U

bph`1,Hq

h ppηp1,h´1q, sh,
pθhq.

(2.2.1)

We also introduce stage-IC, a notion that is equivalent to IC but is easier to work with

in a dynamic mechanism design setting. The key distinction between the two definitions is

that the former takes into consideration all possible continuation bidding strategies, whereas

the latter restricts our focus to the setting where the buyer deviates at the current step, but

reports truthfully in all ensuing steps.

Stage-IC uhppηp1,h´1q, sh, θh; θhq ` Uhppηp1,h´1q, sh, θhq

ě uhppηp1,h´1q, sh,
pθh; θhq ` Uhppηp1,h´1q, sh,

pθhq.

(2.2.2)

Despite the differences in appearances, stage-IC and IC are in fact equivalent.

Lemma 2.2.2. IC, as defined by Definition 2.2.1, is equivalent to stage-IC (2.2.2).

Ex-Post Individual Rationality. Inspired by prior literature, we focus on ex-post par-

ticipation constraints, where the buyer’s episodic utility is non-negative for every realization

of public context and buyer types. In particular, we impose the following ex-post individual
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rationality constraint on the mechanism, where for any truthfully reported history we have

IR
H
ÿ

h“1

uhpηp1,h´1q, sh, θh; θhq ě 0, (2.2.3)

namely, buyer’s who participate truthfully should almost surely receive non-negative utility

at the end of the mechanism.

Reinforcement Learning Preliminaries. We now introduce concepts in reinforcement

learning that will be useful when we discuss our learning algorithm. Let πp1,Hq : tS Ñ

∆pX quH denote a (Markovian) type-agnostic policy. That is, for any h, s, πhpsq outputs a

distribution over the allocations in X when the public context reached at step h is s, not

affected by either ηp1,h´1q or θh. Let Prπhpsq denote the probability that the context s is

reached by π at step h. Although type-agnostic policies seem much more restrictive than

the allocation rule in general mechanism design, it can be used to generate any distribution

over the contexts for any allocation rule χ and bidding policy b. We formalize the statement

as follows.

Lemma 2.2.3. For any allocation rule χp1,Hq and bidding policy bp1,Hq, there exists a type-

agnostic policy πp1,Hq such that for all h, s

Prπhpsq “ Pr
pηp1,Hq„χp1,Hq,bp1,Hq

psh “ sq,

where the probability on the right hand side is calculated with respect to the distribution over

the reported history pηp1,Hq.

A key implication of the lemma is that we can use a Markovian policy to fully explore

the environment, covering all possible distributions that could be covered by possibly non-

Markovian dynamic mechanisms, even when the buyer is not truthful.
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2.3 The Augmented Bank Account Mechanism and its

Characterization

Before we formally introduce the family of augmented bank account mechanisms, we begin

with a short detour to better understand the constraints posed by incentive compatibility,

turning our focus back to (2.2.2). Plugging in the definition of uhp¨, ¨; θhq, we rewrite the

equation as

θhχhppηp1,h´1q, sh, θhq ´ ψhppηp1,h´1q, sh, θhq ` Uhppηp1,h´1q, sh, θhq

ě θhχhppηp1,h´1q, sh,
pθhq ´ ψhppηp1,h´1q, sh,

pθhq ` Uhppηp1,h´1q, sh,
pθhq,

which in turn rearranges to

ψhppηp1,h´1q, sh, θhq ´ ψhppηp1,h´1q, sh,
pθhq ďθhχhppηp1,h´1q, sh, θhq ´ θhχhppηp1,h´1q, sh,

pθhq

` Uhppηp1,h´1q, sh, θhq ´ Uhppηp1,h´1q, sh,
pθhq.

(2.3.1)

The expression, at a high level, highlights the fact that the pricing rule for any dynamic IC

mechanism must roughly account for two terms, the instantaneous utility θhχhp¨, ¨, ¨q and

the expected future utility Uhp¨, ¨, ¨q. More specifically, for each step h P rHs, the difference

in payments levied for type θh and type pθh should reflect both the change in the buyer’s

instantaneous utility and the buyer’s future expected utility.

The inequality (2.3.1) reminds us of bank account mechanisms introduced by Mirrokni

et al. [2016a,b]. A defining feature of this family of mechanisms is the notion of bank account

“balance”, which keeps track of the buyer’s expected episodic conditioned on the history

observed so far. Via the “balance” term, bank account mechanisms are able to measure the

change in expected future utility Ūh as the history evolves, thereby ensuring IC.
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In the MDP setting, however, it is not sufficient to keep track of the bank account

balances, as the distribution over types is affected by the previous step’s allocation due to

the Markovian transition kernel PS . To resolve the issue, we propose the following family

of mechanisms called Augmented Bank Account Mechanisms (ABAMs), where we augment

balances with the previous step’s history.

Definition 2.3.1. An augmented bank account mechanism B is parameterized by the tuple

xξp1,Hq,φp1,Hq,balp1,Hq, δp1,Hq,σp1,Hqy where for each h P rHs

• allocation rule ξh : R` ˆ H1 ˆ S ˆ Θ Ñ r0, 1s maps balance, previous step’s one step

history, current public context, and current type to an allocation probability,

• payment rule φh : R` ˆ H1 ˆ S ˆ Θ Ñ R` maps balance, previous step’s one step

history, current public context, and current type to step payment,

• balance function balh : Hh´1 ˆ S ˆ Θ Ñ R` is defined recursively by the following

equation,

@ηp1,h´1q, sh, θh, balh`1 “ balh ´ σhpbalh, ηh´1, shq ` δhpbalh, ηh´1, sh, θhq

where bal1 “ 0,

• deposit rule δh : R` ˆH1ˆSˆΘ Ñ R` maps balance, previous step’s one step history,

current public context, and current type non-negative real that is added to the current

balance.

• spend rule σh : R` ˆ H1 ˆ S Ñ R maps balance, previous step’s one step history, and

the current public context to a real number no greater than the current balance,

where we recall H1 is the space of all possible tuples psτ , θτ , xτ q for any arbitrary τ P rHs.
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As the type distribution at each step relies on the previous step’s allocation, only by

keeping track of previous step’s history can we accurately calculate the next step’s type

distribution. The proposed mechanism can be viewed as a specialized instance of Lossless

History Compression mechanism proposed by Deng et al. [2021], where the history is com-

pressed to balance and previous step’s history. However, we note that the LHC framework is

too general and lacking in computational guarantees. Moreover, although Deng et al. [2021]

provide a convincing argument extending their results to our setting, we are not aware of

mathematically rigorous proofs for why LHCs extend to the case where later type distribu-

tions depend on earlier allocations.

As a shorthand, we use

pupbalh, pηh´1, sh, pθh; θhq “ ξhpbalh, pηh´1, sh, pθhqθh ´ φhpbalh, pηh´1, sh, pθhq

to denote the per-step utility of the augmented bank account mechanism when the buyer’s

true type is θh and reports instead pθh, differentiating it from the instantaneous utility uh.

At each step, the mechanism charges the buyer

ph “ φhpbalh, pηh´1, sh, pθhq ` σhpbalh, pηh´1, shq,

according to the balance, the previous step’s history, and the current step’s public context

and reported type.

Before proceeding further, we highlight the importance of and explain the intuition behind

the spending rule σh in our setting. Consider a simple two-stage setting. The seller’s

allocation rule in the first stage affects the distribution of s2, which is observed only at

the next stage. The terms s1, pθ1, when combined with the seller’s allocation rule, yield

the conditional distribution of s2, much like the type distribution in a traditional one-step

mechanism design problem. The seller can then account for the information rent of s2 via
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σ2, and the allocation and payment rules ξ, φ only need to account for the uncertainty

surrounding θ2. More succinctly, σh accounts for the uncertainty in sh, and ξ, φ accounts

for the uncertainty of θh after observing sh.

We now show how this property simplifies the analysis of IC conditions.

Lemma 2.3.2. An augmented bank account mechanism B is IC if for all h P rHs, balh,

ηh´1,sh, and pair of types θh, θ1
h

pupbalh, ηh´1, sh, θh; θhq ě pupbalh, ηh´1, sh, θ
1
h; θhq

and for any balh, pηh´1 and bal1
h, pη

1
h´1, we have

E
xh´1,sh|sh´1,pθh´1

rσhpbalh, pηh´1, shqs ´ E
x1
h´1,s

1
h|s1

h´1,
pθ1
h´1

rσhpbal1
h, pη

1
h´1, s

1
hqs

“ E
xh´1,sh,θh|sh´1,pθh´1

rpupbalh, pηh´1, sh, θh; θhqs

´ E
x1
h´1,s

1
h,θ

1
h|s1

h´1,
pθ1
h´1

“

pupbal1
h, pη

1
h´1, s

1
h, θ

1
h; θ

1
hq
‰

.

Similarly, the deposit rule δh streamlines the analysis of the ex-post IR condition.

Lemma 2.3.3. An augmented bank account mechanism B is ex-post IR if for all h P rHs,

balh, ηh´1, sh, θh, and θ1
h

pupbalh, ηh´1, sh, θh; θhq ě δhpbalh, ηh´1, sh, θhq.

Our goal is to show that it is without loss of generality to restrict our focus to augmented

bank account mechanisms. Observe that in Definition 2.3.1, the tuple balh, sh´1, θh´1

almost ubiquitous. As it turns out, some notion of equivalence is implied by the tuple, and

we focus on mechanisms that, loosely speaking, treat all histories with length h by only

looking at the tuple pbalh, sh´1, θh´1q with an appropriately constructed way to update
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balances. Particularly, we have the following definitions, extending their counterparts found

in earlier works into our novel MDP setting.

Definition 2.3.4 (History Equivalence). Given any direct mechanism M, equivalence rela-

tion between histories, pηp1,h´2q, sh´1, θh´1q „ pη1
p1,h´2q

, s1
h´1, θ

1
h´1q, is defined as

pηp1,h´2q, sh´1, θh´1q „ pη1
p1,h´2q

, s1
h´1, θ

1
h´1q

ðñ

$

’

’

&

’

’

%

UtlpM|ηp1,h´2q, sh´1, θh´1q “ UtlpM|η1
p1,h´2q

, s1
h´1, θ

1
h´1q,

sh´1 “ s1
h´1, θh´1 “ θ1

h´1.

History equivalence allows us to focus a specific family of dynamic mechanisms. Specif-

ically, one that treats all equivalent histories as if they were the same. At a high level,

because equivalent histories share the same public context and reported type, if they receive

the same allocation level at step h´1, the resulting public context and type distributions at

step h will also be the same. Moreover, as these histories have the same expected episodic

utility, using the same submechanism starting from step h yields the same utility for both

histories. We formalize the definition of such mechanisms as follows.

Definition 2.3.5 (Symmetric Mechanism). We say a mechanism M is symmetric if for

pairs of equivalent histories the corresponding submechanisms are identical. That is, if

pηp1,h´2q, sh´1, θh´1q „ pη1
p1,h´2q

, s1
h´1, θ

1
h´1q, then for all possible xh´1, τ P rHs, and

history from step h to τ ´ 1 we have

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

χτ ppηp1,h´2q, psh´1, θh´1, xh´1q, ηph,τ´1qq, sτ , θτ q

“ χτ ppη1
p1,h´2q

, ps1
h´1, θ

1
h´1, xh´1q, ηph,τ´1qq, sτ , θτ q for all psτ , θτ q P S ˆ Θ,

ψτ ppηp1,h´2q, psh´1, θh´1, xh´1q, ηph,τ´1qq, sτ , θτ q

“ ψτ ppη1
p1,h´2q

, ps1
h´1, θ

1
h´1, xh´1q, ηph,τ´1qq, sτ , θτ q for all psτ , θτ q P S ˆ Θ.

(2.3.2)
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Symmetric mechanisms are much less complicated than the general class of all possi-

ble dynamic mechanisms. Rather than keeping track of all possible values, we can select

one “representative” value for each pηp1,h´2q, sh´1, θh´1q. By Definition 2.3.5, symmetric

mechanisms function the same for all histories equivalent to the selected representative, sig-

nificantly reducing the policy’s complexity. As it turns out, in the MDP setting it is again

without loss of generality to consider only symmetric mechanisms, which we formalize below.

Lemma 2.3.6 (Symmetrization). For direct, IC, and ex-post IR dynamic mechanism M,

there is a symmetric, IC, and ex-post IR dynamic mechanism Msymmetric such that

UtlpMq “ UtlpMsymmetric
q, RevpMq ď RevpMsymmetric

q.

Moreover, if M is deterministic, Msymmetric is also deterministic.

A key challenge behind Lemma 2.3.6 is, again, the fact that the buyer’s valuation distribu-

tion relies on the allocation he receives in the previous round. Unlike earlier works [Mirrokni

et al., 2016b, 2020], the definitions of history equivalence and symmetric mechanisms both

need to include the public context and the buyer’s reported type at step h´1: both variables

are needed for calculating the type distribution at step h, and only tracking the expected

utilities is no longer sufficient.

We now focus on a specific subset of mechanisms within the family of ABAMs. Inspired

by [Mirrokni et al., 2016a], we call this kind of mechanism core Augmented Bank Account

Mechanism, or core ABAM for short.

Definition 2.3.7. Let gh : H ˆ S ˆ Θ Ñ R be a function mapping a history of length

h ´ 1, a public context, and a type report to a real number for all h P rHs Y t0u and

yh : H ˆ S ˆ Θ Ñ ∆X one that maps from a history of length h ´ 1, the current public

context, and the current reported type to an allocation.
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Consider the following construction of an augmented bank account mechanism based on

functions g “ tghuHh“0 and y “ tyhuHh“1, which we denote as Bg,y.

• balh`1pηp1,h´1q, sh, θhq “ ghpηp1,h´1q, sh, θhq ´ Ch,

• ξhpbalh, ηh´1, sh, θhq “ yhpη1
p1,h´1q

, sh, θhq, where η1
p1,h´1q

is some arbitrary history

such that balhpη1
p1,h´2q

, s1
h´1, θ

1
h´1q “ balh and η1

h´1 “ ηh´1.

• φhpbalh, ηh´1, sh, θhq “ ξhpbalh, ηh´1, sh, θhqθh ´
şθh
0 ξhpbalh, ηh´1, sh, θqdθ,

• δhpbalh, ηh´1, sh, θhq “ ξhpbalh, ηh´1, sh, θhqθh ´ φhpbalh, ηh´1, sh, θhq,

• σhpbalh, ηh´1, shq “ balh ` δhpbalh, ηh´1, sh, θhq ´ balh`1,

where the constants Ch, CH satisfy the following constraints to ensure the balance is non-

negative.
$

’

’

&

’

’

%

Ch ď infηp1,h´1q,sh,θh
ghpηp1,h´1q, sh, θhq for all h P rH ´ 1s,

CH ď mint0, infηp1,H´1q,sH ,θH gHpηp1,H´1q, sH , θHqu.

When the construction is well-defined, we call the resulting mechanism a core ABAM.

Core ABAM differs from earlier works due to its need to track the previous step’s history.

Without such information, the seller cannot exactly calculate the buyer’s type distribution

at the next step, which is affected by the allocation rule the seller selects in the current step,

making optimal mechanism design impossible. We now show that for each symmetric direct

mechanism, one can construct a core ABAM with the same overall outcome in the form of

the following lemma.

Lemma 2.3.8. For any symmetric direct, IC, and IR mechanism M “ pχ, ψq, Bg,y is a

core ABAM if for all h and all histories of length h

ghpηp1,h´1q, sh, θhq “ ErUtlpM|ηp1,h´1q, sh, θhqs.
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Moreover, Bg,y satisfies

UtlpBg,y
q “ UtlpMq “ Eθ1rg1pH, s1, θ1qs, RevpBg,y

q “ RevpMq,

and is IC and IR.

Proof Sketch of Lemma 2.3.8. The full proof is deferred to Appendix 2.7.3. The key com-

ponent is to utilize that different histories can be mapped to a representative one and the

subsequent submechanisms are the same under symmetric mechanisms.

While our construction and proof draws inspiration from earlier results in [Mirrokni et al.,

2016a], a crucial yet nuanced difference between core ABAMs and existing methods lies in

the input space to core ABAMs, unique to our MDP setting. Observe that core ABAMs

make use of pbalh, ηh´1q as opposed to pbalh, sh´1, θh´1q. In other words, core ABAMs

also keep track of the realized allocation, in addition to the public context and reported

type. Indeed, it is possible for the general family of symmetric mechanisms to also depend

on the realized allocation xh´1 at the previous step, and omitting the variable could limit the

generality of core ABAMs. As xh´1 P X “ t0, 1u, the inclusion of the variable only scale the

number of possible inputs by a constant factor, and will not incur significant computational

costs.

Having shown that it is without loss of generality to consider only core ABAMs, we

conclude this section by characterizing such mechanisms.

Theorem 2.3.9. A function g is consistent if for all h P rHs, histories ηp1,h´1q,

gh´1pηp1,h´2q, sh´1, θh´1q ´ Exh´1,sh,θhrghpηp1,h´1q, sh, θhqs

is an absolute constant. A function g is symmetric if for all h P rHs, histories η1
p1,h´2q

,

η1
p1,h´2q

, if gh´1pηp1,h´2q, sh´1, θh´1q “ gh´1pη1
p1,h´2q

, sh´1, θh´1q for some sh´1, θh´1,
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then for all xh´1, sh, θh

ghpηp1,h´1q, sh, θhq “ ghppη1
p1,h´2q

, ηh´1q, sh, θhq,

where we recall ηh´1 “ psh´1, θh´1, xh´1q and ηp1,h´1q “ pηp1,h´2q, ηh´1q. The mechanism

Bg,y is a core ABAM if and only if for any h P rHs

• yh is a sub-gradient of gh with respect to θh, with range being ∆pX q. That is, for all h

and pηp1,h´1q, sh, θhq, we have yhpηp1,h´1q, sh, θhq “ B
Bθh

ghpηp1,h´1q, sh, θhq P r0, 1s.

• gh is consistent and symmetric, convex in θh, and weakly increasing in θh for all

h, ηp1,h´1q, sh.

Detailed proof is deferred to Appendix 2.7.3. The result is key to designing an efficient

algorithm for computing an ϵ-optimal mechanism, one that we discuss in detail in the sequel.

2.4 Efficient Computation of an ϵ-Optimal Dynamic Mechanism

We now discuss how the optimal mechanism can be approximated when S and Θ are finite.

We recall from Theorem 2.3.9 and Lemma 2.3.8 that it is without loss of generality to assume

that gpηq “ UtlpM|ηq where M is the Augmented Bank Account Mechanism induced by

g. We may use pβh, ηh´1q to represent ηp1,h´1q, which is justified by Lemma 2.3.6, from

which we know is without loss of generality to consider symmetric mechanisms. Finally, we

assume without loss of generality that the lowest type in Θ is 0, namely 0 P Θ.

As revenue is always the difference between welfare and utility, our objective reduces to

maximizing the difference between welfare and balance. We use Ψhpβh, sh´1, θh´1; yh´1q to

capture the difference between the mechanism’s welfare from step h to H minus the final

26



balance. Specifically, for all 1 ă h ď H, we let

Ψhpβh, sh´1, θh´1; yh´1q

“ max
g,y,φ

gh´1pηp1,h´2q,sh´1,θh´1q“βh

E
xh´1,ηph,Hq

«

H
ÿ

τ“h

yτ pβτ , ητ´1, sτ , θτ qθτ ´ balH`1

ff

.

For the special cases where h “ H ` 1 or h “ 1, we have

ΨH`1pβH`1, sH , θH ; yHq “ ´βH`1,

Ψ1pβ1,H,H;Hq “ max
g,y,φ

g0pHq“β1

E
ηp1,Hq

«

H
ÿ

τ“1

yτ pβτ , ητ´1, sτ , θτ qθτ ´ balH`1

ff

.
(2.4.1)

In this case, we use β as a stand-in for expected episodic utility. The term yh´1 P r0, 1s

denotes the allocation probability (i.e., the probability that xh “ 1) assigned to the the

history pηp1,h´1q, sh, θhq and is needed for capturing the public context distribution at step

h.

The function Ψh can be computed from Ψh`1 via the program in Table 2.1. Particularly,

for any βh ě 0, sh´1 P S, θh´1 P S, and yh´1 “ yh´1pβh´1, ηh´2, sh´1, θh´1q P r0, 1s, the

optimum of the program equals to Ψhpβh, sh´1, θh´1; yh´1q. Because the buyer’s types are

now discrete, the characterization provided in Definition 2.3.1 no longer pinpoints a unique

per-step payment rule, and we seemingly need to optimize over the per-step payment rule

φ as well. Nevertheless, as we show in Lemma 2.7.3, the program described in Table 2.1 is

correct, as φ is determined by yh and gh.

Lemma 2.4.1. Maximum revenue is given by maxβ1ě0Ψ1pβ1,H,H;Hq, where the func-

tion Ψ1pβ1,H,H;Hq is obtained by recursively solving for ψH , . . . ,Ψ1 using the program in

Table 2.1, with ΨH`1 given by (2.4.1).

Detailed proof is deferred to Appendix 2.7.4. The proof makes use of the characterization
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max
gh,yh

E
xh´1,sh,θh | yh´1

”

yhpβh, ηh´1, sh, θhqθh

` Ψh`1pβh`1pβh, ηh´1, sh, θhq, sh, θh; yhpβh, ηh´1, sh, θhqq

ı

(2.4.2)
s.t. puhpβh, ηh´1, sh, θ

1; θhq “ yhpβh, ηh´1, sh, θ
1
qθh ´ φhpβh, ηh´1, sh, θ

1
q, (2.4.3)

puhpβh, ηh´1, sh, θh; θhq ě puhpβh, ηh´1, sh, θ
1; θhq, (2.4.4)

βh`1pβh, ηh´1, sh, θhq “ ghpηp1,h´1q, sh, θhq

“ βh ` uhpβh, ηh´1, sh, θh; θhq ` Uhpβh, ηh´1, sh, θhq

´ Exh´1,sh,θ1 | sh´1,yh´1
rpuhpβh, ηh´1, sh, θ

1; θ1
q ` Uhpβh, ηh´1, sh, θ

1
qqs

“ βh ` puhpβh, ηh´1, sh, θh; θhq

´ Exh´1,sh,θ1 | sh´1,yh´1
rpuhpβh, ηh´1, sh, θ

1; θ1
qs,

(2.4.5)
ghpηp1,h´1q, sh, θhq ě 0. (2.4.6)

Table 2.1: Dynamic Programming for Ψh when P is Known

of core ABAMs, provided in Theorem 2.3.9. Indeed, notice the various constraints in Ta-

ble 2.4.2, where (2.4.4) and (2.4.4) ensures that yh is a subgradient of gh and (2.4.5) ensures

that gh satisfies the requisite conditions discussed in Theorem 2.3.9.

Unfortunately, naively solving the program from H to 1 is not computationally efficient,

as the βh and yh´1 are both continuous. FPTAS obtained by earlier works such as [Mirrokni

et al., 2016a] does not apply, either, as each step’s type distribution relies on previous

step’s allocation rule, making it much more challenging to use piece-wise linear functions to

approximate Ψh`1. It is unclear if we could approximate Ψh`1 sufficiently well using only

polynomially many pieces, as its domain now contains two continuous variables. Moreover,

as there are multiple possible distributions over types at each step, due to the range of values

that the public context sh may take, it is more challenging to control the propagation of

computation errors. Nevertheless, as we show in Theorem 2.4.2, there exists a polynomial-
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time algorithm that returns an (additive) ϵ-optimal mechanism, enabled by careful analysis

of the properties of Ψh.

Theorem 2.4.2. For any ϵ ą 0, there is an algorithm that computes an (additive) ϵ-optimal

mechanism in rOppolyp1{ϵ,Nqq time, with N being the input size of the problem.

Proof. Our proof is largely comprised of three steps. First, we carefully uncover a crucial

property of Ψh, showing that it is in fact H-Lipschitz in the allocation level yh´1. Second,

we use the property to design a piece-wise linear additive approximation to Ψh, using only

polynomially many pieces. Third, we use the piece-wise linear approximation to design an

efficient algorithm that solves for an ϵ-optimal mechanism.

Step 1. We begin by showing that the function Ψh is Lipschitz in yh´1.

Proposition 2.4.3 (Lipschitz). The function Ψhpβh, sh´1, θh´1; yh´1q is H-Lipschitz in

yh´1 for any h P rHs, sh´1 P S, and θh´1 P Θ.

Proof. Let βh, sh´1, θh´1, and yh´1 be arbitrary and fixed. The feasible region of the pro-

gram in Table 2.1 is clearly compact due to the linearity of the constraint. The objective

function in the program is also continuous, and its derivative in yh´1 is clearly continuous by

linearity of expectation. As such, by Theorem 2.7.13, a variant of envelope theorem proven

by Milgrom and Segal [2002], we have

B

Byh´1
Ψhpβh, sh´1, θh´1; yh´1q

“ Ery˚
hpβh, ηh´1, sh, θhqθh | yh´1s

` ErΨh`1pβ˚
h`1pβh, ηh´1, sh, θhq, sh, θh; y

˚
hpβh, ηh´1, sh, θhq | yh´1s,

with y˚
h, β

˚
h denoting the solution to the program in Table 2.1 for the specific choice of

βh, sh´1, θh´1, and yh´1. Because θ P Θ Ď r0, 1s, it is bounded by 1, and therefore Ψh`1 is
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also bounded. Consequently, we have

ˇ

ˇ

ˇ

ˇ

B

Byh´1
Ψhpβh, sh´1, θh´1; yh´1q

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇEry˚
hpβh, ηh´1, sh, θhqθh | yh´1s

ˇ

ˇ

`
ˇ

ˇErΨh`1pβ˚
h`1pβh, ηh´1, sh, θh, sh, θh; y

˚
hpβh, ηh´1, sh, θhq | yh´1s

ˇ

ˇ

ď H,

completing the proof.

Step 2. Using the previous fact, we then show that the function Ψh can be approximated

using a piece-wise linear function with polynomially many pieces, despite the fact that it

depends on two continuous variables in βh and yh´1.

Corollary 2.4.4. For any h P rHs, sh´1 P S, and θh´1 P Θ, the function Ψhp¨, sh´1, θh´1; ¨q

can be additively κ-approximated by two functions Ψ
△
h and Ψ

▽
h . More specifically, the fol-

lowing holds for all pβh, yh´1q P r0,
řH

τ“hmaxsPS Eθ„PΘ
τ p¨ | sqrθs

s ˆ r0, 1s

Ψ
▽
h pβh, sh´1, θh´1; yh´1q ď Ψhpβh, sh´1, θh´1; yh´1q ď Ψ

△
h pβh, sh´1, θh´1; yh´1q,

Ψ
△
h pβh, sh´1, θh´1; yh´1q ´ Ψ

▽
h pβh, sh´1, θh´1; yh´1q ď κ.

Moreover, the functions Ψ
▽
h and Ψ

△
h are piece-wise linear, have at most O

`

N2{κ2
˘

pieces,

and can be constructed using O
`

N2{κ2
˘

calls to an evaluation oracle for Ψh, with N being

the input size.

Proof Sketch of Corollary 2.4.4. Detailed proof is deferred to Appendix 2.7.4. Our first step

is to show that for any sh´1, θh´1, and yh´1, there exists a piece-wise linear approximation

to Ψhp¨, sh´1, θh´1; yh´1q with at most polynomially many pieces, using the technique found

in [Mirrokni et al., 2016a]. The specific technique we use is detailed in Lemma 2.7.12 for
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completeness.

We emphasize that while the construction of the piece-wise linear approximation directly

uses prior results, showing that the conditions of Lemma 2.7.12 hold for all sh´1, θh´1,

and yh´1 requires significantly different arguments than those found in [Mirrokni et al.,

2016a]. Specifically, in our setting the next-step context’s distribution relies on the cur-

rent step’s allocation rule. This makes finding a suitable upper bound for the function

Ψhp¨, sh´1, θh´1; yh´1q more challenging: we need to control the impact of yh on both Ψh`1

itself and the distribution over sh`1 it induces. As a result, in Appendix 2.7.4 we feature a

series of algebraic manipulations that differ significantly from those found in [Mirrokni et al.,

2016a] in order to ensure that their approximation scheme remains valid.

Having shown that Ψh is H-Lipschitz in yh´1 (Proposition 2.4.3) and that there ex-

ists piece-wise linear approximations to Ψhp¨, sh´1, θh´1; yh´1q for all possible values of

yh´1, the construction of the approximation scheme is straightforward: we simply find

OpH{ϵq points over the interval yh´1, and then find a piece-wise linear approximation of

Ψhp¨, sh´1, θh´1; yh´1q for each yh´1 on the grid. Combining Lemma 2.7.12 with Proposi-

tion 2.4.3 completes the proof.

Step 3. Finally, we show that we can use the piece-wise linear approximation discussed in

Corollary 2.4.4 to design an efficient algorithm. Specifically, we show that the approximation

error in Ψh can be controlled via induction. Let Ψ▽
h`1,Ψ

△
h`1 be an additive κ-approximation

of Ψh`1. With a slight abuse of notation, let Ψhp¨, sh´1, θh´1; ¨,▽q, Ψhp¨, sh´1, θh´1; ¨,△q

denote the solutions to the optimization program in Algorithm 2.1 when all Ψh`1’s are

replaced by their respective additive κ-approximations. For all βh, sh´1, θh´1, and yh´1, we

have

Ψhpβh, sh´1, θh´1; yh´1,▽q ď Ψhpβh, sh´1, θh´1; yh´1q ď Ψhpβh, sh´1, θh´1; yh´1,△q,
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and

Ψhpβh, sh´1, θh´1; yh´1q ´ Ψhpβh, sh´1, θh´1; yh´1,▽q ď κ,

Ψhpβh, sh´1, θh´1; yh´1,△q ´ Ψhpβh, sh´1, θh´1; yh´1q ď κ.

By Corollary 2.4.4, a polynomially-sized piece-wise linear additive 2κ-approximation can

also be constructed for Ψh: rather than directly querying Ψhpβh, sh´1, θh´1; yh´1q, we in-

stead solve for Ψhpβh, sh´1, θh´1; yh´1,▽q, and use it to construct the piece-wise linear

approximation. The corresponding upper bound is constructed similarly.

Setting κ “ ϵ{2H and inducting from h “ H ` 1 to 1, noting that ΨH`1 itself is

already linear, shows that we can construct a polynomially-sized piece-wise linear additive

ϵ-approximation to Ψ1 in Oppolyp1{ϵ,Nqq time, with N being the problem’s input size.

Recalling the correctness of the dynamic program from Lemma 2.4.1 completes the proof.

We remark that the generalized version of Envelope theorem is crucial to the proof:

typically, Envelope theorem requires the solution of the program to be continuously differen-

tiable in the variable of interest, yh´1. Showing the property holds for the one in Table 2.4.2

requires a precise characterization of its optimal value’s relationship to yh´1, which has

not been characterized even in the easier independent valuation setting discussed in earlier

works [Ashlagi et al., 2023, Mirrokni et al., 2016b].

2.5 Pricing Unknown Buyers via Reinforcement Learning

We first describe our learning setup. Assume that the seller only knows the context space

S, the type space Θ, as well as the horizon H. The transition probabilities PS and PΘ are

unknown and need to be recovered from repeatedly interacting with the environment over a

number of episodes. The interaction can be described as follows.
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1. A new buyer arrives at the beginning of each episode and stays until the end of the

episode.

2. For h “ 1, . . . , H, the seller executes some dynamic mechanism, records the public

context, reported private type, and realized allocation at each step.

3. The buyer leaves. A new episode begins.

Recalling Definition 2.2.1, we know that ensuring IC in a dynamic mechanisms requires

that the improvement in continuation utility is bounded for any potentially untruthful bid-

ding policy. Unfortunately, it is in general impossible to satisfy the constraint exactly when

the transition probabilities P are unknown, as estimation error in transition probabilities

preclude exactly estimating Ū . As such, we define the following notion of approximate IC.

Definition 2.5.1 (Approximate Dynamic Incentive Compatibility). For any mechanism,

we say it is ζ-approximately IC at step h for context s if it satisfies for all earlier reported

history pηp1,h´1q, reported type pθh, actual type θh, and future bidding policy bph`1,Hq that

uhppηp1,h´1q, s,
pθh; θhq ` U

bph`1,Hq

h ppηp1,h´1q, s,
pθhq

´ puhppηp1,h´1q, sh, θh; θhq ` Uhppηp1,h´1q, sh, θhqq ď ζ.

As we will show in the sequel, the estimation error is manifested in errors in the spend

rule. While Lemma 2.3.3 seemingly implies that an ABAM is ex-post IR as long as the

amount deposited is no greater than the per-step utility, an amount that can be exactly

evaluated when allocation and per-step payment rules are given, the result implicitly relies

on the fact that the spend rules are accurately calculated, as statistical errors may cause

the spend rule to exceed the current balance. As a result, we also propose the following

relaxation of ex-post IR.
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Definition 2.5.2 (Approximate Ex-post Individual Rationality). For any mechanism, we

say it is ζ-approximately ex-post IR for the history ηp1,Hq if

´

H
ÿ

h“1

uhpηp1,h´1, sh, θh; θhqq ď ζ.

The seller’s objective is to output an ϵ-optimal mechanism with probability at least 1´δ,

where ϵ ą 0, δ P p0, 1q, using as few interactions with the environment as possible. Moreover,

the mechanism needs to be approximately IC and approximately ex-post IR.

Unlike earlier RL literature, even those combining dynamic mechanism design with RL,

the near-optimal mechanism being learned in our setting is non-Markovian. Indeed, while

Lemma 2.3.8 seems to convert all possible non-Markovian mechanisms into a Markovian

core ABAM, we emphasize that the balance balh is a quantity that depends on ηp1,h´1q.

Via balance, core ABAMs are non-Markovian, which explains its generality depicted in

Lemma 2.3.8, but causes these mechanisms to be much harder to learn.

In addition, one major challenges to learning the near-optimal mechanism is the approx-

imate IC guarantee. By Lemma 2.3.9, we know that obtaining sufficiently good guarantees

on IC requires sufficiently good estimates of the distribution over sh, θh conditioned on the

previous step’s realized allocation xh´1 and public context sh´1. Such guarantees are, how-

ever, impossible, unless we can guarantee that the context sh´1 and the allocation xh´1 are

covered by the data-collecting algorithm. Moreover, to ensure IC, we need to ensure that

the continuation utilities Ū cannot be improved significantly by any bidding policy, even

including those that are non-Markovian in nature.

To resolve the challenges, we propose Algorithm 1, utilizing a reward-free exploration

procedure to carefully generate a dataset that, loosely speaking, covers well all public contexts

that can be reached. The dataset is then used to construct empirical estimates of the

transition probabilities. Particularly, for the collected dataset D, we first calculate the
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Algorithm 1 Reinforcement Learning via Reward-Free Exploration
Input: Accuracy ϵ ą 0, failure probability δ P p0, 1q.
1: Collect a set of rOpH5|S|2{ϵ2q trajectories D “ tpsh, θh, xh, sh`1qu via Reward-Free

RL-Explore, using only type-agnostic policies to interact with the environment for up
to rOpH5|S|2{ϵ2 ` H7|S|4{ϵq episodes. Do not charge the buyers anything.

2: Update empirical counts using (2.5.1) for all ps, θ, x, s1, hq P S ˆ Θ ˆ t0, 1u ˆ S ˆ rHs.
3: for all ps, θ, x, s1, hq P S ˆ Θ ˆ t0, 1u ˆ S ˆ rHs do
4: pPS

h ps1|s, xq Ð
Nhps,x,s1q

Nhps,xq
if Nhps, xq ą 0, else pPS

h p¨|s, xq Ð 1
|S|

.

5: pPΘ
h pθ|sq Ð

Nhps,θq

Nhpsq
if Nhpsq ą 0, else pPΘ

h p¨|sq Ð 1
|Θ|

.
6: end for
7: Solve the relaxed program in Table 2.2 using pPh “ t pPS

h ,
pPΘ
h u as transition probabilities.

Output: Estimated mechanism pB “ pBpg,py,pφ.

number of occurrences for all ps, θ, x, s1, hq as follows

Nhps, θ, x, s1
q Ð

ÿ

psh,θh,xh,sh`1qPD
1tsh “ s, θh “ θ, xh “ x, sh`1 “ s1

u

Nhps, x, s1
q Ð

ÿ

θPΘ

Nhps, θ, x, s1
q, Nhps, xq Ð

ÿ

s1PS
Nhps, x, s1

q

Nhps, θq Ð
ÿ

xPt0,1u,s1PS
Nhps, θ, x, s1

q, Nhpsq Ð
ÿ

xPt0,1u,s1PS
Nhps, θ, x, s1

q.

(2.5.1)

These counts are then used to construct the estimated transition probabilities pPS
h and pPΘ

h .

We let pP “ tp pPS
h ,

pPΘ
h quHh“1 for convenience and, from now on, use pE to denote expectation

taken over the estimated probabilities. Inspired by the “optimism in the face of uncertainty”

principle in RL, we feature a relaxed dynamic program for calculating Ψh, given in Table 2.2.

The defining feature of the relaxed program is the relaxation of the spend rule esti-

mate, constructed in (2.5.2). Observe that there are two places in the program in Table 2.2

that uses the empirical estimate: the objective function, and the expected per-step utility

pErpuhpβh, ηh´1, sh, θ
1; θ1qs. Controlling the effect that estimation error has on the objective

function is relatively easy, and we focus on how Table 2.2 controls for the estimation error
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max
pyh,pφh,pσh

pE
xh´1,sh,θh | pyh´1

”

pyhpβh, ηh´1, sh, θhqθh

` Ψh`1pβh`1pβh, ηh´1, sh, θhq, sh, θh; pyhpβh, ηh´1, sh, θhqq

ı

s.t. puhpβh, ηh´1, sh, θ
1; θhq “ pyhpβh, ηh´1, sh, θ

1
qθh ´ pφhpβh, ηh´1, sh, θ

1
q,

puhpβh, ηh´1, sh, θh; θhq ě puhpβh, ηh´1, sh, θ
1; θhq,

ˇ

ˇ

ˇ
pσhpβh, ηh´1, shq ´ pExh´1,sh,θ1 | sh´1,pyh´1

rpuhpβh, ηh´1, sh, θ
1; θ1

qs

ˇ

ˇ

ˇ

ď cH|S||Θ|
a

logpcH|S||Θ|q{δ

ˆ ppNh´1psh´1, 0qq
´1{2

` pNh´1psh´1, 1qq
´1{2

q,

(2.5.2)

βh`1pβh, ηh´1, sh, θhq “ pghpηp1,h´1q, sh, θhq

“ βh ` puhpβh, ηh´1, sh, θh; θhq ´ pσhpβh, ηh´1, shq,

pghpηp1,h´1q, sh, θhq

ě ´cH|S||Θ|
a

logpcH|S||Θ|q{δ

ˆ ppNh´1psh´1, 0qq
´1{2

` pNh´1psh´1, 1qq
´1{2

q.

Table 2.2: Relaxed Program for Ψh when P is Learned

in pErpuhpβh, ηh´1, sh, θ
1; θ1qs.

As the spend rule is now estimated via pE, the expectation taken over the empirical

transition probability estimates pP , we allow the spend rule estimate to deviate from the

estimated expected per-step utility, in order to ensure that valid ABAMs are feasible despite

the estimation errors. Such relaxation leverages the “optimism in the face of uncertainty”

principle (see for instance [Neu and Pike-Burke, 2020]), as we can ensure that while the

estimated mechanism pB may not be exactly IC, it achieves higher estimated revenue than the

optimal mechanism itself, as the optimal mechanism is feasible under the relaxed program.

Of course, under the relaxation, we are no longer directly solving the program over pg, yq,

but over py, φ, σq, i.e. the allocation, payment, and spend rules. Doing so helps us isolate the

estimation error to the estimated spend rule pσh only, which remains the same for different θh.

By isolating the statistical errors to the spend rule, which is in itself an estimate of expected
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utility, we can control the estimation errors in a non-Markovian dynamic mechanism to a

term that is “Markovian”, depending only how well we estimate the transition probabilities in

P . The construction enables us to use the properties of reward-free exploration, explained in

greater detail in Appendix 2.7.1, to efficiently recover a near-optimal non-Markovian dynamic

mechanism.

Finally, we stress that Algorithm 1 is IC and ex-post IR throughout the learning process.

As Reward-Free RL-Explore interacts with the environment only via type-agnostic

policies π and the seller does not charge the buyers anything, these buyers’ reporting policies

affect neither their received allocations nor the amount they pay. As each buyer stays for

only one episode, he also has no incentive to alter the type-agnostic policy used during

exploration, ensuring that the learning algorithm itself is IC. The fact that the seller does

not charge the buyer anything directly ensures that Algorithm 1 is ex-post IR.

With our learning algorithm defined, we then introduce the key result of this section,

that is, the guarantee that a near-optimal mechanism can be learned in polynomial-time

using only polynomially many samples.

Theorem 2.5.3. There exists a polynomial-time algorithm such that, for any ϵ ą 0 and

δ P p0, 1q, with probability at least 1´δ, the algorithm outputs a dynamic mechanism satisfying

the following.

• (ϵ-optimal.) Assuming the buyer reports truthfully, the learned mechanism is pH`1qϵ-

optimal.

• (Approximate IC.) The learned mechanism is O
ˆ

|S|1{2|Θ|ϵ
maxπ Prπhpsq

˙

approximately IC at

step h for context s for all s P S, h P rHs.

• (Approximate ex-post IR.) The learned mechanism is O
ˆ

řH
h“1

|S|1{2|Θ|ϵ
maxπ Prπhpshq

˙

approx-

imately ex-post IR for any history ηp1,Hq, where sp1,Hq are the public contexts included

in ηp1,Hq.
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Moreover, the algorithm requires at most rOpH5|S|2{ϵ2 ` H7|S|4{ϵq episodes of interaction.

Detailed proof of Theorem 2.5.3 is deferred to Appendix 2.7.5. Notably, the approximate

IC and approximate ex-post IR guarantees in Theorem 2.5.3 do not depend on either the

optimal mechanism or the estimated mechanism. The term maxπ Pr
π
hpsq depends only on

the underlying ground-truth transition probabilities P , and measures how likely the context

s is to be reached under any possible type-agnostic policy: as long as the context can be

reached by some type-agnostic policy, then maxπ Pr
π
hpsq is large, and the IC and ex-post IR

violations are small. Recalling Lemma 2.2.3, Theorem 2.5.3 implies that it is either unlikely

to reach the context s at step h by any dynamic mechanism, or the amount the buyer can

gain from any bidding policy is small, offering a strong deterrence to untruthfulness. The

approximate ex-post IR guarantee complements the result, further showing that truthful

buyer will not be much worse off from participating: unless some rare state is reached, the

buyer’s ex-post utility will not be too low.

2.6 Conclusion

We introduce a novel problem setting where the buyer’s valuation distributions may change

according to the allocations that he receives. We first derive a concrete family of mechanisms

capable of achieving the optimal revenue under the settings. We then show that (additively)

ϵ-optimal mechanisms can be calculated efficiently when the seller knows a priori how the

buyer’s valuation distribution changes according to the allocations she chooses. Leveraging

the efficient algorithm for computing the near-optimal mechanism, we further show that such

an mechanism can also be learned efficiently in polynomial time and using only polynomially

many samples.

We believe our results pave the way for numerous important future directions. For

instance, would it be possible to extend our results to the dynamic auction setting, similar

to how [Mirrokni et al., 2016b] extends the results in [Mirrokni et al., 2016a]? Although
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it is trivial to adapt our results to a no-regret learning algorithm, it it possible to devise

a learning algorithm that recovers an exactly IC, exactly ex-post IR dynamic mechanism,

under suitable additional assumptions on the transition probabilities P? Moreover, can we

incorporate additional constraints such as buyer budget into consideration? Lastly, again

inspired by the AWS spot instance pricing problem [Baughman et al., 2019], the seller may

also prefer a more stable dynamic mechanism, in which the average allocation level does not

change significantly from step to step. Can our results be extended to this setting as well?

2.7 Technical Details

2.7.1 Detailed Description of Reward-Free RL-Explore

In this section we discuss the key intuition behind the Reward-Free RL-Explore proce-

dure introduced by Jin et al. [2020a] and the theoretical properties of the algorithm that we

use in order to prove Theorem 2.5.3. For brevity, we only provide a high-level description

of the procedure as well as some intuitive arguments for why the algorithm is valid. We

refer interested readers to the original paper for an in-depth description of the algorithm.

Reward-Free RL-Explore utilizes a two-stage approach and can be described as follows.

1. For each h, s, perform the following procedure. Let the reward function rhpsh, ¨q “ 1

if sh “ s, and set the reward to 0 for all other h and contexts. Run an RL algorithm

for N0 episodes to find a policy that approximately maximizes the reward. Record the

policy for all h, s and store them in a policy set.

2. Collect and return a set of N trajectories obtained by by first sampling one policy from

the set of policies given by the first step, and then executing the policy.

Intuitively, if maxπ Pr
π
hpsq is sufficiently large, that is, if there is some policy that can reach

the public context s in step h with sufficiently high probability, then step 1 of the algorithm
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will also find a policy that reaches s at step h with sufficiently high probability. By executing

these policies uniformly at random in step 2, the sampling distribution of D, the dataset

returned by the algorithm, covers well all ps, hq that can be reached by any policy. We

formalize the intuition as follows.

Theorem 2.7.1 (Restatement of Theorem 3.3 in [Jin et al., 2020a]). There exists absolute

constant c ą 0 such that for any ϵ ą 0 and δ P p0, 1q, if N0 ě c|S|3H6plogpc|S|2H3{pϵδqqq3{ϵ,

then with probability at least 1 ´ δ, Reward-Free RL-Explore will return a dataset D

consisting of N trajectories which are i.i.d. sampled from a distribution µp1,Hq P ∆pS ˆΘˆ

X qH satisfying

@ s, h where max
π

Prπhpsq ě
ϵ

2|S|H2
, we have max

x,π

Prπhpsh, xq

µhpsh, xq
ď 4|S|H. (2.7.1)

Proof. The theorem is a direct application of Theorem 3.3 in [Jin et al., 2020a], noting that

there are exactly 2 possible actions in our problem setting.

We then introduce the concept of V -functions as follows. For any bounded function

f : tS ˆ t0, 1u Ñ r0, 1suH , which maps the public context and received allocation at step

h to a number in r0, 1s, and type-agnostic policy π : tS Ñ ∆pt0, 1uquH , we define the

V -function as

V
π,f
h psq “ Esph,Hq,xph,Hq |π

«

H
ÿ

h1“h

fh1psh1 , xh1q | sh “ s

ff

.

Additionally, our results will also use the following result on evaluation of V -functions.

Lemma 2.7.2 (Restatement of Lemma 3.6 in [Jin et al., 2020a]). There exists absolute

constant c ą 0, for any ϵ ą 0, δ P p0, 1q, assume dataset D has N i.i.d. samples from

distribution µp1,Hq which satisfies (2.7.1), if N ě cH5|S|2 logpc|S|H{pδϵqq{ϵ2, then with

probability at least 1 ´ δ, for any bounded function f : tS ˆ t0, 1u Ñ r0, 1suH and any type
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agnostic policy π, we have

|V
π,f
1 ps1q ´ pV

π,f
1 ps1q| ď ϵ,

where pV is the estimated value function under transition probability pPS .

Proof. The lemma, again, is by direct application of Lemma 3.6 in [Jin et al., 2020a], noting

that there are exactly 2 possible actions in our problem setting.

2.7.2 Omitted Proofs in Section 2.2

We include below the full proofs of the statements in 2.2.

Proof of Lemma 2.2.2

As IC takes into consideration all possible bidding strategies, reporting truthfully in the

ensuing steps is also covered by the definition. Therefore, IC implies stage IC.

We then show that stage IC implies IC. Let M denote an arbitrary mechanism that is

stage IC. Let b denote an arbitrary and fixed reporting strategy and let h be arbitrary and

fixed. By (2.2.2), the definition of stage IC, and taking the expectation over θh`1, we know

that for any history of length h, ppηp1,hqq, and any context at step h ` 1, sh`1, we have

Eθh`1

”

uh`1ppηp1,hq, sh`1, θh`1; θh`1q ` Uh`1ppηp1,hq, sh`1, θh`1q

ı

ě Eθh`1
ruh`1ppηp1,hq, sh`1, bh`1ppηp1,hq, sh`1, θh`1q; θh`1q

` Uh`1ppηp1,hq, sh`1, bh`1ppηp1,hq, sh`1, θh`1qqs.

(2.7.2)

Equivalently, for all histories ppηp1,h´1q, sh,
pθhq, taking the expectation over xh and realiza-

tions of sh`1 shows that

Uhppηp1,h´1q, sh,
pθhq ě U

bh`1
h ppηp1,h´1q, sh,

pθhq,
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where with a slight abuse of notation we let bh`1 denote the bidding strategy where the

buyer bids according to b at the ph ` 1q-th step and then bids truthfully in the remaining

steps. Repeat the same argument but replacing step ph ` 1q with ph ` 2q, and integrating

over θh`2 instead, we know that

U
bh`1
h ppηp1,h´1q, sh,

pθhq ě U
bph`1,h`2q

h ppηp1,h´1q, sh,
pθhq.

Repeating the argument until we reach the final step H shows that

U
bh`1
h ppηp1,h´1q, sh,

pθhq ě U
bph`1,Hq

h ppηp1,h´1q, sh,
pθhq.

In other words, stage IC implies the following inequality by applying the stage IC defini-

tion for steps h ` 1, . . . , H

uhppηp1,h´1q, sh, θh; θhq ` Uhppηp1,h´1q, sh, θhq

ě uhppηp1,h´1q, sh,
pθh; θhq ` Uhppηp1,h´1q, sh,

pθhq

ě uhppηp1,h´1q, sh,
pθh; θhq ` U

bh`1
h ppηp1,h´1q, sh,

pθhq

...

ě uhppηp1,h´1q, sh,
pθh; θhq ` U

bph`1,Hq

h ppηp1,h´1q, sh,
pθhq,

for any reported type at step h, pθh. The result is then equivalent to Definition 2.2.1, con-

cluding the proof.

Proof of Lemma 2.2.3

We prove the claim by construction. For all h, s let

πhpsq “ E
pηp1,Hq„bp1,Hq

rχhppηp1,h´1q, sh,
pθhq | sh “ ss.
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By definition of conditional random variables, the expression on the right hand side is a

valid function of s for each h. Additionally, as χp1,Hq’s range is ∆pX q, the range of the term

on the right hand side is also ∆pX q, ensuring that for all h, πh is a function mapping S to

∆pX q.

We then show the equation holds by induction from h “ 1 to H. The base case triv-

ially holds as there is no history prior to s1. We then show that the marginal distribution

over psh´1, xh´1q is the same under both π and the distribution induced by χp1,Hq, bp1,Hq,

assuming the marginal distribution over sh´1 is the same. By construction

πh´1psh´1q “ E
pηp1,Hq„bp1,Hq

rχh´1ppηp1,h´2q, sh´1, pθh´1q | sh´1 “ sh´1s,

therefore when conditioned on any sh´1, the distribution over xh´1 is the same. By inductive

hypothesis, the marginal distribution over psh´1, xh´1q is also the same. The definition of

the transition kernel PS
h´1 completes the proof.

2.7.3 Omitted Proofs in Section 2.3

Throughout this section, we use the following shorthand notations for convenience

balτ “ balτ pηp1,τ´2q, sτ´1, θτ´1q, bal
phq
τ “ balτ pη

phq

p1,τ´2q
, s

phq

τ´1, θ
phq

τ´1q,

στ “ στ pbalτ , ητ´1, sτ q, σ
phq
τ “ στ pbal

phq
τ , η

phq

τ´1, s
phq
τ q,

where θphq
τ has the same distribution as θτ for all τ ă h, equals to a potential untruthful

report pθh when τ “ h, and has the same distribution as that of the private type at step τ

if the report at step h were to be changed to some arbitrary pθh instead. Additionally, ηphq
τ

denotes the history at step h if the reported type at step h were changed instead and sphq
τ is

similarly defined.

With shorthand notations defined, we proceed with the proofs.
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Proof of Lemma 2.3.2

Let B be an arbitrary and fixed ABAM satisfying the conditions in Lemma 2.3.2. By

Lemma 2.2.2, we know that it suffices to show that any ABAM satisfying the desired prop-

erties also satisfy stage IC. By construction of the per-step payment rule of ABAMs, we

have

uhpηp1,h´1q, sh, θh; θhq “ puhpbalh, ηh´1, sh, θh; θhq ´ σh

for all h P rHs. The bidder’s instantaneous and continuation utility if he were to report pθh

instead at step h, but truthful from step 1 to h ´ 1, is

uhpηp1,h´1q, sh,
pθh; θhq ` Uhpηp1,h´1q, sh,

pθhq

“ puhpbalh, ηh´1, sh, pθh; θhq ´ σh

` E
x

phq

h ,η
phq

ph`1,Hq

«

H
ÿ

τ“h`1

ppuτ pbalphq
τ , η

phq

τ´1, s
phq
τ , θ

phq
τ ; θ

phq
τ q ´ σ

phq
τ q

ff

“ puhpbalh, ηh´1, sh, pθh; θhq ´ σh

`

H
ÿ

τ“h`1

E
x

phq

h ,η
phq

ph`1,τ´1q
,s

phq
τ ,θ

phq
τ

”

puτ pbalphq
τ , η

phq

τ´1, s
phq
τ , θ

phq
τ ; θ

phq
τ q ´ σ

phq
τ

ı

.
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Similarly, if the buyer were to report truthfully at step h, his instantaneous and continuation

utility sum to

uhpηp1,h´1q, sh, θh; θhq ` Uhpηp1,h´1q, sh, θhq

“ puhpbalh, ηh´1, sh, θh; θhq ´ σh

` Exh,ηph`1,Hq

«

H
ÿ

τ“h`1

puτ pbalτ , ητ´1, sτ , θτ ; θτ q ´ στ

ff

“ puhpbalh, ηh´1, sh, θh; θhq ´ σh

`

H
ÿ

τ“h`1

Exh,ηph`1,τ´1q,sτ ,θτ
rpuτ pbalτ , ητ´1, sτ , θτ ; θτ q ´ στ s .

The difference between the two is

uhpηp1,h´1q, sh,
pθh; θhq ` Uhpηp1,h´1q, sh,

pθhq

´ puhpηp1,h´1q, sh, θh; θhq ` Uhpηp1,h´1q, sh, θhqq

“ puhpbalh, ηh´1, sh, pθh; θhq ´ σh ´ ppuhpbalh, ηh´1, sh, θh; θhq ´ σhq

`

H
ÿ

τ“h`1

ˆ

E
x

phq

h ,η
phq

ph`1,τ´1q
,s

phq
τ ,θ

phq
τ

”

puτ pbalphq
τ , η

phq

τ´1, s
phq
τ , θ

phq
τ ; θ

phq
τ q ´ σ

phq
τ

ı

´ Exh,ηph`1,τ´1q,sτ ,θτ
rpuτ pbalτ , ητ´1, sτ , θτ ; θτ q ´ στ s

˙

.

We know by the conditions for pu that

puhpbalh, ηh´1, sh, pθh; θhq ď puhpbalh, ηh´1, sh, θh; θhq.

For the second difference term, consider an arbitrary and fixed τ ě h ` 1 and the joint

distribution over px
phq

h , η
phq

ph`1,τ´1q
, s

phq

τ´1, θ
phq

τ´1q and pxh, ηph`1,τ´2q, sτ´1, θτ´1q. Due to the

Markovian transition kernel, the pair is independent conditioned on pηp1,h´1q, sh, θh,
pθhq and
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we know

E
x

phq

h ,η
phq

ph`1,τ´1q
,s

phq
τ ,θ

phq
τ

”

puτ pbalphq
τ , η

phq

τ´1, s
phq
τ , θ

phq
τ ; θ

phq
τ q ´ σ

phq
τ

ı

´ Exh,ηph`1,τ´1q,sτ ,θτ
rpuτ pbalτ , ητ´1, sτ , θτ ; θτ q ´ στ s

“ E
„

E
x

phq

τ´1,s
phq
τ ,θ

phq
τ |s

phq

τ´1,θ
phq

τ´1

”

puτ pbalphq
τ , η

phq

τ´1, s
phq
τ , θ

phq
τ ; θ

phq
τ q ´ σ

phq
τ

ı

´ Exτ´1,sτ ,θτ |sτ´1,θτ´1
rpuτ pbalτ , ητ´1, sτ , θτ ; θτ q ´ στ s

ȷ

,

where the expectation on the outside is taken with respect to the joint distribution over

the pair px
phq

h , η
phq

ph`1,τ´2q
, s

phq

τ´1, θ
phq

τ´1q and pxh, ηph`1,τ´2q, sτ´1, θτ´1q. For the equation, we

used the fact that the transition dynamics of the buyer’s private type is Markovian and thus

the distribution over xphq

τ´1, s
phq
τ , θ

phq
τ depend only on sphq

τ´1, θ
phq

τ´1 (and the same holds for the

distribution when the buyer is truthful). We know that for any px
phq

h , η
phq

ph`1,τ´1q
, s

phq

τ´1, θ
phq

τ´1q

and pxh, ηph`1,τ´2q, sτ´1, θτ´1q

E
x

phq

h ,η
phq

ph`1,τ´1q
,s

phq
τ ,θ

phq
τ

”

puτ pbalphq
τ , η

phq

τ´1, s
phq
τ , θ

phq
τ ; θ

phq
τ q ´ σ

phq
τ

ı

´ Exh,ηph`1,τ´1q,sτ ,θτ
rpuτ pbalτ , ητ´1, sτ , θτ ; θτ q ´ στ s

“ E
x

phq

τ´1,s
phq
τ ,θ

phq
τ |s

phq

τ´1,θ
phq

τ´1

rσ
phq
τ s ´ Exτ´1,sτ ,θτ |sτ´1,θτ´1

rστ s

´

ˆ

E
x

phq

τ´1,s
phq
τ ,θ

phq
τ |s

phq

τ´1,θ
phq

τ´1

”

puτ pbalphq
τ , η

phq

τ´1, s
phq
τ , θ

phq
τ ; θ

phq
τ q ´ σ

phq
τ

ı

´ Exτ´1,sτ ,θτ |sτ´1,θτ´1
rpuτ pbalτ , ητ´1, sτ , θτ ; θτ q ´ στ s

˙

.
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Recalling the statement of Lemma 2.3.2

E
x

phq

h ,η
phq

ph`1,τ´1q
,s

phq
τ ,θ

phq
τ

”

puτ pbalphq
τ , η

phq

τ´1, s
phq
τ , θ

phq
τ ; θ

phq
τ q ´ σ

phq
τ

ı

“ Exh,ηph`1,τ´1q,sτ ,θτ
rpuτ pbalτ , ητ´1, sτ , θτ ; θτ q ´ στ s

Applying the equality from τ “ h ` 1, . . . , H,

Uhpηp1,h´1q, sh,
pθhq ´ Uhpηp1,h´1q, sh, θhq “ 0,

showing

uhpηp1,h´1q, sh,
pθh; θhq ` Uhpηp1,h´1q, sh,

pθhq

ď puhpηp1,h´1q, sh, θh; θhq ` Uhpηp1,h´1q, sh, θhqq.

The inequality immediately implies stage IC, completing the proof.

Proof of Lemma 2.3.3

By construction of the update formula for balh, we know that

H
ÿ

h“1

δhpbalh, ηh´1, sh, θhq “ balH`1 ´ bal1 `

H
ÿ

h“1

σhpbalh, ηh´1, shq.
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When the condition in the statement of Lemma 2.3.3 holds for all h, summing from h “ 1

to h “ H obtains

H
ÿ

h“1

puhpbalh, ηh´1, sh, θh; θhq ě

H
ÿ

h“1

δhpbalh, ηh´1, sh, θhq

“ balH`1 ´ bal1 `

H
ÿ

h“1

σhpbalh, ηh´1, shq

ě

H
ÿ

h“1

σhpbalh, ηh´1, shq,

where the inequality uses the fact that bal1 “ 0 and that balH`1 ě 0. By construction of the

payment rule, we know uhpηp1,h´1q, sh, θh; θhq “ puhpbalh, ηh´1, sh, θh; θhq ´ σh. Therefore,

H
ÿ

h“1

uhpηp1,h´1q, sh, θh; θhq “

H
ÿ

h“1

puhpbalh, ηh´1, sh, θh; θhq ´

H
ÿ

h“1

σhpbalh, ηh´1, shq ě 0,

which is exactly the definition of ex post IR.

Proof of Lemma 2.3.6

We first argue that it is without loss of generality to assume that for any h P rH ´ 1s and

pηp1,h´1q, sh, θhq the expected utility is 0, namely

uhpηp1,h´1q, sh, θh; θhq “ 0. (2.7.3)

For any dynamic mechanism M “ pχ, ψq, consider the following mechanism

M1
“ pχ, ψ1

q, where

ψ1
pηp1,h´1q, sh, θhq “

$

’

’

&

’

’

%

χpηp1,h´1q, sh, θhqθh h P rH ´ 1s,

χpηp1,h´1q, sh, θhqθh ´ UtlpM|ηp1,h´1q, sh, θhq h “ H.
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As the mechanisms M1 and M have the same allocation policy, the distributions over the

space of possible histories are the same between the two mechanisms. Moreover, the two

mechanism levy the same amount of payment over the entire episode and would lead to the

same episodic utility and revenue.

We then follow the outline in [Mirrokni et al., 2016a] and proceed by inducting on step

h from h “ 1 to h “ H. For each h P rHs, our goal is to show that it is possible to construct

a mechanism that yields the same buyer utility, higher seller revenue, and is symmetric in

the first h steps. We begin with the base case.

Base Case. When h “ 1, the statement is trivially true, as there is no history at the start

of each episode and hence the submechanisms are the same.

Inductive Hypothesis. Let 1 ď h ď H be arbitrary and fixed. Assume that for any

dynamic mechanism M, there exists some mechanism M1 that is symmetric over equivalent

histories up to length h ´ 1. Moreover, M1 yields the same expected utility as M and at

least the same amount of seller utility.

Inductive Case. Let M “ pχ, ψq denote a mechanism that satisfies the inductive hy-

pothesis, i.e. is symmetric up to equivalent histories of length h ´ 1. Our goal is to design

a mechanism that is symmetric up to equivalent histories of length h and yields the same

utility and revenue as M.

Step 1: Constructiing the Mechanism. Consider the following construction of M1 “ pχ1, ψ1q

• For all τ ď h, the payment rules and allocation rules of M1 remain the same as those

of M, namely for all ηp1,h´1q, sh, θh

χ1
τ pηp1,h´1q, sh, θhq “ χτ pηp1,h´1q, sh, θhq, ψ1

τ pηp1,h´1q, sh, θhq “ ψτ pηp1,h´1q, sh, θhq.
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We stress that under such construction, for any history pηp1,h´1q, sh, θhq, the distribu-

tion over xh is the same for both M and M1.

• For any τ ě h ` 1, we first define the concept “representative history” using Defini-

tion 2.3.4, partitioning the space of histories based on the equivalence relationship.

Particularly,

Hpηp1,h´1q,sh,θhq “ tpη1
p1,h´1q

, s1
h, θ

1
hq P Hh´1 ˆ S ˆ Θ :

UtlpM|ηp1,h´1q, sh, θhq “ UtlpM|η1
p1,h´1q

, s1
h, θ

1
hq,

sh “ s1
h, θh “ θ1

hu.

The representative history for each partitioned set is the history with the highest

expected seller revenue

η˚
pHpηp1,h´1q,sh,θhqq

“ argmax
pη1

p1,h´1q
,s1
h,θ

1
hq

Ex1
h,ηph`1,Hq

«

H
ÿ

τ“h`1

ψτ ppη1
p1,hq

, ηph`1,τ´1qq, sτ , θτ q

ff

,

picking among the set of histories a representative with the highest expected future

revenue under M5. Here with a slight abuse of notation we let η˚pHpηp1,h´1q,sh,θhqq P

Hh´1 ˆ S ˆ Θ denote the history, context, type tuple over which the equivalence

relationship is defined. We finally formally introduce the allocation policy and payment

5. The maximization procedure here is for simplicity of presentation. Equivalently, we can also pick, for
each set of equivalent histories, a unique history that yields expected continuation revenue no less than the
average taken over the set of equivalent histories.
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rule, where for all τ ě h ` 1

χ1
τ pηp1,τ´1q, sτ , θτ q “ χτ ppη˚

pHpηp1,h´1q,sh,θhqq, xh, ηph`1,τ´1qq, sτ , θτ q,

ψ1
τ pηp1,τ´1q, sτ , θτ q “ ψτ ppη˚

pHpηp1,h´1q,sh,θhqq, xh, ηph`1,τ´1qq, sτ , θτ q.

In other words, the mechanism first takes pηp1,h´1q, sh, θhq and finds an equivalent

history with the highest expected continuation revenue (finding the “representative

history”). The ensuing mechanism then acts as if first h steps’ history (excluding the

realized allocation at step h) was instead changed to η˚pHpηp1,h´1q,sh,θhqq.

Our goal then reduces to showing that the constructed mechanism M1 satisfies the fol-

lowing two properties.

1. M1 is symmetric for any equivalent histories of length at most h, namely for all ν ď h

and two equivalent histories of length ν, pηp1,ν´1q, sν , θνq „ pη1
p1,ν´1q

, s1
ν , θ

1
νq, we have

for all ν ` 1 ď τ ď H, xν , ηpν`1,Hq, and all sτ , θτ that

$

’

’

&

’

’

%

χ1
τ pηp1,τ´1q, sτ , θτ q “ χ1

τ ppη1
p1,ν´1q

, ηpν,τ´1qq, sτ , θτ q

ψ1
τ pηp1,τ´1q, sτ , θτ q “ ψ1

τ ppη1
p1,ν´1q

, ηpν,τ´1qq, sτ , θτ q

,

where we recall that ην , psν , θν , xνq “ ps1
ν , θ

1
ν , xνq by definition of equivalence.

2. UtlpM1q “ UtlpMq and RevpM1q ě RevpMq.

For ease of presentation, we prove the two properties in a switched order, beginning with

property 2 and ending with property 1. We proceed as follows.

Proof of Property 2. For any h ă H and ηp1,h´1q, sh, θh, by definition of expected episodic
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utility Utl, we have

UtlpM1
|ηp1,h´1q, sh, θhq

“ E
xh,ηph`1,Hq„M1

«

H
ÿ

τ“1

uM
1

τ pηp1,τ´1q, sτ , θτ ; θτ q|ηp1,h´1q, sh, θh

ff

,

where with a slight abuse of notation let uM
1
denote the utility at a particular step under

M1. By linearity of expectation and the construction of M1, we know

UtlpM1
|ηp1,h´1q, sh, θhq

“

h
ÿ

τ“1

uτ pηp1,τ´1q, sτ , θτ ; θτ q ` E
xh,ηph`1,Hq„M1

«

H
ÿ

τ“h`1

uM
1

τ pηp1,τ´1q, sτ , θτ ; θτ q

ff

“

h
ÿ

τ“1

uτ pηp1,τ´1q, sτ , θτ ; θτ q ` U
M1

h pηp1,h´1q, sh, θhq,

(2.7.4)

where the first equation comes from the fact that in the first h steps, M1 and M have the

same allocation and payment rules, and for the second line we, similar to uM
1
, abuse the

notation and let UM1

denote the expected continuation utility under M1.

Recall that it is without loss of generality to assume that at all steps, save for the H-th,

the utility is exactly zero. We can simplify (2.7.4) as

UtlpM1
|ηp1,h´1q, sh, θhq “ U

M1

h pηp1,h´1q, sh, θhq.
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By construction of M1,

U
M1

h pηp1,h´1q, sh, θhq “ Exh,ηph`1,Hq„M1

«

H
ÿ

τ“h`1

uM
1

pηp1,τ´1q, sτ , θτ q

ff

“ Exh,ηph`1,Hq„M1

«

H
ÿ

τ“h`1

uM
1

ppη˚
pHpηp1,h´1q,sh,θhqq, xh, ηph`1,τ´1qq, sτ , θτ q

ff

“ Exh,ηph`1,Hq„M

«

H
ÿ

τ“h`1

uMppη˚
pHpηp1,h´1q,sh,θhqq, xh, ηph`1,τ´1qq, sτ , θτ q

ff

,

where the third equality comes from the fact that M1 reduces to M under the representative

history and the distribution over xh is the same under both M and M1. Letting Uhp¨, ¨q

denote the expected continuation utility under M, we have

Exh,ηph`1,Hq„M

«

H
ÿ

τ“h`1

uMppη˚
pHpηp1,h´1q,sh,θhqq, xh, ηph`1,τ´1qq, sτ , θτ q

ff

“ U
M
h pη˚

pHpηp1,h´1q,sh,θhqqq.

We also note that

UtlpM|ηp1,h´1q, sh, θhq “ U
M
h pηp1,h´1q, sh, θhq “ U

M
h pη˚

pHpηp1,h´1q,sh,θhqqq,

where first equality is by similar reasoning as (2.7.4) and the second the definition of equiv-

alent history. Therefore

UtlpM1
|ηp1,h´1q, sh, θhq “ U

M1

h pηp1,h´1q, sh, θhq

“ U
M
h pη˚

pHpηp1,h´1q,sh,θhqqq

“ UtlpM|ηp1,h´1q, sh, θhq.

(2.7.5)

Moreover, as the mechanism M and M1 have the same allocation rule for steps 1, . . . , h´ 1,
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the distribution over pηp1,h´1q, sh, θhq is the same for both mechanisms. Integrating over the

tuple then gives us

UtlpM1
q “ UtlpM1

q.

Our attention then turns to showing that M1 yields no less revenue than M. Recalling

how the representative history is selected, for any ηp1,hq the revenue M1 achieves starting

from step h ` 1 satisfies

E
xh,ηph`1,Hq

«

H
ÿ

τ“h`1

ψ1
τ pηp1,τ´1q, sτ , θτ q

ff

“ E
xh,ηph`1,Hq

«

H
ÿ

τ“h`1

ψ1
τ ppη˚

pHpηp1,h´1q,sh,θhqq, xh, ηph`1,τ´1qq, sτ , θτ q

ff

ě E
xh,ηph`1,Hq

«

H
ÿ

τ“h`1

ψτ pηp1,τq, sτ , θτ q

ff

,

where we note that conditioned on the representative history the distribution over future

types remain the same for both mechanisms. The equation highlights that, similar what we

have shown for utility, the expected continuation revenue of any history of length h under M1

can be re-written as the expected continuation revenue of its representative history under M.

By definition of representative history, any history’s expected future revenue is no greater

than that of its representative history.

By construction of M1, all histories of lengths h yield the same revenue under M and M1

in the first h steps, as both the allocation and the payment rules are the same. Therefore,

we have

RevpM1
q ě RevpMq.

Proof of Property 1. Note that the constructions of χ1 and ψ1, as well as their desired

properties, have the same mathematical form. Therefore, for sake of brevity we only prove

the property for χ1, as the proof for ψ1 can be obtained by simply swapping the two symbols.
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Let τ denote an arbitrary time step and ν the length of some history. We recall that,

for property 1 to hold, we need to show that for all equivalent histories of length ν ď h, the

resulting submechanism induced by M1 is the same for all H ě τ ą ν. We then divide the

problem into three cases.

1. When τ ď h. Since τ ą ν, in this case we know that ν ă τ ď h, or in other words,

ν ď h ´ 1. By inductive hypothesis, we know that the mechanism is symmetric w.r.t.

equivalent histories of length ν. Since χ1
p1,hq

p¨, ¨, ¨q “ χp1,hqp¨, ¨, ¨q by construction of

M1, the claim trivially holds in this case, as M1 reduces to M for all τ ď h.

2. When τ ą h and ν ă h. We first show for all xν , ηpν`1,h´1q, sh, and θh that

pηp1,ν´1q, sν , θνq „M1 pη1
p1,ν´1q

, s1
ν , θ

1
νq

ñ pηp1,h´1q, sh, θhq „M1 ppη1
p1,ν´1q

, ηpν,h´1qq, sh, θhq,

where we slightly abuse the notation and let „M1 denote equivalence under M1. Here

we recall by Definition 2.3.4 that ην “ psν , θν , xνq “ ps1
ν , θ

1
ν , xνq. Intuitively, we want

to show the two histories of length ν under M1 implies that the induced histories of

length h are also equivalent under M1. The observation allows us to without loss of

generality consider only equivalent histories of length h, which we discuss immediately

after addressing this case.

Recall from (2.7.5) that

UtlpM1
|ηp1,h´1q, sh, θhq “ UtlpM|ηp1,h´1q, sh, θhq.

As M and M1 share the same allocation rule up to step h, sν “ s1
ν , and θν “ θ1

ν ,

the distribution over pxν , ηpν`1,h´1q, sh, θhq is the same under M and M1. Integrating
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over the distribution gives us

UtlpM1
|ηp1,ν´1q, sν , θνq “ UtlpM|ηp1,ν´1q, sν , θνq.

In other words, if ηp1,νq „M1 η1
p1,νq

, then ηp1,νq „M η1
p1,νq

, where „M denotes the

equivalence relationship under M.

As ν ă h, ν ď h´ 1. By the inductive hypothesis on M1 the submechanisms following

step ν are the same under both histories. Crucially, for the same pxν , ηpν`1,h´1q, sh, θhq,

we have

UtlpM1
|ηp1,h´1q, sh, θhq “ UtlpM1

|pη1
p1,ν´1q

, ηpν`1,h´1qq, sh, θhq,

where again we recall that ην “ psν , θν , xνq “ ps1
ν , θ

1
ν , xνq. The equation thus shows

that pηp1,h´1q, sh, θhq „M1 ppη1
p1,ν´1q

, ηpν,h´1qq, sh, θhq for all pxν , ηpν`1,h´1q, sh, θhq

as the two histories trivially have the same context and type at step h. Therefore we

know

pηp1,ν´1q, sν , θνq „M1 pη1
p1,ν´1q

, s1
ν , θ

1
νq

ñ pηp1,h´1q, sh, θhq „M1 ppη1
p1,ν´1q

, ηpν,h´1qq, sh, θhq.

3. When τ ą h and ν “ h. Since the two histories have length h and are equivalent

under M1, again invoking (2.7.5), we know that they are also equivalent under M.

Consequently, they are mapped to the same partition H.

Since the representative history is unique, the two equivalent histories are mapped to

the same representative history and would hence have the same submechanism at all

steps τ ą h.

Combining the three cases, we know for any h, we can use a mechanism symmetric with
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respect to equivalent histories up to length h ´ 1 to construct M1, a mechanism that is

symmetric with respect to equivalent histories up to length h.

By mathematical induction, we can then recursively construct a symmetric mechanism

with the same buyer utility and at least the same amount of seller revenue for any dynamic

mechanism, completing the proof.

Proof of Lemma 2.3.8

We begin by outlining the structure of our proof. The proof consists of two parts, where we

first show that Bg,y is a valid augmented ABAM and subsequently we show that Bg,y is IC

and IR.

Part 1: Bg,y is a valid ABAM. We first outline the requirements for Bg,y to be a well-

defined ABAM.

1. The functions involved in Bg,y are defined on their domains,

2. The bank account payment rule φh and bank account deposit rule δh are always non-

negative.

3. The spending rule σhp¨, ¨, ¨q is independent with θh and does not exceed balh.

4. The spending rule σhp¨, ¨, ¨q and the deposit rule δhp¨, ¨, ¨, ¨q lead to the correct next step

balance balh`1.

We then prove these properties one by one. By Lemma 2.3.6, we assume without loss of

generality that M, the mechanism from which Bg,y is constructed, is a symmetric mechanism.

1. We first show that ξh, φh, dh are valid functions. For the bank account allocation ξh,

we first note that if two histories have the same balance, then they have the same

expected conditional episodic utility and are hence equivalent. More concretely, let
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pηp1,h´2q, sh´1, θh´1q and pη1
p1,h´2q

, s1
h´1, θ

1
h´1q be a pair of equivalent histories. Since

M is symmetric, there exist two histories pη
:

p1,h´2q
, s

:

h´1, θ
:

h´1q, pη
;

p1,h´2q
, s

;

h´1, θ
;

h´1q

such that

ξhpbalhpηp1,h´2q, sh´1, θh´1q, ηh´1, sh, θhq “ yhppη
:

p1,h´2q
, s

:

h´1, θ
:

h´1q, ηh´1, sh, θhq,

ξhpbalhpη1
p1,h´2q

, s1
h´1, θ

1
h´1q, ηh´1, sh, θhq “ yhppη

:

p1,h´2q
, s

:

h´1, θ
:

h´1q, ηh´1, sh, θhq.

where

pηp1,h´2q, sh´1, θh´1q „ pη
:

p1,h´2q
, s

:

h´1, θ
:

h´1q, (2.7.6)

pη1
p1,h´2q

, s1
h´1, θ

1
h´1q „ pη

;

p1,h´2q
, s

;

h´1, θ
;

h´1q. (2.7.7)

By Definition 2.3.4 we have

$

’

’

&

’

’

%

balhpη
:

p1,h´2q
, s

:

h´1, θ
:

h´1q “ balhpη
;

p1,h´2q
, s

;

h´1, θ
;

h´1q

s
:

h´1 “ s
;

h´1, θ
:

h´1 “ θ
;

h´1

,

showing that pη
:

p1,h´2q
, s

:

h´1, θ
:

h´1q „ pη
;

p1,h´2q
, s

;

h´1, θ
;

h´1q.

As M is symmetric, we know that ξ is a well-defined function with a unique output for

all possible inputs, as pairs of histories with the same ηh´1 and balance are assigned

to the same allocation rule under y. As the bank account payment rule φh and the

bank account deposit rule δh are all constructed off of ξh, we also ensure that for

the same bank account balance balh, ηh´1, sh, and private type θh, the functions

yield unique outputs and are valid functions. Moreover, note that balhp¨, ¨, ¨q is always

non-negative due to Ch. The functions ξh, φh, δh, sh are then well-defined on their

respective domains.
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2. We show the bank account payment rule φh and bank account deposit rule δh are

always non-negative. By construction of the bank account allocation rule, ξ, we have

ξhpbalh, ηh´1, sh, θhq “ χhpηp1,h´1q, sh, θhq,

where, due to symmetry of M, it is without loss of generality to consider one arbitrary

history ηp1,h´1q that yields some balh with the h´ 1-th step’s history being ηh´1. As

the underlying mechanism is IC, the allocation rule χh, and by extension ξh, must be

increasing in θh.

We then turn our attention back to φh and have

φhpbalh, ηh´1, sh, θhq “ ξhpbalh, ηh´1, sh, θhqθh ´

ż θh

0
ξhpbalh, ηh´1, sh, θqdθ ě 0.

Similarly, δhpbalh, ηh´1, sh, θhq “
şθh
0 ξhpbalh, ηh´1, sh, θqdθ ě 0.

3. We show that spending rule σhpbalh, ηh´1, shq is independent of θh and does not

exceed balh regardless of the realization of sh. By construction of σh,

Bσhpbalh, ηh´1, shq

Bθh
“

Bbalh
Bθh

`
Bpξhpbalh, ηh´1, sh, θhqθh ´ φhpbalh, ηh´1, sh, θhqq

Bθh

´
BpUtlpM|ηp1,h´1q, sh, θhq ´ Chq

Bθh

“
B
şθh
0 ξhpbalh, ηh´1, sh, θqdθ

Bθh
´

BUtlpM|ηp1,h´1q, sh, θhq

Bθh

“ ξhpbalh, ηh´1, sh, θhq ´
BUtlpM|ηp1,h´1q, sh, θhq

Bθh
,

where for the first equality we use the definition of σh and g, the second the definitions

of balh, φh, Ch, and the third the fundamental theorem of calculus.
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Focusing on the second term, we have

BUtlpM|ηp1,h´1q, sh, θhq

Bθh
“

B
řh

τ“1 uτ pηp1,τ´1q, sτ , θτ ; θτ q ` Ūhpηp1,h´1q, sh, θhq

Bθh

“
Buhpηp1,h´1q, sh, θh; θhq ` Ūhpηp1,h´1q, sh, θhq

Bθh

“ χhpηp1,h´1q, sh, θhq,

where the last equation is by Envelope theorem and the incentive compatibility of M.

Plugging the result back, we have

Bσhpbalh, ηh´1, shq

Bθh
“ ξhpbalh, ηh´1, sh, θhq ´ χhpηp1,h´1q, sh, θq “ 0

by construction of the bank account allocation rule ξh and the fact that M is symmet-

ric.

Due to the independence between θh and σh, we may assume θh “ 0, in which case

σhpbalh, ηh´1, shq “ balh ` δhpbalh, ηh´1, sh, 0q ´ balh`1pbalh, ηh´1, sh, 0q

“ balh ´ balh`1pbalh, ηh´1, sh, 0q ď balh,

where for second equality we used the construction of δh and the fact that balances

are nonnegative.

4. Plugging in the definitions of the respective terms, we quickly note that the spending

rule σhp¨, ¨, ¨q and the deposit rule δhp¨, ¨, ¨, ¨q lead the correct next step balance balh`1.

Part 2: Bg,y is IC and IR. We begin with showing Bg,y is IC. By construction of the

in-stage payment rule φ, it is easy to verify that the in-stage utility pu is maximized when

the buyer reports truthfully.

Our goal is then showing that the differences in spending rules capture the differences in
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expected in-stage utility. Condition on any arbitrary history pηp1,h´1q, sh, θhq, rewriting the

update rule for bal gives us

σhpbalhpηp1,h´2q, sh´1, θh´1q, ηh´1, shq

“ UtlpM|ηp1,h´1q, sh, θhq ´ UtlpM|ηp1,h´2q, sh´1, θh´1q

` pupbalh, ηh´1, sh, θh; θhq ´ Ch´1 ` Ch,

which holds true for all possible realizations of the current private type θh as σh is not

affected by θh. We then integrate the right-hand side over the distribution of xh´1, sh, θh

when conditioned on sh´1, θh´1 to obtain

Exh´1,sh | sh´1,θh´1
rσhpbalhpηp1,h´2q, sh´1, θh´1q, ηh´1, shqs

“ UtlpM|ηp1,h´2q, sh´1, θh´1q ´ UtlpM|ηp1,h´2q, sh´1, θh´1q

` Exh´1,sh,θhrpupbalh, ηh´1, sh, θh; θhq|sh´1, θh´1s ´ Ch´1 ` Ch

“ Exh´1,sθ,θhrpupbalh, ηh´1, sh, θh; θhq|sh´1, θh´1s ´ Ch´1 ` Ch.

Consequently the conditions of Lemma 2.3.2 hold for both pu, σ, and Bg,y is incentive com-

patible.

Examining the deposit rule shows that the ABAM satisfies the requirement outlined in

Lemma 2.3.3, showing that Bg,y is also ex post IR.

Proof of Theorem 2.3.9

Sufficiency. We first show that the conditions given in the statement of Theorem 2.3.9 is

sufficient for Bg,y to be an ABAM. The proof largely follows that of Lemma 2.3.8 and we

summarize below the key differences.

• We know by the construction of balh that for any sh´1, θh´1 and pair of histories
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ηp1,h´2q, η
1
p1,h´2q

such that balhpηp1,h´2q, sh´1, θh´1q “ balhpη1
p1,h´2q

, sh´1, θh´1q,

we would also have

gh´1pηp1,h´2q, sh´1, θh´1q “ gh´1pη1
p1,h´2q

, sh´1, θh´1q.

By definition of symmetry, for any xh´1, sh, θh we have

ghppηp1,h´2q, ηh´1q, sh, θhq “ ghppη1
p1,h´2q

, ηh´1q, sh, θhq

where we recall that ηph´1q “ psh´1, θh´1, xh´1q. Since yh is the sub-gradient of gh

with respect to θh

yhppηp1,h´2q, ηh´1q, sh, θhq “
Bghpηp1,h´1q, sh, θhq

Bθh

“

Bghppη1
p1,h´2q

, ηh´1q, sh, θhq

Bθh

“ yhppη1
p1,h´2q

, ηh´1q, sh, θhq

for all possible values of ηh´1, sh. Therefore, we know that ξhpbalh, ηh´1, sh, θhq is a

well-defined function, as any pair of history of length h´2 mapping to the same balance

leads to the same allocation for any fixed pηh´1, sh, θhq. As yhpηp1,h´1q, sh, θhq is a

valid allocation rule, the function ξh also maps to a valid allocation policy. Moreover

ξh is nonstochastic whenever yh is.

• ξh, φh, δh, σh are defined on their domains and φh, δh are always non-negative for the

same reason as in Appendix 2.7.3.

• By construction of the spending rule and the deposit rule, we know for any h P rHs,
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ηh´1, sh P H, and balance bal

σhpbalh, ηh´1, shq “ balh ` δhpbalh, ηh´1, sh, θhq ´ balh`1

“ gh´1pηp1,h´2q, sh´1, θh´1q ´ Ch´1 `

ż θh

0
ξhpbalh, ηh´1, sh, θqdθ

´ ghpηp1,h´1q, sh, θhq ` Ch.

Taking partial derivative with respect to θh shows that

Bσhpbalh, ηh´1, shq

Bθh
“ yhpηp1,h´1q, sh, θhq ´

Bghpηp1,h´1q, sh, θhq

Bθh
“ 0,

where the second equality comes from the fact that y is the sub-gradient of g. We can

then conclude that the construction of σ yields a valid function of bal and s.

• Following the proof of Lemma 2.3.8 we know that σhpbalh, ηh´1, shq ď balh.

• Since ξhpbalh, ηh´1, sh, θhq, given by yh, is the subgradient of ghpηp1,h´1q, sh, θhq with

respect to θh, by Envelope theorem and the construction of φh, for all balh, ηh´1, sh,

θh, the term puhpbalh, ηh´1, sh, θ
1
h; θhq is maximized when θ1

h “ θh.

Furthermore, as ghpηp1,h´1q, sh, θhq “ UtlpM|ηp1,h´1q, sh, θhq, using a similar argu-

ment as the proof of Lemma 2.3.8 we can show that σh satisfies the conditions in

Lemma 2.3.2 and the resulting mechanism is IC.

• Using a similar argument as the proof of Lemma 2.3.8 shows that the mechanism Bg,y

is IR.

Necessity. We now show that the conditions given in the statement of Theorem 2.3.9 is

necessary for Bg,y to be an ABAM, namely, any ABAM Bg,y must satisfy the conditions

listed in Theorem 2.3.9.
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• Since an ABAM satisfies IC, by construction of the payment rule and the spending

rule we have for any ηp1,h´1q, sh, θh

Bσhpbalh, ηh´1, shq

Bθh
“ yhpηp1,h´1q, sh, θhq ´

Bgh´1pηp1,h´1q, sh, θhq

Bθh
.

Since the spend rule is not affected by θh by construction, the derivative must be zero

and we have yhpηp1,h´1q, sh, θhq “
Bgh´1pηp1,h´1q,sh,θhq

Bθh
.

• Since the spend rule σhpbalh, ηh´1, shq is a valid function, for any pair of histories

ηp1,h´2q, η
1
p1,h´2q

such that

balhpηp1,h´2q, sh´1, θh´1q “ balhpη1
p1,h´2q

, sh´1, θh´1q

we also have

σhpbalhpηp1,h´2q, sh´1, θh´1q, ηh´1, shq “ σhpbalhpη1
p1,h´2q

, sh´1, θh´1q, ηh´1, shq.

Consequently, for any θh we have

balhpηp1,h´2q, sh´1, θh´1q ` δhpbalh, ηh´1, sh, θhq ´ balh`1pηp1,h´1q, sh, θhq

“ balhpη1
p1,h´2q

, sh´1, θh´1q ` δhpbalh, ηh´1, sh, θhq

´ balh`1ppη1
p1,h´2q

, ηh´1q, sh, θhq.

As δ and balh cancel out, we know that the next step balances are equal, namely,

the balances balh`1pηp1,h´1q, sh, θhq and balh`1ppη1
p1,h´2q

, ηh´1q, sh, θhq are equal.

Recalling how the balance function bal is constructed from g proves that the function

g must be symmetric.

• The construction of ψh implies that the functions ψh and yh must have the same range.
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Thus the range of yh must be ∆pX q as well.

• By IC and the Envelope theorem yh must be weakly increasing in θh and its integral,

gh, must be convex and increasing in θh.

• Again by IC, the term σhpbalh, ηh´1, shq ´ Erpuhpbalh, ηh´1, sh, θh; θhqs must be a

constant for any fixed balh, ηh´1, sh. Recalling the recursive construction of balh`1

from balh, σh, and δh shows that g is consistent.

2.7.4 Omitted Proofs in Section 2.4

Throughout the section, we assume the type space Θ is discrete. Let Q “ |Θ| denote the

number of distinct types and θq denote the q-th smallest type. More specifically, we have

θ1 ď . . . ď θQ. Furthermore, we recall it is without the loss of generality to assume that the

lowest type θ1 “ 0.

Proof of Lemma 2.4.1

By definition, we know

max
β1ě0

Ψ1pβ1,H,H;Hq “ max
β1ě0

max
g,y,φ

g0pHq“β1

E
ηp1,Hq

«

H
ÿ

τ“1

yτ pbalτ , ητ´1, sτ , θτ qθτ ´ balH`1

ff

“ max
β1ě0

max
B:UtlpBq“β1

E
ηp1,Hq

«

H
ÿ

τ“1

yτ pbalτ , ητ´1, sτ , θτ qθτ ´ balH`1

ff

“ max
B

E
ηp1,Hq

«

H
ÿ

τ“1

pφτ pbalτ , ητ´1, sτ , θτ q ` στ pbalτ , ητ´1, sτ , θτ qq ´ bal1

ff

“ max
B

E
ηp1,Hq

«

H
ÿ

τ“1

pφτ pbalτ , ητ´1, sτ , θτ q ` στ pbalτ , ητ´1, sτ , θτ qq

ff

,
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which is exactly the amount of revenue the seller generates, comprising of the per-step

payment φτ and spend rule στ at each step τ P rHs. For the second equality, we recall

Lemma 2.3.8 the assumption that g is Utl. Here B represents a generic ABAM, as we have

shown it is without the loss of generality to consider only such mechanisms. For the third

equality, we recall the construction of the balances in Definition 2.3.7. The fourth equality

comes from telescoping the sum and the last equality the initial condition that bal1 “ 0,

again given by Definition 2.3.7.

Our next step is to show that the dynamic programming approach in Table 2.1 is correct.

Lemma 2.7.3. The program in Table 2.1 correctly returns Ψhpβh, sh´1, θh´1; yh´1q as long

as Ψh`1 is given.

Proof. For brevity, for any arbitrary random variable X, we let ErX|yh´1s be the shorthand

for

ErX|yh´1pηp1,h´2q, sh´1, θh´1q “ yh´1s,

the expected value of X conditioned on the event that the allocation probability at step

h ´ 1 is set to yh´1 for the history pηp1,h´2q, sh´1, θh´1q. Additionally, we let βh “

ghpηp1,h´1q, sh´1, θh´1q denote the balance that the history is mapped to. By definition,
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we know

Ψhpβh, sh´1, θh´1; yh´1q

“ max
g,y,φ

gh´1pηp1,h´2q,sh´1,θh´1q“βh

E
ηph,Hq

«

H
ÿ

τ“h

yτ pβτ , ητ´1, sτ , θτ qθτ ´ balH`1 | yh´1

ff

“ max
g,y,φ

gh´1pηp1,h´2q,sh´1,θh´1q“βh

ˆ

E
ηph,Hq

ryhpβh, ηh´1, sh, θhqθh | yh´1s

` E
ηph,Hq

«

H
ÿ

τ“h`1

yτ pβτ , ητ´1, sτ , θτ qθτ ´ balH`1 | yh´1

ff

˙

“ max
gph,Hq,yph,Hq,φph,Hq

gh´1pηp1,h´2q,sh´1,θh´1q“βh

ˆ

Eθh ryhpβh, ηh´1, sh, θhqθh | yh´1s

` E
ηph,Hq

«

H
ÿ

τ“h`1

yτ pβτ , ητ´1, sτ , θτ qθτ ´ balH`1 | yh´1

ff

˙

where we recall that it is without the loss of generality to assume that gpηq “ UtlpM|ηq.

For the second equality, we observe that the objective and constraints are independent of

pgp1,h´1q, yp1,h´1q, φp1,h´1qq. We can further rewrite Ψh as

Ψhpβh, sh´1, θh´1; yh´1q

“ max
gh,yh,φh

gph`1,Hq,yph`1,Hq,φph`1,Hq

gh´1pηp1,h´2q,sh´1,θh´1q“βh

ˆ

Exh´1,sh,θh ryhpβh, ηh´1, sh, θhqθh | yh´1s

` E
ηph,Hq

«

H
ÿ

τ“h`1

yτ pβτ , ητ´1, sτ , θτ qθτ ´ balH`1 | sh

ff

˙

“ max
gh,yh,φh

gh´1pηp1,h´2q,sh´1,θh´1q“βh

ˆ

Eθh ryhpβh, ηh´1, sh, θhqθh | shs

` max
g,y,φ

ghpηp1,h´1q,sh,θhq“βh`1

E
ηph,Hq

«

H
ÿ

τ“h`1

yτ pβτ , ητ´1, sτ , θτ qθτ ´ balH`1

ff

˙

“ max
gh,yh,φh

gh´1pηp1,h´2q,sh´1,θh´1q“βh

ˆ

Eθh ryhpβh, ηh´1, sh, θhqθh | shs

` Eθh rΨh`1pβh`1, sh, θh; yhqs

˙

,
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where for the second equality, we note that gph`1,Hq, yph`1,Hq, φph`1,Hq affect only the

second term in the objective function. For the third equality, we recall the definition of

Ψh`1. Observe that the expression matches exactly the objective defined in equation (2.4.2).

We then note that, by construction of the ABAM, we must have

Uhpβh, ηh´1, sh, θhq ´ Exh´1,sh,θ
1 | yh´1

rUhpβh, ηh´1, sh, θ
1
qs “ 0.

due to the construction of the spend rule στ for τ ě h` 1, ensuring that the balance update

rule given in (2.4.5) is correct. Additionally, by (2.4.5), we know φh can be determined once

gh, yh are given. Since

ghpηp1,h´1q, sh, θhq “ βh ` pupβh, ηh´1, sh, θh; θhq ´ Exh´1,sh,θ
1 | yh´1

rpuhpβh, ηh´1, sh, θ
1; θ1

qs

and we have assumed without the loss of generality that 0 P Θ, we have

ghpηp1,h´1q, sh, 0q “ βh ´ Exh´1,sh,θ1 | yh´1
rpuhpβh, ηh´1, sh, θ

1; θ1
qs.

Consequently, recalling (2.4.3)

φhpβh, ηh´1, sh, θhq “ βh ` yhpβh, ηh´1, sh, θhqθh ` ghpηp1,h´1q, sh, 0q

´ βh ´ ghpηp1,h´1q, sh, θhq

“ yhpβh, ηh´1, sh, θhqθh ` ghpηp1,h´1q, sh, 0q ´ ghpηp1,h´1q, sh, θhq.

As such, it suffices to maximize over only gh, yh in the program in Table 2.1.

We finally argue that the resulting mechanism is a valid ABAM. By definition of Ψh`1,

we know the conditions in Theorem 2.3.9 is satisfied by gph`1,Hq and yph`1,Hq. Moreover,

• Equation (2.4.4) ensures that ghpηp1,h´1q, sh, θhq is convex in h.
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• Equation (2.4.5) ensures that ghpηp1,h´1q, sh, θhq is consistent, because for any ηp1,h´1q

Exh´1,sh,θhrghpηp1,h´1q, sh, θhqs ´ gh´1pηp1,h´2q, sh´1, θh´1q “ βh ´ βh “ 0.

• The assumption that gh is expected episodic utility and Lemma 2.3.6 jointly imply

that gh is symmetric.

• Equations (2.4.3) and (2.4.5) jointly imply yh is a subgradient of ghpηp1,h´1q, sh, θhq.

• Finally, (2.4.6) ensures that the next step balance is non-negative and hence the inputs

to Ψh`1 are within the function’s domain.

As such, whenever Ψh`1 is given, we can use the program in Table 2.1 to solve for Ψh,

completing the proof.

Recursively apply Lemma 2.7.3 and we know that we can solve for Ψ1 via the program

in Table 2.1, obtaining a valid ABAM in the process.

Proof of Corollary 2.4.4

Inspired by Mirrokni et al. [2016a], we then show that Ψh can be approximated in βh as

soon as yh´1 is fixed. As the function is defined over two continuous variables, we first show

that it is concave in both βh and yh´1 as follows.

Proposition 2.7.4 (Concavity). The function Ψhpβh, sh´1, θh´1; yh´1q is jointly concave

in pβh, yh´1q P R` ˆ r0, 1s for any h P rHs, sh´1 P S, and θh´1 P Θ.

We then characterize Ψ at extreme choices of balances. Intuitively, when balance is too

low, the buyer achieves low episodic utility, and there is relatively little excess utility for

the seller to extract at later iterations. When balance is too high, however, seller promises

buyer too much utility and, due to the fact that the maximum welfare is bounded, the excess
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promised utility could in turn hurt revenue. Below we provide quantitative analysis of Ψ at

two extremes. We begin with the following result for when balance is zero.

Proposition 2.7.5 (Value at Low Balance). For any h P rHs, sh´1 P S, θh´1 P Θ, and

yh´1 P r0, 1s, we have

Ψhp0, sh´1, θh´1; yh´1q “ ErΨh`1p0, sh, θh; 0qs

` Exh´1,shrPΘ
h pθQ | shqmaxt0, θQ ` Ψh`1p0, sh, θh; 1q ´ Ψh`1p0, sh, θh; 0qus.

Moreover, for any βh

Ψhpβh, sh´1, θh´1; yh´1q ďΨhp0, sh´1, θh´1; yh´1q

` H

˜

H
ÿ

τ“h

max
sPS,iăQ

PΘ
τ pθi|sq

PΘ
τ pθi`1|sqpθi`1 ´ θiq

¸

βh,

where we recall θq is the q-th highest-type in Θ.

The result for high balance is more involved, and requires defining the function MaxWel.

Particularly, for any history ηph,h1q, the function

MaxWelh1pηph,h1qq “ max
M

Eηp1,Hq

«

H
ÿ

τ“h1

pyτ pηp1,τ´1q, sτ , θτ qθτ q | ηph,h1q

ff

(2.7.8)

is the maximum continuation welfare when conditioned on the history ηph,h1q. The functions

MaxWelhpηp1,h´1q, shq and MaxWelhpηp1,h´1q, sh, θhq are similarly defined.

We stress that in the MDP setting, the welfare maximizing policy is not necessarily the

one that always gives the item to buyers without charging anything. The distribution over

later contexts, and by extension the buyer’s future types, are affected by the allocation rule.

As such, it is possible that withholding the item from the buyer may increase his future

types, which can be exploited by the welfare maximizing policy. As such, it is necessary for
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us to introduce the notion of MaxWelh as we cannot simply replace it with the expected

sum of all future types.

Proposition 2.7.6 (Value at High Balance). For any arbitrary and fixed h, ηp1,h´2q, sh´1,

θh´1, and yh´1, the following holds

1. for all βh ě 0,Ψhpβh, sh´1, θh´1; yh´1q ď Exh´1rMaxWelhpηp1,h´1qq | yh´1s ´ βh,

2. for all βh ě
řH

τ“hmaxsPS Eθ„PΘ
τ p¨ | sq

rθs,

Ψhpβh, sh´1, θh´1; yh´1q “ Exh´1rMaxWelhpηp1,h´1qq | yh´1s ´ βh.

With these properties in mind, we are now ready to state the proof itself.

Proof of Corollary 2.4.4. We prove the claim by construction and begin by introducing our

proposed discretization scheme.

1. Select 2H
κ evenly spaced points on the interval r0, 1s. Let Y: denote the set of points

selected.

2. For each y: P Y:, use the discretization scheme in Lemma 2.7.12 to construct a mul-

tiplicative κ
2H -approximation for the function Ψhp¨, sh´1, θh´1; y

:q. We then receive

functions Ψ
▽
h and Ψ

△
h which are piece-wise linear in βh.

3. For all pβh, yh´1q, let y; P Y: be the point that yh´1 is the closest to. Set

Ψ
▽
h pβh, sh´1, θh´1; yh´1q “ Ψ

▽
h pβh, sh´1, θh´1; y

;
q ´

κ

2

Ψ
△
h pβh, sh´1, θh´1; yh´1q “ Ψ

△
h pβh, sh´1, θh´1; y

;
q `

κ

2
.

By Propositions 2.7.4, 2.7.5, 2.7.6, we know that for all fixed yh´1 P r0, 1s, the function

Ψhp¨, sh´1, θh´1; yh´1q satisfies the conditions in Lemma 2.7.12. As a result, Step 2 of the

proposed discretization scheme is valid.
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We then show that the functions Ψ▽
h ,Ψ

△
h are an additive κ-approximation. Let pβh, yh´1q

be arbitrary and fixed, and let y; P Y: be the closest point to yh´1. From Proposition 2.4.3

and the number of evenly spaced points in Y: we know

|Ψhpβh, sh´1, θh´1; yh´1q ´ Ψhpβh, sh´1, θh´1; y
;
q| ď

κ

2
.

Because the types θ are bounded, Ψh is uniformly bounded byH, and applying Lemma 2.7.12

shows that Ψ
▽
h and Ψ

△
h is an additive κ-approximation.

Finally we control the number of pieces. Again by Lemma 2.7.12, we know that con-

structing Ψ
▽
h ,Ψ

△
h requires OpN2{κ2q calls to the evaluation oracle and both Ψ

▽
h ,Ψ

△
h have

O
`

N2{κ2
˘

pieces, completing the proof.

Proof of Proposition 2.7.4

Let Mp1q “ Bpgp1q,yp1qq,Mp2q “ Bpgp2q,yp2qq denote two arbitrary and fixed ABAMs. We use

pηp1,h´2q, sh´1, θh´1q to denote some arbitrary and fixed history. With a slight abuse of

notation, we overload the notation and let yp1q and yp2q denote the allocation levels for the

history given by the two mechanisms. That is

yp1q
“ yp1q

pηp1,h´2q, sh´1, θh´1q, yp2q
“ yp2q

pηp1,h´2q, sh´1, θh´1q.

Assume without loss of generality that gp1qp¨q “ UtlpMp1q|¨q, gp2qp¨q “ UtlpMp2q|¨q.

Let c P r0, 1s be an arbitrary and fixed constant, βp1q

h “ g
p1q

h pηp1,h´2q, sh´1, θh´1q, and

β
p2q

h “ g
p2q

h pηp1,h´2q, sh´1, θh´1q. Consider the mechanism formed by mixing Mp1q and

Mp2q, whose allocation rule is yp¨, ¨, ¨q “ cyp1qp¨, ¨, ¨q ` p1 ´ cqyp2qp¨, ¨, ¨q. With a slight abuse

of notation, let

y “ cyp1q
` p1 ´ cqyp2q,
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the allocation level the mixture mechanism chooses for the history pηp1,h´2q, sh´1, θh´1q.

By linearity of expectation, the balance corresponding to the history pηp1,h´2q, sh´1, θh´1q

is cβp1q

h ` p1 ´ cq
p2q

h .

While the mixture mechanism is not necessarily an ABAM, applying Lemma 2.3.6 and

Lemma 2.3.8, there must exist an ABAM with revenue no less than the interpolation of

revenue from Mp1q and revenue from Mp2q. As Ψhpβh, sh´1, θh´1; yh´1q takes the maximum

over all ABAMs, we must have

Ψhpcβ
p1q

h ` p1 ´ cqβ
p2q

h , sh´1, θh´1; cy
p1q

h´1 ` p1 ´ cqy
p2q

h´1q

ě cΨhpβ
p1q

h , sh´1, θh´1; y
p1q

h´1q ` p1 ´ cqΨhpβ
p2q

h , sh´1, θh´1; y
p2q

h´1q,

completing the proof.

Proof of Proposition 2.7.5

Let h, sh´1, θh´1, and yh´1 be arbitrary and fixed. For brevity, we drop them from the

notation during the proof. By (2.4.5) and (2.4.6), when βh “ 0, recalling that the lowest

type in Θ is 0, we must have

ghpβh, ηh´1, 0q “ 0 ´ Exh´1,sh,θ1 | yh´1
rpuhpβh, ηh´1, sh, θ

1; θ1
qs ě 0,

which implies Exh´1,sh,θ
1 | yh´1

rpuhpβh, ηh´1, sh, θ
1; θ1qs “ 0.

By non-negativity of puh, we know puhpβh, ηh´1, sh, θh; θhq “ 0 and ghpβh, ηh´1, sh, θhq “ 0

for all xh´1, sh, θh. Focusing on some fixed xh´1, sh, we know yhp0, ηh´1, sh, θ
qq “ 0 for

all q ă Q, that is, the allocation probability is zero for all types save for the highest one.
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Moreover, in this case the part of the objective function in (2.4.2) reduces to

yhpβh, ηh´1, sh, θ
Q

qθQ ` Ψh`1p0, sh, θ
Q; yhpβh, ηh´1, sh, θ

Q
qq.

By the Markovian transition kernel and the fact that yh encodes the probability that xh “ 1,

we have

Ψh`1p0, sh, θ
Q; yhpβh, ηh´1, sh, θ

Q
qq

“ yhpβh, ηh´1, sh, θ
Q

qΨh`1p0, sh, θ
Q; 1q ` p1 ´ yhpβh, ηh´1, sh, θ

Q
qqΨh`1p0, sh, θ

Q; 0q.

The objective function is thus now linear in yh. Moreover, as ghpβh, ηh´1, sh, θhq “ 0 for all

xh´1, sh, θh, the optimization program in Algorithm 2.1 is now reduced to a linear program

that can be solved exactly by hand, whose solution is

yhpβh, ηh´1, sh, θ
Q

q “ 1tθQ ` Ψh`1p0, sh, θh; 1q ě Ψh`1p0, sh, θh; 0qu

and we have

Ψhp0, sh´1, θh´1; yh´1q “ ErΨh`1p0, sh, θh; 0qs

` Exh´1,shrPΘ
h pθQ | shqmaxt0, θQ ` Ψh`1p0, sh, θh; 1q ´ Ψh`1p0, sh, θh; 0qus.

We now focus on the second equation and prove it by inducting on h from H ` 1 to

h. The base case for when h “ H ` 1 is clearly true. We then focus on some arbitrary

and fixed βh, ηh´1, sh and assume that the inequality holds for Ψh`1. For brevity, we drop

βh, ηh´1, sh from our notation in our ensuing discussion.
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By (2.4.4), we know for two adjacent types θq, θq`1

puhpθq; θq`1
q “ yhpθqqθq`1

´ φhpθqq ď puhpθq`1; θq`1
q.

Subtracting puhpθq; θqq “ yhpθqqθq ´ φhpθqq from both sides gives us

yhpθqqpθq`1
´ θqq ď puhpθq`1; θq`1

q ´ puhpθq; θqq ď puhpθq`1; θq`1
q,

where the second inequality comes from the fact that puhpθq; θqq ě 0 for all q P rQs. Recalling

that θq is the q-th largest type, we know θq`1 ´ θq ą 0 and dividing both sides by the term

gives us yhpθqq ď 1
θq`1´θq

puhpθq`1; θq`1q.

Therefore for any q ă Q and valid yhpθqq, we must have

yhpθqqθq ` Ψh`1pβh`1pθqq, θq; yhpθqqq

´ H

˜

H
ÿ

τ“h`1

max
sPS,iăQ

PΘ
τ pθi|sq

PΘ
τ pθi`1|sqpθi`1 ´ θiq

¸

βh`1pθqq

piq
ď yhpθqqθq ` Ψh`1p0, θq; yhpθqqq

piiq
“ yhpθqqθq ` yhpθqqΨh`1p0, θq; 1q ` p1 ´ yhpθqqqΨh`1p0, θq; 0q

“ yhpθqq pθq ` Ψh`1p0, θq; 1q ´ Ψh`1p0, θq; 0qq ` Ψh`1p0, θq; 0q

piiiq
ď yhpθqqpH ´ h ` 1q ` Ψh`1p0, θq; 0q

ď max
iăQ

H ´ h ` 1

θi`1 ´ θi
pupθq`1; θq`1

q ` Ψh`1p0, θq; 0q,

where (i) comes from the inductive hypothesis on Ψh`1, (ii) from the fact that yhpθqq itself is

the allocation probability and the definition of the transition probabilities PS
h , and (iii) from

applying a naive upper bound on the value of Ψh`1 and that Ψτ p0, sτ´1, θτ´1; yτ´1q ě 0

for all τ . The naive upper bound holds by noting that θ ď 1 for all θ P Θ, and is easily be

proven by induction, using the formula for Ψτ p0, sτ´1, θτ´1; yτ´1q that we have established

75



in the earlier part of the proof.

For the highest type θQ, we have

yhpθQqθQ ` Ψh`1pβh`1pθQq, θQ; yhpθQqq

ď yhpθQqθQ ` Ψh`1p0, θQ; yhpθQqq

` H

˜

H
ÿ

τ“h`1

max
sPS,iăQ

PΘ
τ pθi|sq

PΘ
τ pθi`1|sqpθi`1 ´ θiq

¸

βh`1pθQq

ď max
yhpθQqPr0,1s

tyhpθQqθQ ` Ψh`1p0, θQ; yhpθQqqu

` H

˜

H
ÿ

τ“h`1

max
sPS,iăQ

PΘ
τ pθi|sq

PΘ
τ pθi`1|sqpθi`1 ´ θiq

¸

βh`1pθQq.

Taking expectation over xh´1, sh, θh conditioned on sh´1, yh´1, we know

Eryhpθqq ` Ψh`1pβh`1pθqq, θq; yhpθqqqs

´ H

˜

H
ÿ

τ“h`1

max
sPS,iăQ

PΘ
τ pθi|sq

PΘ
τ pθi`1|sqpθi`1 ´ θiq

¸

Erβh`1pxh´1, sh, θ
q
qs

ď E
„

PΘ
h pθQ | shq max

yhpθQqPr0,1s
tyhpθQqθQ ` Ψh`1p0, θQ; yhpθQqqu

`

Q´1
ÿ

q“1

PΘ
h pθq | shqΨh`1p0, θq; 0q

ȷ

` E

»

–

ˆ

max
iăQ

H ´ h ` 1

pθi`1 ´ θiq

˙Q´1
ÿ

i“1

PΘ
h pθi | shqpupθi`1; θi`1

q

fi

fl

“ Ψhp0, sh´1, θh´1; yh´1q ` E

»

–

ˆ

max
iăQ

H ´ h ` 1

pθi`1 ´ θiq

˙Q´1
ÿ

i“1

PΘ
h pθi | shqpupθi`1; θi`1

q

fi

fl ,

where the equality again comes from the expression for Ψhp0, sh´1, θh´1; yh´1q that we have
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just developed. Meanwhile, we note that for any xh´1 and sh

ˆ

max
iăQ

H ´ h ` 1

pθi`1 ´ θiq

˙Q´1
ÿ

i“1

PΘ
h pθi | shqpupθi`1; θi`1

q

ď

˜

max
iăQ

PΘ
h pθi | shqpH ´ h ` 1q

PΘ
h pθi`1 | shqpθi`1 ´ θiq

¸

Q´1
ÿ

i“1

PΘ
h pθi`1

| shqpupθi`1; θi`1
q

“

˜

max
iăQ

PΘ
h pθi | shqpH ´ h ` 1q

PΘ
h pθi`1 | shqpθi`1 ´ θiq

¸

Eθh | sh
rpupθh; θhqs,

where for the equality we recall that we assumed without the loss of generality that the

lowest type is 0, which corresponds to a per-step utility of 0. Consequently

Ψhpβh, sh´1, θh´1; yh´1q

ď Ψhp0, sh´1, θh´1; yh´1q `

˜

max
iăQ

PΘ
h pθi | shqpH ´ h ` 1q

PΘ
h pθi`1 | shqpθi`1 ´ θiq

¸

Exh´1,sh,θhrpupθh; θhqs

` H

˜

H
ÿ

τ“h`1

max
sPS,iăQ

PΘ
τ pθi|sq

PΘ
τ pθi`1|sqpθi`1 ´ θiq

¸

Exh´1,sh,θhrβh`1pβh, xh´1, sh, θ
q
qs

ď Ψhp0, sh´1, θh´1; yh´1q ` H

˜

H
ÿ

τ“h

max
sPS,iăQ

PΘ
τ pθi|sq

PΘ
τ pθi`1|sqpθi`1 ´ θiq

¸

βh,

where the second inequality comes from (2.4.5).

Proof of Proposition 2.7.6

We prove both claims by induction. The base case for when h “ H ` 1 trivially holds. For

the rest of the proof, we assume both claims hold for h ` 1, all βh`1 ě 0, sh, θh, and yh.

For convenience, similar to the proof of Proposition 2.7.5, for now we focus on a specific

βh, sh´1, θh´1, and yh´1 and drop them from our notation unless otherwise specified.
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We begin with the first claim. Observe that

Exh´1,sh,θhryhpxh´1, sh, θhqθh ` Ψh`1pβh`1pxh´1, sh, θhq, sh, θh; yhpxh´1, sh, θhqqs

ď Exh´1,sh,θhryhpxh´1, sh, θhqθh

` ExhrMaxWelh`1pηp1,hqq | yhpxh´1, sh, θhqs ´ βh`1pxh´1, sh, θhqs

ď Exh´1rMaxWelhpηp1,h´1q | yh´1q ´ βh`1pxh´1, sh, θhqs

“ Exh´1rMaxWelhpηp1,h´1qq | yh´1s ´ βh,

where the inequality holds by our inductive hypothesis, the second by a one-step expansion of

MaxWelhpηp1,h´1q | yh´1q using its definition in (2.7.8), and the last equation the constraint

in (2.4.5). Noting that the upper bound holds for (2.4.2), the objective function of the

optimization program in Algorithm 2.1, completes the proof.

We then show a corresponding lower bound, and these two bounds meet for all sufficiently

large βh. Easy to see that when βh ě
řH

τ“hmaxsPS Eθ„PΘ
τ p¨ | sq

rθs, a feasible solution to

the optimization program in Algorithm 2.1 is to set yh, gh to the sub-mechanism of the

welfare-maximizing mechanism at step h. By (2.4.5), we know that under this choice,

βh`1pxh´1, sh, θhq ě

H
ÿ

τ“h

max
sPS

Eθ„PΘ
τ p¨ | sq

rθs ´ max
sPS

Eθ„PΘ
h p¨ | sq

rθs

ě

H
ÿ

τ“h`1

max
sPS

Eθ„PΘ
τ p¨ | sq

rθs,

noting that puh is non-negative and naively bounding Exh´1,sh,θhrpuhpxh´1, sh, θh; θhqs. Again

using a one-step expansion of MaxWelhpηp1,h´1q | yh´1q and that the sub-mechanism of the

welfare-maximizing mechanism is not necessarily optimal, we know

Ψhpβh, sh´1, θh´1; yh´1q ě Exh´1rMaxWelhpηp1,h´1qq | yh´1s ´ βh
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for all βh ě
řH

τ“hmaxsPS Eθ„PΘ
τ p¨ | sq

rθs. Combining the lower bound with the upper bound

above completes the proof.

2.7.5 Ommited Proofs in Section 2.5

Proof of Theorem 2.5.3

We first introduce useful intermediate results that streamlines the proof of Theorem 2.5.3,

beginning with the following bound on the expectation of the evaluation error of spend and

payment rules, when the expectation is taken over pP rather than P . Proofs are deferred to

Appendix 2.7.5 unless stated otherwise.

Lemma 2.7.7. With probability at least 1´δ, the following holds simultaneously all ABAMs

Bg,y

ˇ

ˇ

ˇ

ˇ

ˇ

Eηp1,Hq

«

H
ÿ

h“1

σhpβh, ηh´1, shq

ff

´ pEηp1,Hq

«

H
ÿ

h“1

σhpβh, ηh´1, shq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď Hϵ,

ˇ

ˇ

ˇ

ˇ

ˇ

Eηp1,Hq

«

H
ÿ

h“1

φhpβh, ηh´1, sh, θhq

ff

´ pEηp1,Hq

«

H
ÿ

h“1

φhpβh, ηh´1, sh, θhq

ffˇ

ˇ

ˇ

ˇ

ˇ

ď ϵ,

where we recall pE is taken with respect to the estimated transition probabilities pP.

The lemma relies on properties of Reward-Free RL-Explore, which we discuss in

detail in Appendix 2.7.1. At a high level, for any Markovian function that depends only

on the public context s, Reward-Free RL-Explore ensures that its expected value is

estimated accurately, when the expectation is taken over the public context distribution

induced by any type-agnostic policy π. Such strong guarantees are crucial for controlling the

estimation error of non-Markovian functions σ, φ, as we take the “worst possible” realized

values of ηp1,h´1q for any π, σ, φ, taken with respect to the estimation error in Eηh , and

transform the non-Markovian functions σ, φ to Markovian ones. The errors can then be
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controlled via properties of Reward-Free RL-Explore, noting that the guarantees hold

simultaneously for all Markovian functions and policies.

The lemma then implies that the estimated revenue of any given mechanism can be

controlled, which we formalize as follows.

Corollary 2.7.8 (Revenue Estimate Error). For any (possibly non-core) ABAM B, letting

Rev denote its expected revenue under the ground-truth transition probabilities P and zRev

the estimated revenue computed using the estimated transition probabilities pP, we have

|RevpBq ´ zRevpBq| ď pH ` 1qϵ.

Proof. Revenues from ABAMs only come from the payment and spend rules. Lemma 2.7.7

directly bounds the estimation error in revenue, completing the proof.

We now turn our attention to the estimation procedure, specifically the relaxed program

in Table 2.2. We first obtain the following lemma.

Lemma 2.7.9 (Expected Per-Step Utility Error). There exists some absolute constant c ą 0

such that, with probability at least 1´ δ, the following inequality holds simultaneously for all

h P rHs, βh ě 0, sh´1 P S, θh´1 P Θ, and yh´1 P r0, 1s

|Exh´1,sh,θ1 | sh´1,yh´1
rpuhpβh, ηh´1, sh, θh; θhqs

´ pExh´1,sh,θh | sh´1,yh´1
rpuhpβh, ηh´1, sh, θh; θhqs|

ď cH|S||Θ|
a

logpcH|S||Θ|{δq
´

pNh´1psh´1, 0qq
´1{2

` pNh´1psh´1, 1qq
´1{2

¯

.

Proof Sketch of Lemma 2.7.9. Estimation error in pErpuhpβh, ηh´1, sh, θ
1; θ1qs can be controlled

via bounding estimation error in pPS
h´1 and pPΘ

h using Dvoretzky–Kiefer–Wolfowitz inequal-

ity [Massart, 1990]. We note that extra care is taken to relate the sum of the estimation

errors in pPΘ
h pθ1 | shq over all sh, θ1 back to Nh´1psh´1, 0q and Nh´1psh´1, 1q, the number of

80



times that sh´1 has been visited.

The following Corollary then immediately shows that the relaxation taken by optimiza-

tion program in Table 2.2 is correct, that is, it ensures that the optimal ABAM remains

feasible under the relaxed program.

Corollary 2.7.10 (Optimistic Estimation). With probability at least 1 ´ δ, the optimal

ABAM B˚ “ Bg˚,y˚
is a feasible solution to the relaxed optimization program in Table 2.2.

Proof. As the mechanism B˚ is a valid ABAM, by correctness of the program in Table 2.1

(Lemma 2.4.1) and the upper bound on estimation error of pg (Lemma 2.7.9), with probability

at least 1´δ, the mechanism B˚ yields a feasible solution to the relaxed program in Table 2.2.

Moreover, also via Lemma 2.7.9, we can control the amount of estimation error in the

spend rules. We first let σ̄hpβh, ηh´1, shq “ Exh´1,sh,θhrpuhpβh, ηh´1, sh, θhqs denote the

“ground-truth” spend rule for the estimated mechanism pB, calculated using exactly the un-

derlying transitions probabilities P , rather than estimated values in pP . While estimation

errors in spend rule incur errors in βh, we recall that βh is merely a function of ηp1,h´1q and let

pσhpηp1,h´1q, shq “ pσhpβh, ηh´1, shq, where βh is updated according to the estimated spend

rule pσ. Additionally, let σ̄hpηp1,h´1q, shq “ σ̄hpβh, ηh´1, shq where βh is instead updated

according to σ̄. We then have the following.

Corollary 2.7.11. For any estimated spend rule pσ with probability at least 1 ´ δ we have

max
π,θp1,Hq,xp1,Hq

Esp1,Hq |π

«

H
ÿ

h“1

|pσhpηp1,h´1q, shq ´ σ̄hpηp1,h´1q, shq|

ff

ď 5|Θ|
a

c|S|ϵ.

Proof Sketch of Corollary 2.7.11. We prove the claim by combining properties of Reward-

Free RL-Explore with Lemma 2.7.9. Specifically, we divide all possible values of sh´1

into two categories: those that can be easily reached by some arbitrary type-agnostic policy
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at step h ´ 1, and those that are hard to reach by any type-agnostic policy at step h ´ 1.

For the former, we bound the expected error via Lemma 2.7.9 and multiplicative Chernoff

bounds, as Reward-Free RL-Explore ensures Nh´1psh´1, xh´1q is sufficiently large for

both xh´1 “ 0 and xh´1 “ 1. For the latter, we combine a naive upper bound on the

estimation error with the fact that sh´1 is hard to reach by any policy.

With the auxiliary results in mind, we are now ready to state our proof.

Proof of Theorem 2.5.3. We divide the proof into three parts.

ϵ-optimal. By Corollary 2.7.10, the optimal mechanism B˚ is feasible under the relaxed

program in Table 2.2 with probability at least 1 ´ δ. Conditioned on the event, as B˚ is not

necessarily the optimal solution, letting pB denote the output to Algorithm 1, we have

zRevpB˚
q ď zRevp pBq,

where we note that the objective function of the program in Table 2.2 is exactly zRev following

the same logic in Lemma 2.4.1. Therefore we know with probability at least 1 ´ δ

RevpB˚
q ´ Rev pB “ RevpB˚

q ´ zRevpB˚
q ` zRevpB˚

q ´ zRevp pBq ď RevpB˚
q ´ zRevpB˚

q

ď pH ` 1qϵ,

where the last inequality is by Lemma 2.7.7 and observing that the revenue comes from

only the spend and payment rules. Following the same technique as in Theorem 2.4.2 shows

that an ϵ-optimal and feasible solution to the relaxed program in Table 2.2 can be solved in

rOppolyp1{ϵ,Nqq time. We thus complete the proof by noting the additivity of the subopti-

mality term.

Approximate IC. Conditioned on any ηp1,h´1q, for any sh and pθh we know that the differ-

ence between the expected continuation utility under pB and B̄ “ B̄py,pφ,σ̄, i.e. the mechanism
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parameterized by the learned allocation rule, learned per-step payment rule, and spend-rule

calculated using the ground-truth transition probabilities, is at most

|Ū
pB
h pηp1,h´1q, sh,

pθhq ´ Ū B̄
h pηp1,h´1q, sh,

pθhq|

“

ˇ

ˇ

ˇ

ˇ

ˇ

H
ÿ

τ“h`1

Exh,ηph`1,τ´1q,sτ ,θτ
rpστ ´ σ̄τ s

ˇ

ˇ

ˇ

ˇ

ˇ

ď

H
ÿ

τ“h`1

Exh,ηph`1,τ´1q,sτ ,θτ
r|pστ ´ σ̄τ |s.

For any potentially untruthful bidding policy bph,Hq, consider the following type-agnostic

policy π0.

• From steps 1 to h ´ 1, use the type-agnostic policy that maximizes Prπhpshq, that is,

use argmaxπ Pr
π
hpshq.

• From steps h to H, if the type at step h is sh, then use the type-agnostic policy π that

generates the same marginal distribution over sph`1,Hq as pyph,Hq when the balance at

the h-th step is balh. Use some arbitrary policy otherwise. Such a policy exists by

Lemma 2.2.3.

As π0 induces the same marginal distribution over sph`1,Hq as pB and B̄, combined with

Corollary 2.7.11, the following holds with probability at least 1 ´ δ

|Ū
pB
h pηp1,h´1q, sh,

pθhq ´ Ū B̄
h pηp1,h´1q, sh,

pθhq|

ď max
balph,Hq,θph,Hq,xph,Hq

Eπ0

«

H
ÿ

τ“h`1

|pστ ´ σ̄τ | | sh “ sh

ff

ď
1

Prπ0h pshq
max

balp1,Hq,θp1,Hq,xp1,Hq

Eπ0

«

H
ÿ

τ“1

|pστ ´ σ̄τ |

ff

ď
5c1{2|S|1{2|Θ|ϵ

maxπ Pr
π
hpshq

,

where the last line also uses the definition of π0.
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Noting that B̄ itself is stage-IC and therefore IC by Lemma 2.3.2, we also know that

Ū B̄
h pηp1,h´1q, sh,

pθhq ě Ū
B̄,bph,Hq

h pηp1,h´1q, sh,
pθhq,

where bph,Hq is some potentially untruthful bidding policy. Following the same procedure as

above, where we now construct some π1 as follows

• From steps 1 to h ´ 1, use the type-agnostic policy that maximizes Prπhpshq, that is,

use argmaxπ Pr
π
hpshq.

• From steps h to H, if the type at step h is sh, then use the type-agnostic policy π that

generates the same marginal distribution over sph`1,Hq as pyph,Hq when the balance at

the h-th step is balh and the buyer reports according to the bidding policy bph,Hq. Use

some arbitrary policy otherwise. Such a policy exists by Lemma 2.2.3.

Via π1, the difference between Ū
pB,bph,Hq

h pηp1,h´1q, sh,
pθhq and pU

B̄,bph,Hq

h pηp1,h´1q, sh,
pθhq can

also be controlled. Therefore we know the following holds with probability at least 1 ´ δ for

any potentially untruthful bidding policy

Ū
pB
h pηp1,h´1q, sh,

pθhq ´ Ū
pB,bph,Hq

h pηp1,h´1q, sh,
pθhq

ě ´|Ū
pB
h pηp1,h´1q, sh,

pθhq ´ Ū B̄
h pηp1,h´1q, sh,

pθhq|

´ |Ū
pB,bph,Hq

h pηp1,h´1q, sh,
pθhq ´ Ū

B̄,bph,Hq

h pηp1,h´1q, sh,
pθhq|

ě ´
10

maxπ Pr
π
hpshq

c1{2
|S|

1{2
|Θ|ϵ,

completing the proof for approximate IC.

Approximate ex-post IR. The proof is largely the same as the one provided for approx-

imate IC. Note that the induced δh “ puh and does not need to be estimated. Notice that

the mechanism B̄ is also exactly ex-post IR, as σ̄h is exactly calculated according to P , and
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therefore B̄ is a core ABAM. As a result, we know that

H
ÿ

h“1

puhpbalh, ηh´1, sh, θh; θhq ě

H
ÿ

h“1

pδpbalh, ηh´1, sh, θhq ě

H
ÿ

h“1

σ̄hpbalh, ηh´1, shq,

where the exact derivation follows the proof of Lemma 2.3.3, provided in Appendix 2.5.2.

Here we also use the fact that the allocation, per-step payment, and deposit rules are the

same for pB and B̄.

We then let ηp1,Hq be arbitrary and fixed. For each h, sh, similar to the proof for ap-

proximate IC, we can construct some type-agnostic policy that maximizes the probability of

reaching sh at step h. As Corollary 2.7.11 holds uniformly over all policies, using the fact

that absolute values are non-negative, we know that

|σ̄hpbalh, ηh´1, shq ´ pσhpbalh, ηh´1, shq| ď
5

maxπ Pr
π
hpshq

c1{2
|S|

1{2
|Θ|ϵ.

Therefore for the mechanism pB

H
ÿ

h“1

uhpbalh, ηh´1, sh, θh; θhq “

H
ÿ

h“1

puhpbalh, ηh´1, sh, θh; θhq ´

H
ÿ

h“1

pσhpbalh, ηh´1, shq

ě ´

H
ÿ

h“1

|σ̄hpbalh, ηh´1, shq ´ pσhpbalh, ηh´1, shq| “ ´

H
ÿ

h“1

5c1{2|S|1{2|Θ|ϵ

maxπ Pr
π
hpshq

,

completing the proof.

Proof of Lemma 2.7.7

As the proof of the two inequalities are largely the same, we focus on showing the first

inequality holds, as proving the second inequality only needs repeating the arguments used

for proving the first.

We show that the estimation error of Eηp1,Hq

”

řH
h“1 σhpβh, ηh´1, shq

ı

can be bounded
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by estimation errors of some V -function, which can in turn be controlled by Lemma 2.7.2.

Observe that

ˇ

ˇ

ˇ

ˇ

ˇ

Eηp1,Hq

«

H
ÿ

h“1

σhpβh, ηh´1, shq

ff

´ pEηp1,Hq

«

H
ÿ

h“1

σhpβh, ηh´1, shq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď max
βp1,Hq,ηp1,Hq

ˇ

ˇ

ˇ

ˇ

ˇ

Esph,Hq

«

H
ÿ

h“1

σhpβh, ηh´1, shq

ff

´ pEsph,Hq

«

H
ÿ

h“1

σhpβh, ηh´1, shq

ffˇ

ˇ

ˇ

ˇ

ˇ

.

Because βh is a function of ηp1,h´1q, there are only finitely many possible choices for βp1,Hq,

and there must be some β˚
p1,Hq

that maximizes the expression above. Similarly we can find

some η˚
p1,Hq

. We note that we do not require these values to be valid. In other words, we do

not require

β˚h`1 “ ghpη˚
p1,h´1q

, sh, θ
˚
hq

nor do we require η˚
h “ psh, θ

˚
h, x

˚
hq for some θ˚, x˚

h. The goal of β˚
p1,Hq

, η˚
p1,Hq

is merely to

find a pair of sufficiently adversarial β and histories that maximizes the estimation error.

As a result, plugging β˚
p1,Hq

, η˚
p1,Hq

back into the inequality gives us

ˇ

ˇ

ˇ

ˇ

ˇ

Eηp1,Hq

«

H
ÿ

h“1

σhpβh, ηh´1, shq

ff

´ pEηp1,Hq

«

H
ÿ

h“1

σhpβh, ηh´1, shq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

Esph,Hq

«

H
ÿ

h“1

σhpβ˚
h, η

˚
h´1, shq

ff

´ pEsph,Hq

«

H
ÿ

h“1

σhpβ˚
h, η

˚
h´1, shq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď max
π

ˇ

ˇ

ˇ

ˇ

Es1„PS
0

rV
π,σhpβ˚

h ,η
˚
h´1,¨q

1 ps1qs ´ Es1„PS
0

rpV
π,σhpβ˚

h ,η
˚
h´1,¨q

1 ps1qs

ˇ

ˇ

ˇ

ˇ

ď Hϵ,

where the last inequality is by Lemma 2.7.2, noting that σhpβ˚
h, η

˚
h´1, ¨q’s range is in r0, Hs

and the lemma holds uniformly over all such functions. The bound for cumulative esti-

mation errors in the payment rule holds similarly, by picking an adversarial combination

of βp1,Hq, ηp1,Hq, θp1,Hq, ignoring whether or not such a combination is possible under the

ABAM Bg,y.
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Proof of Lemma 2.7.9

Focus on an arbitrary and fixed history ηp1,h´1q. Taking the expectation over sh, θh, we have

|Esh,θh | sh´1,xh´1
rpuhpβh, ηh´1, sh, θh; θhqs ´ pEsh,θh | sh´1,xh´1

rpuhpβh, ηh´1, sh, θh; θhqs|

ď }Prpxh´1, sh, θh | sh´1, yh´1q ´ xPrpxh´1, sh, θh | sh´1, yh´1q}1

“
ÿ

sh,θh

|Prpxh´1, sh, θh | sh´1, yh´1q ´ xPrpxh´1, sh, θh | sh´1, yh´1q|.

As the inequality above uses only the fact that puh is in the interval r0, 1s, it holds for all

possible values of βh and ηh´1, as the function remains bounded regardless of the values of

these parameters. Expanding the probabilities shows for any sh, θh

|Prpxh´1, sh, θh | sh´1, yh´1q ´ xPrpxh´1, sh, θh | sh´1, yh´1q|

ď |PS
h psh | sh´1, xh´1qPS

h pθh | shq ´ pPS
h psh | sh´1, xh´1q pPS

h pθh | shq|

ď PS
h pθh | shq|PS

h psh | sh´1, xh´1q ´ pPS
h psh | sh´1, xh´1q|

` pPS
h psh | sh´1, xh´1q|PS

h pθh | shq ´ pPS
h pθh | shq|.

By Dvoretzky–Kiefer–Wolfowitz inequality we know for any δ ą 0, with probability at least

1 ´ δ, the following holds for a specific choice of h, sh´1, xh´1 and all choices of βh, θh´1

|PS
h psh | sh´1, xh´1qPS

h pθh | shq ´ pPS
h psh | sh´1, xh´1q pPS

h pθh | shq|

ď PS
h pθh | shq

d

logp4{δq

2Nh´1psh´1, xh´1q
` pPS

h psh | sh´1, xh´1q

d

logp4{δq

2Nhpshq
.
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Summing over sh, θh gives us

|Esh,θh | sh´1,xh´1
rpuhpβh, ηh´1, sh, θh; θhqs ´ pEsh,θh | sh´1,xh´1

rpuhpβh, ηh´1, sh, θh; θhqs|

ď |S|

d

logp4|S||Θ|{δq

2Nh´1psh´1, xh´1q
` |Θ|

ÿ

sh

pPS
h psh | sh´1, xh´1q

d

logp4|S||Θ|{δq

2Nhpshq
.

Because

pPS
h psh | sh´1, xh´1q “

Nh´1psh´1, xh´1, shq

Nh´1psh´1, xh´1q

and clearly Nhpshq ě Nh´1psh´1, xh´1, shq, by Cauchy-Schwarz inequality

ÿ

sh

pPS
h psh | sh´1, xh´1q

d

logp4|S||Θ|{δq

2Nhpshq
ď

d

ÿ

sh

pPS
h psh | sh´1, xh´1q

logp4|S||Θ|{δq

2Nhpshq

ď

g

f

f

e

ÿ

sh

Nh´1psh´1, xh´1, shq

Nh´1psh´1, xh´1q

logp4|S||Θ|{δq

2Nh´1psh´1, xh´1, shq
“

d

|S| logp4|S||Θ|{δq

2Nh´1psh´1, xh´1q
.

Consequently for a specific choice of h, sh´1, xh´1 and all βh, θh´1, with probability at least

1 ´ δ,

|Esh,θh | sh´1,xh´1
rpuhpβh, ηh´1, sh, θh; θhqs ´ pEsh,θh | sh´1,xh´1

rpuhpβh, ηh´1, sh, θh; θhqs|

ď |S|

d

logp4|S||Θ|{δq

2Nh´1psh´1, xh´1q
` |Θ|

d

|S| logp4|S||Θ|{δq

2Nh´1psh´1, xh´1q

ď 2|S||Θ|

d

logp4|S||Θ|{δq

Nh´1psh´1, xh´1q
.

We then take a union bound over all possible values that P “ tPS ,PΘu may take. For any

ϵ0 ą 0 the } ¨ }8-covering number of ∆pΘq is upper bounded by p1{ϵ0q|Θ|. Similarly, the

} ¨ }8-covering number of ∆p|S|q is no greater than p1{ϵ0q|S|. Via a simple discretization and

covering-based argument, we know by union bound that there is some constant c such that
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the following holds for all possible values of h, sh, xh´1 and all possible P with probability

at least 1 ´ δ

|Esh,θh | sh´1,xh´1
rpuhpβh, ηh´1, sh, θh; θhqs ´ pEsh,θh | sh´1,xh´1

rpuhpβh, ηh´1, sh, θh; θhqs|

ď cH|S||Θ|

d

logpcH|S||Θ|{δq

Nh´1psh´1, xh´1q
.

When the bound above holds for all h, βh, sh´1, θh´1, xh´1 and all P , for all choices of

yh´1 P r0, 1s we have

|Exh´1,sh,θh | sh´1,yh´1
rpuhpβh, ηh´1, sh, θh; θhqs

´ pExh´1,sh,θh | sh´1,yh´1
rpuhpβh, ηh´1, sh, θh; θhqs|

ď |Esh,θh | sh´1,xh´1“1rpuhpβh, ηh´1, sh, θh; θhqs

´ pEsh,θh | sh´1,xh´1“1rpuhpβh, ηh´1, sh, θh; θhqs|

` |Esh,θh | sh´1,xh´1“0rpuhpβh, ηh´1, sh, θh; θhqs

´ pEsh,θh | sh´1,xh´1“0rpuhpβh, ηh´1, sh, θh; θhqs|,

where the inequality again holds by Hölder’s inequality. Reusing the bound developed for

all xh´1 completes the proof.

Proof of Corollary 2.7.11

Let π be arbitrary and fixed. Focus on an arbitrary and fixed h P rHs, and let

η˚
p1,h´1q

, x˚
h, θ

˚
h, s

˚
h`1

“ argmax
βh`1,xh,θh,sh`1

Esh |πr|pσh`1ppηp1,h´1q, psh, θh, xhqq, sh`1q

´ σ̄hppηp1,h´1q, psh, θh, xhqq, sh`1q|s,
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As a result, we know for all ηp1,h´1q, xh, θhsh`1 and all π

argmax
βh`1,xh,θh,sh`1

Esh |πr|pσh`1ppηp1,h´1q, psh, θh, xhqq, sh`1q

´ σ̄hppηp1,h´1q, psh, θh, xhqq, sh`1q|s

ď Esh |πr|pσh`1pβ˚
h`1, psh, θ

˚
h, x

˚
hq, s˚

h`1q ´ σ̄h`1pβ˚
h`1, psh, θ

˚
h, x

˚
hq, s˚

h`1q|s,

Note that the function whose expectation we take only takes sh as an argument. By

Lemma 2.2.3, we let π be the task-agnostic policy that generates the same marginal dis-

tribution over sh. We also let

S`
h “

"

s P S : max
π

Prπhpsq ě
ϵ

2|S|H2

*

,
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and have

E
ηp1,Hq„ pBr|pσh`1pηp1,hq, sh`1q ´ σ̄h`1pηp1,hq, sh`1q|s

“
ÿ

shPS`
h

r|pσh`1ppη˚
p1,h´1q

, psh, θ
˚
h, x

˚
hqq, s˚

h`1q

´ σ̄h`1ppη˚
p1,h´1q

, psh, θ
˚
h, x

˚
hqq, s˚

h`1q|sPrπhpshq

`
ÿ

shRS`
h

r|pσh`1ppη˚
p1,h´1q

, psh, θ
˚
h, x

˚
hqq, s˚

h`1q

´ σ̄h`1ppη˚
p1,h´1q

, psh, θ
˚
h, x

˚
hqq, s˚

h`1q|sPrπhpshq

ď
ÿ

shPS`
h

|pσh`1ppη˚
p1,h´1q

, psh, θ
˚
h, x

˚
hqq, s˚

h`1q

´ σ̄h`1ppη˚
p1,h´1q

, psh, θ
˚
h, x

˚
hqq, s˚

h`1q|Prπhpshq `
ϵ

2H2

ď

ˆ

ÿ

shPS`
h

|pσh`1ppη˚
p1,h´1q

, psh, θ
˚
h, x

˚
hqq, s˚

h`1q

´ σ̄h`1ppη˚
p1,h´1q

, psh, θ
˚
h, x

˚
hqq, s˚

h`1q|
2 Prπhpshq

˙1{2

`
ϵ

2H2

where the second-to-last line is by definition of S`
h and the last by Cauchy-Schwarz inequality.

Noting that

pσh`1ppη˚
p1,h´1q

, psh, θ
˚
h, x

˚
hqq, s˚

h`1q ´ σ̄h`1ppη˚
p1,h´1q

, psh, θ
˚
h, x

˚
hqq, s˚

h`1q
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is entirely induced by estimation error in expected per-step utility, applying Lemma 2.7.9,

with probability at least 1 ´ δ we have

E
ηp1,Hq„ pBr|pσh`1pβh`1, ηh, sh`1q ´ σ̄h`1pβh`1, ηh, sh`1q|s

ď cH|S||Θ|
?
ι

g

f

f

e

ÿ

shPS`
h

ppNhpsh, 0qq´1{2 ` pNhpsh, 1qq´1{2q2 Prπhpshq `
ϵ

2H2

ď cH|S||Θ|
?
2ι

g

f

f

e

ÿ

shPS`
h

pNhpsh, 0q´1 ` Nhpsh, 1q´1qPrπhpshq `
ϵ

2H2
,

(2.7.9)

where the second inequality uses the fact that pa ` bq2 ď 2pa2 ` b2q. By Theorem 2.7.1

µhpsh, 0q ě
1

4|S|H
Prπhpshq, µhpsh, 1q ě

1

4|S|H
Prπhpshq.

Therefore, for any sh P S`
h , xh P t0, 1u, we know

Nhpsh, xq
´1 Prπhpshq ď 4|S|H

µhpsh, xq

Nhpsh, xq
.

The claim then holds by applying multiplicative Chernoff bound and recalling our choice of

N . More specifically, we know that N ě c
H5|S|2

ϵ2
log

´

c|S|H
δϵ

¯

. Therefore, for any h, sh, xh

Eµhpsh,xhqrNhpsh, xhqs “ µhpsh, xhqN ě
cH3|S|

ϵ
log

ˆ

c|S|H

δϵ

˙

.
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Taking a union bound over all h, sh, and xh P r0, 1s, we know by one-sided multiplicative

Chernoff bound that

Pr

ˆ

Dph, sh, xhq s.t.
µhpsh, xhq

Nhpsh, xhq
ě 4N´1

˙

“ PrpDph, sh, xhq s.t. Nhpsh, xhq ď µhpsh, xhqN{4q

ď 2|S|H exp

ˆ

´
9cH3|S|

32ϵ
log

ˆ

c|S|H

δϵ

˙˙

ď δ exp

ˆ

´
9cH3|S|

32ϵ
log

ˆ

1

ϵ

˙˙

ď δ,

where the last line holds as long as c, |S|, H are sufficiently large.

By the union bound, we then know with probability at least 1´δ, we have for all h, sh, xh

that

Nhpsh, xhq
´1 Prπhpshq ď 8|S|HN´1

ď
8ϵ2

cH4|S| logpc|S|H{pδϵqq
,

and plugging the bound back into (2.7.9) shows that with probability at least 1 ´ δ

Eηp1,Hq
r|pσh`1pβh`1, ηh, sh`1q ´ σ̄h`1pβh`1, ηh, sh`1q|s

ď cH|S||Θ|
?
2ι

ÿ

shPS`
h ,xhPt0,1u

b

Nhpsh, xhq´1 Prπhpshq `
ϵ

2H2

ď
4|Θ|ϵ

H

d

c|S|

logpc|S|H{pδϵqq
`

ϵ

2H2
ď

4|Θ|ϵ
a

c|S|

H
`

ϵ

2H2
.

Finally, summing over all H and noting that the claim holds for arbitrary π completes the

proof.

2.7.6 Auxiliary Results

Lemma 2.7.12 (Piece-wise Linear Approximation, Lemma A.6 in [Mirrokni et al., 2016a]).

For any concave function f defined on interval ra, bs, if
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• fpaq and fpbq are given;

• there exists |βa| ď `8 and |βb| ď `8 such that

fpξq ď βapξ ´ aq ` fpaq, fpξq ď βbpξ ´ bq ` fpbq;

then for any κ ą 0, a pair of lower and upper bounds, f△ and f▽ can be computed via Opnq

queries to the evaluation oracle of f , such that

• let β “ pfpbq ´ fpaqq{pb ´ aq, then

n ď
4

κ
` log

pβa ´ βbq
2

pβa ´ βqpβb ´ bq
;

• both of f△ and f▽ are concave, continuous, and piece-wise linear and have at most

Opnq pieces;

• the gap between f△ and f▽ is
`

maxζ fpζq ´ mintfpaq, fpbqu
˘

κ.

Theorem 2.7.13 (Envelope Theorem, Corollary 4 in [Milgrom and Segal, 2002]). Suppose

that X is a nonempty compact space, fpx, tq is upper semicontinuous in X, and B
Btfpx, tq is

continuous in px, tq. Let V ptq “ supxPX fpx, tq. Then

1. V is absolutely continuous and V ptq “ V p0q `
şt
0

B
Btfpx˚psq, sqds.

2. V 1pt`q “ maxxPX˚ptq
B
Btfpx, tq for any 0 ď t ă 1 and V 1pt´q “ minxPX˚ptq

B
Btfpx, tq

for any 0 ă t ď 1.

3. V is differentiable at a given t P p0, 1q if and only if t B
Btfpx, tq |x P X˚ptqu is a singleton,

and in that case V 1ptq “ B
Btfpx, tq for all x P X˚ptq.
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CHAPTER 3

ONLINE RL FOR REVENUE MAXIMIZING SECOND PRICE

AUCTIONS IN MDPS WITH LINEAR FUNCTION

APPROXIMATION

3.1 Introduction

Second price auction with reserve prices is one of the most popular auctions both in the-

ory [Nisan et al., 2007] and in practice [Roth and Ockenfels, 2002]. While closed form expres-

sions for the optimal reserve price have been known ever since the seminal work of Myerson

[1981], directly applying the result requires population information, such as the bidders’

valuations’ distribution, is known a priori. Various attempts have been made to weaken

the assumption, with one of the most prominent lines of literature being reserve price opti-

mization for repeated auctions in the contextual bandit setting [Amin et al., 2014, Golrezaei

et al., 2019, Javanmard and Nazerzadeh, 2019, Deng et al., 2020].

A limitation of existing works lies in the bandit assumption. Indeed, while reserve price

optimization is already challenging as-is, allowing the auction to be both contextual and in-

troducing temporal dependent dynamics, particularly, incorporating Markov Decision Pro-

cess (MDP) induced dynamics in the evolution of bidders’ preferences, opens up a wider

range of problems for studying. For example, Dolgov and Durfee [2006] studies optimal

auction under the setting and developed novel resource allocation mechanisms, Jiang et al.

[2015] leverages both MDP and auctions to better analyze resource allocation in IaaS cloud

computing, and Zhao et al. [2018] uses deep Reinforcement Learning (RL) to study sponsored

search auctions. We refer interested readers to Athey and Segal [2013] for more motivating

examples. A question naturally arises: is it possible to optimize reserve prices when bidders’

preferences evolve according to MDPs?

In this article, we provide an affirmative answer. Our work assumes that the state of the
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auction is affected by the state and the seller’s action in the preceding step. To facilitate

interpretation, we refer to the seller’s action in this context as “item choice”: bidders’ later

preferences could be affected by the types of items sold in previous rounds, a phenomenon

well-documented by empirical works in auctions [Lusht, 1994, Jones et al., 2004, Lange

et al., 2010, Ginsburgh and Van Ours, 2007].

As is the case in many real-world problems, we assume that the underlying transition

dynamics and the bidder’s valuations are both unknown. We further emphasize that we do

not make any truthfulness assumptions on the bidders, allowing them to be strategic with

their reporting. Under such a challenging setting, our goal is to learn the optimal policy of

the seller in the unknown environment, in the presence of nontruthful bidders.

Our Contributions. We begin by summarizing the three key challenges we face. First,

bidders have the incentive to report their valuation untruthfully, in hopes of manipulating

the seller’s learned policy, through either overbidding or underbidding, making it difficult

to estimate their true preferences and the underlying MDP dynamics. Existing works such

as Amin et al. [2014], Golrezaei et al. [2019], Deng et al. [2020] do not apply due to technical

challenges unique to MDP. Second, when the market noise distribution is unknown, even

in the bandit setting existing literature often only obtains rOpK2{3q guarantee [Amin et al.,

2014, Golrezaei et al., 2019] and ΩpK2{3q revenue regret lower bound exists in the worst

case [Kleinberg and Leighton, 2003]. Third, the seller’s reward function, namely revenue, is

unknown, nonlinear, and can not be directly observed from the bidders’ submitted bids and

LSVI-UCB cannot be directly applied.

We are able to address all three challenges with the CLUB algortihm. Motivated by the

ever increasing learning periods in existing works [Amin et al., 2014, Golrezaei et al., 2019,

Deng et al., 2020], our work further draws inspiration from RL with low switching cost [Wang

et al., 2021] and proposes a novel concept dubbed “buffer periods” to ensure that the bidders

are sufficiently truthful. Additionally, we feature a novel algorithm we dub “simulation”
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which, combined with a novel proof technique leveraging the Dvoretzky–Kiefer–Wolfowitz

inequality [Dvoretzky et al., 1956], yields rOp
?
Kq revenue regret under only mild additional

assumptions. Finally, by exploiting the mathematical properties of the revenue function, our

work provides a provably efficient RL algorithm for when the reward function is nonlinear.

3.1.1 Related Works

We summarize below two lines of existing literature pertinent to our work.

Reserve Price Optimization. There is a vast amount of literature on price estima-

tion [Cesa-Bianchi et al., 2014, Qiang and Bayati, 2016, Shah et al., 2019, Drutsa, 2020,

Kanoria and Nazerzadeh, 2014, Keskin et al., 2021, Guo et al., 2022a]. Deng et al. [2020]

considers a model where buyers and sellers are equipped with different discount rates, propos-

ing a robust mechanism for revenue maximization in contextual auctions. Javanmard et al.

[2020] proposes an algorithm with rOp
?
T q regret while Fan et al. [2021] achieves sublinear

regret in a more complex setting. Cesa-Bianchi et al. [2014] studies reserve price optimiza-

tion in non-contextual second price auctions, obtaining rOp
?
T q revenue regret bound. Drutsa

[2017, 2020] studies revenue maximization in repeated second-price auctions with one or mul-

tiple bidders, proposing an algorithm with a Oplog log T q worst-case regret bound. However,

their setting is non-contextual and they cannot be applied to our setting.

Among this line of research, Golrezaei et al. [2019, 2023] are possibly the closest to our

work. Golrezaei et al. [2019] assumes a linear stochastic contextual bandit setting, where the

contexts are independent and identically distributed, achieving rOp1q regret when the market

noise distribution is known and rOpK2{3q when it is unknown and nonparametric. While the

rOp1q regret under known market noise distribution seems to be better than our bound, we

emphasize that their stochastic bandit setting does not require exploration over the action

space required in our work and, even in generic linear MDPs, a Ωp
?
Kq regret lower bound

exists [Jin et al., 2020b]. For unknown distribution, there’s another difference that they
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consider a time-varying model while we focus on dealing with underlying MDP but fixed.

Though the difficulty of these tasks is hard to compare directly, Amin et al. [2014] considers

a non-parametric but fixed distribution setting and suffers rOpK2{3q regret which may hint

at the main difficulty comes from a non-parametric rather than time-varying setting. We

delay more discussion about concrete techniques in Golrezaei et al. [2019] in Section 3.6.1.

Lastly, as we discussed previously, the approaches in Golrezaei et al. [2019] cannot be directly

applied in the MDP setting, necessitating our novel algorithmic structure.

At the same time with our paper, Golrezaei et al. [2023] considers another pricing problem

with non-parametric noise, achieving rOp
?
T q regret. However, they only set a reserve price for

all bidders while we customize reserve prices for each bidder to attain more revenue. On the

one hand, the seller will achieve more revenue by setting different reserve prices for different

bidders which is in line with the goal of the seller because there are fewer corresponding

constraints. On the other hand, in the real world, it is more common to set up personalized

reserve prices in the online advertisement market, like price discrimination [Paes Leme et al.,

2016, Wu et al., 2019]. Additionally, Golrezaei et al. [2023] is in the scope of contextual

bandits and is a special case of our MDP setting. Pricing in contextual bandit settings is

much easier than MDP because i.i.d. context will form a positive definite covariance matrix

and linear regression works well. But in MDP, features depend on action and absolutely not

i.i.d. Without positive definite assumption, algorithms designed for contextual bandits lose

effects and we need innovative algorithms to incorporate pricing and complex information

structures.

RL with Linear Function Approximation. Linear contextual bandit is a popular model

for online decision making [Rusmevichientong and Tsitsiklis, 2010, Abbasi-Yadkori et al.,

2011, Chu et al., 2011, Li et al., 2019, Lattimore and Szepesvári, 2020] that has also been

extensively studied from the auction design perspective [Amin et al., 2014, Golrezaei et al.,

2019]. Its dynamic counterpart, Linear MDP, remains popular in the analysis of provably
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efficient RL [Yang and Wang, 2019, Jin et al., 2020b, 2021b, Yang and Wang, 2020, Zanette

et al., 2020a, Jin et al., 2021a, Uehara et al., 2021, Yu et al., 2022, Wang et al., 2021, Gao

et al., 2021]. In particular, Jin et al. [2020b] is one of the first papers to introduce the

concept, proposing a provably efficient RL algorithm with rOp
?
Kq regret. Jin et al. [2021b]

generalizes the idea to offline RL.

While we use linear function approximation, the seller’s per-step reward function, rev-

enue, is non-linear. Our work also features novel per-step optimization problems to combat

effects from untruthful reporting. While our work draws inspiration from Wang et al. [2020c]

and Gao et al. [2021], as we discussed previously, these inspirations are needed to for ob-

taining high quality estimates when the bidders are untruthful. Thus, our work differs

significantly from prior works on linear MDPs.

Notations. For any positive integer n we let rns denote the set t1, . . . , nu. For any set A

we let ∆pAq denote the set of probability measures over A. For sets A, B, we let A ˆ B be

the Cartesian product of the two. Throughout the whole paper, we use k P rKs to refer to

an episode and h P rHs to refer to a horizon. In addition, we use rk to refer to a buffer period

associated with the k-th episode.

3.2 Preliminaries

We consider a repeated (lazy) multi-phase second-price auction with personalized reserve

prices. Particularly, we assume that there are N rational bidders, indexed by rN s, and one

seller participating in the auction. For ease of presentation, we use “he" to refer to a specific

bidder and “she" the seller.

Second Price Auction with Personalized Reserve Prices. We begin by describing a

single round of the auction. Each bidder i P rN s submits some bid bi P Rě0 and the seller

determines the personalized reserve prices for the bidders in the form of reserve price vector

ρ P RN
ě0, with ρi denoting bidder i’s reserve price. The bidder with the highest bid only wins
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if he also clears his personal reserve price, i.e., bi ě ρi. If the bidder i receives the item, he

pays the seller the maximum of his personalized reserve and the second highest bid, namely

maxtρi,maxj‰i bju, which we dub mi for simplicity. When the bidder with the highest bid

fails to clear his personalized reserve price, the auction fails, the seller gains zero, and the

item remains unsold. In summary, bidder i receives the item if and only if bi ě mi and

the price he pays is mi. For any round of auction, we let qi “ 1pbidder i receives the itemq

indicate whether bidder i received the item or not. For the sake of convenience, throughout

the paper we assume that there are no ties in the submitted bids.

A Multi-Phase Second Price Auction. We now characterize the dynamics of the multi-

phase auction setting we study. Assume that the transition dynamic between rounds can

be modeled as an episodic Markov Decision Process (MDP)1. A multi-phase second price

auction with personalized reserves is parameterized as pS,Υ, H,P, triuNi“1q, with the state

space denoted by S, seller’s item choice space Υ2, horizon H, transition kernel P “ tPhuHh“1

where Ph : S ˆ Υ Ñ ∆pSq, and the individual bidders’ reward functions ri “ trihuHh“1 for

all i P rN s. The choice of item υ P Υ affects the bidders’ rewards as well as the transition.

The interaction between the bidders and the seller is then defined as follows. We assume

without loss of generality that the state at the initial step is fixed at some x1 P S. For each

h P rHs, the seller and the bidders engage in a single round of second price auction. Given

the seller’s item choice at step h, υh, nature transitions to the next state according to the

transition kernel Ph.

Motivations for the MDP Model. The core of our setting is to study what will happen

when selling heterogeneous goods. We provide three real-world scenarios to motivate this

phenomenon.

1. We can easily extend our setting to that of an infinite-horizon MDP by improperly learning the process
as an episodic one. Here we focus on the finite-horizon case purely for simplicity of presentation.

2. Here we use “item choice" to better illustrate what Υ intuitively represents. The term can be extended
to more generic notions of seller’s action.
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• (Online Advertisement) Google sells lots of advertising positions every day while

buyers face budget constraints. In the early rounds, since buyers have more budget left,

they are usually eager to bid higher and have a stronger willingness to pay. Therefore,

Google may want to sell the most valuable position at first so that buyers have the

ability to pay higher acceptable prices and avoid being underbid and unsold.

• (Antique Auction) For traditional auction design, the prior auctions may affect the

latter auctions. For instance, consider when Sotheby’s wants to sell several antiques.

The order of selling is of significance and that’s the reason why Sotheby’s needs to sell a

few other pieces to warm up before selling the final flagship piece. The order influences

people’s valuation and consequently, total revenue. For example, if Sotheby’s wishes to

auction a valuable Chinese ancient artifact, they would auction some related artifacts

during the warm-up session to enhance buyers’ expectations.

• (Automobile Sales Market) The last example is on the market of cars. If one buyer

wants to buy a sedan in General Motors, recommending Chevrolet first or Cadillac

first will influence his preference for the course. If he sees Chevrolet first, he may think

Cadillac is too expensive. However, if he sees Cadillac first, he may think Chevrolet

lacks a sense of experiential quality. To achieve maximum profitability, General Motors

carefully arranges the recommended order. In a broader sense, they meticulously design

the sequence in which cars appear in advertisements.

All in all, contextual bandits lack the ability to depict such kinds of problems. We need

to use MDP to model these issues.

Bidder Rewards. We assume that for each bidder i P rN s at time h P rHs, his reward3

depends on both the state x and item being auctioned off at that round υ P Υ, which we

3. Wes use the term “reward” to maintain consistency with existing RL literature.
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formalize as

rihpx, υq “ 1 ` µihpx, υq ` zih, where zih
i.i.d.
„ F.

Here, zih denotes the randomness within bidders’ rewards and are drawn i.i.d. from the

market noise distribution F p¨q. We assume that F p¨q is supported on r´1, 1s and has mean

0. Let µi,h : S ˆΥ Ñ r0, 1s denote the conditional expectation of the reward less one, where

the constant is added to ensure rihpx, υq P r0, 3s.

Policies and Value Functions. Before we describe the seller’s policy, we first discuss the

action space A “ Υ ˆ RN
ě0. At each h P rHs, the seller chooses some action ah “ pυh, ρhq,

comprising of item choice υ P Υ and reserve price vector ρ P RN
ě0. The seller’s policy is then

π “ tπhuHh“1, where πh : S Ñ ∆pAq. We let πυ and πρ denote the marginal item choice

and reserve price policies, respectively. Recall that the seller garners revenue only when the

item is sold to a bidder. At each h P rHs, her per-step expected revenue is then

Rh “ E
tzihuNi“1

«

N
ÿ

i“1

mih 1pmih ď bihq

ff

(3.2.1)

as we recall that mih “ maxtρih,maxj‰i bjhu and bidder i pays the seller mih if and only if

bih ě mih. The value function (V-function) of the seller’s revenue for any policy π

and the action-value function (Q-function) is Qπ
h : S ˆ A Ñ R are then

V π
h pxq “ Eπ

«

H
ÿ

h1“h

Rh1pxh1 , ah1q | sh “ x

ff

and

Qπ
hpx, aq “ Eπ

«

H
ÿ

h1“h

Rh1pxh1 , ah1q | sh “ x, ah “ a

ff

,

respectively.

Since the bidder reward only depends on state x and the choice of item υ instead of

reserve ρ, we have a family of mappings from S ˆ Υ to RN
ě0 that determines ρ. Therefore,

102



with a slight abuse of notation, we can rewrite our Q-function as Qpx, aq “ Qpx, pυ, ρpx, υqqq,

restricting the role of setting reserve prices using such mappings without loss of generality.

From now on, we use Qps, vq to denote Q-function for simplicity. For any function f : S Ñ R,

we define the transition operator P and the Bellman operator B as

pPhfqpx, aq “ Erfpsh`1q | sh “ x, ah “ as, pBhfqpx, aq “ ErRhpsh, ahqs ` pPhfqpx, aq

respectively. Finally, we let π‹ denote the optimal policy when the bidders’ reward func-

tions, the MDP’s underlying transition, and the market noise distribution are all known to

the seller. We remark that when these parameters are known, second price auctions with

personalized reserve prices are inherently incentive compatible and rational bidders will bid

truthfully.

Performance Metric. The revenue suboptimality for each episode k P rKs is

SubOptkpπkq “ V π˚

1 px1q ´ V
πk
1 px1q,

with πk being the strategy used in episode k. Our evaluation metric is then the revenue

regret attained over K episodes, namely

RegretpKq “

K
ÿ

k“1

SubOptkpπkq. (3.2.2)

Impatient Utility-Maximizing Bidders. We assume the bidders are equipped with

some discount rate γ P p0, 1q while the seller’s reward is not discounted. For the sake of

simplicity, we assume γ is common knowledge. Drutsa [2020] consider a scenario where

γ is unknown but with a strictly less than one upper bound. We highlight that it works

with our CLUB algorithm as well as long as we replace γ with its upper bound. We can

have regret bounds with the same order because we adopt more conservative estimators and
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buyers won’t violate as much as the corresponding results of γ. Then all results in our

paper hold up to some changes of absolute constants. Bidder i’s utility at step h is given

by prihpsh, νhq ´ mihq1pbih ě mihq, as we note that he only receives nonzero utility upon

winning the auction. His objective is to maximize his discounted cumulative utility

Utilityi “

K
ÿ

k“1

γkEπk

«

H
ÿ

h“1

prihpskh, ν
k
hq ´ mk

ihq1pbkih ě mk
ihq | sk1 “ x1

ff

.

Note that in practical applications, sellers are usually more patient than bidders and

discount their future rewards less. Consider a sponsored search auction, where the seller

usually auctions off large numbers of ad slots every day. Bidders usually urgently need

advertisements and value future rewards less. On the other hand, the seller is not especially

concerned with slight decreases in immediate rewards. We refer the readers to Drutsa [2017],

Golrezaei et al. [2019] for a more detailed discussion on the economic justifications of the

assumption and emphasize that the assumption is necessary, as Amin et al. [2013] shows

that when the bidders are as patient as the seller, achieving sub-linear revenue regret is

impossible.

Linear Markov Decision Process. As a concrete setting, we study linear function ap-

proximation.

Assumption 3.2.1. Assume that there exists known feature mapping ϕ : S ˆ Υ Ñ Rd such

that there exist d-dimension unknown (signed) measures Mh over S and unknown vectors

tθihuNi“1 P Rd that satisfy

Phpx1
|x, υq “ xϕpx, υq,Mhpx1

qy, µihpx, υq “ xϕpx, υq, θihy

for all px, υ, x1q P S ˆ Υ ˆ S, i P rN s, and h P rHs. Without loss of generality, we assume

that }ϕpx, υq} ď 1 for all px, υq P S ˆ Υ, }MhpSq} ď
?
d, and }θih} ď

?
d for all h P rHs

and i P rN s.
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There’re some scenarios in reality that mapping ϕp¨, ¨q is public knowledge like repre-

senting the order of items. However, for unknown mapping [Lattimore et al., 2020], there

are some ways to pre-train features using a reproducing kernel Hilbert space, neural net-

works or the Knowledge Discovery in Databases (KDD) method [Lange and Riedmiller,

2010, Claessens et al., 2016, Wang et al., 2020a]. Utilizing these, we can obtain a working

feature representation in practice.

We close off the section by remarking that while the transition kernel Ph and the bidders’

individual expected reward functions tµiu
N
i“1 are linear, the seller’s objective, revenue, is

not linear, differentiating our work from typical linear MDP literature (see Yang and Wang

[2019], Jin et al. [2020b] for representative works).

3.3 Known Market Noise Distribution

We remind the readers of our three main challenges, with the first challenge being exploring

the environment even when the bidders submit their bids potentially untruthfully. The

second challenge emerges only when the market noise distribution is unknown and we defer

its resolution to Section 3.4. The third challenge is performing provably efficient RL even

when the seller’s per-step revenue, detailed in (3.2.1), is nonlinear and not directly observable.

In this section, we present a version of CLUB when the market noise distribution is

known. We assume for convenience that K is known, as we can use the doubling trick (see

Auer et al. [2002] and Besson and Kaufmann [2018] for discussions) to achieve the same order

of regret when K is unknown or infinite. Since we can utilize the doubling trick to partition

K into at most rlog2Ks ` 1, adding corresponding regret will lead to a regret bound of the

same order up to some logarithmic terms.
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3.3.1 CLUB Algorithm When F p¨q is Known

We start with the first challenge, which we address by a collection of algorithms that suc-

cessfully induce approximately truthful bids from the bidders.

Addressing Challenge 1: Untruthfulness. To curb the sellers’ untruthfulness, we need

to punish such behavior, achieved through a random pricing policy in the form of Algorithm 2.

For each h P rHs, πrand randomly chooses an item and a bidder, offering him the item with

a reserve price drawn uniformly at random. The bidder’s utility decreases whenever he

reports untruthfully, risking either not receiving the item when he underbids, or overpaying

for an item when he overbids. Combining lazy updates (see Algorithm 3), we can ensure

approximate truthfulness because with the discount rate being less than one, the benefit the

bidder gains from misreporting the bids will decay as timestep increases. However, since

we consider multi-phase auction design, it remains some nuisance introduced by MDP. For

instance, there is no guarantee of a positive definite covariance matrix and it’s challenging to

give a low regret union bound. We will see how to solve them in the following paragraphs.

Algorithm 2 Definition of πrand
1: for h “ 1, . . . , H do
2: Randomly chooses an item υh P Υh.
3: Choose a bidder i P rN s uniformly at random and offer him the item with reserve price

ρih „ Unifpr0, 3sq. Set other bidders’ reserve prices to infinite.
4: end for

We further introduce a novel technique, “buffer period”, which explicitly forces the bidders

to wait before starting a new learning period, thereby decreases the discounted utility the

impatient bidders may gain from untruthfulness. Indeed, a typical algorithm in bandit setting

only features πrand and a sequence of learning periods that double in length [Amin et al., 2014,

Golrezaei et al., 2019, Deng et al., 2020]. In the bandit setting, data collected in all previous

periods is used to update the policy at the end of each period. The increasingly lengthy

periods ensure that the seller switches policy less frequently, ensuring that the impatient
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buyers need to wait longer before benefiting from untruthful reporting, deterring them from

doing so. Unfortunately, the same technique does not work for MDPs, as the rate at which

the smallest eigenvalue of the covariance matrix estimate grows cannot be determined and

we cannot ensure our estimate of the underlying environment is not “stale” when we double

the length of the periods.

Algorithm 3 Buffer Period with Known F p¨q

1: Receives buffer start buffer.sprk ` 1q “ k and end buffer.eprk ` 1q “ k `
3 logK
logp1{γq

.

2: Do nothing for all episodes buffer.sprk ` 1q ď k ă buffer.eprk ` 1q, i.e. do nothing
during the buffer period before the end.

3: At the end of the buffer period, update policy estimate π
rk`1

and Q-function estimate
pQ
π
rk`1

h p¨, ¨q using Algorithm 5, and then increment buffer period counter rk Ð rk ` 1.

While we can mimic the aforementioned bandit algorithms by drawing inspiration from

low-switching cost RL literature, we cannot guarantee that the periods are sufficiently long

without buffer periods. Indeed, we can use the smallest eigenvalue of the covariance matrix

to determine when to start a new period. However, it is impossible to determine a priori

the rate at which the smallest eigenvalue grows. Buffer periods ensure that each period is

sufficiently long, deferring any utility gain from untruthful reporting. Combined with the

bidders’ discount rate, a combination of πrand and buffer periods ensure that the bidders

behave approximately truthfully. The technique is detailed in Algorithm 3.

With buffer periods defined, we summarize CLUB’s update schedule in Algorithm 4 and

include Figure 3.1 for visual representation. Let 1
HK ˝πrand`p1´ 1

HK q˝π
rk

represent a mixture

policy combining πrand and π
rk

where for each h, with probability 1
HK we act according to

πrand and with probability 1´ 1
HK according to π

rk
. For convenience, we assume buffer.eprkq

is an integer, as rounding up buffer.eprkq does not affect asymptotic regret. Unlike a typical

low switching cost RL algorithm, Algorithm 5 further delays updating for 3 logK
logp1{γq

episodes

after the switching criterion in line 4 is satisfied.

The mixture policy sufficiently punishes untruthfulness. Combined with buffer periods
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Algorithm 4 Contextual-LSVI-UCB-Buffer (CLUB) with Known F

1: Initialize policy estimate π0, buffer period counter rk “ 0, buffer period starting points
buffer.sp0q “ 1, and buffer period end points buffer.ep0q “ 1.

2: for episodes k “ 1, . . . , K do
3: Execute mixture policy 1

HK ˝ πrand ` p1 ´ 1
HK q ˝ π

rk
, collecting outcomes qτih and

updating covariance matrices Λk
h Ð

řk
τ“1 ϕpxτh, υ

τ
hqϕpxτh, υ

τ
hqT ` I for all h P rHs.

4: If there exists h P rHs such that pΛ
buffer.eprkq

h q´1 ł 2pΛk
hq´1, schedule a new buffer

period starting at buffer.sprk ` 1q “ k and ending at buffer.eprk ` 1q “ k `
3 logK
logp1{γq

using Algorithm 3, and set k Ð buffer.eprk ` 1q.
5: end for

Figure 3.1: Learning periods and buffer periods: buffer.sp¨q and buffer.ep¨q represent the
start point and the end point of a buffer respectively. Episode k lays between buffer.eprkq

and buffer.sprk ` 1q and the length of each buffer is 3 logK
logp1{γq

.

(Algorithm 3) and the update schedule (line 4), Algorithm 4 also limits the discounted utility

bidders gain from untruthfulness, thereby curbing excessive overbidding and/or underbid-

ding. Line 4 represents a kind of lazy update. We only calculate new Q-function when at

least one eigenvalue decays by half, restricting the total number of updates and beneficial

to construct high probability union regret bounds. At the same time, we wait for the length

of buffer periods before updating to motivate truthful bidding. While πrand is suboptimal,

the mixture policy ensures that it is not executed too many times, reducing its damage to

revenue.

With the techniques discussed above, namely Algorithms 2, 3, and 4, we now have suf-

ficiently addressed our first challenge, obtaining approximately truthful reports in the face

of strategic bidders. We then tackle the third challenge outlined in the abstract: provably

efficient reinforcement learning even when the per-step revenue is nonlinear.
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Addressing Challenges 2 and 3: Regret Minimization and Nonlinear Revenue.

Having shown that our algorithm punishes untruthful behavior, we begin by showing that

the resulting reports are sufficiently truthful for obtaining accurate parameter estimates. It’s

still quite intricate as regret depends on both state, action related to transition kernel and

reserve prices. Traditional point estimation with uncertainty quantity is not enough since

we need to not only combine the structure of underlying MDP and coordinate with buffer

periods, the so-called lazy updates, but also consider the small proportion of untruthful

bids. Whereas LSVI-UCB directly learns from empirical rewards, here we use indicators qkih,

which we recall is one if bidder i receives the item at episode k step h and zero otherwise.

As we cannot guarantee that the empirical covariance matrix is positive definite, existing

techniques in Amin et al. [2014], Golrezaei et al. [2019] cannot be applied. We instead have

pθih “ argmin
}θ}ď2

?
d

buffer.eprk`1q
ÿ

τ“1

pqτih ´ 1 ` F pmτ
ih ´ 1 ´ xϕpxτh, υ

τ
hq, θyqq

2, (3.3.1)

where ρτih is agent i’s reserve price and mτ
ih “ maxtmaxj‰i b

τ
ih, ρ

τ
ihu. (3.3.1) is justified by the

observation that, assuming that he bids truthfully, bidder i wins the auction with probability

1´F pmτ
ih ´ 1´ xϕpxτh, υ

τ
hq, θyq, conditioned on xτh, υ

τ
h, and mτ

ih. Controlling the uncertainty

around pθih then resembles controlling the uncertainty of a generalized linear model with F p¨q

being the link function. As bidders need to overbid or underbid significantly to alter the

outcome of the auction, pθih is less susceptible to untruthfulness.

While we use a typical linear function approximation assumption, the seller’s revenue

function Rh is not linear and we cannot directly apply existing approaches. We instead

directly estimate Rh and link our uncertainty on the seller’s revenue to the typical linear

MDP uncertainty quantifier, summarized Algorithm 5.

We let rb` and ρ` denote the highest truthful bid and the highest reserve price, re-

spectively. Similarly, let rb´ and ρ´ denote the second-highest. Algorithm 5 estimates the
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Algorithm 5 Estimation of pQ
π
rk`1

h p¨, ¨q

1: Estimate pθih using (3.3.1) and set pµihp¨, ¨q Ð xϕp¨, ¨q, pθihy for all i, h.
2: Estimate reserve price pρihp¨, ¨q “ argmaxy yp1 ´ F py ´ 1 ´ pµihp¨, ¨qqq for all i, h.
3: Estimate revenue pRhp¨, ¨q Ð Ermaxtrb´h p¨, ¨q, pρ`

h p¨, ¨qu1prb`h p¨, ¨q ě pρ`
h p¨, ¨qqs.

4: for h “ H, . . . , 1 do

5: Λh Ð
řbuffer.eprk`1q

τ“1 ϕpxτh, υ
τ
hqϕpxτh, υ

τ
hqT ` λI.

6: ωh Ð Λ´1
h

řbuffer.eprk`1q

τ“1 ϕpxτh, υ
τ
hqrmaxυ pQh`1pxτh`1, υqs.

7: pQ
π
rk`1

h p¨, ¨q Ð mintωTh ϕp¨, ¨q ` pRp¨, ¨q ` polyplogKq}ϕp¨, ¨q}
Λ´1
h
, 3Hu.

8: πυ
rk`1,h

p¨q Ð argmaxv pQ
π
rk`1

h p¨, vq.

9: π
ρi
rk`1,h

p¨q Ð pρihp¨, πυ
rk`1,h

p¨qq.
10: end for
11: Return t pQ

π
rk`1

h p¨, ¨quHh“1 and tπ
rk`1,h

p¨quHh“1.

Q-function optimistically by dividing the problem to two halves: per-step revenue estima-

tion (lines 1 to 3) and transition estimation (lines 4 to 10). In the first half, we use (3.3.1)

to estimate all θih, which in turn gives estimates for bidders’ rewards in the form of pµih.

We then feed the reward function estimates to line 2, yielding an estimate for the optimal

reserve price. With Algorithms 2, 3, and 4, the effects of untruthful reports are controlled,

and we can ensure that the revenue estimate is sufficiently close to the ground truth. With

ρih estimated, we then obtain revenue estimates for all states and item choices via line 3.

Consequently, we decide both nearly optimal reserve prices and the order of items, addressing

the second challenge of regret minimization.

While the rest of Algorithm 5 resembles a typical LSVI-UCB algorithm [Jin et al., 2020b],

we highlight several key differences. First, we use the plug-in revenue estimate, whereas exist-

ing works estimate the Q-function with the empirically observed rewards. To accommodate

the plug-in estimate, here ωh estimates PhVh`1, the transition operator applied to the V-

function, as opposed to BhVh`1, which uses the Bellman evaluation operator instead. Lastly,

in line 7 we link the uncertainty of revenue to the uncertainty bonus typically seen in linear

MDPs, thereby obtaining an optimistic estimate of the Q-function induced by revenue. We
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conjecture the transition estimation procedure can be changed to other suitable online RL

algorithms under other function approximation assumptions.

In summary, in this section we addressed the first and third challenges. The first challenge

is addressed mainly by a novel technique dubbed “buffer periods" and the third one through

nontrivial extensions to the LSIV-UCB framework. By combining the loss from incentivizing

truthful mechanism and learning underlining model to set reserve prices, we get the final

Algorithm 4, which explores efficiently and achieves the following regret upper bound, and

then addresses the second challenge of regret minimization.

3.3.2 Regret Bound When F p¨q is Known

We introduce the following assumptions before we bound the regret. These regularity as-

sumptions are commonly found in economics literature [Kleiber and Kotz, 2003, Bagnoli and

Bergstrom, 2006].

Assumption 3.3.1. Market noise pdf f is bounded, i.e. there exist constants c1, C1 such

that c1 ď f ď C1.

Assumption 3.3.2. Market noise pdf f is differentiable and its derivative is bounded. That

is, there exists a constant L such that |f 1| ď L.

Assumption 3.3.3. Market noise cdf F p¨q and 1 ´ F p¨q are log-concave.

At a high level, Assumptions 3.3.1 and 3.3.2 ensure that the pdf f is generally well-

behaved, namely, bounded and smooth. Assumption 3.3.3 is a popular assumption in eco-

nomics that ensures the validity of the Myerson lemma [Myerson, 1981, Kleiber and Kotz,

2003, Bagnoli and Bergstrom, 2006]. We further remark that these assumptions are mild

and are satisfied by commonly used distributions such as truncated Gaussian distribution

and uniform distribution [Golrezaei et al., 2019].
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Remark 3.3.4. We note that Assumption 3.3.3 is in fact made redundant by Assumption

3.3.1 because we have a quite “smooth” distribution with bounded differential. Then, once

we have a good estimation for the parameters, “smooth” F p¨q leads to a good estimation of

the reward function. Nevertheless, we retain this assumption as it streamlines our proof by

avoiding discussion of market stability with multi-optimal reserve prices and getting bogged

down in tedious regret decomposition.

We are now ready to state our results. If we set polyplogKq “ C7 `C6H log2K in Algo-

rithm 5, where constant C6 is determined in Theorem 3.6.7 and constant C7 “ B8H
3
2 logK

with constant B8 determined in Theorem 3.6.31, then we have Theorem 3.3.5.

Theorem 3.3.5. Under Theorem 3.2.1, 3.3.1, 3.3.2 and 3.3.3, for any fixed failure prob-

ability δ P p0, 1q, with probability at least 1 ´ δ, Algorithm 4 achieves at most rOp
?
H5Kq

revenue regret, where rOp¨q hides only absolute constants and logarithmic terms.

Proof. See Section 3.6.2 for a detailed proof.

As we discussed previously, when H “ 1, our result cannot be compared to existing

works that focus on the stochastic bandit setting due to our need to explore the action space

Υ (see Broder and Rusmevichientong [2012], Drutsa [2020, 2017], Golrezaei et al. [2019] for

works that achieves rOp1q revenue regret in the stochastic bandit setting). The closest work

we are aware of is Cesa-Bianchi et al. [2014], which obtains a similar rOp
?
Kq regret in the

adversarial multi-armed bandit setting, matched by our bounds.

3.4 Unknown Market Noise Distribution

We now discuss when the market noise distribution is unknown. Recall from previous dis-

cussions that our second challenge lies in minimizing revenue regret when the market noise

distribution is unknown. Existing techniques, similar to the one in Golrezaei et al. [2019],

incorporate pure exploration rounds to address the challenge, yet necessitates a rOpK2{3q
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revenue regret. In this section, we instead introduce a novel technique dubbed “simulation",

which eliminates the need for pure exploration rounds and achieves instead a rOp
?
Kq regret.

While the first and third challenges have been previously addressed, the approaches in Sec-

tion 3.3 also require careful adjustments, as the unknown market noise distribution makes a

direct application of these approaches impossible. We detail our techniques and procedures

in the rest of this section.

3.4.1 CLUB Algorithm When F p¨q is Unknown

Similarly, there are three steps to do auction design when F p¨q is unknown. First, we leverage

Algorithm 2 and Algorithm 6 to motivate an approximately truthful mechanism. Second, we

utilize Algorithm 9 in coordination with newly proposed Algorithm 8 to estimate underlying

MDP and set reserve prices. We motivate truthfulness through buffer periods and quantify

the uncertainty by constructing corresponding ellipsoid bounds. Finally, we add up all these

uncertainties and minimize regret with high probability.

Addressing Challenge 1: Untruthfulness. When the market noise distribution is un-

known, the techniques used in Section 3.3 cannot be applied directly, necessitating careful

adaptations. We summarize the changes to these techniques, beginning by introducing Al-

gorithm 6, the counterpart to Algorithm 3, for when F p¨q is unknown. The key difference

lies in the optimization subroutine called in line 3, which is required for addressing the third

challenge when the market noise distribution F p¨q is unknown.

Algorithm 6 Buffer Period with Unknown F p¨q

1: Receives buffer start buffer.sprk ` 1q “ k and end buffer.eprk ` 1q “ k `
3 logK
logp1{γq

.

2: Do nothing for all episodes buffer.sprk ` 1q ď k ă buffer.eprk ` 1q, i.e. do nothing
during the buffer period before the end.

3: At the end of the buffer period, update policy estimate π
rk`1

and Q-function estimate
pQ
π
rk`1

h p¨, ¨q using Algorithm 9, and then increment buffer period counter rk Ð rk ` 1.

We then discuss Algorithm 7, a close variant of Algorithm 4, whose biggest change lies
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in the update schedule in line 4. Algorithm 4 maintains only an accurate estimate of the

underlying MDP, achieved with a low switching cost style update schedule, which in turn

deters untruthful bidding. On the other hand, Algorithm 7 needs accurate estimates of both

the MDP and the market noise distribution F p¨q. We force additional updates whenever k

is a power of 2, also ensuring that pF p¨q is close to F p¨q. As the number of updates remains

in OplogKq, the extraneous updates do not affect the regret asymptotically.

Algorithm 7 Contextual-LSVI-UCB-Buffer (CLUB) with Unknown F

1: Initialize policy estimate π0, buffer period counter rk “ 0, buffer period starting points
buffer.sp0q “ 1, and buffer period end points buffer.ep0q “ 1.

2: for episodes k “ 1, . . . , K do
3: Execute mixture policy 1

HK ˝ πrand ` p1 ´ 1
HK q ˝ π

rk
, collecting outcomes qτih and

updating covariance matrices Λk
h Ð

řk
τ“1 ϕpxτh, υ

τ
hqϕpxτh, υ

τ
hqT ` I for all h P rHs.

4: If there exists h P rHs such that pΛ
buffer.eprkq

h q´1 ł 2pΛk
hq´1 or log2pkq is an in-

teger, schedule a new buffer period starting at buffer.sprk ` 1q “ k and ending at
buffer.eprk ` 1q “ k `

3 logK
logp1{γq

using Algorithm 6, and set k Ð buffer.eprk ` 1q.
5: end for

Similar to Section 3.3, these techniques, namely the buffer periods and the update sched-

ule, ensure that the impatient bidders are sufficiently truthful. However, for estimating

θih, as we do not know F p¨q, the optimization problem in (3.3.1) no longer applies. For-

tunately, we know that whenever πrand is executed, assuming the bidders are truthful,

Prpqτi “ 1q “ 1
3N p2 ´ xϕpxτh, υ

τ
hq, θyq conditioned on xτh, υ

τ
h, as the bidder i and the re-

serve price ρτih are drawn uniformly at random. Leveraging this observation, we quickly

realize that we can simply use the outcomes from when πrand is executed to estimate the

bidders’ rewards, even when F p¨q is unknown. Unfortunately, using the observation naively

introduces the second challenge: minimizing revenue regret when F p¨q is unknown.

Addressing Challenge 2: Regret Minimization. An intuitive way to incorporate the

previous observation is to simply perform pure exploration rounds with πrand, similar to

the technique in Golrezaei et al. [2019]. However, doing so incurs rOpK2{3q revenue regret,
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as πrand does not set the reserve prices optimally and we are not exploring and exploiting

simultaneously. To balance exploration and exploitation, we propose a new technique that

we dub “simulation", which allows us to continue exploiting with the mixture policy.

Algorithm 8 Simulation
1: for h “ 1, . . . , H and τ “ 1, . . . , K do
2: Generate virtual reserve prices rρτih by selecting one bidder i P rN s uniformly at random.

Let rρτih „ Unifpr0, 3sq and set all other reserve prices to infinity, i.e. rρτjh “ 8 for all
j ‰ i.

3: Use real bidding data bτih simulated reserve prices rρτih to simulate outcome rqτih for all
i P rN s, namely set bτih “ 1pbτih ě rρτihq for all i P rN s.

4: end for
5: Return the simulated outcomes trqkihu.

Here we introduce a new random variable rqτih “ 1pbτih ě rρτihq, where for each h, τ we

select one i P rN s uniformly at random and then draw rρτih from Unifpr0, 3sq. For all j ‰ i we

set rρτih to 8. At a high level, rqτih “simulates" executing πrand: holding xτh and υτh constant,

what would be the outcome if we were to act according to πrand instead? As we do not need

to execute πrand, revenue regret can be decreased. Furthermore, rqτih still enjoys the same

resilience towards untruthful reporting that qτih does. Indeed, when the bidder overbid or

underbid by a small amount, the number of times rqτih changes could be controlled effectively.

More technically, Algorithm 8 is critical for two reasons. First, the difference between

pF p¨q and F p¨q decays at a rate of Op1{
?
Kq. If we simply use Equation (3.3.1), only replacing

F p¨q with pF p¨q, the estimation error is roughly on the order of rOp

b

buffer.eprk ` 1qq which

precludes achieving rOp
?
Kq regret. Second, replacing rqτih with qτih does not work, as we need

to de-bias the estimator when we switch from F p¨q to the uniform distribution induced by

πrand. Even when the bidders report truthfully, we cannot guarantee that Prpqτih “ 1 |xτh, υ
τ
hq

could be related to 1
3N p1 ` xϕpxτh, υ

τ
hq, θihyq. Consequently, it would be hard to ensure that

when all bidders are truthful, the estimator pθτih would converge to θih.

Addressing Challenge 3: Nonlinear Revenue. With the first challenge addressed by

carefully adjusting techniques in Section 3.3 and the second by the simulation technique
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detailed in Algorithm 8, we now discuss the third challenge: provably efficient reinforcement

learning when the revenue is nonlinear and F p¨q is unknown. We start with summarizing

how we simultaneously estimate θih and F p¨q in the form of (3.4.1).

pθih “ argmin
}θ}ď2

?
d

buffer.eprk`1q
ÿ

τ“1

p3Nrqτih ´ p1 ` xϕpxτh, υ
τ
hq, θyqq

2,

pF pzq “
1

Nbuffer.eprk ` 1qH

N
ÿ

i“1

buffer.eprk`1q
ÿ

τ“1

H
ÿ

h“1

1pbiτh ´ 1 ´ xϕτh,
pθihy ď zq.

(3.4.1)

We note that we are simply using a histogram to estimate F p¨q and, as we have successfully

decoupled the estimation error of F p¨q from that of θih, using histogram is sufficient for

achieving rOp
?
Kq revenue regret. We then introduce Algorithm 9, whose key difference

with Algorithm 5 lies in the added uncertainty due to pF and the inclusion of the simulation

subroutine. Similar to Section 3.3, the procedure then provides us with sufficiently accurate

policy and Q-function estimates, resolving our third and final challenge.

Algorithm 9 Estimation of pQ
π
rk`1

h p¨, ¨q with Unknown F p¨q

1: Collect simulation outcome rq using Algorithm 8.
2: Estimate pθih, pF p¨q using (3.4.1).
3: Estimate pµihp¨, ¨q Ð xϕp¨, ¨q, pθihy.
4: Set reserve price pρihp¨, ¨q “ argmaxy yp1 ´ pF py ´ 1 ´ pµp¨, ¨qqq.
5: Estimate revenue pRhp¨, ¨q Ð Ermaxtrb´h p¨, ¨q, pρ`

h p¨, ¨qu1prb`h p¨, ¨q ě pρ`
h p¨, ¨qqs.

6: for h “ H, . . . , 1 do

7: Λh Ð
řbuffer.eprk`1q

τ“1 ϕpxτh, υ
τ
hqϕpxτh, υ

τ
hqT ` λI. ▷ We set λ “ 1 in this paper.

8: ωh Ð Λ´1
h

řbuffer.eprk`1q

τ“1 ϕpxτh, υ
τ
hqrmaxa pQh`1pxτh`1, aqs.

9: pQ
π
rk`1

h p¨, ¨q Ð mintωTh ϕp¨, ¨q ` pRp¨, ¨q `poly1plogKq}ϕp¨, ¨q}
Λ´1
h

`
poly2plogKq

b

buffer.eprk`1q

, 3Hu

10: πυ
rk`1,h

p¨q Ð argmaxv pQ
π
rk`1

h p¨, vq.

11: π
ρi
rk`1,h

p¨q Ð pρihp¨, πa
rk`1,h

p¨qq.
12: end for
13: Return t pQ

π
rk`1

h p¨, ¨quHh“1 and tπ
rk`1,h

p¨quHh“1.
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In summary, we have addressed all three challenges for when the market noise distribution

is unknown. The first challenge is resolved by carefully adjusting the techniques introduced

in Section 3.3, ensuring that they are still valid when F p¨q is unknown. For the second

challenge we feature a novel technique dubbed “simulation" that allows us to “simulate" pure

exploration rounds without actually executing them, reducing revenue regret. For the third

challenge, we build off of the simulation technique and introduce new estimation procedure

for jointly estimating F p¨q and θ.

3.4.2 Regret Bound of CLUB Algorithm When F p¨q is Unknown

We now argue that Algorithm 7 achieves rOp
?
Kq regret. We begin with a slight detour,

making a basic assumption on the hypothesis class for F p¨q.

Assumption 3.4.1. The market noise distribution F p¨q belongs to a distribution family F .

We further let NϵpFq be the ϵ-covering number of F with respect to the metric that

distpF,Gq “ supx |F pxq ´ Gpxq|. We now have our main theorem when noise distribution

is unknown. If we let poly1plogKq “ C15 ` C13H log2K and poly2plogKq “ C14H
2 log4K

in Algorithm 9, where C15 “ D7H
3
2 and the constant D7 is determined in Theorem 3.6.39,

constants C13 and C14 are determined in Theorem 3.6.16, we would attain the following

regret guarantee.

Theorem 3.4.2. Under Assumptions 3.2.1, 3.3.1, 3.3.2, 3.3.3 and 3.4.1, when F p¨q is

unknown, for any fixed failure probability δ P p0, 1q, Algorithm 7 achieves at most rOpH3
?
K`

H2.5
b

K logN1{KpFqq regret with probability at least 1 ´ δ in the worst case, where rOp¨q

hides only absolute constants and logarithmic terms.

Proof. See Section 3.6.3 for a detailed proof.

We highlight that when N1{KpFq is polynomial in 1{K, an implicit assumption found

in Kong et al. [2021], Foster et al. [2021], Jin et al. [2021a], Theorem 3.4.2 shows that Al-
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gorithm 7 achieves rOp
?
Kq regret, improving over revenue regret guarantees found in Amin

et al. [2014], Golrezaei et al. [2019] with only mild additional assumptions on the nonpara-

metric hypothesis class F . Our result is able to beat the well-known ΩpK2{3q revenue lower

bound in Kleinberg and Leighton [2003] with the help of Assumptions 3.3.1 and 3.3.2 for

similar but not totally same scenarios to be fair. Nevertheless, as we argued previously,

these assumptions are satisfied by widely-used parametric distribution families such as nor-

mal distribution and truncated normal distribution [Golrezaei et al., 2019], hence our result

still remains broadly applicable. The way Kleinberg and Leighton [2003] constructs regret

lower bound is to find a special case containing no information. As they say "the expected

revenue per buyer is a constant independent of the offer price outside the interval of good

prices", it provides nothing useful for learning. However, with Theorem 3.3.1, it guarantees

the information in each exploration and partial out this extreme situation.

Finally, we highlight that both bounds in Sections 3.3 and 3.4 match corresponding lower

bounds with respect to K. From the Ωp
?
Kq lower bound in Jin et al. [2020b], we directly

know that results in Theorems 3.3.5 and 3.4.2 match corresponding regret lower bounds as

the problem in Jin et al. [2020b] is a subproblem of our problem.

3.5 Numerical Experiments

Here, we present numerical simulations to compare the performance of Algorithm 7 with

several baseline policies in different settings. To be specific, we compare the performances

of CLUB (i.e. Algorithm 7), SCORP [Golrezaei et al., 2019] and NPAC-S [Golrezaei et al.,

2023] in contextual bandit settings (i.e. H “ 1) and the performances of CLUB and NPAC-S

in MDP settings. In all experiments, we assume that the noise distribution F p¨q is unknown.

The numerical experiment written in Python 3.10.9 runs on a laptop with an Apple M2

CPU. All three algorithms use less than 30 seconds to calculate 10000 episodes which shows

their practicability in reality. We delay more details in Section 3.6.6.
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(a) The performance of CLUB
against the benchmark.

(b) The regret accumulation
of CLUB.

(c) The average performances
of three algorithms.

Figure 3.2: Experiment results for contextual bandit settings: Figure 3.2a compares the
revenue achieved by CLUB and benchmark, showing CLUB obtains more than 98% revenue.
Figure 3.2b shows the sublinear regret associated with our CLUB algorithm as the curve
trend is below linear. Figure 3.2c exhibits that CLUB is comparable with NPAC-S, over-
whelming SCORP.

In contextual bandit setting, we set K “ 10000, γ “ 0.9 for each setting and repeat the

procedure for n “ 30 trails for each algorithm. We show results in Figure 3.2. Figures 3.2a

and 3.2b show results in one trial, where we find that CLUB can obtain more than 98%

revenue compared with the benchmark, where the underlying model is common knowledge.

At the same time, Figure 3.2b testifies rOp
?
Kq-shaped regret. In Figure 3.2c, we show the

average regrets among all 30 trials of these three different algorithms. The average regrets

in 30 trials are 106.62, 178.96 and 99.69 respectively. As for the number of winning times,

CLUB wins 15 times while NPAC-S wins 14 times. SCORP only wins once. Therefore,

we conclude the performances of CLUB and NPAC-S are comparable, overwhelming the

performance of SCORP. Since SCORP doesn’t work well even in contextual bandit settings,

we only compare CLUB and NPAC-S under MDP.

In the MDP setting, we also incorporate K “ 10000, H “ 2, γ “ 0.9 and conduct

n “ 30 trails for both two algorithms. We show the corresponding results in Figure 3.3.

Our CLUB can obtain more than 98% revenue (c.f. Figure 3.3a) against the benchmark

which highlights its great performance. In Figure 3.3b, it’s clear to see the rOp
?
Kq-shaped

regret. Among all 30 trails, CLUB wins all 30 times. As for average regrets, it’s 203.07 for
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CLUB and 756.31 for NPAC-S. Therefore, we can conclude that under the MDP setting,

CLUB sufficiently works better than NPAC-S. Together with experiments under contextual

bandits, our experiments are in favor of CLUB algorithms which shows the importance of

our newly proposed techniques.

(a) The performance of CLUB
against the benchmark.

(b) The regret accumulation
of CLUB.

(c) The average performances
of two algorithms.

Figure 3.3: Experiment results for MDP settings: Figure 3.3a compares the revenue achieved
by CLUB and benchmark, showing CLUB obtains more than 98% revenue. Figure 3.3b
shows the sublinear regret associated with our CLUB algorithm as the curve trend is below
linear. Figure 3.3c exhibits that compared with NPAC-S, CLUB has less regret testifying
its optimality.

3.6 Technical Details

3.6.1 Detailed Comparison with Golrezaei et al. [2019]

There are three different models and corresponding algorithms named CORP, CORP-II and

SCORP respectively in Golrezaei et al. [2019]. We compare them with our model one by

one.

CORP considers a contextual bandit setting with known noise distribution achieving

rOp1q regret. However, as we mentioned before, accommodating underlying MDP, Ωp
?
Kq

regret lower bound is inevitable. In Section 3.3, we propose our optimal CLUB algorithm

matching the lower bound.

CORP-II considers an unknown but parametric noise distribution and achieves rOp
?
Kq
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regret. However, in Section 3.4, we consider an unknown and non-parametric noise distribu-

tion. Therefore, compared with the setting for CORP-II, our model is strictly much harder

for the following two-fold reasons. We need to consider extra MDP and non-parametric noise

distribution. Moreover, since CORP-II don’t have enough horizons to explore, it doesn’t work

well under our MDP setting and cannot achieve its original rOp
?
Kq regret.

SCORP considers time-varying and non-parametric noise distribution achieving rOpK2{3q

regret. We share the similarity that both of these settings can’t be parameterized, which

means that we lose the opportunity to utilize some concentration inequalities directly and we

need to bypass these obstacles to achieve sublinear regrets. There are two main differences

between our model and SCORP. First, the underlying MDP makes our problem harder than

the one of SCORP. Second, we consider fixed noise distribution and use a different benchmark

making these two models not comparable directly. As a result, our algorithm achieves

rOp
?
Kq regret with mild additional assumptions on the shape of F p¨q (c.f. Theorem 3.3.1

and 3.3.2). Although it is hard to compare the difficulties between our setting and SCORP

in strict order, we believe they have a similar degree of difficulty. As we mentioned in

Section 3.1.1, the work [Amin et al., 2014] explores a scenario with a non-parametric yet fixed

distribution setting, experiencing a regret of rOpK2{3q. This observation suggests that the

primary challenge might arise from the non-parametric nature of the problem, as opposed to

the time-varying setting. Moreover, we should highlight that an rOpK2{3q regret is inevitable

even though the distribution is fixed corresponding to a saddle point for SCORP, as they

spend “too many” episodes to explore while we don’t “waste” time to do pure exploration so

that balance the exploration-exploitation tradeoff better and achieve better regret bounds.

Objectively, our method will suffer ΩpK2{3q regret lower bound for a time-varying model

and it’s of independent interest for future research.
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3.6.2 Omitted Proof in Section 3.3

In this section, we show some useful lemmas in order to prove theorems in Section 3.3. We

organize the section as follows. Firstly, we introduce lemmas to bound the effect of untruthful

bidding. Then, we will show that we are able to estimate unknown parameters accurately.

Finally, combining them leads to bounded regret with high probability.

Useful Lemmas for Proving Theorem 3.3.5

Now, we begin to prove our conclusions. First of all, we show the following lemma to bound

the number of buffers.

Lemma 3.6.1. Under Theorem 3.2.1 about linear MDP, it holds that the number of episodes

of buffer is not larger than 3HC2 log
2K

log 1
γ

. Then, the number of corresponding steps is not larger

than 3H2C2 log
2K

log 1
γ

, where C2 is a constant only depends on d and λ.

Because of the existence of buffer, the bidder will not overbid or underbid a lot in the

other episodes. Then, we have the following lemma.

Lemma 3.6.2. Apart from the buffer periods, a rational bidder won’t overbid or underbid

for more than 3H
?
2N

K
?
1´γ

, denoted by C3H
K .

Then we define L being the number of steps the bidder doesn’t bid his true value and

change the outcome of the auction. Then, it holds the following lemma with the help of

Theorem 3.6.2. We formalize the definition of L for any given i, h as follows.

L “ tk : 1pvkihw ą maxtbk`
´ih, ρ

k
ihuq ‰ 1pbkih ą maxtbk`

´ih, ρ
k
ihuqu. (3.6.1)

Lemma 3.6.3. With probability at least 1 ´ δ, it holds that for any given i, h

L ď
3HC2 log

2K

log 1
γ

` 4C1C3H ` 8 logp
2NH

δ
q ď C4H log2K,
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where C4 is a constant independent of K and H.

Now, we bound the number of steps we use πrand instead of π
rk
. Especially, we regard

πrand as the policy used in the situation that happens with probability 1
KH .

Lemma 3.6.4. With probability at least 1 ´ δ, the number of steps using πrand is smaller

than maxt4, 1 ` 4
3 log

1
δ u.

Now, we will show the wedge between pµihp¨, ¨q and µihp¨, ¨q for any bidder i and step h.

It holds the following lemma.

Lemma 3.6.5. We use θ˚
ih to denote the true parameter and pθih to represent the outcome

from Equation (3.3.1) in episode buffer.eprkq. Therefore, under Theorem 3.3.1 and Theo-

rem 3.3.2, for any i and h, it holds the following union bound that C5 is a constant and

b

ppθih ´ θ˚
ihqTΛbuffer.eprkqppθih ´ θ˚

ihq ď C5

?
H logK,

with probability at least 1 ´ δ, conditional on Good Event E.

Then, we are ready to have the bound for pµ. It holds the following lemma:

Lemma 3.6.6. Conditional on Good Event E, it holds that

|pµkihp¨, ¨q ´ µkihp¨, ¨q| ď C5

?
H logK}ϕp¨, ¨q}

pΛ
buffer.eprkq

h q´1
,

where buffer.eprkq is the last episode using Equation (3.3.1) before episode k, similarly here-

inafter.

Now, we focus on the gap between Rp¨, ¨q and the estimate pRp¨, ¨q. We are ready to show

the following lemma.

First of all, we introduce some notations. Rk
hp¨, ¨q “

řN
i“1 Ermaxtrk´

ih , α
k˚
ih u1prkih ě

maxtrk´
ih , α

k˚
ih uqs and pRk

hp¨, ¨q “
řN

i“1 Ermaxtprk´
ih , α

k
ihu1pprkih ě maxtprk´

ih , α
k
ihuqs. In short,
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Rp¨, ¨q is the expectation of revenue if we choose the optimal reserve price αk˚
ih for every

bidder based on the knowledge of µkihp¨, ¨q and everyone bids truthfully based on his valuation.

Respectively, pRp¨, ¨q is the one we choose reserve price αkih with the estimation of µkihp¨, ¨q,

i.e., pµkihp¨, ¨q.

Lemma 3.6.7. When Theorem 3.6.6 holds, we have

|Rk
hp¨, ¨q ´ pRk

hp¨, ¨q| ď C6H log2K}ϕp¨, ¨q}
pΛ

buffer.eprkq

h q´1
,

where C6 is a constant independent of K and H.

Let’s have an example when N “ 1, i.e., there is only one bidder.

Example 3.6.8. In this situation, Rp¨, ¨q “ α˚p1 ´ F pα˚ ´ 1 ´ µp¨, ¨qqq and pRp¨, ¨q “ αp1 ´

F pα ´ 1 ´ pµp¨, ¨qqq. Therefore,

|Rp¨, ¨q ´ pRp¨, ¨q| ď p6C1 ` 1qC5

?
H logK}ϕp¨, ¨q}Λ´1 ,

which is consistent with Theorem 3.6.7.

Now, we focus on the regret not in buffer caused by Algorithm 5, denoted by ∆1. In

order to facilitate the understanding, we rewrite the definition of ∆1 explicitly as follows.

∆1 “

K
ÿ

τ“1

rV π˚

1 pxk1q ´ rV
π
rk

1 pxk1qs1pk R bufferq.

Let’s revisit our thought of bounding regret. We use empirical data to estimate unknown

parameters and then we assume that bidders will bid truthfully to construct the estimation

of R-function and Q-function. Then, we chase down the greedy policy. Therefore, when we

take expectation operator, we assume truthful bidding. Since ∆5 is easy to bound, we focus

on how to bound ∆1. With a little abuse of notation, we will use V p¨q to replace rV p¨q from

now on.
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Then, we have the following lemma.

Lemma 3.6.9. Under Theorem 3.2.1, Theorem 3.3.1 and Theorem 3.3.2, if in Algorithm 5

we set polyplogKq “ pC7`C6H log2Kq}ϕp¨, ¨q}
pΛ

buffer.eprkq

h q´1
, where C7 “ B8H

3
2 logK and

B8 is determined in Theorem 3.6.31, it holds that with probability at least 1 ´ 2δ,

∆1 ď C8

b

H5K log5K,

where C8 is a constant independent of H and K.

Proof of Theorem 3.3.5

Let’s make a decomposition of the regret at first. It holds that

Regret ď ∆1 ` ∆2 ` ∆3 ` ∆4 ` ∆5.

∆1 is defined in Theorem 3.6.9 and with probability at least 1´ 2δ, ∆1 ď C8

a

H5K log5K.

∆2 comes from the use of buffer. With Theorem 3.6.1, it holds that ∆2 ď 3H 3HC2 log
2K

log 1
γ

.

∆3 comes from the use of policy πrand. By applying Theorem 3.6.4, it holds that ∆3 ď

3Hmaxt4, 1 ` 4
3 log

1
δ u with probability at least 1 ´ δ.

∆4 comes from the consequence from the existence of L. Due to Theorem 3.6.3, we have

∆4 ď NHp4C1C3H ` 8 logp2NH
δ qq3H “ 3NH2p4C1C3H ` 8 logp2NH

δ qq, with probability at

least 1 ´ δ. As we have already considered loss from buffer in ∆2, there is no need for us to

consider it in ∆4.

∆5 comes from the difference between the expectation of revenue when buyers bid truth-

fully and the actual expectation of revenue when buyers overbid or underbid but it does

not change the outcome. Since we already consider the loss from buffer, the size of overbid

or underbid we should think about is less than C3H
K thanks to Theorem 3.6.2. Therefore,

the difference between the expectation of revenue when buyers bid truthfully and the actual
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expectation of revenue when buyers overbid or underbid but it does not change the outcome

is less than C3H
K each step. So, it holds that ∆5 ď C3H

2.

When estimating pRp¨, ¨q, we have at most probability δ not satisfying the inequality in

Theorem 3.6.5.

Consequently, we set δ “
p
5 , and it ends our proof.

3.6.3 Omitted Proof in Section 3.4

Compared to Section 3.6.2, this section introduces a well-performed estimator to estimate

underlying distribution. With the help of it, we prove corresponding the theorems when the

market noise distribution is unknown.

Useful Lemmas for Proving Theorem 3.4.2

In order to estimate noise distribution, we have the following lemma [Dvoretzky et al., 1956]

to bound the gap between true distribution and empirical distribution. We assume that pF p¨q

and pfp¨q inherit all the properties of F p¨q and fp¨q, because we can easily use some smooth

kernels4 to achieve this goal. However, in order to make the paper easy to understand, we

do not explicitly write down the choice of smooth kernel.

Lemma 3.6.10. Given t P N, let m1,m2, . . . ,mt be real-valued independent and identically

distributed random variables with cumulative distribution function F p¨q. Let pFtp¨q denote the

associated empirical distribution function defined by pFtpxq “ 1
t

řt
i“1 1tmiďxu where x P R.

Then with probability 1 ´ δ, it holds

sup
x

| pFtpxq ´ F pxq| ď

c

1

2
log

2

δ
t´

1
2 .

4. It may introduce a constant 2 when describing the distance of two distributions. However, it doesn’t
matter as we consider order only.
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Now, similar to the methodology in Section 3.6.2, we state the following lemmas parallelly.

Lemma 3.6.11. Under Theorem 3.2.1 about linear MDP, it holds that the number of

episodes of buffer is not larger than C9H log2K. Then, the number of corresponding steps

is not larger than C9H
2 log2K, where C9 is a constant that only depends on d and λ.

Recall that when market noise distribution is unknown, we implement Algorithm 8 to

generate rq and we use rq to estimate θ instead of q. Therefore, L there considers simulation

outcome rq rather than real outcome q. We formalize the definition of L there as follows and

we use rρ to represent reserve price in Algorithm 8.

L “ tk : 1pvkih ą maxtbk`
´ih, rρ

k
ihuq ‰ 1pbkih ą maxtbk`

´ih, rρ
k
ihuqu.

L “ tk : 1pvkih ą maxtbk`
´ih, rρ

k
ihuq ‰ 1pbkih ą maxtbk`

´ih, rρ
k
ihuqu. (3.6.2)

Lemma 3.6.12. With probability at least 1 ´ δ, it holds that for any given i, h

L ď C9H log2K ` 4C1C3H ` 8 logp
2NH

δ
q ď C10H log2K,

where C3 is defined in Theorem 3.6.2 and C10 is a constant independent of K and H.

Lemma 3.6.13. We use θ˚
ih to denote the true parameter and pθih to represent the out-

come from Equation (3.4.1) in episode buffer.eprkq. Therefore, under Theorem 3.3.1 and

Theorem 3.3.2, for any i and h, it holds the following union bound that C11 is a constant

and
b

ppθih ´ θ˚
ihqTΛbuffer.eprkqppθih ´ θ˚

ihq ď C11

?
H logK,

with probability at least 1 ´ δ, conditional on Good Event E.

As same as Theorem 3.6.6, we have the following lemma.
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Lemma 3.6.14. Conditional on Good Event E, it holds that

|pµkihp¨, ¨q ´ µkihp¨, ¨q| ď C11

?
H logK}ϕp¨, ¨q}

pΛ
buffer.eprkq

h q´1
.

Now, we introduce a lemma bounding the gap between the noise distribution F p¨q and

pF p¨q.

Lemma 3.6.15. Conditional on Good Event E, it holds with probability at least 1 ´ δ that

for any x in episode buffer.eprkq

|F pxq ´ pF pxq| ď

c

1

2
log

2K

δ
pNHbuffer.eprkqq

´1
2 `

C1C3H

K
`
C9H log2K

buffer.eprkq

` C1C11

?
H logK}ϕpxτh, υ

τ
hq}

pΛ
buffer.eprkq

h q´1

ďC12
H log2K

b

buffer.eprkq

,

where C12 is a constant.

Now, we begin to bound the wedge of Rp¨, ¨q and pRp¨, ¨q corresponding to pF p¨q. It holds

the following lemma.

Lemma 3.6.16. Conditional on Good Event E, we have

|Rk
hp¨, ¨q ´ pRk

hp¨, ¨q| ď C13H log2K}ϕp¨, ¨q}
pΛ

buffer.eprkq

h q´1
` C14

H2 log4K
b

buffer.eprkq

,

where C13 and C14 are constants independent of K and H.

We define ∆1 as the one in Theorem 3.6.9 of Section 3.6.2.

Lemma 3.6.17. Under Theorem 3.2.1, Theorem 3.3.1 Theorem 3.3.2 and Theorem 3.4.1, if

we set poly1plogKq “ C15`C13H log2K and poly2plogKq “ C14H
2 log4K in Algorithm 9,
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where C15 “ D7H
3
2 and D7 is determined in Theorem 3.6.39, it holds that with probability

at least 1 ´ 2δ,

∆1 À rOpH3
?
Kq.

Proof of Theorem 3.4.2

It is similar to the proof of Theorem 3.3.5. The only difference comes from Theorem 3.6.15.

The probability of Bad Event Ec is now less than 6δ. Then, we set δ “
p
6 and it ends the

proof.

3.6.4 Auxiliary Lemmas and Proofs in Section 3.6.2

In this section, we prove the lemmas mentioned in Section 3.6.2 detailedly. It is organized

by the order of lemmas.

Proof of Theorem 3.6.1

First of all, we have the following lemmas.

Lemma 3.6.18 (Lemma 2, [Gao et al., 2021]). Assume m ď n, A “
řm

τ“1 ϕτϕ
T
τ ` λI.

B “
řn

τ“1 ϕτϕ
T
τ ` λI, where ϕτ is abridge for ϕpxτ , υτ q, similarly hereinafter. Then if

A´1 ć 2B´1, we have

log detB ě log detA ` log 2.

Lemma 3.6.19 (Lemma 1, [Gao et al., 2021]). Since }ϕτ } ď 1. Let A “
řK

τ“1 ϕτϕ
T
τ ` λI,

then we have

log detA ď d log d ` d logpK ` λq ď K1 logK.

Therefore, if we have 2pΛbuffer.sprk`1qq
´1

ń pΛbuffer.eprkqq´1, as well as buffer.eprk `

1q ě buffer.sprk ` 1q, it holds that 2pΛbuffer.eprk`1qq´1 ń pΛbuffer.eprkqq´1. We can then
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control the matrices’ determinants and have detΛbuffer.eprk`1q ě 2 detΛbuffer.eprkq. Then,

using Theorem 3.6.18, we know that for any h and k, it holds log det Λk
h ď K1 logK. We

have log det Λ0
h “ d log λ. Combining Theorem 3.6.18, we have that the number of episodes

of buffer for any h is not larger than 3 logK
log 1

γ

K1 logK´d log λ
log 2 . Then, there is a constant C2

satisfying K1 logK ´ d log λ ď C2 log 2 logK. Therefore, the total episodes in buffer is not

larger than 3HC2 log
2K

log 1
γ

. For the number of total steps, it is obvious that it is smaller than

H times the number of episodes. Then, it ends the proof.

Proof of Theorem 3.6.2

Myerson [1981] shows that the optimal strategy for one-round second-price auction is to bid

truthfully. Therefore, if a bidder overbids or underbids for more than 3H
?
2N

K
?
1´γ

, his loss holds

that

Loss ě
1

NHK

β

2K

1

3

β

K
“

3H

K3p1 ´ γq
,

where β “
3H

?
2N?

1´γ
.

The inequality holds since that with probability 1
KHN , the policy will be πrand and the

bidder is selected, and the total loss is higher than the loss with policy πrand. With a uniform

reserve price, the probability that loss happens is β
3K . Then, average loss is β

2K . Since the

existence of buffer, the overbid or underbid can only make an influence on policy t “
3 logK
log 1

γ

episodes later. Because of the existence of discount rate, an upper bound of revenue for each

buyer after t episodes is γt

1´γ3H “ 3H
K3p1´γq

.

Therefore, with the assumption that buyers are all rational, it finishes the proof.
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Proof of Theorem 3.6.3

For convenience, similar to Golrezaei et al. [2019], we define

Li “ tt : t P r0, Ks and 1pvti ě mt
iq ‰ 1pbti ě mt

iqu,

for each buyer i.

We define oti “ pbti ´ vtiq` and sti “ pvti ´ btiq`, where t “ 1, . . . , K given h. When we can

determine the subscript through the context, we omit the subscript h for convenience.

Then we define qti which is a binary variable. It equals one if buyer i wins and zero if

loses. Therefore, we have Si “ tt : t P r1, Ks, qti “ 0 and sti ě αu and Oi “ tt : qti “

1 and oti ě αu. As a result, Li “ Lsi
Ť

Loi , where Lsi “ tt : 1pvti ě rtiq “ 1,1pbti ě rtiq “ 0u

and Loi “ tt : 1pvti ě rtiq “ 0,1pbti ě rtiq “ 1u. Finally, we have Sci “ tt : qti “ 1 or sti ď αu.

So, |Lsi | “ |Si
Ş

Lsi | ` |Sci
Ş

Lsi |.

To bound |pSi
Ş

Lsi q
Ť

pOi
Ş

Loi q|: using Theorem 3.6.1 and Theorem 3.6.2, we have that

if we set α “ C3
H
K , it is bounded by 3HC2 log

2K
log 1

γ

.

To bound |Sci
Ş

Lsi |: it means that underbid changes the outcome and the level of un-

derbid is smaller than α. Since |f | ď C1, it holds for origin x:

Prpt P Sci
č

Lsi |Ftq ď

ż x`α

x
fpzqdz ď C1α.

Let’s define ξt “ 1pt P Sci
Ş

Lsi q while ωt “ Prpt P Sci
Ş

Lsi |Ftq. Then |Sci
Ş

Lsi | “
řK

t“1 ξt

and Epξt ´ ωt |Ftq “ 0.

Using Azuma-Hoeffding inequality [Hoeffding, 1994], it holds that

Prp|Sci
č

Lsi | ě
1 ` ι

1 ´ ϵ

K
ÿ

1

ωtq ď expp´ϵι
K
ÿ

1

ωtq.
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Let A “
řK

1 ωt ď KC1α, ϵ “ 1
2 and ι “ 2

A logp2NH
δ q, we have

|Sci
č

Lsi | ď 2p1 ` ιqA ď 2KC1α ` 4 logp
2NH

δ
q,

with probability at least 1 ´ δ
2NH .

Similarly, we bound |Oc
i

Ş

Loi | with the same bound that

|Oc
i

č

Loi | ď 2KC1α ` 4 logp
2NH

δ
q,

with probability at least 1 ´ δ
2NH .

Then, we set α “
C3H
K and combine the items all to obtain

|Li| ď
3HC2 log

2K

log 1
γ

` 4C1C3H ` 8 logp
2NH

δ
q,

with probability at least 1 ´ δ
NH .

With the same methodology, we obtain the union bound for any given i and h with

probability at least 1 ´ δ that

L ď
3HC2 log

2K

log 1
γ

` 4C1C3H ` 8 logp
2NH

δ
q,

and it finishes the proof.

Proof of Theorem 3.6.4

We use random variables X1, . . . , XKH to represent whether πrand is used. If we choose

policy πrand, then X “ 1, or X “ 0 otherwise.
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Using Bernstein inequalities [Bernstein, 1924], it holds that

Prp
KH
ÿ

i“1

Xi ´ KH
1

KH
ě tq ď expt

´t2{2

p1 ´ 1{KHq ` t{3
u,

since X ´ 1
KH has mean zero and VarpXq “ 1

KH p1 ´ 1
KH q.

Therefore, set t “ maxt3, 43 log
1
δ u, the right side is smaller than δ and it finishes the

proof.

Proof of Theorem 3.6.5

First of all, we omit subscripts i and h for convenience and we will get the union bound in

the end.

Then, we introduce some notations. We use rqτ to represent the outcome that every

bidder bids truthfully and pqτ to represent the outcome with real bidding. Then pθ and rθ

correspond to tpqτ u and trqτ u.

Now, we focus on buyer i and step h, so we omit subscripts i and h from now on. We

have the following lemma at first:

Lemma 3.6.20. Under Equation (3.3.1), it holds that

buffer.eprkq
ÿ

τ“1

prqτ ´ 1`F pmτ ´ 1´ xϕτ , pθyqq
2

ď

buffer.eprkq
ÿ

τ“1

prqτ ´ 1`F pmτ ´ 1´ xϕτ , θ
˚
yqq

2
` 6L,

where L ď C4H log2K due to Theorem 3.6.3.

Proof of Theorem 3.6.20 Since there are at most L steps that overbid or underbid

changes the outcome, pqτ and rqτ differ in at most L different points. Since rqτ and pqτ belong

to t0, 1u, we have
buffer.eprkq

ÿ

τ“1

ppqτ ´ 1q
2

ď

buffer.eprkq
ÿ

τ“1

prqτ ´ 1q
2

` L.
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Then, since F p¨q P r0, 1s, it holds that

´2
ÿ

τ

p1 ´ pqτ qF pmτ ´ 1 ´ xϕτ , θyq ď ´2
ÿ

τ

p1 ´ rqτ qF pmτ ´ 1 ´ xϕτ , θyq ` 2L.

for any θ.

Therefore, it holds that

ÿ

τ

prqτ ´ 1 ` F pmτ ´ 1 ´ xϕτ , θyqq
2

ď
ÿ

τ

ppqτ ´ 1 ` F pmτ ´ 1 ´ xϕτ , θyqq
2

` 3L, (3.6.3)

for any θ.

Finally, with the optimality of pθ and rθ, it holds that

ÿ

τ

prqτ ´ 1 ` F pmτ ´ 1 ´ xϕτ , pθyqq
2

ď
ÿ

τ

ppqτ ´ 1 ` F pmτ ´ 1 ´ xϕτ , pθyqq
2

` 3L

ď
ÿ

τ

ppqτ ´ 1 ` F pmτ ´ 1 ´ xϕτ , rθyqq
2

` 3L

ď
ÿ

τ

prqτ ´ 1 ` F pmτ ´ 1 ´ xϕτ , rθyqq
2

` 6L

ď
ÿ

τ

prqτ ´ 1 ` F pmτ ´ 1 ´ xϕτ , θ
˚
yqq

2
` 6L.

The first and third inequalities hold due to (3.6.3). The second and last inequalities hold

because of the optimality of pθ and rθ. Then, it finishes the proof.

Then we use fmτ pxϕτ , θyq to represent F pmτ ´ 1 ´ xϕτ , θyq in shorthand.

Therefore, with Theorem 3.6.20, we have

ÿ

τ

rfmτ pxϕτ , pθyq ´ fmτ pxϕτ , θ
˚
yqs ď 2|

ÿ

τ

ξτ pfmτ pxϕτ , pθyq ´ fmτ pxϕτ , θ
˚
yqq| ` 6L,

where ξτ “ p1´ rqτ q ´ fmτ pxϕτ , θ
˚yq. The inequality holds because of simple rearrangement.
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Then, we have

fmτ pxϕτ , pθyq ´ fmτ pxϕτ , θ
˚
yq “

ż xϕτ ,pθy

xϕτ ,θ˚y

f 1
mτ

psqds

“ xϕτ , pθ ´ θ˚
y

ż 1

0
f 1
mτ

pxϕτ , spθ ` p1 ´ sqθ˚
yqds

“ xϕτ , pθ ´ θ˚
yDτ ,

where Dτ “
ş1
0 f

1
mτ

pxϕτ , spθ ` p1 ´ sqθ˚yqds.

So, it holds that

ÿ

τ

D2
τ pxϕτ , pθ ´ θ˚

yq
2

ď 2|
ÿ

τ

ξτDτ xϕτ , pθ ´ θ˚
y| ` 6L.

Since }θ} ď
?
d, we use Vϵ which is a set of ball with radius ϵ to cover Bp0,

?
dqˆBp0,

?
dq.

Then, the cardinality of Vϵ is smaller than B1p

?
d
ϵ q2d “

B2
ϵ2d

, where B1 and B2 are constants

only depending on dimension d. Thanks to Theorem 3.3.1 and Theorem 3.3.2, we have

|f2| ď L and |Dτ | ď C1.

Therefore, for any ppθ, θ˚q, there exists pθ, θ1q, which is the center of a ball in Vϵ, so that

}ppθ, θ˚q ´ pθ, θ1q} ď ϵ. In this way, it holds that

|xϕτ , Dτ pθ, θ1
qpθ ´ θ1

q ´ Dτ ppθ, θ˚
qppθ ´ θ˚

qy|

ď2
?
d|Dτ pθ, θ1

q ´ Dτ ppθ, θ˚
q| ` |Dτ |p}θ ´ pθ} ` }θ1

´ θ˚
}q

ď2L
?
dϵ ` C1ϵ

ďp2L
?
d ` C1qϵ.

The first inequality holds since }θ} ď
?
d. The second inequality holds since |f2| ď L and

|Dτ | ď C1.
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Therefore, it holds that

}
ÿ

τ

ξτ xϕτ , Dτ ppθ, θ˚
qppθ ´ θ˚

q} ď }
ÿ

τ

ξτ xϕτ , Dτ pθ, θ1
qpθ ´ θ1

q} ` p2L
?
d ` C1qbuffer.eprkqϵ,

since |ξτ | ď 1.

Let’s define the following shorthands

V pϕq “
ÿ

τ

xϕt, Dτ pθ ´ θ1
qy
2,

V ppϕq “
ÿ

τ

xϕt, Dτ ppθ ´ θ˚
qy
2.

Therefore, by applying the inequality above, we have

V pϕq ď V ppϕq ` 4C1

?
dp2L

?
d ` C1qbuffer.eprkqϵ. (3.6.4)

The inequality holds because of the square difference formula.

Since for positive number a b and c, if a ď b ` c, than
?
a ď

?
b `

?
c. So, it holds that

a

V pϕq ď

b

V ppϕq `

b

4C1

?
dp2L

?
d ` C1qbuffer.eprkqϵ. (3.6.5)

Since θ˚ is the true parameter and ξτ “ p1 ´ rqτ q ´ fmτ pxϕτ , θ
˚yq which is determined by

truthful bid, it holds Epξτ |ϕ1:τ , ξ1:τ´1q “ 0 whose value is determined by zτ only. Due to

Azuma-Hoeffding inequality [Hoeffding, 1994], it holds that

Prr|
ÿ

τ

ξτDτ xϕτ , θ ´ θ1
y| ě

c

log
2B2HN

δϵ2d
V pϕqs ď

δ

HN
, (3.6.6)

for any pθ, θ1q with probability at least 1 ´ δ
HN .
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Therefore, it holds that

V ppϕq ď4C1

?
dp2L

?
d ` C1qbuffer.eprkqϵ ` V pϕq

ď4C1

?
dp2L

?
d ` C1qbuffer.eprkqϵ ` 2

c

log
2B2HN

δϵ2d
V pϕq ` 6L

ď4C1

?
dp2L

?
d ` C1qbuffer.eprkqϵ ` 2

c

log
2B2HN

δϵ2d

“

b

V ppϕq

`

b

4C1

?
dp2L

?
d ` C1qbuffer.eprkqϵ

‰

` 6L

“4C1

?
dp2L

?
d ` C1q ` 2

d

log
2B2HNbuffer.eprkq2d

δ

“

b

V ppϕq

`

b

4C1

?
dp2L

?
d ` C1q

‰

` 6L

ď4C1

?
dp2L

?
d ` C1q ` 2

d

log
2B2HNbuffer.eprkq2d

δ

“

b

V ppϕq

`

b

4C1

?
dp2L

?
d ` C1q

‰

` 6C4H log2K.

The first inequality holds due to (3.6.4) while the second one holds due to (3.6.6) and (3.6.20).

The third inequality holds because of (3.6.5). The equality holds since we set ϵ “ 1
buffer.eprkq

.

The final inequality holds because of Theorem 3.6.3.

Finally, applying the root formula of the quadratic equation, it is obvious that there

exists a constant B3 ą 0 that V ppϕq ď B3H log2K.

Similar to Wang et al. [2020c], we have

b

ppθih ´ θ˚
ihqTΛbuffer.eprkqppθih ´ θ˚

ihq ď c´1
1

b

V ppϕq ` 2
?
dλ,

for any i and h with probability at least 1 ´ δ.

It holds since

b

ppθ ´ θ˚qTΛbuffer.eprkqppθ ´ θ˚q ď

c

ppθ ´ θ˚qT p
ÿ

τ

ϕτϕTτ qppθ ´ θ˚q`

b

ppθ ´ θ˚qT pλIqppθ ´ θ˚q.
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Then, we have D2
τ ě c21 and }ppθih ´ θ˚

ihq}λI ď 2
?
dλ.

In the end, we find that there exists a constant C5 that satisfies

b

ppθih ´ θ˚
ihqTΛbuffer.eprkqppθih ´ θ˚

ihq ď C5

?
H logK,

which ends the proof.

Proof of Theorem 3.6.6

Using Cauchy inequality, we have the following statement:

Lemma 3.6.21. It holds that

|xϕpx, vq, pθ ´ θy| ď

b

ppθ ´ θqTΛppθ ´ θq}ϕpx, vq}Λ´1 .

Specially, taking Λ “ Λ
buffer.eprkq

h “
řbuffer.eprkq

τ“1 ϕpxτh, υ
τ
hqϕpxτh, υ

τ
hqT ` λI, the inequality

holds.

Then Theorem 3.6.21 and Theorem 3.6.5 lead to Theorem 3.6.6.

Proof of Theorem 3.6.7

Firstly, we define rRk
hp¨, ¨q “

řN
i“1 Ermaxtrk´

ih , α
k
ihu1prkih ě maxtrk´

ih , α
k
ihqs. Then, |Rk

hp¨, ¨q´

pRk
hp¨, ¨q| ď |Rk

hp¨, ¨q ´ rRk
hp¨, ¨q| ` | rRk

hp¨, ¨q ´ pRk
hp¨, ¨q|.
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To bound | rRk
hp¨, ¨q ´ pRk

hp¨, ¨q|, we have

| rRk
hp¨, ¨q ´ pRk

hp¨, ¨q| ď

N
ÿ

i“1

E|rmaxtrk´
ih , α

k
ihu1prkih ě maxtrk´

ih , α
k
ihqs

´ rmaxtprk´
ih , α

k
ihu1pprkih ě maxtprk´

ih , α
k
ihqs|

ď

N
ÿ

i“1

∆1 ` ∆2 ` ∆3

ď p1 ` 6C1qNC5

?
H logK}ϕp¨, ¨q}

pΛ
buffer.eprkq

h q´1
,

where

∆1 “|rmaxtrk´
ih , α

k
ihu1prkih ě maxtrk´

ih , α
k
ihuqs

´ rmaxtprk´
ih , α

k
ihu1prkih ě maxtrk´

ih , α
k
ihuqs|,

∆2 “|rmaxtprk´
ih , α

k
ihu1prkih ě maxtrk´

ih , α
k
ihuqs

´ rmaxtprk´
ih , α

k
ihu1pprkih ě maxtrk´

ih , α
k
ihuqs|

and

∆3 “|rmaxtprk´
ih , α

k
ihu1pprkih ě maxtrk´

ih , α
k
ihuqs

´ rmaxtprk´
ih , α

k
ihu1pprkih ě maxtprk´

ih , α
k
ihuqs|.

The first inequality holds due to the properties of convex functions. The second inequality

holds due to triangle inequality. The third inequality holds since ∆1 ď |maxtrk´
ih , α

k
ihu ´

maxtprk´
ih , α

k
ihu| ď |r´pr|, ∆2 ď 3C1|r´pr| and ∆3 ď 3C1|r´pr|. The reason why ∆2 ď 3C1|r´

pr| is maxtpr, αu ď 3 and E|1prkih ě maxtrk´
ih , α

k
ihuq ´ 1pprkih ě maxtrk´

ih , α
k
ihuq| ď C1|r ´ pr|.

To bound |Rk
hp¨, ¨q ´ rRk

hp¨, ¨q|, we have the following lemmas. We define W k
ihpαq “
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Ermaxtvk´
ih , αu1pvkih ě maxtvk´

ih , αuq |ϕkhs at first.

Lemma 3.6.22 (Lemma C.3. [Golrezaei et al., 2019]). Since αk˚
ih is determined by Myerson

Lemma [Myerson, 1981], we have W
1k
ihpαk˚

ih q “ 0. Furthermore, there exists a constant

B4 that for any α between αkih and αk˚
ih , we have |W

2k
ih pαq| ď B4 for any i and h, under

assumption Theorem 3.3.1, Theorem 3.3.2 and Theorem 3.3.3.

Lemma 3.6.23 (Lemma C.4. [Golrezaei et al., 2019]). Under Theorem 3.3.3, it holds that

|αk˚
ih ´ αkih| ď |xϕkh, θih ´ pθihy|.

By applying Theorem 3.6.23, we have

|Rk
hp¨, ¨q ´ rRk

hp¨, ¨q| ď

N
ÿ

i“1

B4

2
pαk˚

ih ´ αkihq
2

ď N
B4

2
pxϕkh, θih ´ pθihyq

2

ď N
B4

2
C2
5H log2K}ϕp¨, ¨q}

2

pΛ
buffer.eprkq

h q´1

ď N
B4

2
C2
5H log2K}ϕp¨, ¨q}

pΛ
buffer.eprkq

h q´1

1
?
λ
.

The first inequality holds due to Taylor expansion. The second inequality holds due to

Theorem 3.6.23, while the third one holds due to Theorem 3.6.6. The last inequality holds

since }ϕ}Λ´1 ď 1
λ .

Remark 3.6.24. Without Theorem 3.3.3, we can get the last inequality from the integral

form of Rp¨, ¨q. For example, when N “ 1, it holds that Rp¨, ¨q “ αp1 ´ F pα ´ 1 ´ xϕ, θyqq.

Then, |R´ rR| ď 3C1|xθ´pθ, ϕy| due to Theorem 3.3.1. It shows that Theorem 3.3.3 is actually

redundant as Theorem 3.3.1 exists.
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Combining the differences | rRk
hp¨, ¨q ´ pRk

hp¨, ¨q| and |Rk
hp¨, ¨q ´ rRk

hp¨, ¨q|, it holds that

|Rk
hp¨, ¨q ´ pRk

hp¨, ¨q| ď rp1 ` 6C1qC5

?
H logK `

B4

2
?
λ
C2
5H log2KsN}ϕp¨, ¨q}

pΛ
buffer.eprkq

h q´1
.

Therefore, there exists a constant C6 which is independent of H and K, satisfying

|Rk
hp¨, ¨q ´ pRk

hp¨, ¨q| ď C6H log2K}ϕp¨, ¨q}
pΛ

buffer.eprkq

h q´1
,

and it ends the proof.

Proof of Theorem 3.6.9

In order to prove Theorem 3.6.9, we have the following lemmas for help.

Lemma 3.6.25. For any fixed policy π, let tωπhuhPrHs be the corresponding vectors such that

Qπ
hp¨, ¨q “ Rp¨, ¨q ` xϕp¨, ¨q, ωπhy for any h. Then, it holds that

}ωπh} ď 3H
?
d,

for any h.

Proof. Since it holds

Qπ
hp¨, ¨q “ pR ` PhV π

h`1qp¨.¨q,

and the linearity of MDP, we have

ωπh “

ż

V π
h`1p¨qdMhp¨q.

Therefore, considering |V | ď 3H and }MhpSq} ď
?
d, Theorem 3.6.25 holds.
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Lemma 3.6.26. For any pk, hq P rKsˆrHs, the vector ωbuffer.eprkq

h in Algorithm 5 satisfies:

}ω
buffer.eprkq

h } “ }ωkh} ď 3H

d

dbuffer.eprkq

λ
ď 3H

c

dk

λ
.

Proof. Since we only update at episode buffer.eprkq, ωkh is the same as ωbuffer.eprkq

h .

For any vector ν P Rd, we have

|νTω
buffer.eprkq

h | “ |νT pΛ
buffer.eprkq

k q
´1

buffer.eprkq
ÿ

τ“1

ϕτhmax
a

Qh`1p¨, ¨q|

ď
ÿ

τ

3H|νT pΛ
buffer.eprkq

k q
´1ϕτh|

ď 3H

d

r
ÿ

τ

νT pΛ
buffer.eprkq

k q´1νsr
ÿ

τ

pϕτhqpΛ
buffer.eprkq

k q´1ϕτhs

ď 3H}ν}

d

dbuffer.eprkq

λ
.

The first inequality holds since Q ď 3H, while the second inequality holds due to Cauchy

inequality. The third inequality holds since pΛ
buffer.eprkq

k q´1 ĺ 1
λI and the following lemma.

Lemma 3.6.27 (Lemma D.1. [Jin et al., 2020b]). Let Λbuffer.eprkq “ λI`
řbuffer.eprkq

τ“1 ϕτϕ
T
τ

where ϕτ P Rd and λ ą 0. Then it holds

buffer.eprkq
ÿ

τ“1

ϕTτ pΛbuffer.eprkq
q
´1ϕτ ď d.

Thus, with }ω
buffer.eprkq

h } “ maxν:}ν}“1 |νTω
buffer.eprkq

h |, it ends the proof.

In order to prove the next lemma, we introduce two useful lemmas at first.

Lemma 3.6.28. For any given h, suppose txτ u8
τ“1 being a stochastic process on state space
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S with corresponding filtration tFτ u8
τ“0. Let tϕτ u8

τ“1 be an Rd-valued stochastic process

when ϕτ P Fτ´1. Since }ϕτ } ď 1 and Λ
buffer.eprkq

“ λI `
řbuffer.eprkq

τ“1 ϕτϕ
T
τ , then for any

δ, with probability at least 1 ´ δ, for any k corresponding to buffer.eprkq and any V P V so

that supx |V pxq| ď 3H, we have

}

k
ÿ

τ“1

ϕτ tV pxτ q ´ ErV pxτ q |Fτ´1su}
2
Λ´1

buffer.eprkq

ď
54C2H

3 log2K

λ log 1
γ

`
32k2ϵ2

λ

` 144H2
r
d

2
log

k ` λ

λ
` log

Nϵ

δ
s,

where Nϵ is the ϵ-covering number of V with respect to the distance distpV, V 1q “ supxpV pxq´

V 1pxqq.

Proof. First of all, we have

}

k
ÿ

τ“1

ϕτ tV pxτ q ´ ErV pxτ q |Fτ´1su}
2
Λ´1

buffer.eprkq

ď2 ˆ 2}

k
ÿ

τ“1

ϕτ tV pxτ q ´ ErV pxτ q |Fτ´1su1tk R bufferu}
2
Λ´1
k

` 2 ˆ 3H
1

λ
3H

3HC2 log
2K

log 1
γ

ď4}

k
ÿ

τ“1

ϕτ tV pxτ q ´ ErV pxτ q |Fτ´1su}
2
Λ´1
k

`
54C2H

3 log2K

λ log 1
γ

.

Firstly, we have pa ` bq2 ď 2a2 ` 2b2. Then, it holds since we divide the episodes into

two parts, the ones in buffer and the ones not. For the ones in buffer, due to the def-

inition of buffer.eprkq, it is easy to prove that it is smaller than 4}
řk

τ“1 ϕτ tV pxτ q ´

ErV pxτ q |Fτ´1su1tk R bufferu}2
Λ´1
k

. As for the one not in buffer, 54C2H
3 log2K

λ log 1
γ

is a trivial

bound due to Theorem 3.6.1 and V p¨q ď 3H.

Therefore, with Lemma D.4. in Jin et al. [2020b], we simply replace its H with our upper

bound of V p¨q, i.e., 3H, and it finishes our proof.

Lemma 3.6.29. Let V denote a class of functions mapping from S to R with the following
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parametric form

V p¨q “ mintmax
a

ωTϕp¨, υq ` pRp¨, υq ` β}ϕp¨, υq}Λ´1 , 3Hu,

where }ω} ď L, β P r0, Bs and the minimum eigenvalue satisfies λminpΛq ě λ. Suppose

}ϕp¨, ¨q} ď 1 and let Nϵ be the ϵ-covering number of V with respect to the distance distpV, V 1q “

supx |V pxq ´ V 1pxq|. Then, it holds

logNϵ ď d logp1 `
8L

ϵ
q ` d2 logp1 `

32
?
dB2

λϵ2
q ` dN logp1 `

8NB5

?
d

ϵ
q,

where B5 is a constant.

Proof. Due to Lemma D.6. in Jin et al. [2020b], it holds that

distpV1, V2q ď }ω1 ´ ω2} `
a

}A1 ´ A2}F ` sup
x,υ

| pR1px, υq ´ pR2px, υq|,

where A “ β2Λ´1. Let Cω be an ϵ
4 -cover of tω P Rd | }ω} ď Lu, and then it holds |Cω| ď

p1 ` 8L
ϵ qd. Similarly, for ϵ2

16 -cover for tAu, we have |CA| ď r1 ` 32B2
?
d

λϵ2
sd

2
.

Now, in order to bound the covering number corresponding to pRpx, υq, we show that it

links to tpθiu
N
i“1 first. As pRp¨, ¨q is function of tpµiu

N
i“1 and F p¨q is differentiable with |f | ď C1,

it holds that B pR
Bµi

ď B5 for any i, where B5 is a constant. B5 is bounded since µi P r0, 1s and

the interval r0, 1s is compact. Therefore, since pµ “ xϕ, pθy, it holds that

sup
x,υ

| pR1px, υq ´ pR2px, υq| ď sup
ϕ:}ϕ}ď1

N
ÿ

i“1

B5|ppθ1i ´ pθ2iq
Tϕ|

ď

N
ÿ

i“1

B5}pθ1i ´ pθ2i}.
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Therefore, it holds that combining ϵ
2NB5

-cover for pθi,

|C
pR

| ď p1 `
8NB5

?
d

ϵ
q
dN .

Then, it finishes the proof.

Now, with lemmas prepared, we have the following lemma.

Lemma 3.6.30. For any δ, with probability at least 1´ δ, there exists constants B6 and B7

independent of K and H so that

@pk, hq P rKs ˆ rHs : }

k
ÿ

τ“1

ϕτhrpV k
h`1pxτh`1q ´ PpV k

h`1pxτh, υ
τ
hqs}

2

pΛ
buffer.eprkq

h q
´1

ď B6H
3 log2K ` B7H

2 logC7.

Proof. Combining Theorem 3.6.26, Theorem 3.6.28 and Theorem 3.6.29, we set L “ 3H
b

dk
λ .

With Algorithm 5, we have B “ C7 ` C6H log2K. Then we have

}

k
ÿ

τ“1

ϕτhrpV k
h`1pxτh`1q ´ PpV k

h`1pxτh, υ
τ
hqs}

2

pΛ
buffer.eprkq

h q
´1

ď
54C2H

3 log2K

λ log 1
γ

` 72dH2 log
k ` λ

λ
` 144H2d logp1 `

24H

ϵ

c

dk

λ
q ` 144H2 log

KH

δ

` 144H2d2 logr1 `
32

?
dpC7 ` C6H log2Kq2

λϵ2
s ` 144H2dN logp1 `

8NB5

?
d

ϵ
q `

32k2ϵ2

λ
.

Therefore, by setting λ “ 1 and ϵ “ dH
k , then we have the right side of the inequality is

OpH3 log2K ` H2 logC7q and it finishes our proof.

Now, let’s show the determination of C7.

Lemma 3.6.31. There exist a constant B8 so that C7 “ B8H
3
2 logK, and for any fixed

policy π, on Good Event E, i.e., all inequalities hold, we have for all px, υ, h, kq P S ˆ Υ ˆ
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rHs ˆ rKs that:

xϕp¨, ¨q, ωkhy ` pRk
hp¨, ¨q ´ Qπ

hp¨, ¨q “ PhppV k
h`1 ´ V π

h`1qp¨, ¨q ` ∆k
hp¨, ¨q,

where ∆k
hp¨, ¨q ď pC7 ` C6H log2Kq}ϕp¨, ¨q}

pΛ
buffer.eprkq

h q´1
.

Proof. Due to Bellman equation, we know that for any px, υ, hq P S ˆ Υ ˆ rHs, it holds

Qπ
hp¨, ¨q “ Rhp¨, ¨q ` xϕp¨, ¨q, ωπhy “ pRh ` PhV π

h`1qp¨, ¨q.

Therefore, it gives

xϕp¨, ¨q, ωkhy ` pRk
hp¨, ¨q ´ Qπ

hp¨, ¨q “ xϕp¨, ¨q, ωkh ´ ωπhy ` p pRk
h ´ Rhqp¨, ¨q.

Then, since ωkh “ ω
buffer.eprkq

h , it holds that

ωkh ´ ωπh “ pΛ
buffer.eprkq

h q
´1

buffer.eprkq
ÿ

τ“1

ϕτh
pV k
h`1pxτh`1q ´ ωπh

“ pΛ
buffer.eprkq

h q
´1

t´λωπh `

buffer.eprkq
ÿ

τ“1

ϕτhrpV k
h`1pxτh`1q ´ PhV π

h`1pxτh, υ
τ
hqsu

“ δ1 ` δ2 ` δ3,

where

δ1 “ ´λpΛ
buffer.eprkq

h q
´1wπ

h ,

δ2 “ pΛ
buffer.eprkq

h q
´1

buffer.eprkq
ÿ

τ“1

ϕτhrpV k
h`1pxτh`1q ´ PhpV k

h`1pxτh, υ
τ
hqs,

δ3 “ pΛ
buffer.eprkq

h q
´1

buffer.eprkq
ÿ

τ“1

ϕτhPhppV k
h`1 ´ V π

h`1qpxτh, υ
τ
hq.

146



Then, we begin to bound items corresponding to δ1, δ2 and δ3 individually.

Firstly, it holds

|xϕp¨, ¨q, δ1y| ď
?
λ}wπ

h}}ϕp¨, ¨q}
pΛ

buffer.eprkq

h q´1

ď3H
?
dλ}ϕp¨, ¨q}

pΛ
buffer.eprkq

h q´1
.

The first inequality holds due to Cauchy inequality and Λ
buffer.eprkq

ľ λI. The second

inequality holds due to Theorem 3.6.25.

Secondly, it holds that

|xϕp¨, ¨q, δ2y| ď

b

B6H3 log2K ` B7H2 logC7}ϕp¨, ¨q}
pΛ

buffer.eprkq

h q´1
.

It holds because of Theorem 3.6.30.

Lastly, we have

xϕp¨, ¨q, δ3y “ xϕp¨, ¨q, pΛ
buffer.eprkq

h q
´1

buffer.eprkq
ÿ

τ“1

ϕτhPhppV k
h`1 ´ V π

h`1qpxτh, υ
τ
hqy

“ xϕp¨, ¨q, pΛ
buffer.eprkq

h q
´1

buffer.eprkq
ÿ

1

ϕτhpϕτhq
T
ż

ppV k
h`1 ´ V π

h`1qpx1
qdMhpx1

qy

“ xϕp¨, ¨q,

ż

ppV k
h`1 ´ V π

h`1qpx1
qdMhpx1

qy ´ λxϕp¨, ¨q,

ż

ppV k
h`1 ´ V π

h`1qdMhy

“ PhppV k
h`1 ´ V π

h`1qp¨, ¨q

´ λxϕp¨, ¨q, pΛ
buffer.eprkq

h q
´1

ż

ppV k
h`1 ´ V π

h`1qpx1
qdMhpx1

qy

ď PhppV k
h`1 ´ V π

h`1qp¨, ¨q ` 3H
?
dλ}ϕp¨, ¨q}

pΛ
buffer.eprkq

h q´1
.

The second and fourth equations hold due to the definition of the operator Ph. The third

equation holds due to simple algebra arrangement. The inequality holds due to Cauchy
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inequality, V p¨q ď 3H and Λ
buffer.eprkq

ľ λI.

With the bounds in hand, we have ∆h
kp¨, ¨q ď p3H

?
dλ`

a

B6H3 log2K ` B7H2 logC7`

3H
?
dλ`C6H log2Kq}ϕp¨, ¨q}

pΛ
buffer.eprkq

h q´1
. Then, it is obviously that there exists a constant

B8, so that B8H
3
2 logK ě 3H

?
dλ`

a

B6H3 log2K ` B7H2 logC7`3H
?
dλ and it finishes

the proof.

Now, we are ready to show the reason why we chose such a bonus. We have the following

lemma.

Lemma 3.6.32. Under the setting of Theorem 3.3.5, on the Good Event E, it holds that for

any px, υ, h, kq P S ˆ Υ ˆ rHs ˆ rKs,

pQk
hpx, υq ď Qπ˚

h px, υq.

Proof. We will prove this lemma by induction.

First of all, for the last step H, since the value function is zero at H ` 1, we have

| pRk
Hp¨, ¨q ` xϕp¨, ¨q, ωkHy ´ Qπ˚

H p¨, ¨q| ď pC7 ` C6H log2Kq}ϕp¨, ¨q}
pΛ

buffer.eprkq

H q´1

due to Theorem 3.6.31. Therefore, we have

Qπ˚

H p¨, ¨q ď mint pRk
Hp¨, ¨q ` xϕp¨, ¨q, ωkHy ` pC7 ` C6H log2Kq}ϕp¨, ¨q}

pΛ
buffer.eprkq

H q´1
, 3Hu,

and we use Qk
Hp¨, ¨q to represent the right side.

Now, supposing the statement holds at step h` 1, then for step h, with Theorem 3.6.31,

it holds that

|r pRk
h ` xϕ, ωkhy ´ Qπ˚

h ´ PhpV k
h`1 ´ V π˚

h`1qsp¨, ¨q| ď pC7 ` C6H log2Kq}ϕp¨, ¨q}
pΛ

buffer.eprkq

h q´1
.
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By the induction assumption that PhpV k
h`1 ´ V π˚

h`1qp¨, ¨q ě 0, it holds that

Qπ˚

h p¨, ¨q ď mint pRk
hp¨, ¨q ` xϕp¨, ¨q, ωkhy ` pC7 ` C6H log2Kq}ϕp¨, ¨q}

pΛ
buffer.eprkq

h q´1
, 3Hu

“ Qk
Hp¨, ¨q,

which ends the proof.

Then, we have the following lemma about a recursive formula from δkh “ V k
h pxkhq ´

V
π
rk

h pxkhq.

Lemma 3.6.33. Let δkh “ V k
h pxkhq ´ V

π
rk

h pxkhq and ξkh`1 “ Erδkh`1 |xkh, υ
k
hs ´ δkh`1. Then

conditional on Good Event E, it holds that for any pk, hq P rKs ˆ rHs,

δkh ď δkh`1 ` ξkh`1 ` 2pC7 ` C6H log2Kq}ϕp¨, ¨q}
pΛ

buffer.eprkq

h q´1
.

Proof. Due to Theorem 3.6.31, it holds that

pQk
hp¨, ¨q ´ Q

π
rk

h p¨, ¨q ď PhpV k
h`1 ´ V

π
rk

h`1qp¨, ¨q ` 2pC7 ` C6H log2Kq}ϕp¨, ¨q}
pΛ

buffer.eprkq

h q´1
.

Then, since π
rk

“ π
buffer.eprkq

is the greedy policy before mixture at episode k by Algorithm 5,

we have

δkh “ Qk
hpxkh, υ

k
hq ´ Q

π
rk

h pxkh, υ
k
hq.

Then, it ends the proof.

With these preparations, we begin to prove Theorem 3.6.9.
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Using notations in Theorem 3.6.33, it holds that conditional on Good Event E

∆1 “

K
ÿ

τ“1

rV π˚

1 pxk1q ´ V
π
rk

1 pxk1qs1pk R bufferq

ď

K
ÿ

τ“1

δk1 1pk R bufferq

ď

K
ÿ

τ“1

H
ÿ

h“1

ξkh ` 2pC7 ` C6H log2Kq}ϕp¨, ¨q}
pΛ

buffer.eprkq

h q´1
1pk R bufferq

ď

K
ÿ

τ“1

H
ÿ

h“1

ξkh ` 2
?
2pC7 ` C6H log2Kq}ϕp¨, ¨q}

pΛk
hq´1 1pk R bufferq

ď

K
ÿ

τ“1

H
ÿ

h“1

ξkh ` 2
?
2pC7 ` C6H log2Kq}ϕp¨, ¨q}

pΛk
hq´1 .

The first inequality holds due to Theorem 3.6.32, while the second one holds due to Theo-

rem 3.6.33. The third inequality holds due to the process of Algorithm 4, while the last one

is trivial.

For the first term, since the computation of pV k
h p¨q is independent of the new observation

xkh at episode k, we obtain that tξkhu is a martingale difference sequence satisfying |ξkh| ď 3H

for all pk, hq. Therefore, with Azuma-Hoeffding inequality [Hoeffding, 1994], it holds

Prp
K
ÿ

τ“1

H
ÿ

h“1

ξkh ě ϵq ě expp´
ϵ2

18KH3
q.

Then, with probability at least 1 ´ δ, we have

K
ÿ

τ“1

H
ÿ

h“1

ξkh ď

c

18KH3 log
1

δ
.

For the second term, thanks to Abbasi-Yadkori et al. [2011], it holds that

K
ÿ

τ“1

pϕτhq
T

pΛτ
hq

´1ϕτh ď 2d log
λ ` τ

λ
.
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Then with Cauchy inequality, we have

K
ÿ

τ“1

H
ÿ

h“1

}ϕτh}
pΛτ

hq
´1 ď

H
ÿ

h“1

?
Kr

K
ÿ

τ“1

pϕτhq
T

pΛτ
hq

´1ϕkhs
1
2 ď H

c

2dK log
λ ` K

λ
.

Finally, combining the two terms and we have

∆1 ď

c

18KH3 log
1

δ
` 2

?
2pC7 ` C6H log2KqH

c

2dK log
λ ` K

λ

ď C8H
2.5

b

K log5K,

and it finishes our proof.

3.6.5 Auxiliary Lemmas and Proofs in Section 3.6.3

In this section, we provide proof of lemmas in Section 3.6.3 in detail. We organize this section

in the order of lemmas.

Proof of Theorem 3.6.11

In Algorithm 7, there are two types of tbuffer.eprkqu. The number of tbuffer.eprkqu satis-

fying 2pΛk
hq´1 ń pΛ

buffer.eprkq

h q´1 is smaller than 3C2H log2K
log 1

γ

due to Theorem 3.6.1. The

number of tbuffer.eprkqu when log2 k is an integer is smaller than rlog2Ks ` 1. Combining

the two parts finishes the proof.

Proof of Theorem 3.6.12

Since we have buffer period, the bound of the size of overbid or underbid is as same as

the situation when market noise distribution is known. Then, recall that the proof of The-

orem 3.6.3 is conditional on reserve price and others’ bid, it doesn’t matter whether we

consider q or rq because the only difference between them is the way generating reserve has

151



been π0. Conditional on reserve, the proof of Theorem 3.6.3 still holds on regarding to rq.

With the same methodology in Theorem 3.6.3, we have the lemma due to Theorem 3.6.11.

Proof of Theorem 3.6.13

Similar to the proof of Theorem 3.6.5, we replace 1´F pmτ ´ 1´ xϕτ , θyq by 1
3N p1` xϕτ , θyq

to form Equation (3.4.1). We just need to prove that Errq ´ 1
3N p1 ` xϕτ , θyqs “ 0 if bidders

bid truthfully. If rqτih “ 1, it satisfies that we choose i using π0 with reserve price ρi and

1 ` xϕτ , θy ` z ě ρi. With some conditional probability calculation, the probability is

1
3N p1 ` xϕτ , θyq.

Therefore, by simply setting c1 “ C1 “ 1
3N in Theorem 3.6.5, we prove Theorem 3.6.13.

Proof of Theorem 3.6.15

In order to estimate F p¨q precisely. We need to bound two-fold errors. First, we need to

bound errors coming from randomness. Second, we need to bound errors from untruthful

bidding.

First of all, if every buyer bids truthfully, then with Theorem 3.6.10, it holds with prob-

ability at least 1 ´ δ
K for each update that

|F p¨q ´ pF p¨q| ď

c

1

2
log

2K

δ
pNHbuffer.eprkqq

´1
2 .

However, bidders may overbid or underbid for less than C3H
K due to Theorem 3.6.2 and

the estimation of µ has error. Therefore, the c.d.f that pF p¨q estimates is not the same as

F p¨q. Since |fp¨q| ď C1, the difference because of overbid or underbid is smaller than C1C3H
K .
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Then, due to Theorem 3.6.14, the difference because of error in µ is smaller than

C1C11

?
H logK

řH
h“1

řbuffer.eprkq

τ“1 }ϕpxτh, υ
τ
hq}

pΛ
buffer.eprkq

h q´1

Hbuffer.eprkq

ď C1C11

?
H logK

?
d

b

buffer.eprkq

.

The inequality holds since we have the mean value inequality and Theorem 3.6.27.

Since the number of episodes in buffer for each buyer i is no larger than C9H log2K, it

holds that

|F p¨q ´ pF p¨q| ď

c

1

2
log

2K

δ
pNHbuffer.eprkqq

´1
2 `

C1C3H

K
`
C9H log2K

buffer.eprkq

` C1C11

?
H logK

?
d

b

buffer.eprkq

.

Because the number of episodes we run Equation (3.4.1) is smaller than K, then the total

probability happening Bad Event Ec is smaller than δ. Then, it ends the proof.

Proof of Theorem 3.6.16

In order to prove Theorem 3.6.16, we introduce the following lemma first.

Lemma 3.6.34. Under assumption Theorem 3.3.2, when Theorem 3.6.15 holds, using his-

togram method to estimate p.d.f fp¨q leads to the following bound that for any x

|fpxq ´ pfpxq| ď D1

?
H logK

buffer.eprkq
1
4

,

where D1 is a constant.
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Proof of Theorem 3.6.34 With Theorem 3.6.15 in hand, we divide r´1, 1s into 2M parts

denoted by t´M, . . . , 0, . . . ,M ´ 1u uniformly, then we have

pfpxq “ M r pF p
i ` 1

M
q ´ pF p

i

M
qs,

where x P p i
M , i`1

M s.

Under assumption Theorem 3.3.2, it holds that

|fpxq ´ M rF p
i ` 1

M
q ´ F p

i

M
qs| ď

L

M
.

Therefore, it holds that

|fpxq ´ pfpxq| ď 2MC12
H log2K

b

buffer.eprkq

`
L

M
.

By setting M “
buffer.eprkq

1
4

?
H logK

, we finish our proof.

Therefore, unlike Theorem 3.6.23, we have the following lemma.

Lemma 3.6.35. Under Theorem 3.3.3, it holds that

|αk˚
ih ´ αkih| ď |xϕkh, θih ´ pθihy| `

D2H log2K

buffer.eprkq
1
4

,

where D2 is a constant.

Proof of Theorem 3.6.35 Myerson [1981] shows that the optimal reserve price satisfies

α “ 1 ` µp¨, ¨q ` ϕ´1
p´1 ´ µp¨, ¨qq,

where ϕpxq “ x ´
1´F pxq

fpxq
is virtual valuation function.
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We use α˚ to denote the optimal reserve price while pα to denote the reserve price we use

with pF p¨q and pfp¨q. Also, we use rα to denote reserve price corresponding to pµ, F p¨q and fp¨q.

Theorem 3.6.23 shows that |rα ´ α˚| ď |xϕkh, θih ´ pθihy|.

To bound |rα ´ pα|, we have

|
1 ´ F p¨q

fp¨q
´

1 ´ pF p¨q

pfp¨q
| ď |

1 ´ F p¨q

fp¨q
´

1 ´ pF p¨q

fp¨q
| ` |

1 ´ pF p¨q

fp¨q
´

1 ´ pF p¨q

pfp¨q
|

ď
C12H log2K

c1

b

buffer.eprkq

`
D1

?
H logK

c21buffer.eprkq
1
4

.

The first inequality holds due to triangle inequality. The second inequality holds due to

Theorem 3.3.1, Theorem 3.6.15 and Theorem 3.6.34.

Then, we will show that ϕ1p¨q ě 1.

It holds that ϕpxq “ x ´
1´F pxq

fpxq
“ x ` 1

log1p1´F pxqq
. Under Theorem 3.3.3, it holds that

1 ´ F p¨q is log-concave implying log1p1 ´ F p¨qq is decreasing. Therefore, ϕ1pxq ě 1.

Therefore, we have |ϕppαq ´ pϕppαq| ď
C12H log2K

c1

b

buffer.eprkq

`
D1

?
H logK

c21buffer.eprkq
1
4

and ϕprαq “ pϕppαq.

Then, it holds that

|pα ´ rα| ď
C12H log2K

c1

b

buffer.eprkq

`
D1

?
H logK

c21buffer.eprkq
1
4

,

because ϕ1p¨q ě 1.

Then, it ends our proof.

Now, we are ready to prove Theorem 3.6.16. Using notations in Theorem 3.6.7, we use

another factor F to show that we use F p¨q and fp¨q in the function while factor pF to denote

the use of pF p¨q and pfp¨q.
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With the same methodology in Theorem 3.6.7, it holds that

|Rk
hp¨, ¨, F q ´ pRk

hp¨, ¨, F q| ďrp1 ` 6C1qC11

?
H logKsN}ϕp¨, ¨q}

pΛ
buffer.eprkq

h q´1

`
NB4

2
r2p|xϕkh, θih ´ pθihy|q

2
` 2p

D2H log2K

buffer.eprkq
1
4

q
2
s

ďD3H log2K}ϕp¨, ¨q}
pΛ

buffer.eprkq

h q´1
` D4H

2 log4K
1

b

buffer.eprkq

,

where D3 and D4 are two constants. The first inequality holds since pa ` bq2 ď 2pa2 ` b2q.

The second inequality holds by rearrangement.

Then, we will bound | pRk
hp¨, ¨, F q ´ pRk

hp¨, ¨, pF q|.

Since pRk
hp¨, ¨, F q “

řN
i“1 EF rmaxtprk´

ih , α
k
ihu1pprkih ě maxtprk´

ih , α
k
ihuqs and pRk

hp¨, ¨, pF q “

řN
i“1 E pF

rmaxtprk´
ih , α

k
ihu1pprkih ě maxtprk´

ih , α
k
ihuqs, we have that the difference of expected

revenue about each buyer is smaller than 3NC12
H log2K

b

buffer.eprkq

. It comes from that the ex-

pected revenue depends on N -fold integral with respect to random variable tzkihuNi“1. Since
ş

xpdF ´ dF 1q “ ´
ş

pF ´ F 1qdx ď 3}F ´ F 1}8 ď 3C12
H log2K

b

buffer.eprkq

, each integral has error

less than 3C12
H log2K

b

buffer.eprkq

. With N buyers in total, it holds that

| pRk
hp¨, ¨, F q ´ pRk

hp¨, ¨, pF q| ď 3N2C12
H log2K

b

buffer.eprkq

.

Combining the two parts, it holds

|Rk
hp¨, ¨q ´ pRk

hp¨, ¨q| “ |Rk
hp¨, ¨, F q ´ pRk

hp¨, ¨, pF q|

ď C13H log2K}ϕp¨, ¨q}
pΛ

buffer.eprkq

h q´1
`
C14H

2 log4K
b

buffer.eprkq

,

which ends the proof. Similarly, we can use Theorem 3.3.1 to achieve parallel results without
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Theorem 3.3.3 as Theorem 3.6.24 says.

Proof of Theorem 3.6.17

Now, we introduce some lemmas in parallel in order to prove Theorem 3.6.17.

Lemma 3.6.36. For any given h omitted for convenience, suppose txτ u8
τ“1 being a stochas-

tic process on state space S with corresponding filtration tFτ u8
τ“0. Let tϕτ u8

τ“1 be an

Rd-valued stochastic process when ϕτ P Fτ´1. Since }ϕτ } ď 1 and Λ
buffer.eprkq

“ λI `

řbuffer.eprkq

τ“1 ϕτϕ
T
τ , then for any δ, with probability at least 1´ δ, for any k corresponding to

buffer.eprkq and any V P V so that supx |V pxq| ď 3H, we have

}

k
ÿ

τ“1

ϕτ tV pxτ q ´ ErV pxτ q |Fτ´1su}
2
Λ´1

buffer.eprkq

ď
54C9H

3 log2K

λ log 1
γ

`
32k2ϵ2

λ

` 144H2
r
d

2
log

k ` λ

λ
` log

Nϵ

δ
s,

where Nϵ is the ϵ-covering number of V with respect to the distance distpV, V 1q “ supxpV pxq´

V 1pxqq.

Lemma 3.6.37. Let V denote a class of functions mapping from S to R with the following

parametric form

V p¨q “ mintmax
a

ωTϕp¨, υq ` pRp¨, υq ` β}ϕp¨, υq}Λ´1 ` A, 3Hu,

where }ω} ď L, β P r0, Bs, A “
C14H

2 log4K
b

buffer.eprkq

in episode k and the minimum eigenvalue

satisfies λminpΛq ě λ. Suppose }ϕp¨, ¨q} ď 1 and let Nϵ be the ϵ-covering number of V with

respect to the distance distpV, V 1q “ supx |V pxq ´ V 1pxq|. Then, it holds

logNϵ ď d logp1 `
8L

ϵ
q ` d2 logp1 `

32
?
dB2

λϵ2
q ` dN logp1 `

16NB5

?
d

ϵ
q ` logN ϵ

12N2
pFq,
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where B5 is a constant.

Proof of Theorem 3.6.37 When F p¨q is unknown, it holds that

sup
x,υ

| pR1px, υq ´ pR2px, υq| “ sup
x,υ

| pR1px, υ, pF1q ´ pR2px, υ, pF2q|

ď sup
x,υ

| pR1px, υ, pF1q ´ pR2px, υ, pF1q|

` sup
x,υ

| pR2px, υ, pF1q ´ pR2px, υ, pF2q|.

Then, we use C
pθ

to denote the cardinality of the balls corresponding to pθ and CF to

denote the cardinality of the balls corresponding to F .

Like the proof of Theorem 3.6.29, we simply use ϵ
4NB5

-ball to cover pθi, and it holds that

|C
pθ
| ď p1 `

16NB5

?
d

ϵ
q
dN .

Conditional on ω, A and tpθiu
N
i“1, with Theorem 3.6.16, we know that in order to satisfy

supx,υ | pRpx, υ, pF q ´ pRpx, υ, F q| ď ϵ
4 , what we need is } pF ´ F }8 ď ϵ

12N2 . Then, it ends the

proof.

Then, it holds the following lemma.

Lemma 3.6.38. For any δ, with probability at least 1´ δ, there exists constants B6 and B7

independent of K and H so that

@pk, hq P rKs ˆ rHs : }

k
ÿ

τ“1

ϕτhrpV k
h`1pxτh`1q ´ PpV k

h`1pxτh, υ
τ
hqs}

2

pΛ
buffer.eprkq

h q
´1

ď D5H
3

` D6H
2 logC15,

where D5 „ rOp1q omitting logK and D6 is a constant.

Proof. Similar to the proof of Theorem 3.6.30, we just replace Nϵ by d logp1` 8L
ϵ q`d2 logp1`
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32
?
dB2

λϵ2
q`dN logp1`

16NB5

?
d

ϵ q`logN ϵ
12N2

pFq. Then, we set λ “ 1, B “ C15`C13H log2K

and ϵ “ dH
k . With Theorem 3.4.1, we finish our proof.

Now, let’s show the determination of C15.

Lemma 3.6.39. There exist D7 „ rOp1q so that C15 “ D7H
3
2 , and for any fixed policy π,

on Good Event E, i.e., all inequalities hold, we have for all px, υ, h, kq P S ˆ Υ ˆ rHs ˆ rKs

that:

xϕp¨, ¨q, ωkhy ` pRk
hp¨, ¨q ´ Qπ

hp¨, ¨q “ PhppV k
h`1 ´ V π

h`1qp¨, ¨q ` ∆k
hp¨, ¨q,

where ∆k
hp¨, ¨q ď pC15 ` C13H log2Kq}ϕp¨, ¨q}

pΛ
buffer.eprkq

h q´1
` C14

H2 log4K
b

buffer.eprkq

.

Proof. The proof of Theorem 3.6.39 is the same as proof of Theorem 3.6.31. Let’s show the

determination of D7 in parallel. With Theorem 3.6.38 in hand, it holds that

D7H
3
2 ě 3H

?
dλ `

b

D5H3 ` D6H2 logC15 ` 3H
?
dλ.

Then, it is easy to see the existence of D7 where D7 „ rOp1q.

Also, we have the following lemma about the recursive formula from δkh “ V k
h pxkhq ´

V
π
rk

h pxkhq. It holds due to Theorem 3.6.39 and Theorem 3.6.32.

Lemma 3.6.40. Let δkh “ V k
h pxkhq ´ V

π
rk

h pxkhq and ξkh`1 “ Erδkh`1 |xkh, υ
k
hs ´ δkh`1. Then

conditional on Good Event E, it holds that for any pk, hq P rKs ˆ rHs,

δkh ď δkh`1 ` ξkh`1 ` 2pC15 ` C13H log2Kq}ϕp¨, ¨q}
pΛ

buffer.eprkq

h q´1
` 2C14

H2 log4K
b

buffer.eprkq

.

Now, we are ready to prove Theorem 3.6.17.

Similar to the proof of Theorem 3.6.9, it holds that

∆1 À rOp

a

H5Kq `

K
ÿ

k“1

H
ÿ

h“1

2C14
H2 log4K

b

buffer.eprkq

.
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Due to Algorithm 7, we have k ď 2buffer.eprkq. Therefore, it holds that

K
ÿ

k“1

1
b

buffer.eprkq

ď

K
ÿ

k“1

?
2

?
k

ď 2
?
2K.

Therefore, it holds that

∆1 À rOp

a

H5Kq ` rOpH3
?
Kq,

which ends the proof.

3.6.6 Detailed Results of Numerical Experiments

In this section, we give some details about our numerical experiments.

In the contextual bandits setting, we show the total regrets of three different algorithms

(i.e. CLUB, SCORP and NPAC-S) in all 30 trails in the following table. Among all 30

trials, CLUB has the lowest regret in 15 trials while NPAC-S does in 14 trials. SCORP

only wins in the twelfth trial. For their average regrets, it’s 106.62 for CLUB, 178.96 for

SCORP and 99.69 for NPAC-S. Therefore, we conclude that for contextual bandit settings,

the performances of CLUB and NPAC-S are comparable, overwhelming the performance of

SCORP sufficiently.

For the implementation details, we assume N “ 1 and there are two different contexts

both appearing in probability 0.5. Besides, we assume θ “ r0, 4, 0.6sT and underlying noise

distribution is Unif([-1,1]). In order to discrete these strategies, we constrain that bids must

be a multiple of 0.01. To simulate strategic bidders, we use Theorem 3.6.2. Once it’s in

the buffer period, we assume bidders randomly bid. However, if not, we assume bidders bid

their value plus a random noise with scale C3
K . For NPAC-S, we use similar ways to simulate

strategic behaviors. However, for SCORP, we stated before that it uses too many episodes to
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explore, we loosen its constraints and assume truthful bidding. Although we only consider an

upper bound for its performance, SCORP still performs worse than CLUB and NPAC-S. So,

we only compare CLUB and NPAC-S in MDP settings. To solve Equation (3.4.1), we seek

help from scipy.optimize package. Actually, most of the running time is spent on solving

Equation (3.4.1). We believe we can reduce our running time by using other commercial

optimization solvers.

In the MDP setting, we show the total regrets of CLUB and NPAC-S in the 30 trails

in Table 3.2. Among all 30 trials, CLUB wins NPAC-S every time. The average of CLUB

is 203.07, overwhelming the corresponding 756.31 for NPAC-S. As a result, it shows that

CLUB has better performance against NPAC-S in the MDP setting.

For the detailed setting of MDP and the implementation, we consider the situation that

H “ 2. We state different settings than the ones in contextual bandits as follows. The action

space contains two actions. The first action will lead to the first context with probability

1 and the second action will lead to the second context in the next phase. In our MDP

setting, we only discount once every episode which means two phases. Therefore, we set the

discount rate to be ?
γ for NPAC-S. It is a more conservative situation and will decrease the

extent of untruthful bidding for NPAC-S At the same time, we assume NPAC-S will choose

actions randomly. For our CLUB algorithm, we construct a 4-dimensional feature space to

capture the structure of the underlying MDP. Additionally, instead of selecting δ, we set

poly1p¨q “ H log2pKq and poly2p¨q “ H2 log4pKq which decide a unique probability to break

our PAC-learning bounds.

To sum up, the performance of CLUB and NPAC-S are comparable in contextual bandit

settings, overwhelming sufficiently the performance of SCORP. As for MDP setting, CLUB

is the only one to achieve sublinear regret bounds in both theory and practice. Therefore,

CLUB captures the underlying information structures precisely and depicts a practical way

in dynamic mechanism design.
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Trail\Regret CLUB SCORP NPAC-S
1 57.20 170.77 131.41
2 139.75 230.29 113.23
3 58.01 189.06 41.46
4 238.57 168.39 54.59
5 79.43 161.72 59.99
6 171.67 211.33 53.72
7 52.24 204.67 185.61
8 59.40 185.07 135.82
9 228.57 176.15 37.69
10 150.11 181.72 91.58
11 80.74 197.85 123.08
12 179.27 167.39 239.79
13 37.25 186.11 56.14
14 83.27 168.86 240.07
15 54.92 163.89 219.48
16 72.72 175.39 86.02
17 56.35 174.99 35.80
18 55.40 178.67 52.55
19 34.40 170.65 70.55
20 15.57 160.40 169.44
21 95.18 164.27 171.89
22 324.05 176.15 24.25
23 184.31 174.79 30.46
24 41.43 174.32 64.36
25 51.32 171.11 89.65
26 30.47 177.63 191.52
27 30.46 178.80 58.29
28 367.42 182.17 84.62
29 54.69 171.78 44.27
30 114.49 174.32 33.29

Table 3.1: Regrets of three different algorithms in each trail.
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Trail\Regret CLUB NPAC-S Trail\Regret CLUB NPAC-S
1 111.12 719.32 16 202.51 843.94
2 86.96 744.47 17 24.77 699.18
3 369.94 694.44 18 262.83 709.15
4 78.32 1204.41 19 505.96 802.21
5 586.62 660.06 20 163.90 696.09
6 46.89 647.03 21 33.60 653.59
7 303.41 695.98 22 156.05 872.66
8 61.22 698.99 23 46.15 746.18
9 281.11 686.92 24 388.10 781.76
10 40.48 742.37 25 160.19 699.93
11 125.29 790.36 26 552.07 732.08
12 140.18 744.64 27 89.34 734.74
13 516.48 855.74 28 112.73 702.72
14 55.23 660.48 29 191.32 663.03
15 87.22 1002.02 30 311.99 804.94

Table 3.2: Regrets of two different algorithms in each trail.
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CHAPTER 4

OFFLINE RL FOR WELFARE MAXIMIZING MECHANISM IN

MDPS WITH GENERAL FUNCTION APPROXIMATION

4.1 Introduction

Mechanism design studies how best to allocate goods among rational agents [Maskin, 2008,

Myerson, 2008, Roughgarden, 2010]. Dynamic mechanism design focuses on analyzing op-

timal allocation rules in a changing environment, where demands for goods, the amount of

available goods, and their valuations can vary over time [Bergemann and Välimäki, 2019].

Problems ranging from online commerce and electric vehicle charging to pricing Wi-Fi access

at Starbucks have been studied under the dynamic mechanism design framework [Gallien,

2006, Gerding et al., 2011, Friedman and Parkes, 2003]. Existing approaches in the literature

require knowledge of the problem, such as the evaluation of goods by agents [Bergemann

and Välimäki, 2010, Pavan et al., 2014], the transition dynamics of the system [Doepke and

Townsend, 2006], or the policy that maximizes social welfare [Parkes and Singh, 2003, Parkes

et al., 2004]. Unfortunately, such knowledge is often not available in practice.

A practical approach we take in this chapter is to learn a dynamic mechanism from

data using offline Reinforcement Learning (RL). Vickrey-Clarke-Groves (VCG) mechanism

provides a blueprint for the design of practical mechanisms in many problems and satisfies

crucial mechanisms design desiderata in an extremely general setting [Vickrey, 1961, Clarke,

1971, Groves, 1979]. In this chapter, we approximate the desired VCG mechanism using a

priori collected data [Jin et al., 2021b, Xie et al., 2021, Zanette et al., 2021]. We assume

that the mechanism designer does not know the utility of the agents or the transition kernel

of the states, but has access to an offline data set that contains observed state transitions

and utilities [Lange et al., 2012]. The goal of the mechanism designer is to recover the

ideal mechanism purely from this data set, without requiring interaction with the agents.
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We focus on an adaptation of the classic VCG mechanism to the dynamic setting [Parkes,

2007] and assume that agents’ interactions with the seller follow an episodic Markov Decision

Process (MDP), where the agents’ rewards are state-dependent and evolve over time within

each episode. To accommodate the rich class of quasilinear utility functions considered in

the economic literature [Bergemann and Välimäki, 2019], we use offline RL with a general

function approximation [Xie et al., 2021] to approximate the dynamic VCG mechanism.

Related Works. Parkes and Singh [2003] and Parkes et al. [2004] studied dynamic mech-

anism design from an MDP perspective. The proposed mechanisms can implement social

welfare-maximizing policies in a truth-revealing Bayes-Nash equilibrium both exactly and

approximately. Bapna and Weber [2005] studied the dynamic auction setting from a multi-

arm bandit perspective. Using the notion of marginal contribution, Bergemann and Välimäki

[2006] proposed a dynamic mechanism that is efficient and truth-telling. Pavan et al. [2009]

analyzed the first-order conditions of efficient dynamic mechanisms. Athey and Segal [2013]

extended both the VCG and AGV mechanisms [d’Aspremont and Gérard-Varet, 1979] to the

dynamic regime, obtaining an efficient budget-balanced dynamic mechanism. Kakade et al.

[2013] proposed the virtual pivot mechanism that achieves incentive compatibility under a

separability condition. See Cavallo [2009], Bergemann and Pavan [2015], and Bergemann and

Välimäki [2019] for recent surveys on dynamic mechanism design. This chapter builds on the

mechanism in Parkes [2007] and Bergemann and Välimäki [2010], but focuses on learning a

mechanism from data rather than designing a mechanism in a known environment.

Only a few recent works have investigated the learning of mechanisms. Kandasamy et al.

[2023] provided an algorithm that recovers the VCG mechanism in a stationary multi-arm

bandit setting. Cen and Shah [2022], Dai and Jordan [2021], Jagadeesan et al. [2021], and

Liu et al. [2021a] studied the recovery of stable matching when the agents’ utilities are given

by bandit feedback. Balcan et al. [2008] shows that incentive-compatible mechanism design

problems can be reduced to a structural risk minimization problem. In contrast, our work
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focuses on learning a dynamic mechanism in an offline setting.

This chapter is also related to the literature on offline RL [Yu et al., 2020, Kumar et al.,

2020, Liu et al., 2020, Kidambi et al., 2020, Jin et al., 2021b, Xie et al., 2021, Zanette

et al., 2021, Yin and Wang, 2021, Uehara and Sun, 2021]. In the context of linear MDPs,

Jin et al. [2021b] provided a provably sample-efficient pessimistic value iteration algorithm,

while Zanette et al. [2021] used an actor-critic algorithm to further improve the upper bound.

Yin and Wang [2021] proposed an instance-optimal method for tabular MDPs. Uehara and

Sun [2021] focused on model-based offline RL, while Xie et al. [2021] introduced a pessimistic

soft policy iteration algorithm for offline RL with a general function approximation. Com-

pared to Xie et al. [2021], in addition to the social welfare suboptimality, we also provide

bounds on both the agents’ and the seller’s suboptimalities. We also show that our algo-

rithm asymptotically satisfies key mechanism design desiderata, including truthfulness and

individual rationality. Finally, we use optimistic and pessimistic estimates to learn the VCG

prices, instead of the purely pessimistic approach discussed in Xie et al. [2021]. This differ-

ence shows the difference between dynamic VCG and standard MDP. Our work also features

a simplified proof of the main technical results in Xie et al. [2021].

Our Contributions. We propose the first offline reinforcement learning algorithm that

can learn a dynamic mechanism from any given data set. Additionally, our algorithm does not

make any assumption about data coverage and only assumes that the underlying action-value

functions are approximately realizable and the function class is approximately complete (see

Assumptions 4.2.3 and 4.2.4 for detailed discussions), which makes the algorithm applicable

to the wide range of real-world mechanism design problems with quasilinear, potentially

non-convex utility functions [Carbajal and Ely, 2013, Bergemann and Välimäki, 2019].

Our work features a soft policy iteration algorithm that allows for both optimistic and

pessimistic estimates. When the data set has sufficient coverage of the optimal policy, the

value function is realizable, and the function class is complete, our algorithm sublinearly
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converges to a mechanism with suboptimality OpK´1{3q, matching the rates obtained in Xie

et al. [2021], where K denotes the number of trajectories contained in the offline dataset. In

addition to suboptimality guarantees, we further show that our algorithm is asymptotically

individually rational and truthful with the same OpK´1{3q guarantee.

On the technical side, our work features a simplified theoretical analysis of pessimistic

soft policy iteration algorithms [Xie et al., 2021], using an adaptation of the classic tail bound

discussed in Györfi et al. [2002]. Moreover, unlike [Xie et al., 2021], our simplified analysis

is directly applicable to continuous function classes via a covering-based argument.

Notations. For any positive integer z P Zą0, let rzs “ t1, 2, . . . , zu. For any set A,

let ∆pAq be the set of probability distributions supported on A. For two sequences xn, yn,

we say xn “ Opynq if there exist universal constants n0, C ą 0 such that xn ă Cyn for all

n ě n0. We use rOp¨q to denote Op¨q ignoring log factors. Unless stated otherwise, we use

} ¨ } to denote the ℓ2-norm

4.2 Background and Preliminaries

In this section, we define the dynamic mechanism and related notions. In addition, we

discuss three key mechanism design desiderata and their asymptotic versions. Finally, we

introduce the general function approximation regime and related assumptions.

Episodic MDP. Consider an episodic MDP given by M “

´

S,A, H,P , tri,hu
n,H
i“0,h“1

¯

,

where S is the state space, A is the seller’s action space, H is the length of each episode, and

P “ tPhuHh“1 is the transition kernel, where Phps1|s, aq denotes the probability that the state

s P S transitions to the state s1 P S when the seller chooses the action a P A at the h-th step.1

We assume that S,A are both finite but can be arbitrarily large. Let ri,h : S ˆ A Ñ r0, 1s

denote the reward function of an agent i at step h and r0,h : S ˆA Ñ r´Rmax,´n`Rmaxs

1. In mechanism design literature the reward function is often called “value function." We use the tem
“reward function" throughout the paper to avoid confusion with state- and action-value functions.
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the seller’s reward function at step h, which can be negative, as policies can be costly.

A stochastic policy π “ tπhuHh“1 maps the seller’s state S to a distribution over the action

space A at each step h, where πhpa|sq denotes the probability that the seller chooses the

action a P A when they are in the state s P S. We use dπ to denote the state-action visitation

measure over tS ˆAuH induced by the policy π and use Eπ as a shorthand notation for the

expectation taken over the visitation measure.

For any given reward function r and any policy π, the (state-)value function V π
h p¨; rq :

S Ñ R is defined as V π
h px; rq “ Eπr

řH
h1“h rh1psh1 , ah1q|sh “ xs at each step h P rHs and

the corresponding action-value function (Q-function) Qπ
hp¨, ¨; rq : S ˆ A Ñ R is defined as

Qπ
hpx, a; rq “ Eπr

řH
h1“h rh1psh1 , ah1q|sh “ x, ah “ as. For any function g : S ˆ A Ñ R, any

policy π, and h P rHs, we use the shorthand notation gps, πhq “ Ea„πhp¨|sqrgps, aqs. We

define the policy-specific Bellman evaluation operator at h with respect to reward function

r under policy π as

pT π
h,rgqpx, aq “rhpx, aq ` EP rgpsh`1, πh`1q|sh “ x, ah “ as , (4.2.1)

where EP is taken over the randomness in the transition kernel P .

We emphasize that while the problem setting we consider features multiple reward func-

tions and interaction between multiple participants, our setting is not an instance of a Markov

game [Littman, 1994] as we allow only the seller to take actions.

Dynamic Mechanism as an MDP. We assume that agents and sellers interact in the

following way. Without loss of generality, assume that the seller starts at some fixed state

s0 P S when h “ 1. For each h P rHs, the seller observes its state s and takes some action

a P A. The agent receives the reward ri,hps, aq and reports to the seller the received reward

as rri,hpsh, ahq P r0, 1s, which may be different from the true reward. The seller receives a

reward r0,hps, aq and transitions to some state s1 „ Php¨|s, aq. At the end of each episode,

the seller charges each agent i a price pi P R, i P rns.
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We stress the difference between the reported reward, rri,h, and the actual reward, ri,h.

The reported reward is equal to ri,h if an agent is truthful but may be given by an arbitrary

function rri,h : S ˆ A Ñ r0, 1s when the agent is not. In other words, the agent i’s reported

reward comes from the actual reward function ri,h or some arbitrary reward function rri,h.

Our algorithm learns a mechanism via the reported rewards and, under certain assumptions,

we can provide guarantees on the actual rewards.

For convenience, let R “
řn

i“0 ri be the sum of true reward functions and R´i “
ř

i1‰i ri

the sum of true reward functions excluding agent i. Let rR, rR´i be defined similarly for the

reported reward functions. Let R “ tR´iu
n
i“1 Y tRu be the set of all true reward functions

that we will estimate and rR be that for the reported reward functions. When all agents are

truthful, rR “ R. We also let

Q˚
hp¨, ¨; rq “ max

πPΠ
Qπ
hp¨, ¨; rq, V ˚

h p¨; rq “ max
πPΠ

V π
h p¨; rq,

π˚
r “ argmax

πPΠ
V π
1 ps0; rq, @r P R Y rR.

As a shorthand notation, let π˚ “ π˚
R, π˚

´i “ π˚
R´i

, rπ˚ “ π˚
rR
, and rπ˚

´i “ π˚
rR´i

. Follow-

ing Kandasamy et al. [2023], we define the agents’ and seller’s utilities as follows. For any

i P rns, we define the agent i’s utility under policy π, when charged price pi, as

Uπ
i ppiq “ Eπr

H
ÿ

h“1

ri,hpsh, ahqs ´ pi “ V π
1 ps0; riq ´ pi.

The seller’s utility is similarly defined as

Uπ
0 ptpiu

n
i“1q “ Eπr

H
ÿ

h“1

r0,hpsh, ahqs `

n
ÿ

i“1

pi “ V π
1 ps0; r0q `

n
ÿ

i“1

pi.

The social welfare for any policy π P Π is the sum of the utilities,
řn

i“0 Eπruis “ V π
1 ps0;Rq,

similar to its definition in Bergemann and Välimäki [2010].
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4.2.1 A Dynamic VCG Mechanism

We now discuss a dynamic adaptation of the VCG mechanism and three key mechanism

design desiderata it satisfies [Nisan et al., 2007]. We begin by introducing the dynamic

adaptation of the VCG mechanism.

Definition 4.2.1 (Dynamic VCG Mechanism). When agents interact according to the afore-

mentioned MDP, assuming the transition kernel P and the reported reward functions trriu
n
i“0

are known, the VCG mechanism selects rπ˚, the social welfare maximizing policy based on the

reported rewards, and charges the agent i price pi : S Ñ R, given by pi “ V ˚
1 ps0; rR´iq ´

V rπ˚

1 ps0; rR´iq. More generally, when the mechanism chooses to implement some arbitrary

policy π, the VCG price for the agent i is given by

pi “ V ˚
1 ps0; rR´iq ´ V π

1 ps0; rR´iq. (4.2.2)

Observe that when H “ 1, the dynamic adaptation we propose reduces to exactly the

classic VCG mechanism [Nisan et al., 2007].

We highlight the three common mechanism desiderata in the mechanism design litera-

ture [Nisan et al., 2007, Bergemann and Välimäki, 2010, Hartline, 2012].

1. Efficiency: A mechanism is efficient if it maximizes social welfare when all agents

report truthfully.

2. Individual rationality: A mechanism is individually rational if it does not charge an

agent more than their reported reward, regardless of other agents’ behavior. In other

words, if an agent reports truthfully, they attain non-negative utility.

3. Truthfulness: A mechanism is truthful or (dominant strategy) incentive-compatible if,

regardless of the truthfulness of other agents’ reports, the agent’s utility is maximized

when they report their rewards truthfully.
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In the MDP setting, the dynamic VCG mechanism simultaneously satisfies all three desider-

ata.

Proposition 4.2.2. With P and the reported rewards trriu
n
i“0 known, choosing rπ˚ and charg-

ing pi for all i P rns according to (4.2.2) ensures that the mechanism satisfies truthfulness,

individual rationality, and efficiency simultaneously.

Proof. See Appendix 4.5.1 for a detailed proof.

Performance Metrics. We use the following metrics to evaluate the performance of

our estimated mechanism. Let the social welfare suboptimality of an arbitrary policy π be

SubOptpπ; s0q “ V ˚
1 ps0;Rq ´ V π

1 ps0;Rq. (4.2.3)

For any i P rns, let p˚
i ps0q “ V ˚

1 ps0;R´iq ´ V π˚

1 ps0;R´iq be the price charged to the agent

i by VCG under truthful reporting. We can similarly define the suboptimality with respect

to the agents’ and the seller’s expected utilities. For any i P rns, the agent i’s suboptimality

with respect to policy π and price tpiu
n
i“1 is defined as

SubOptipπ, tpiu
n
i“1; s0q “ Uπ˚

i pp˚
i q ´ Uπ

i ppiq “ V π˚

1 ps0; riq ´ p˚
i ps0q ´ V π

1 ps0; riq ` pi,

(4.2.4)

and the seller’s suboptimality is

SubOpt0pπ, tpiu
n
i“1; s0q “ Uπ˚

0 ptp˚
i u

n
i“1q ´ Uπ

0 ptpiu
n
i“1q

“ V π˚

1 ps0; r0q `

n
ÿ

i“1

p˚
i ´ V π

1 ps0; r0q ´

n
ÿ

i“1

pi.
(4.2.5)
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4.2.2 Offline Episodic RL with General Function Approximation

We use offline RL in the general function approximation setting to minimize the aforemen-

tioned suboptimalities. Let D be a precollected data set that contains K trajectories, that

is, D “ tpxτh, a
τ
h, trr

τ
i,huni“1, x

τ
h`1qu

H,K
h,τ“1. Following the setup in Xie et al. [2021], we consider

the i.i.d. data collection regime, where for all h P rHs, pxτh, a
τ
h, x

τ
h`1qKτ“1 is drawn from a

distribution µh supported on S ˆ A ˆ S. The distribution µ over tS ˆ A ˆ SuH is induced

by a behavioral policy used for data collection. We do not make any coverage assumption on

µ, similar to the existing literature on offline RL [Jin et al., 2021b, Uehara and Sun, 2021,

Zanette et al., 2021].

Consider some general function class F “ F1 ˆF2 ˆ . . .ˆFH . For each h P rHs, we use

some arbitrary yet bounded function class Fh Ď SˆA Ñ r´pH´h`1qRmax, pH´h`1qRmaxs

to approximate Qπ
hp¨, ¨; rq for arbitrary π and r P rR. For completeness, we let FH`1 “ tf :

fps, aq “ 0 @ps, aq P S ˆ Au be the singleton set containing only the degenerate function

mapping all inputs to 0.

We make two common assumptions about the expressiveness of the function class F [An-

tos et al., 2008, Xie et al., 2021].

Assumption 4.2.3 (Approximate Realizability). For any r P rR and π P tS Ñ ∆pAquH ,

there exists some fπr P F such that for all h P rHs,

sup
π1PtSÑ∆pAquH

Eπ1
h

”

}fπh,rp¨, ¨; rq ´ Qπ
hp¨, ¨; rq}

2
ı

ď ϵF .

Intuitively, Assumption 4.2.3 dictates that for all reported reward functions r and all

policies π, there exists a function in F that can approximate Qπ
r sufficiently well.

Assumption 4.2.4 (Approximate Completeness). For any h P rHs, r P rR, and π P tS Ñ

∆pAquH , we have

sup
fPFh`1

inf
f 1PFh

Eµhr}f 1
´ T π

h,rf}
2
s ď ϵF ,F .
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Assumption 4.2.4 requires the function class F to be approximately closed for all reported

reward functions and policies. The assumption is prevalent in RL and can be omitted only

in rare circumstances [Xie and Jiang, 2021].

A fundamental problem in offline RL is the distribution shift, which occurs when the data

generating distribution has only a partial coverage of the policy of interest [Jin et al., 2021b,

Zanette et al., 2021]. We address the issue with the help of distribution shift coefficient [Xie

et al., 2021].

Definition 4.2.5 (Distribution Shift Coefficient). Let Cπpνq be the measure of distribution

shift from an arbitrary distribution over pS ˆ AqH , denoted ν, to the data distribution µ,

when measured under the transition dynamics induced by a policy π P tS Ñ ∆pAquH . In

particular,

Cπ
pνq “ max

f1,f2PF
max
hPrHs

max
rP rR

Eνhr}f1h ´ T π
h,rf

2
h`1}2s

Eµhr}f1h ´ T π
h,rf

2
h`1}2s

.

The coefficient controls how well the Bellman estimation error shifts from one distribution

to another for any Bellman transition operator T . For a detailed discussion on how the

coefficient generalizes previous measures of distribution shift, please refer to Xie et al. [2021].

As a shorthand notation, when ν is the visitation measure induced by some policy π1, we let

Cπpπ1q “ Cπpdπ1q “ Cπpνq.

In offline learning, with a finite data set, we can only hope to learn the desired mecha-

nism up to certain statistical error. In particular, we state the approximate versions of the

desiderata for finite-sample analysis.

1. Asymptotic efficiency: If all agents report truthfully, a mechanism is asymptotically

efficient if SubOptpπ; s0q P OpK´αq for some α P p0, 1q.

2. Asymptotic individual rationality: Let π, pi be the policy and price chosen by the

mechanism when the agent i is truthful. A dynamic mechanism is asymptotically
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individually rational if Uπ
i ppiq “ ´OpK´αq for some α P p0, 1q, regardless of the

truthfulness of other agents.

3. Asymptotic truthfulness: Let rπ, rpi be the policy and price chosen by the mechanism

when the agent i is untruthful, and π, pi those chosen by the mechanism when the

agent i is truthful. We say a dynamic mechanism is asymptotically truthful if Urπ
i prpiq´

Uπ
i ppiq “ OpK´αq for some α P p0, 1q regardless of the truthfulness of other agents.

As we will see in sequel, we propose a soft policy iteration algorithm that simultaneously

satisfies all three criteria above with α “ 1{3 up to function approximation biases.

4.3 Offline RL for VCG

We develop an algorithm that learns the dynamic VCG mechanism via offline RL. We begin

by sketching out a basic outline of our algorithm. Recall the dynamic VCG mechanism given

in Definition 4.2.1. At a high level, an algorithm that learns the dynamic VCG mechanism

can be summarized as the following procedure.

1. Learn some policy qπ such that the social welfare suboptimality SubOptpqπ; s0q is small.

2. For all i P rns, estimate the VCG price pi, defined in (4.2.2), as ppi “ G
p1q

´i ps0q´G
p2q

´i ps0q,

where Gp1q

´i ps0q estimates V ˚
1 ps0; rR´iq and Gp2q

´i ps0q estimates V qπ
1 ps0; rR´iq.

Step 1 simply minimizes the social welfare suboptimality using offline RL and has been

extensively studied in prior literature [Jin et al., 2021b, Zanette et al., 2021, Xie et al., 2021,

Uehara and Sun, 2021].

A greater challenge lies in implementing Step 2 and showing that the price estimates,

tppiu
n
i“1, satisfy all three approximate mechanism design desiderata. The estimate Gp2q

´i ps0q

can be constructed by performing a policy evaluation of the learned policy, qπ. The construc-

tion of Gp1q

´i ps0q is more challenging, involving two separate steps: (1) learning a fictitious
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policy that approximately maximizes V π
1 ps0; rR´iq over π from offline data, and (2) per-

forming a policy evaluation of the learned fictitious policy to obtain the estimate of the

value function. Consequently, the policy evaluation and policy improvement subroutines are

necessary for learning Gp1q

´i ps0q and implementing Step 2.

Our challenge is complicated by the fact that a combination of optimism and pessimism

is needed for price estimation, whereas the typical offline RL literature only leverages pes-

simism [Jin et al., 2021b, Uehara and Sun, 2021, Xie et al., 2021]. For example, when

G
p1q

´i ps0q is a pessimistic estimate of V ˚
1 ps0; rR´iq, the price estimate ppi is a “lower bound,”

at least in the first term, of the actual price pi derived in (4.2.2). A lower price estimate

would be beneficial to the agent, but would increase the seller’s suboptimality since, loosely

speaking, the seller is “paying for” the uncertainty in the data set, and the reverse holds

when G
p1q

´i ps0q is an optimistic estimate. The party burdened with the cost of uncertainty

may be different in different settings. When allocating public goods, for instance, the cost

of uncertainty should be the seller’s burden to better benefit the public [Bergemann and

Välimäki, 2019], whereas a company wishing to maximize their profit would prefer having

the agents “pay for" uncertainty [Friedman and Parkes, 2003].

To allow for such flexibility, we introduce hyperparameters ζ1, ζ2 P tPES, OPTu, where

ζ1 determines whether Gp1q

´i ps0q is a PESsimistic or OPTimistic estimate and ζ2 does so for

G
p2q

´i ps0q. To highlight the trade-off between agents’ and seller’s suboptimalities, we focus

on the two extreme cases, pζ1, ζ2q “ pPES, OPTq and pζ1, ζ2q “ pOPT, PESq, where the former

favors the agents and the latter the seller. Depending on the goal of the mechanism designer,

different choices of ζ1, ζ2 may be selected to favor agents or the seller [Maskin, 2008].

With the crucial challenges identified, we introduce the specific algorithms that we use

to implement Steps 1 and 2.
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4.3.1 Policy Evaluation and Soft Policy Iteration

We use optimistic and pessimistic variants of soft policy iteration, commonly used for policy

improvement [Xie et al., 2021, Cai et al., 2020, Zanette et al., 2021]. At a high level, each

iteration of the soft policy iteration consists of two steps: policy evaluation and policy

improvement.

We begin by describing our policy evaluation algorithm. The Bellman error can be written

as fhps, aq ´ T π
h,rfh`1ps, aq for any ps, aq P S ˆ A, h P rHs, and the estimate of the action

value function f P F for policy π and reward r. We construct an empirical estimate of the

Bellman error as follows. For any h P rHs, f, f 1 P F and r P rR, we define Lh,rpfh, f
1
h`1, π;Dq

as

Lh,rpfh, f
1
h`1, π;Dq “

1

K

K
ÿ

τ“1

pfhpsτh, a
τ
hq ´ rhpsτh, a

τ
hq ´ f 1

h`1psτh`1, πh`1qq
2,

where we slightly abuse the notation and let rτh be the reported rewards rrτi,h summed over i

according to the chosen reported reward function r P rR. Recall that rR “ t rR´iu
n
i“1 Y t rRu

is the set of reported reward functions whose action-value functions need to be estimated.

The empirical estimate for Bellman error under policy π at step h is then constructed as

Eh,rpf, π;Dq “ Lh,rpfh, fh`1, π;Dq ´ min
gPFh

Lh,rpg, fh`1, π;Dq. (4.3.1)

The goal of the policy evaluation algorithm is to solve the following regularized optimization

problems:

pQπ
r “ argmin

fPF
´f1ps0, πq ` λ

H
ÿ

h“1

Eh,rpf, π;Dq,

qQπ
r “ argmin

fPF
f1ps0, πq ` λ

H
ÿ

h“1

Eh,rpf, π;Dq,

(4.3.2)

thereby obtaining optimistic and pessimistic estimates of Qπp¨, ¨; rq for any policy π and
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reward function r. We summarize the procedure in Algorithm 10.

Algorithm 10 Policy Evaluation

Input: Reported reward r P rR, regularization coefficient λ, policy π, and dataset D “

tpxτh, ω
τ
h, trr

τ
i,huni qu

H,K
h,τ“1.

1: For all h, τ , calculate rτh as the sum of rrτi,h over i according to the reported reward
function r.

2: Obtain the optimistic and pessimistic estimates of Qπ
r using (4.3.2)

3: Return action-value function estimates pQπ
r ,

qQπ
r .

Next, we introduce the policy improvement procedure. At each step t P rT s, we use

the mirror descent with the Kullback-Leibler (KLq divergence to update the policies for all

ps, aq P S ˆ A, h P rHs. By direct computation, the update rule can be written as

pπ
pt`1q

h,r pa|sq 9 pπ
ptq
h,rpa|sq exp

´

η pQ
ptq
h,rps, aq

¯

, (4.3.3)

qπ
pt`1q

h,r pa|sq 9 qπ
ptq
h,rpa|sq exp

´

η qQ
ptq
h,rps, aq

¯

, (4.3.4)

where pQh,r, qQh,r are the action-value function estimates obtained from (4.3.2) [Bubeck et al.,

2015, Cai et al., 2020, Xie et al., 2021].

For any set of T policies tπptquTt“1, let UnifptπptquTt“1q be the mixture policy formed

by selecting one of tπptquTt“1 uniformly at random. The output of our policy improvement

algorithm is then given by Unifptpπ
ptq
r uTt“1q and Unifptqπ

ptq
r uTt“1q, that is, the uniform mix-

ture of optimistic and pessimistic policy estimates. We summarize the soft policy iteration

algorithm in the form of pseudocode in Algorithm 11.

We defer the pseudocode of our main algorithm to Section 4.5.2 in the form of Algo-

rithm 12, as its construction is apparent given the two key subroutines above.
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Algorithm 11 Soft Policy Iteration for Episodic MDPs

Input: Reported reward r P rR, regularization coefficient λ, number of iterations T , learning
rate η , and dataset D “ tpxτh, ω

τ
h, trr

τ
i,huni qu

H,K
h,τ“1.

1: Initialize optimistic and pessimistic polices, pπp1q
r and qπ

p1q
r , as the uniform policy.

2: for t “ 1, . . . , T do

3: Obtain the optimistic and pessimistic estimates of Qpπ
ptq
r

r and Qqπ
ptq
r

r by Algorithm 10.
4: Update policy estimates according to (4.3.3) and (4.3.4).
5: end for
6: Let pπoutr “ Unifptpπ

ptq
r uTt“1q, qπoutr “ Unifptqπ

ptq
r uTt“1q.

7: Execute Algorithm 10 to construct optimistic action-value function pQout
r for pπoutr and

pessimistic action-value function qQout
r for qπoutr , respectively.

8: Return tpπoutr , pQout
r u and tqπoutr , qQout

r u.

4.4 Main Results

We begin by formally defining the policy class induced by the policy improvement algorithm,

Algorithm 11. It is a well-known result that policy iterates induced by mirror descent-style

updates in (4.3.3) and (4.3.4) are in the natural policy class attained by soft policy iteration

over F [Cai et al., 2020, Agarwal et al., 2021, Xie et al., 2021, Zanette et al., 2021], given by

ΠIt “

"

π1
hp¨|sq9 exp

˜

η
T
ÿ

t“1

f thps, ¨q

¸

: h P rHs, tf
ptq
h u

T
t“1 Ď Fh

*

.

Let ΠSPI denote the following set of policies

ΠSPI “ΠIt

!

π : π “ Unifptπptq
u
T
t“1q, tπptq

u
T
t“1 Ă ΠIt

)

. (4.4.1)

Before stating the main result, we introduce an additional notation. The statistical error

Errstat denotes

Errstat “ rO
´

HpHRmaxq
5{3K´1{3

¯

` rO
ˆ

H
´

pHRmaxq
1{3ϵ

1{3
F `

a

ϵF ` ϵF ,F
¯

˙

,
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while the optimization error Erropt denotes

Erropt “ rO
´

H2Rmax

a

1{T
¯

.

To differentiate the policies learned under different truthfulness assumptions, let qπ “ qπoutR

be the policy chosen by the algorithm when all agents are truthful, let rπ “ qπout
ri` rR´i

be

the policy chosen when we only assume the agent i is truthful, and let qπ
rR

“ qπout
rR

be the

policy chosen when no agent is truthful. Let qπptq, rπptq, qπ
ptq
rR

be the iterates of Algorithm 11

when learning these policies. Denote the prices charged by tppiu
n
i“1, trpiu

n
i“1, and tpp

i, rR
uni“1,

respectively.

We then summarize the performance of our learned mechanism with asymptotic bounds

in Theorem 4.4.1. Theorem 4.5.1 presented in Appendix 4.5.3 provides a more detailed

result.

Theorem 4.4.1 (Informal). With probability at least 1 ´ δ, with suitable choices of λ, δ,

under Assumptions 4.2.3 and 4.2.4, the following claims hold simultaneously.

1. Algorithm 12 returns a mechanism that is asymptotically efficient. More specifically,

assuming all agents report truthfully, we have

SubOptpqπ; s0q ď Erropt `

˜

1

T

T
ÿ

t“1

b

Cqπptq
pπ˚q

¸

Errstat.

2. Assuming all agents report truthfully, when pζ1, ζ2q “ pPES, OPTq, we have

SubOptipqπ, tppiu
n
i“1; s0q ď Erropt `

˜

1

T

T
ÿ

t“1

b

Cqπptq
pπ˚q

¸

Errstat.
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When pζ1, ζ2q “ pOPT, PESq, we have

SubOptipqπ, tppiu
n
i“1; s0q ďErropt

` Errstat

˜

1

T

T
ÿ

t“1

b

Cqπptq
pπ˚q `

b

Cpπ´ippπ´iq `

b

Cqπpqπq

¸

.

3. Assuming all agents report truthfully, when pζ1, ζ2q “ pPES, OPTq, we have

SubOpt0pqπ, tppiu
n
i“1; s0q

ď nErropt ` Errstat

˜

n
ÿ

i“1

b

Cqπ´ipqπ´iq ` n

b

Cqπpqπq `

n
ÿ

i“1

1

T

T
ÿ

t“1

c

C
qπ

ptq
R´i pπ˚

´iq

¸

.

and, when pζ1, ζ2q “ pOPT, PESq, we have

SubOpt0pqπ, tppiu
n
i“1; s0q

ď nErroptErrstat

˜

n
ÿ

i“1

1

T

T
ÿ

t“1

d

C
pπ

ptq
R´i ppπ

ptq
R´i

q `

n
ÿ

i“1

1

T

T
ÿ

t“1

c

C
pπ

ptq
R´i pπ˚

´iq

¸

.

4. Algorithm 12 returns a mechanism that is asymptotically individually rational. More

specifically, even when other agents are untruthful, when pζ1, ζ2q “ pPES, OPTq and the

agent i is truthful, their utility satisfies

Urπ
i prpiq ě ´Erropt ´ Errstat

˜

1

T

T
ÿ

t“1

d

C
qπ

ptq
rR´i prπ˚

´iq

`

d

C
qπout
rR´i pqπout

rR´i
q `

1

T

T
ÿ

t“1

c

Crπptq
pπ˚

ri` rR´i
q

¸

.
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and when pζ1, ζ2q “ pOPT, PESq and the agent i is truthful, their utility satisfies

Urπ
i prpiq ě ´ Erropt

´ Errstat

˜

1

T

T
ÿ

t“1

c

Crπptq
pπ˚

ri` rR´i
q `

d

C
pπ

ptq
rR´i prπ˚

´iq

`
1

T

T
ÿ

t“1

d

C
pπ

ptq
rR´i ppπ

ptq
rR´i

q `

b

Crπprπq

¸

.

5. Algorithm 12 returns a mechanism that is asymptotically truthful. More specifically,

even when all the other agents are untruthful and irrespective of whether the agent i is

truthful or not, for all i P rns when ζ2 “ OPT the amount of utility gained by untruthful

reporting is upper bounded as

U
qπ
rR

i ppp
i, rR

q ´ Urπ
i prpiq ď Erropt ` Errstat

˜

1

T

T
ÿ

t“1

c

Crπptq
pπ˚

ri` rR´i
q `

b

Cqπ
rRpqπ

rR
qq

¸

,

and when ζ2 “ PES, the amount of utility gained by untruthful reporting is upper

bounded as

U
qπ
rR

i ppp
i, rR

q ´ Urπ
i prpiq ď Erropt ` Errstat

˜

1

T

T
ÿ

t“1

c

Crπptq
pπ˚

ri` rR´i
q `

b

Crπprπqq

¸

.

Proof. See Section 4.5.3 for a detailed proof.

We make a few remarks about Theorem 4.4.1.

Dependence on the number of trajectories K. The only term that depends on

the number of trajectories K is the statistical error Errstat and it decays at the rOpK´1{3q

rate, matching the sample complexity of the pessimistic soft policy iteration algorithm [Xie

et al., 2021]. When data set has coverage of the optimal policy and no function approxima-

tion bias, our algorithm converges sublinearly to a mechanism with suboptimality OpK1{3q.
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Furthermore, when data set has sufficient coverage over all policies and the function class

satisfies Assumptions 4.2.3 and 4.2.4 exactly, our algorithm is asymptotically individually

rational and truthful at the same OpK1{3q rate, a result that is not implied by the existing

literature on offline RL [Xie et al., 2021, Jin et al., 2021b, Zanette et al., 2021].

Dependence on ζ1, ζ2. Observe that ζ1 and ζ2 affect the bounds in Theorem 4.4.1

by changing the distribution shift coefficients involved for each suboptimality. The inclu-

sion of optimism in offline RL for mechanism design is crucial, as the optimal individual

suboptimality rate is attainable only when ζ1 “ OPT. Different from the existing work on

offline RL which extensively uses pessimism, we demonstrate the importance and necessity

of optimism when offline RL is used to help design dynamic mechanisms [Xie et al., 2021,

Jin et al., 2021a, Zanette et al., 2021].

Dependence on F ,ΠSPI. The statistical error term Errstat is the only term that

depends on F ,ΠSPI through the log covering numbers of F and ΠSPI. The covering numbers

are formally defined in Appendix 4.5.5 and the theorem’s dependence on the covering number

is made explicit in the non-asymptotic version, Theorem 4.5.1. We emphasize that our results

are directly applicable to general, continuous function classes via a covering-based argument,

improving over the results in Xie et al. [2021].

Comparison to related work. While deep RL algorithms such as conservative Q-

learning [Kumar et al., 2020], conservative offline model-based policy optimization [Yu et al.,

2021], and decision transformer [Chen et al., 2021a] have achieved empirical success on popu-

lar offline RL benchmarks, such algorithms rarely have theoretical guarantees without strong

coverage assumptions. Within a mechanism design context, such a lack of theoretical guar-

antees is particularly problematic, as we cannot ensure that the learned mechanism is in-

dividually rational or truthful, potentially leading to significant ethical issues when applied

to real-world problems. When compared to Xie et al. [2021], our work features a stream-

lined, simplified theoretical analysis, which we sketch below, that is directly applicable when
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both |F | and |Π| are unbounded using a covering-based argument, whereas the convergence

bounds in Xie et al. [2021] grows linearly in the term
b

log |F ||Π|{δ
K in the general function

approximation setting.
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4.5 Technical Details

4.5.1 Proof of Proposition 4.2.2

Those familiar with the literature on mechanism design may quickly realize that our price

function is derived using the Clarke pivot rule [Nisan et al., 2007]. The result is directly

derived from the properties of the VCG mechanism [Nisan et al., 2007, Parkes, 2007, Hartline,

2012]. We include a full proof for completeness.

With P and trriu
n
i“0 given, the state-value functions V π

h ps0, rq can be explicitly cal-

culated for all h P rHs, r P rR. We can then obtain exactly rπ˚ and directly calculate

pi “ V ˚
1 ps0, rR´iq ´ V rπ˚

1 ps0, rR´iq. Thus, the proposed mechanism is feasible when the

rewards and transition kernel are known.

For convenience, let

πp1q
“ π˚

ri` rR´i
“ argmax

πPΠ
V π
1 ps0; ri ` rR´iq and πp2q

“ π˚
rR

“ argmax
πPΠ

V π
1 ps0; rRq,

denote the policies chosen by the mechanism when the agent i is truthful and untruthful,

respectively, without assumptions on the truthfulness of other agents.

We now show that the three desiderata are satisfied by the mechanism.

1. Efficiency. When the agents report triu
n
i“1 truthfully, the chosen policy π˚ maximizes

the social welfare and is efficient by definition.

2. Individual rationality. The price charged from the agent i is

pi “ V ˚
1 ps0; rR´iq ´ V πp2q

1 ps0; rR´iq.

Our goal is to then show that V πp2q

1 ps0; rriq ě pi. That is, the value function of the
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reported reward is no less than the price charged. Observe that

V πp2q

1 ps0; rriq ´ rpi “ V πp2q

1 ps0; rRq ´ V ˚
1 ps0; rR´iq.

Let πp2q

´i “ argmaxπPΠ V
π
1 ps0; rR´iq. Then we know that

V πp2q

1 ps0; rriq ´ rpi ě V
π

p2q

´i
1 ps0; rRq ´ V

π
p2q

´i
1 ps0; rR´iq “ V

π
p2q

´i
1 ps0; rriq ě 0.

3. Truthfulness: If rri “ ri, that is, the agent i reports truthfully, they attain the following

utility

Uπp1q

i ppiq “ V πp1q

1 ps0; riq ´ V ˚
1 ps0; rR´iq ` V πp1q

1 ps0; rR´iq

“ V πp1q

1 ps0; ri ` rR´iq ´ V ˚
1 ps0; rR´iq.

When the agent reports some arbitrary rri, the agent receives instead

Uπp2q

i ppiq “ V πp2q

1 ps0; riq ´ V ˚
1 ps0; rR´iq ` V πp2q

1 ps0; rR´iq

“ V πp2q

1 ps0; ri ` rR´iq ´ V ˚
1 ps0; rR´iq.

Since πp1q maximizes V π
1 ps0; ri ` rR´iq, ui ě rui regardless of other agents’ reported

reward trrjuj‰i and the mechanism is truthful.

4.5.2 Pseudocode for Offline VCG Learn

Let N8pϵ,Fq be the ϵ-covering number of F with respect to the ℓ8-norm, that is, the

cardinality of the smallest set of functions tf lu
NL
l“1 such that for all f P F there exists some

l P rLs such that

max
hPrHs

sup
sPS,aPA

|f lhps, aq ´ fhps, aq| ď ϵ.
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We also let N8,1pϵ,Πq be the ϵ-covering number of Π with respect to the following norm:

ℓ8,1pπ ´ π1
q “ sup

hPrHs,sPS

ÿ

aPA
|πhpa|sq ´ π1

hpa|sq|.

With the covering numbers defined, we introduce the main algorithm and the parameter

choices for the algorithm, which depend on the covering numbers. For the main algorithm,

we set

λ “

ˆ

Rmax

H2pϵS ` 3ϵF q2

˙1{3

, η “

d

log |A|

2H2R2
maxT

, (4.5.1)

where

ϵS “
5136

K
H4R4

max log

ˆ

56nH ¨ N8

ˆ

19H3R3
max

K
,F

˙

¨ N8,1

ˆ

19H4R4
max

K
,ΠSPI

˙

M

δ

˙

.

The pseudocode for our main algorithm can then be summarized as Algorithm 12.

Algorithm 12 Offline VCG Learn
Input: Hyperparameters ζ1, ζ2 P tOPT, PESu, regularization coefficient λ, number of itera-

tions T , learning rate η.
1: Let qπout

rR
be the pessimistic policy output of Algorithm 11 with r “ rR, T , and λ, η set

according to (4.5.1).
2: for Agent i “ 1, 2, . . . , n do
3: Call Algorithm 11 with r “ rR´i, T , and λ, η set according to (4.5.1).
4: If ζ1 “ OPT, let G

p1q

´i ps0q “ pQout
1, rR´i

ps0, pπ
out
1, rR´i

q. Otherwise let G
p1q

´i ps0q “

qQout
1, rR´i

ps0, qπ
out
1, rR´i

q.

5: Call Algorithm 10 with r “ rR´i, π “ qπout
rR

, and λ set according to (4.5.1).

6: If ζ2 “ OPT, let Gp2q

´i ps0q “ pQ
qπout
rR

1, rR´i
ps0, qπ

out
1, rR

q.

Otherwise let Gp2q

´i ps0q “ qQ
qπout
rR

1, rR´i
ps0, qπ

out
1, rR

q.

7: Set the estimated price ppi “ G
p1q

´i ps0q ´ G
p2q

´i ps0q.
8: end for
9: Return policy qπout

rR
and estimated prices tppiu

n
i“1.
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4.5.3 Proof of Theorem 4.4.1

We re-state Theorem 4.4.1 in a finite sample form.

Theorem 4.5.1 (Theorem 4.4.1 restated). Suppose that λ, η are set according to (4.5.1) and

Assumptions 4.2.3 and 4.2.4 hold. Then, with probability at least 1 ´ δ, the following holds

simultaneously.

1. Assuming all agents report truthfully, the suboptimality of the output policy qπ is bounded

as

SubOptpqπ; s0q ď 2H2Rmax

c

2 log |A|

T
`

?
ϵF ` 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3

` H

˜

1

T

T
ÿ

t“1

b

Cqπptq
pπ˚q

¸

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

2. Assuming all agents report truthfully, when pζ1, ζ2q “ pPES, OPTq, the agent i’s subop-

timality, for all i P rns, satisfies

SubOptipqπ, tppiu
n
i“1; s0q ď 2H2Rmax

c

2 log |A|

T
` 3

?
ϵF ` 6pHRmaxq

1{3
pϵS ` 3ϵF q

1{3

` H

˜

1

T

T
ÿ

t“1

b

Cqπptq
pπ˚q

¸

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

,
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and when pζ1, ζ2q “ pOPT, PESq,the agent i’s suboptimality, for all i P rns, satisfies

SubOptipqπ, tppiu
n
i“1; s0q ď 2H2Rmax

c

2 log |A|

T
`

?
ϵF ` 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3

` H

˜

1

T

T
ÿ

t“1

b

Cqπptq
pπ˚q `

b

Cpπ´ippπ´iq `

b

Cqπpqπq

¸

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

3. Assuming all agents report truthfully, when pζ1, ζ2q “ pPES, OPTq, the seller’s subopti-

mality satisfies

SubOpt0pqπ, tppiu
n
i“1; s0q ď 2nH2Rmax

c

2 log |A|

T
` n

?
ϵF

` 2npHRmaxq
1{3

pϵS ` 3ϵF q
1{3

` H

¨

˝

n
ÿ

i“1

¨

˝

b

Cqπ´ipqπ´iq `
1

T

T
ÿ

t“1

c

C
qπ

ptq
R´i pπ˚

´iq

˛

‚` n

b

Cqπpqπq

˛

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

,

and when pζ1, ζ2q “ pOPT, PESq, the seller’s suboptimality satisfies

SubOpt0pqπ, tppiu
n
i“1; s0q ď 2nH2Rmax

c

2 log |A|

T
` 2n

?
ϵF

` 4npHRmaxq
1{3

pϵS ` 3ϵF q
1{3

` H

¨

˝

n
ÿ

i“1

1

T

T
ÿ

t“1

¨

˝

c

C
pπ

ptq
R´i pπ˚

´iq `

d

C
pπ

ptq
R´i ppπ

ptq
R´i

q

˛

‚

˛

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

4. (Asymptotic Individual Rationality) When pζ1, ζ2q “ pPES, OPTq and the agent i is
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truthful, their utility is lower bounded by

Urπ
i prpiq ě ´4H2Rmax

c

2 log |A|

T
´ 3

?
ϵF ´ 6pHRmaxq

1{3
pϵS ` 3ϵF q

1{3

´ H

¨

˚

˝

1

T

T
ÿ

t“1

¨

˚

˝

c

Crπptq
pπ˚

ri` rR´i
q `

d

C
qπ

ptq
rR´i prπ˚

´iq

˛

‹

‚

`

d

C
qπout
rR´i pqπout

rR´i
q

˛

‹

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

,

and when pζ1, ζ2q “ pOPT, PESq, their utility is lower bounded by

Urπ
i prpiq ě ´4H2Rmax

c

2 log |A|

T
´ 2

?
ϵF ´ 4pHRmaxq

1{3
pϵS ` 3ϵF q

1{3

´

˜

1

T

T
ÿ

t“1

˜

c

Crπptq
pπ˚

ri` rR´i
q `

d

C
pπ

ptq
rR´i prπ˚

´iq

`

d

C
pπ

ptq
rR´i ppπ

ptq
rR´i

q

¸

`

b

Crπprπq

¸

ˆ H
´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

,

even when other agents are untruthful.

5. (Asymptotic Truthfulness) Even when all the other agents are untruthful and irrespec-

tive of whether the agent i is truthful or not, when ζ2 “ OPT, the amount of utility

gained by untruthful reporting is upper bounded by

U
qπ
rR

i ppp
i, rR

q ´ Urπ
i prpiq ď 2H2Rmax

c

2 log |A|

T
` 2

?
ϵF ` 4pHRmaxq

1{3
pϵS ` 3ϵF q

1{3

` H

˜

1

T

T
ÿ

t“1

c

Crπptq
pπ˚

ri` rR´i
q `

b

Cqπ
rRpqπ

rR
q

¸

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

,

and when ζ2 “ PES, the amount of utility gained by untruthful reporting is upper
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bounded by

U
qπ
rR

i ppp
i, rR

q ´ Urπ
i prpiq ď 2H2Rmax

c

2 log |A|

T
` 2

?
ϵF ` 4pHRmaxq

1{3
pϵS ` 3ϵF q

1{3

` H

˜

1

T

T
ÿ

t“1

c

Crπptq
pπ˚

ri` rR´i
q `

b

Crπprπq

¸

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

Proof of Theorem 4.5.1. We will make use of the following concentration lemma.

Lemma 4.5.2. For any fixed h P rHs, r P rR, and any policy class Π Ă tS Ñ ∆pAquH we

have

Pr
´

Df, f 1
P F , π P Π :

ˇ

ˇ

ˇ
Eµh

”

}fh ´ T π
h,rf

1
h`1}

2
ı

´ Lh,rpfh, f
1
h`1, π;Dq ` Lh,rpT π

h,rf
1
h`1, f

1
h`1, π;Dq

ˇ

ˇ

ˇ

ě ϵ
´

α ` β ` Eµh

”

}fh ´ T π
h,rf

1
h`1}

2
ı¯¯

ď 28

ˆ

N8

ˆ

ϵβ

140HRmax
,F

˙˙2

N8,1

ˆ

ϵβ

140H2R2
max

,Π

˙

exp

ˆ

´
ϵ2p1 ´ ϵqαK

214p1 ` ϵqH4R4
max

˙

.

for all α, β ą 0, 0 ă ϵ ď 1{2.

Proof. See Section 4.5.5 for a detailed proof.

Our proof hinges upon the occurrence of a “good event" under which the difference

between the empirical Bellman error estimator and the Bellman error can be bounded. We

formalize the definition of the “good event" below.

Lemma 4.5.3. For any policy class Π Ă tS Ñ ∆pAquH , let the “good event” GpΠq be defined
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as

GpΠq “
␣

@h P rHs, r P rR, π P Π, f, f 1
P F :

ˇ

ˇ

ˇ
Eµhr}fh ´ T π

h,rf
1
h`1}

2
s ´ Lh,rpfh, f

1
h`1, π;Dq ` Lh,rpT π

h,rf
1
h`1, f

1
h`1, π;Dq

ˇ

ˇ

ˇ

ď ϵS `
1

2
Eµhr}fh ´ T π

h,rf
1
h`1}

2
s
(

,

(4.5.2)

where

ϵS “
5136

K
H4R4

max log

ˆ

56nH ¨N8

ˆ

19H3R3
max

K
,F

˙

¨N8,1

ˆ

19H4R4
max

K
,Π

˙

M

δ

˙

. (4.5.3)

Then GpΠq occurs with probability at least 1 ´ δ.

Proof. See Section 4.5.5 for a detailed proof.

On the event GpΠq, the best approximations of action-value functions, defined according

to Assumption 4.2.3, have small empirical Bellman error estimates.

Corollary 4.5.4. Let Π be any policy class. Conditioned on the event GpΠq, let fπ,˚r P F be

the best estimate of Qπ
r p¨, ¨; rq as defined in Assumption 4.2.3, π P Π and r P rR. Then, for

all h P rHs, we have

Eh,rpf
π,˚
r , π;Dq ď 2ϵS ` 6ϵF .

Proof. See Section 4.5.5 for a detailed proof.

We can also show that any function with sufficiently small empirical Bellman error esti-

mate must also have small Bellman error conditioned on the good event.

Corollary 4.5.5. Let ϵ0 ą 0 be arbitrary and fixed. For any policy class Π, conditioned on

the event GpΠq, for all h P rHs, reported reward r P rR, π P Π, f P F , if Eh,rpf, π;Dq ď ϵ0,
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then

Eµh

”

}fh ´ T π
h,rfh`1}

2
ı

ď 2ϵ0 ` 4ϵS ` 3ϵF ,F .

Proof. See Section 4.5.5 for a detailed proof.

We introduce the key properties of Algorithms 10 and 11 that we will use. The following

lemma states that the outputs of Algorithm 10 are approximately optimistic and pessimistic.

Lemma 4.5.6. For any π “ tπhuHh“1 P ΠSPI, reported reward r P rR, and λ, conditioned on

the event GpΠSPIq, the following holds simultaneously for optimistic and pessimistic outputs

of Algorithm 10:

1. qQπ
1,rps0, π1q ` λ

řH
h“1 Eh,rp qQπ

r , π;Dq ď Qπ
1 ps0, π1; rq `

?
ϵF ` 2λHϵS ` 6λHϵF ;

2. pQπ
1,rps0, π1q ´ λ

řH
h“1 Eh,rp pQπ

r , π;Dq ě Qπ
1 ps0, π1; rq ´

?
ϵF ´ 2λHϵS ´ 6λHϵF .

Proof. See Section 4.5.4 for a detailed proof.

Additionally, the estimates given by Algorithm 10 are sufficiently good estimates of the

ground truth action-value functions.

Lemma 4.5.7. For any input π “ tπhuHh“1 P ΠSPI, reported reward r P rR, when λ “
´

Rmax
H2pϵS`3ϵF q2

¯1{3
and the event GpΠSPIq holds, the outputs of Algorithm 10 satisfy:

1. Qπ
1 ps0, π1; rq ´ qQπ

1,rps0, π1q

ď H
a

Cπpπq

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

;

2. pQπ
1,rps0, π1q ´ Qπ

1 ps0, π1; rq

ď H
a

Cπpπq

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

Proof. See Section 4.5.4 for a detailed proof.
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Finally, we bound the difference between outputs of Algorithm 11 and the true values.

More precisely, we characterize the performance of the output policy with respect to any

comparator policy, not necessarily in the induced policy class ΠSPI, and bound the difference

between the estimated value function and the true value function of the output policy.

Lemma 4.5.8. For any comparator policy π (not necessarily in ΠSPI), any reported reward

function r P rR, with η set to
c

log |A|

2H2R2
maxT

and λ set to
´

Rmax
H2pϵS`3ϵF q2

¯1{3
in Algorithm 11,

the following claims hold conditioned on the event GpΠSPIq:

1. Let qQ
ptq
1,r and qπ

ptq
r be the pessimistic value function estimate and policy estimate. Then

V π
1 ps0; rq ´

1

T

T
ÿ

t“1

qQ
ptq
1,rps0, qπ

ptq
1,rq ď 2H2Rmax

c

2 log |A|

T

` H

˜

1

T

T
ÿ

t“1

b

Cqπ
ptq
r pπq

¸

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

2. Let pQ
ptq
1,r and pπ

ptq
r be the optimistic value function estimate and policy estimate. Then

V π
1 ps0; rq ´

1

T

T
ÿ

t“1

pQ
ptq
1,rps0, pπ

ptq
1,rq ď 2H2Rmax

c

2 log |A|

T

` H

˜

1

T

T
ÿ

t“1

b

Cpπ
ptq
r pπq

¸

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

Proof. See Section 4.5.4 for a detailed proof.

We then proceed with the proof as follows. We start by bounding the suboptimality of

the output policy, defined according to equation (4.2.3). We then bound the regret of each

individual agent and the seller. We follow up with showing that our output asymptotically
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satisfies individual rationality. Finally, we prove that our output also asymptotically satisfies

truthfulness.

We use the following notation to differentiate the policies and prices learned under differ-

ent truthfulness assumptions. Let qπ “ qπoutR be the policy chosen by the algorithm when all

agents are truthful, let rπ “ qπout
ri` rR´i

be the policy chosen when we only assume the agent i is

truthful, and finally let qπ
rR

“ qπout
rR

be the policy chosen when none of the agents are truthful.

Let the prices charged by the algorithm be tppiu
n
i“1, trpiu

n
i“1, and tpp

i, rR
uni“1, respectively.

Social Welfare Suboptimality Assuming all agents are truthful, we have rri “ ri for all

i. Let π˚ be the maximizer of V π
1 ps0;Rq over π and let qπptq

R be the pessimistic policy iterate

of Algorithm 11. We know that the social welfare suboptimality of qπ is

SubOptpqπ; s0q “ V π˚

1 ps0;Rq ´ V qπ
1 ps0;Rq “ V π˚

1 ps0;Rq ´
1

T

T
ÿ

t“1

V
qπ

ptq
R

1 ps0;Rq

“
1

T

T
ÿ

t“1

´

V π˚

1 ps0;Rq ´ Qqπptq

1 ps0, qπ
ptq
1,R;Rq

¯

,

as we recall that qπ is the uniform mixture of policies tqπ
ptq
R utPrT s. By Lemma 4.5.6, we have

SubOptpqπ; s0q ď
1

T

T
ÿ

t“1

´

V π˚

1 ps0;Rq ´ qQ
ptq
1,Rps0, qπ

ptq
1,R;Rq

¯

`
?
ϵF ` 2λHϵS ` 6λHϵF ,

(4.5.4)
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where qQ
ptq
R is the pessimistic estimate of Qp¨, ¨;Rq at the t-th iteration of Algorithm 11.

When λ “

´

Rmax
H2pϵS`3ϵF q2

¯1{3
and η “

c

log |A|

2H2R2
maxT

, we apply Lemma 4.5.8 to obtain

SubOptpqπ; s0q ď 2H2Rmax

c

2 log |A|

T
`

?
ϵF ` 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3

` H

˜

1

T

T
ÿ

t“1

c

Cqπ
ptq
R pπ˚q

¸

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

Individual Suboptimality Let π˚
´i be the maximizer of V πps0;R´iq over π. By Algo-

rithm 12, the price ppi is constructed as

ppi “ G
p1q

´i ps0q ´ G
p2q

´i ps0q,

where Gp1q

´i ps0q is an estimate of V π˚
´ips0;R´iq obtained using Algorithm 11 and G

p2q

´i ps0q

is an estimate of V qπps0;R´iq for Algorithm 12’s output policy, qπ. This observation will be

extensively used in the remainder of the proof.

Assuming all agents are truthful, we have rri “ ri for all i. Recalling the construction of

ppi in Algorithm 12 line 7 and the definition of tp˚
i uni“1 (see (4.2.2)), we have

SubOptipqπ, tppiu
n
i“1; s0q

“ V π˚

1 ps0; riq ` V π˚

1 ps0;R´iq ´ V
π˚

´i
1 ps0;R´iq ´ V qπ

1 ps0; riq ` G
p1q

´i ps0q ´ G
p2q

´i ps0q

“ V π˚

1 ps0;Rq ´ V
π˚

´i
1 ps0;R´iq ´ V qπ

1 ps0; riq ` G
p1q

´i ps0q ´ G
p2q

´i ps0q

ď V π˚

1 ps0;Rq ´ V qπ
1 ps0;Rq `

ˆ

G
p1q

´i ps0q ´ V
π˚

´i
1 ps0;R´iq

˙

`

´

V qπ
1 ps0;R´iq ´ G

p2q

´i ps0q

¯

“ SubOptpqπ; s0q `

ˆ

G
p1q

´i ps0q ´ V
π˚

´i
1 ps0;R´iq

˙

`

´

V qπ
1 ps0;R´iq ´ G

p2q

´i ps0q

¯

.

We have already bounded the first term and now focus on the two latter terms.

We begin by examining Gp1q

´i ps0q ´ V
π˚

´i
1 ps0;R´iq.

195



• Suppose ζ1 “ OPT. Since π˚
´i maximizes V

π˚
´i

1 ps0;R´iq over π, we have

G
p1q

´i ps0q ´ V
π˚

´i
1 ps0;R´iq ď G

p1q

´i ps0q ´ V
pπ´i
1 ps0;R´iq.

Recall that pQout
R´i

is the optimistic function estimate from the output of Algorithm 11,

which is exactly the output of Algorithm 10 called on the policy returned by Algo-

rithm 11, pπ´i. By Lemma 4.5.7, we know that

G
piq
´ips0q ´ V

pπ´i
1 ps0;R´iq

ď H

b

Cpπ´ippπ´iq

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

• Suppose ζ1 “ PES. Since π˚
´i maximizes V π

1 ps0;R´iq over π, we have

G
p1q

´i ps0q ´ V
π˚

´i
1 ps0;R´iq ď G

p1q

´i ps0q ´ V
qπ´i
1 ps0;R´iq.

Recall that Gp1q

´i ps0q “ qQout
1,R´i

ps0, qπ1,´iq. From Lemma 4.5.6, we know that if we let

λ “

´

Rmax
H2pϵS`3ϵF q2

¯1{3
, then we have

G
p1q

´i ps0q ´ V
π˚

´i
1 ps0;R´iq ď

?
ϵF ` 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3.

We perform a similar analysis for V qπ
1 ps0;R´iq´G

p2q

´i ps0q and when λ “

´

Rmax
H2pϵS`3ϵF q2

¯1{3
.

• When ζ2 “ OPT, V qπ
1 ps0;R´iq ´ G

p2q

´i ps0q ď
?
ϵF ` 2pHRmaxq1{3pϵS ` 3ϵF q1{3 by

Lemma 4.5.6.

• When ζ2 “ PES, let qQqπ
R´i

be the pessimistic output of Algorithm 10 called on qπ. By
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Lemma 4.5.7, we have

V qπ
1 ps0;R´iq ´ G

p2q

´i ps0q

ď H

b

Cqπpqπq

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

Seller Suboptimality We now turn our attention to the sellers’ suboptimality. Assuming

all agents are truthful, we have rri “ ri for all i. Recalling the definition of tp˚
i uni“1 in (4.2.2),

we have

SubOpt0pqπ, tppiu
n
i“1; s0q

“ V π˚

1 ps0; r0q ´ V qπ
1 ps0; r0q `

n
ÿ

i“1

ˆ

max
π1PΠ

V π1

1 ps0;R´iq ´ V π˚

1 ps0;R´iq

˙

´

n
ÿ

i“1

ppi

“

n
ÿ

i“1

max
π1PΠ

V π1

1 ps0;R´iq ´ pn ´ 1qV π˚

1 ps0;Rq

´ V qπ
1 ps0; r0q ´

n
ÿ

i“1

G
p1q

´i ps0q `

n
ÿ

i“1

G
p2q

´i ps0q

“

n
ÿ

i“1

ˆ

max
π1PΠ

V π1

1 ps0;R´iq ´ G
p1q

´i ps0q

˙

´ pn ´ 1qV π˚

1 ps0;Rq

´ V qπ
1 ps0; r0q `

n
ÿ

i“1

G
p2q

´i ps0q

“

n
ÿ

i“1

ˆ

V
π˚

´i
1 ps0;R´iq ´ G

p1q

´i ps0q

˙

` pn ´ 1qpV qπ
1 ps0;Rq ´ V π˚

1 ps0;Rqq

`

n
ÿ

i“1

´

G
p2q

´i ps0q ´ V qπ
1 ps0, R´iq

¯

ď

n
ÿ

i“1

ˆ

V
π˚

´i
1 ps0;R´iq ´ G

p1q

´i ps0q

˙

`

n
ÿ

i“1

´

G
p2q

´i ps0q ´ V qπ
1 ps0, R´iq

¯

,

(4.5.5)

where the last inequality comes from the fact that π˚ is the social welfare-maximizing policy.

The two terms can be bounded similarly to bounding the agents’ suboptimality. We discuss
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the exact bounds for different choices of ζ1, ζ2 and λ “

´

Rmax
H2pϵS`3ϵF q2

¯1{3
, η “

c

log |A|

2H2R2
maxT

.

• When ζ1 “ OPT, by Algorithm 12 line 7, we know that for any i P rns,

V
π˚

´i
1 ps0;R´iq ´ G

p1q

´i ps0q “ V
π˚

´i
1 ps0;R´iq ´ pQout

1,R´i
ps0, pπ1,´iq.

By Lemma 4.5.8, we know that

V
π˚

´i
1 ps0;R´iq ´

1

T

T
ÿ

t“1

pQ
ptq
1,R´i

ps0, pπ
ptq
1,R´i

q ď 2H2Rmax

c

2 log |A|

T

` H

¨

˝

1

T

T
ÿ

t“1

c

C
pπ

ptq
R´i pπ˚

´iq

˛

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

By Lemma 4.5.7 and recalling that pπ´i is the uniform mixture of tpπ
ptq
R´i

utPrT s, we know

that

1

T

T
ÿ

t“1

pQ
ptq
1,R´i

ps0, pπ
ptq
1,R´i

q ´ V
pπ´i
1 ps0;R´iq

“
1

T

T
ÿ

t“1

˜

pQ
ptq
1,R´i

ps0, pπ
ptq
1,R´i

q ´ V
pπ

ptq
R´i

1 ps0;R´iq

¸

ď H

¨

˝

1

T

T
ÿ

t“1

d

C
pπ

ptq
R´i ppπ

ptq
R´i

q

˛

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

Lastly, by Lemma 4.5.6, we also know that

V
pπ´i
1 ps0;R´iq ´ pQout

1,R´i
ps0, pπ1,´iq ď

?
ϵF ` 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3.
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Summing the three parts tells us that, for all i P rns, we have

V
π˚

´i
1 ps0;R´iq ´ G

p1q

´i ps0q

“ V
π˚

´i
1 ps0;R´iq ´ pQout

1,R´i
ps0, pπ1,´iq

ď 2H2Rmax

c

2 log |A|

T
`

?
ϵF ` 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3

` H

¨

˝

1

T

T
ÿ

t“1

¨

˝

c

C
pπ

ptq
R´i pπ˚

´iq `

d

C
pπ

ptq
R´i ppπ

ptq
R´i

q

˛

‚

˛

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

(4.5.6)

and

n
ÿ

i“1

ˆ

V
π˚

´i
1 ps0;R´iq ´ G

p1q

´i ps0q

˙

ď 2nH2Rmax

c

2 log |A|

T
` n

?
ϵF ` 2npHRmaxq

1{3
pϵS ` 3ϵF q

1{3

` H

¨

˝

n
ÿ

i“1

1

T

T
ÿ

t“1

¨

˝

c

C
pπ

ptq
R´i pπ˚

´iq `

d

C
pπ

ptq
R´i ppπ

ptq
R´i

q

˛

‚

˛

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

• When ζ1 “ PES, by Algorithm 12 we know that for any i P rns,

V
π˚

´i
1 ps0;R´iq ´ G

p1q

´i ps0q “ V
π˚

´i
1 ps0;R´iq ´ qQout

1,R´i
ps0, qπ1,´iq.
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By Lemma 4.5.8, we know that

V
π˚

´i
1 ps0;R´iq ´

1

T

T
ÿ

t“1

qQ
ptq
1,R´i

ps0, qπ
ptq
1,R´i

q ď 2H2Rmax

c

2 log |A|

T

` H

¨

˝

1

T

T
ÿ

t“1

c

C
qπ

ptq
R´i pπ˚

´iq

˛

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

By Lemma 4.5.6, we know that

1

T

T
ÿ

t“1

qQ
ptq
1,R´i

ps0, qπ
ptq
1,R´i

q ´ V
qπ´i
1 ps0;R´iq ď

?
ϵF ` 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3.

By Lemma 4.5.7, we further know that

V
qπ´i
1 ps0;R´iq ´ qQout

1,R´i
ps0, qπ1,´iq

ď H

b

Cqπ´ipqπ´iq

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

Summing the three parts together tells us that, for all i P rns and any C ě 1, we have

V
π˚

´i
1 ps0;R´iq ´ G

p1q

´i ps0q “ V
π˚

´i
1 ps0;R´iq ´ qQout

1,R´i
ps0, qπ1,´iq

ď 2H2Rmax

c

2 log |A|

T
`

?
ϵF ` 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3

` H

¨

˝

b

Cqπ´ipqπ´iq `
1

T

T
ÿ

t“1

c

C
qπ

ptq
R´i pπ˚

´iq

˛

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

(4.5.7)
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and

n
ÿ

i“1

ˆ

V
π˚

´i
1 ps0;R´iq ´ G

p1q

´i ps0q

˙

ď 2nH2Rmax

c

2 log |A|

T
` n

?
ϵF ` 2npHRmaxq

1{3
pϵS ` 3ϵF q

1{3

` H

¨

˝

n
ÿ

i“1

b

Cqπ´ipqπ´iq `

n
ÿ

i“1

1

T

T
ÿ

t“1

c

C
qπ

ptq
R´i pπ˚

´iq

˛

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

• When ζ2 “ OPT, for all i P rns, let qQqπ
R´i

be the pessimistic estimate of Qqπp¨, ¨;R´iq

returned by Algorithm 10. By Lemma 4.5.7, we know

n
ÿ

i“1

´

G
p2q

´i ps0q ´ V qπ
1 ps0, R´iq

¯

ď nH

b

Cqπpqπq

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

• When ζ2 “ PES, by Lemma 4.5.6

n
ÿ

i“1

´

G
p2q

´i ps0q ´ V qπ
1 ps0, R´iq

¯

ď n
?
ϵF ` 2npHRmaxq

1{3
pϵS ` 3ϵF q

1{3.

Plugging in the bound for SubOptpqπ; s0q completes the proof.

Individual Rationality We show that the utility of any agent i is bounded below. First,

assume for convenience that all other agents are truthful and report their true ri1,h for

i1 P rnszi. Recall that for any price pi, the agents’ expected utility under the chosen policy

qπ can be written as

Ed
qπ
ruis “ V qπ

1 ps0; riq ´ pi.
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According to Algorithm 12, we have

E
qπruis “ V qπ

1 ps0; riq ´ G
p1q

´i ps0q ` G
p2q

´i ps0q

“ V qπ
1 ps0; riq ` G

p2q

´i ps0q ´ V π˚
´ips0;R´iq ` V π˚

´ips0;R´iq ´ G
p1q

´i ps0q

“ pV π˚

ps0;Rq ´ V π˚
´ips0;R´iqq ` V qπ

ps0; riq ` G
p2q

´i ps0q ´ V π˚

ps0;Rq

` V π˚
´ips0;R´iq ´ G

p1q

´i ps0q

ě V qπ
ps0; riq ` G

p2q

´i ps0q ´ V π˚

ps0;Rq ` V π˚
´ips0;R´iq ´ G

p1q

´i ps0q

“ G
p2q

´i ps0q ´ V qπ
ps0;R´iq ` V qπ

ps0;Rq ´ V π˚

ps0;Rq ` V π˚
´ips0;R´iq ´ G

p1q

´i ps0q,

(4.5.8)

where the inequality comes from the fact that

pV π˚

ps0;Rq ´ V π˚
´ips0;R´iqq ě pV π˚

´ips0;Rq ´ V π˚
´ips0;R´iqq “ V π˚

´ips0; riqq ě 0,

as ri,h P r0, 1s for all i, h. We already know the lower bounds for V π˚
´ips0;R´iq ´ G

p1q

´i ps0q

and Gp2q

´i ps0q ´ V qπps0;R´iq , respectively, when bounding the individual suboptimalities for

the agents. Also note that V qπps0;Rq´V π˚
ps0;Rq “ ´SubOptpqπ; s0q has been bounded when

bounding social welfare suboptimality.

Similar to the previous sections, we now discuss the bounds for the different terms under

difference choices of ζ1, ζ2.
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• When ζ1 “ OPT, by equation (4.5.6) we know that

G
p1q

´i ps0q ´ V
π˚

´i
1 ps0;R´iq ě ´2H2Rmax

c

2 log |A|

T
´

?
ϵF

´ 2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

´ H

¨

˝

1

T

T
ÿ

t“1

¨

˝

c

C
pπ

ptq
R´i pπ˚

´iq `

d

C
pπ

ptq
R´i ppπ

ptq
R´i

q

˛

‚

˛

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

• When ζ1 “ PES, by equation (4.5.7) we know that

G
p1q

´i ps0q ´ V
π˚

´i
1 ps0;R´iq ě ´2H2Rmax

c

2 log |A|

T
´

?
ϵF

´ 2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

´ H

¨

˝

b

Cqπ´ipqπ´iq `
1

T

T
ÿ

t“1

c

C
qπ

ptq
R´i pπ˚

´iq

˛

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

• When ζ2 “ OPT, by Lemma 4.5.6, we know that

G
p2q

´i ps0q ´ V qπ
ps0;R´iq ě ´

?
ϵF ´ 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3.

• When ζ2 “ PES, by Lemma 4.5.7

G
p2q

´i ps0q ´ V qπ
1 ps0;R´iq

ě ´H

b

Cqπpqπq

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

We now argue that our analysis holds even when the other agents are not truthful. Recall

that rπ is the output policy selected by Algorithm 12 when other agents report rri1 and the
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agent i reports truthfully. Observe that here the decomposition in equation (4.5.8) can be

written as

E
rπruis ě rG

p2q

´i ps0q ´ V rπ
ps0; rR´iq ` V rπ

ps0; ri ` rR´iq ´ V
π˚

ri`
rR´i ps0; ri ` rR´iq

` V rπ˚
´ips0; rR´iq ´ rG

p1q

´i ps0q,

where we recall that rR´i “
ř

i1‰i rri1 , and π˚

ri` rR´i
and rπ˚

´i maximize V π
1 ps0; ri ` rR´iq and

V π
1 ps0; rR´iq over π, respectively. We also let rG

p1q

´i ,
rG

p2q

´i be the estimates used in Algorithm 12

line 7 when other agents are reporting untruthfully.

Similar to the previous sections, we bound different terms under difference choices of

ζ1, ζ2.

• When ζ1 “ OPT, similar to equation (4.5.6), we have

rG
p1q

´i ps0q ´ V
rπ˚

´i
1 ps0; rR´iq ě ´2H2Rmax

c

2 log |A|

T
´

?
ϵF

´ 2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

´ H

¨

˚

˝

1

T

T
ÿ

t“1

¨

˚

˝

d

C
pπ

ptq
rR´i prπ˚

´iq `

d

C
pπ

ptq
rR´i ppπ

ptq
rR´i

q

˛

‹

‚

˛

‹

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

• When ζ1 “ PES, similar to equation (4.5.7), we have

rG
p1q

´i ps0q ´ V
rπ˚

´i
1 ps0; rR´iq ě ´2H2Rmax

c

2 log |A|

T
´

?
ϵF

´ 2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

´ H

¨

˚

˝

d

C
qπout
rR´i pqπout

rR´i
q `

1

T

T
ÿ

t“1

d

C
qπ

ptq
rR´i prπ˚

´iq

˛

‹

‚

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.
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• When ζ2 “ OPT, by Lemma 4.5.6, we know

rG
p2q

´i ps0q ´ V rπ
ps0; rR´iq ě ´

?
ϵF ´ 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3.

• When ζ2 “ PES, by Lemma 4.5.7

rG
p2q

´i ps0q ´ V rπ
1 ps0; rR´iq

ě ´H

b

Crπprπq

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

,

where rπ is the policy that the seller chooses when agent i reports truthfully and the

other agents do not.

We finally focus on lower bounding V rπps0; ri ` rR´iq ´ V
π˚

ri`
rR´i ps0; ri ` rR´iq. Since rπ

is the uniform mixture of trπptqutPrT s, we have

V
π˚

ri`
rR´i

1 ps0; ri ` rR´iq ´ V rπ
1 ps0; ri ` rR´iq

“
1

T

T
ÿ

t“1

˜

V
π˚

ri`
rR´i

1 ps0; ri ` rR´iq ´ V rπptq

1 ps0; ri ` rR´iq

¸

ď
1

T

T
ÿ

t“1

˜

V
π˚

ri`
rR´i

1 ps0; ri ` rR´iq ´ qQ
ptq

1,ri` rR´i
ps0, rπ

ptq
1 q

¸

`
?
ϵF ` 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3

by Lemma 4.5.6. By Lemma 4.5.8, we know that

1

T

T
ÿ

t“1

˜

V
π˚

ri`
rR´i

1 ps0; ri ` rR´iq ´ qQ
ptq

1,ri` rR´i
ps0, rπ

ptq
1 q

¸

ď 2H2Rmax

c

2 log |A|

T

` H

˜

1

T

T
ÿ

t“1

c

Crπptq
pπ˚

ri` rR´i
q

¸

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.
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Therefore, we have

V
π˚

ri`
rR´i

1 ps0; ri ` rR´iq ´ V rπ
1 ps0; ri ` rR´iq

ď 2H2Rmax

c

2 log |A|

T
`

?
ϵF ` 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3

` H

˜

1

T

T
ÿ

t“1

c

Crπptq
pπ˚

ri` rR´i
q

¸

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

(4.5.9)

Flipping the signs yields the final bound.

Truthfulness Similar to above and let rri1 be the potentially untruthful reward functions

reported by other agents and let rri be the untruthful reward function that the agent i may

report. Furthermore, let rR´i “
ř

i1‰i rri1 and rR “
řn

i“1 rri.

Let rπ be the policy chosen by the seller when the agent i is truthful and other agents are

possibly non-truthful and qπ
rR

the policy chosen by Algorithm 12 when both the agent i and

other agents are non-truthful. The agents’ expected utilities for the two cases are

E
rπruis “ V rπ

1 ps0; riq ` rG
p2q

´i ps0q ´ rG
p1q

´i ps0q,

Ed
qπ
rR

ruis “ V
qπ
rR

1 ps0; riq ` rG
p2q,1
´i ps0q ´ rG

p1q,1
´i ps0q,

where rG
p2q

´i ps0q estimates V rπps0; rR´iq and rG
p2q,1
´i ps0q estimates V qπ

rRps0; rR´iq.

Observe that both rG
p1q

´i ps0q and rG
p1q,1
´i ps0q approximate V

rπ˚
´i

1 ps0; rR´iq using the same

algorithm, Algorithm 11. As the algorithm itself does not contain randomness and rG
p1q

´i ps0q

and rG
p1q,1
´i ps0q are constructed using the same parameters, the two terms must be equal.
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Then we have

E
qπ
rR
ruis ´ E

rπruis “ V
qπ
rR

1 ps0; riq ` rG
p2q,1
´i ps0q ´

´

V rπ
1 ps0; riq ` rG

p2q

´i ps0q

¯

“ V
qπ
rR

1 ps0; ri ` rR´iq ` rG
p2q,1
´i ps0q ´ V

qπ
rR

1 ps0; rR´iq

´

´

V rπ
1 ps0; ri ` rR´iq ` rG

p2q

´i ps0q ´ V rπ
1 ps0; rR´iq

¯

“ V
qπ
rR

1 ps0; ri ` rR´iq ´ V
π˚

ri`
rR´i

1 ps0; ri ` rR´iq ` rG
p2q,1
´i ps0q ´ V

qπ
rR

1 ps0; rR´iq

` V
π˚

ri`
rR´i

1 ps0; ri ` rR´iq ´ V rπ
1 ps0; ri ` rR´iq ` V rπ

1 ps0; rR´iq ´ rG
p2q

´i ps0q,

where we recall that π˚

ri` rR´i
is the maximizer of V π

1 ps0; ri ` rR´iq over π (the social welfare

maximizing policy when agent i reports truthfully). We then know that

V
qπ
rR

1 ps0; ri ` rR´iq ´ V
π˚

ri`
rR´i

1 ps0; ri ` rR´iq ď 0

and

E
qπ
rR
ruis ´ E

rπruis

ď

ˆ

rG
p2q,1
´i ps0q ´ V

qπ
rR

1 ps0; rR´iq

˙

`

˜

V
π˚

ri`
rR´i

1 ps0; ri ` rR´iq ´ V rπ
1 ps0; ri ` rR´iq

¸

`

´

V rπ
1 ps0; rR´iq ´ rG

p2q

´i ps0q

¯

.
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Let us focus on the middle term first. By (4.5.9), we have

V
π˚

ri`
rR´i

1 ps0; ri ` rR´iq ´ V rπ
1 ps0; ri ` rR´iq

ď 2H2Rmax

c

2 log |A|

T
`

?
ϵF ` 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3

` H

˜

1

T

T
ÿ

t“1

c

Crπptq
pπ˚

ri` rR´i
q

¸

ˆ

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

We state the results for different values of ζ2 as the bound no longer depends on ζ1.

• When ζ2 “ OPT, by Lemma 4.5.6, we have

V rπ
1 ps0; rR´iq ´ rG

p2q

´i ps0q ď
?
ϵF ` 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3,

and by Lemma 4.5.7,

rG
p2q,1
´i ps0q ´ V

qπ
rR

1 ps0; rR´iq

ď H

b

Cqπ
rRpqπ

rR
q

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

• When ζ2 “ PES, by Lemma 4.5.7,

V rπ
1 ps0; rR´iq ´ rG

p2q

´i ps0q

ď H

b

Crπprπq

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

,

and by Lemma 4.5.6,

rG
p2q,1
´i ps0q ´ V

qπ
rR

1 ps0; rR´iq ď
?
ϵF ` 2pHRmaxq

1{3
pϵS ` 3ϵF q

1{3.
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Combining the terms completes the proof.

4.5.4 Supporting Lemmas

In this section, we provide detailed proofs of supporting lemmas used in Section 4.5.3.

Proofs for Algorithm 10

Previous work has shown that the estimate of the value function fπ is the exact value

function of an induced MDP that shares the same state space, action space, and transition

kernel as M, only with slightly perturbed reward functions [Cai et al., 2020, Uehara and

Sun, 2021, Xie et al., 2021, Zanette et al., 2021]. More precisely, let r be the input reward

for Algorithm 10, π the input policy, and fπ the output. Let Mfπ be the induced MDP.

We formally state the result below.

Lemma 4.5.9. For any input policy π (not necessarily in ΠSPI) and input reward function

r, Algorithm 10 returns a function fπ such that fπ is the Q-function of the policy π under

the induced MDP Mfπ , given by

Mfπ “ pS,A, H,P , rfπq, (4.5.10)

where rfπ,h “ rh ` fπh ´ T π
h,rf

π
h`1. In other words, fπp¨, ¨q “ Qπp¨, ¨; rfπq.

Proof. See Section C.1 in Zanette et al. [2021] for a detailed proof.

We immediately have the following corollary.

Corollary 4.5.10. Let fπ be any one of the two functions returned by Algorithm 10 for

any input policy π (not necessarily in ΠSPI) and any input reward function r. Then, for all
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h P rHs, we have

ˇ

ˇfπh ps, aq ´ Qπ
hps, a; rq

ˇ

ˇ ď

H
ÿ

h1“h

EpSh1 ,Ah1q„π|ps,aq

”
ˇ

ˇ

ˇ
fπh ´ T π

h,rf
π
h`1

ˇ

ˇ

ˇ

ı

.

Proof. By definition of the Q-function, we have

fπh ps, aq ´ Qπ
hps, a; rq “ Qπ

hps, a; rfπq ´ Qπ
hps, a; rq

“

H
ÿ

h1“h

EpSh1 ,Ah1q„π|ps,aqrrhpSh1 , Ah1q ´ rfπ,hpSh1 , Ah1qs.

Recalling the definition of rfπ in equation (4.5.10) and using Jensen’s inequality concludes

the proof.

We proceed to show that Algorithm 10 is approximately optimistic/pessimistic and

bounding the estimation error of its outputs. We begin with the proof of Lemma 4.5.6.

Proof of Lemma 4.5.6. We start by upper bounding two auxiliary terms. Let fπ,˚r P F be

the best approximation of Qπp¨, ¨; rq, as defined in Assumption 4.2.3. By Jensen’s inequality,

we have

|f
π,˚
1,r ps0, π1q ´ Qπ

1 ps0, π1; rq| ď Ea„π1p¨|s0qr|f
π,˚
1,r ps0, π1q ´ Qπ

1 ps0, π1; rq|s ď
?
ϵF .

Additionally, using Lemma 4.5.4 we know that, conditioned on the event GpΠSPIq, for all

h P rHs we have Eh,rpf
π,˚
r , π;Dq ď 2ϵS ` 6ϵF .
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We then consider qQπ
r . By (4.3.2), we know that

qQπ
1,rps0, πq ` λ

H
ÿ

h“1

Eh,rp qQπ
r , π;Dq ď f

π,˚
1,r ps0, πq ` λ

H
ÿ

h“1

Eh,rpf
π,˚
r , π;Dq

ď Qπ
1 ps0, π; rq ` |f

π,˚
1,r ps0, π1q ´ Qπ

1 ps0, π1; rq| ` 2λHϵS ` 6λHϵF

ď Qπ
1 ps0, π1; rq `

?
ϵF ` 2λHϵS ` 6λHϵF .

Similarly for pQπ
r , by (4.3.2), we have

pQπ
1,rps0, πq ´ λ

H
ÿ

h“1

Eh,rp pQπ
r , π;Dq ě f

π,˚
1,r ps0, πq ´ λ

H
ÿ

h“1

Eh,rpf
π,˚
r , π;Dq

ě Qπ
1 ps0, π; rq ´ |f

π,˚
1,r ps0, π1q ´ Qπ

1 ps0, π1; rq| ´ 2λHϵS ´ 6λHϵF

ě Qπ
1 ps0, π1; rq ´

?
ϵF ´ 2λHϵS ´ 6λHϵF ,

thus completing the proof.

We prove that the action-value functions returned by Algorithm 10 are sufficiently good

estimates.

Proof of Lemma 4.5.7. By Corollary 4.5.10, we have

pQπ
1,rps0, π1q ´ Qπ

1 ps0, π1; rq ď

ˇ

ˇ

ˇ

ˇ

ˇ

H
ÿ

h“1

Eπ

”

pQπ
h,r ´ T π

h,r
pQπ
h`1,r

ı

ˇ

ˇ

ˇ

ˇ

ˇ

,

Qπ
1 ps0, π1; rq ´ qQπ

1,rps0, π1q ď

ˇ

ˇ

ˇ

ˇ

ˇ

H
ÿ

h“1

Eπ

”

qQπ
h,r ´ T π

h,r
qQπ
h`1,r

ı

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since the differences share similar forms, we can without loss of generality only consider pQπ
r .
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Recall the definition of Cπpνq, given in Definition 4.2.5. We have

ˇ

ˇ

ˇ

ˇ

ˇ

H
ÿ

h“1

Eπ

”

qQπ
h,r ´ T π

h,r
qQπ
h`1,r

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď

H
ÿ

h“1

Eπ

”
›

›

›

qQπ
h,r ´ T π

h,r
qQπ
h`1,r

›

›

›

ı

ď
a

Cπpπq

H
ÿ

h“1

Eµh

”
›

›

›

qQπ
h,r ´ T π

h,r
qQπ
h`1,r

›

›

›

ı

,

(4.5.11)

where the first inequality is by Cauchy-Schwarz, the second inequality by the definition of

Cπpπq, which is the shorthand notation for Cπpdπq. Similar to the proof of Lemma 4.5.6,

let fπ,˚r be the best approximation of Qπp¨, ¨; rq as defined in Assumption 4.2.3. Then

λ
H
ÿ

h“1

Eh,rp qQπ
r , π;Dq ď f

π,˚
1,r ps0, π1q ´ qQπ

1,rps0, π1q ` 2λHϵS ` 6λHϵF .

Since fπ,˚r , qQπ
1,r P F , we have fπ,˚r , qQπ

1,r P r´HRmax, HRmaxs and thus

H
ÿ

h“1

Eh,rp qQπ
r , π;Dq ď

2HRmax

λ
` 2HϵS ` 6HϵF .

By Corollary 4.5.5, conditioned on GpΠSPIq, we have

H
ÿ

h“1

Eµh

”

} qQπ
h,r ´ T π

h,r
qQπ
h`1,r}

2
ı

ď 2
H
ÿ

h“1

Eh,rp qQπ
r , π;Dq ` 4HϵS ` 3HϵF ,F

ď
4HRmax

λ
` 8HϵS ` 12HϵF ` 3HϵF ,F .

Plugging the bound back into (4.5.11) and applying Cauchy-Schwarz inequality gives us

ˇ

ˇ

ˇ

ˇ

ˇ

H
ÿ

h“1

Eπ

”

qQπ
h,r ´ T π

h,r
qQπ
h`1,r

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď
?
H
a

Cπpπq

c

4HRmax

λ
` 8HϵS ` 12HϵF ` 3HϵF ,F

“ H
a

Cπpπq

c

4Rmax

λ
` 8ϵS ` 12ϵF ` 3ϵF ,F .

212



Setting λ “

´

Rmax
H2pϵS`3ϵF q2

¯1{3
and using

?
a ` b ď

?
a `

?
b for a, b P Rě0 completes the

proof.

Proofs for Algorithm 11

We now turn to analyzing the policies selected in Algorithm 11. In particular, we focus

on the mirror descent-style updates given in (4.3.3) and (4.3.4). We start by defining an

abstract version of the procedure in Algorithm 11.

Definition 4.5.11. Consider the following procedure. For any t P rT s:

1. Let f ptq P F be an arbitrary function in the function class.

2. Let πpt`1q

h pa|sq 9π
ptq
h pa|sq exp

´

ηf
ptq
h ps, aq

¯

for all ps, aq P S ˆ A, h P rHs.

Recall that EaPA rlog πhpa|sqs “
ř

aPA πhpa|sq log πhpa|sq for all π, h, and s. We continue

with a standard analysis of the regret of actor-critic algorithms.

Lemma 4.5.12. For any π (not necessarily in ΠSPI), for all h P rHs and s P S, setting

η “

c

log |A|

2H2R2
maxT

in the procedure defined in 4.5.11 ensures that

T
ÿ

t“1

xπhp¨|sq ´ π
ptq
h p¨|sq, f

ptq
h ps, ¨qy ď 2HRmax

a

2T log |A|.

Proof. By a direct application of Lemma C.3 of Xie et al. [2021], we know that even for

policies not in ΠSPI (as we are effectively performing mirror descent over the probability

simplex with the KL penalty) we have

T
ÿ

t“1

xπhp¨|sq ´ π
ptq
h p¨|sq, f

ptq
h ps, ¨qy

ď

T
ÿ

t“1

xπ
pt`1q

h ´ π
ptq
h p¨|sq, f

ptq
h ps, ¨qy ´

1

η
E
a„π

p1q

h

”

log π
p1q

h pa|sq
ı

,
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where η is the stepsize. From the proof of Lemma C.4 in Xie et al. [2021], we further note

that for any π P π, h P rHs, s P S, and t P rT s we have

xπhp¨|sq ´ π
ptq
h p¨|sq, f

ptq
h ps, ¨qy ď }f

ptq
h ps, ¨q}8

b

2ηxπhp¨|sq ´ π
ptq
h p¨|sq, f

ptq
h ps, ¨qy.

Because fh are bounded by HRmax, xπhp¨|sq ´ π
ptq
h p¨|sq, f

ptq
h ps, ¨qy ď 2ηH2R2

max. Following

the proof in Section C.1 in Xie et al. [2021] completes our proof.

With the observations above, we proceed with proving Lemma 4.5.8.

Proof of Lemma 4.5.8. We analyze the pessimistic estimate and note that the analysis is

similar for the other part. Let qπ
ptq
r be the policy iterate of Algorithm 11 and qQ

ptq
r the

corresponding value function estimate. We know that

V π
1 ps0; rq ´

1

T

T
ÿ

t“1

qQ
ptq
1,rps0, qπ

ptq
1,rq “

1

T

T
ÿ

t“1

´

Qπ
1 ps0, π1; rq ´ qQ

ptq
1,rps0, qπ

ptq
1,rq

¯

ď
1

T

T
ÿ

t“1

H
ÿ

h“1

Eπ

”

x qQ
ptq
h,rpsh, ¨q, πhp¨|shq ´ qπ

ptq
h,rp¨|shqy

ı

`

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

H
ÿ

h“1

Eπ

„

qQ
ptq
h,r ´ T qπ

ptq
r

h,r
qQ

ptq
h`1,r

ȷ

ˇ

ˇ

ˇ

ˇ

ˇ

,

where the inequality is by a standard argument in episodic reinforcement learning (see,

for example, Lemma A.1 in Jin et al. [2021b] or Section B.1 in Cai et al. [2020]). By

Lemma 4.5.12, we know that when η “

c

log |A|

2H2R2
maxT

, we have

1

T

T
ÿ

t“1

H
ÿ

h“1

Eπ

”

x qQ
ptq
h,rpsh, ¨q, πhp¨|shq ´ qπ

ptq
h,rp¨|shqy

ı

ď 2H2Rmax

c

2 log |A|

T
.
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For all t P rT s, similar to the proof of Lemma 4.5.7, when λ “

´

Rmax
H2pϵS`3ϵF q2

¯1{3
, we have

ˇ

ˇ

ˇ

ˇ

ˇ

H
ÿ

h“1

Eπ

„

qQ
ptq
h,r ´ T qπ

ptq
r

h,r
qQ

ptq
h`1,r

ȷ

ˇ

ˇ

ˇ

ˇ

ˇ

ď H

b

Cqπ
ptq
r pπq

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

Notice that the distribution shift coefficient is changed from Cπpπq to Cqπ
ptq
r pπq, as the policy

specific Bellman operator T is now induced by policy qπ
ptq
r rather than π. Taking the average

over t and applying the triangle inequality give us

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

H
ÿ

h“1

Eπ

„

qQ
ptq
h,r ´ T qπ

ptq
r

h,r
qQ

ptq
h`1,r

ȷ

ˇ

ˇ

ˇ

ˇ

ˇ

ď H

˜

1

T

T
ÿ

t“1

b

Cqπ
ptq
r pπq

¸

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

.

Combining the bounds, we have

V π
1 ps0; rq ´

1

T

T
ÿ

t“1

qQ
ptq
1,rps0, qπ

ptq
1,rq ď 2H2Rmax

c

2 log |A|

T

` H

˜

1

T

T
ÿ

t“1

b

Cqπ
ptq
r pπq

¸

´

2pHRmaxq
1{3

pϵS ` 3ϵF q
1{3

`

b

8ϵS ` 12ϵF ` 3ϵF ,F
¯

,

which completes the proof.

4.5.5 Concentration Analysis

In this section, we prove the concentration lemmas used in Section 4.5.3.

Proof of Lemma 4.5.2

We start by including a minor adaptation of a useful result from Györfi et al. [2002].

215



Theorem 4.5.13 (Adaptation of Theorem 11.6 from Györfi et al. [2002]). Let B ě 1 and

let G be a class of functions g : Rd Ñ r0, Bs. Let Z1, Z2, . . . , ZK be i.i.d. Rd-valued random

variables. Assume α ą 0, 0 ă ϵ ă 1, and K ě 1. Then

Pr

˜

sup
gPG

1
K

řK
j“1 gpZjq ´ ErZjs

α ` 1
K

řK
j“1 gpZjq ` ErZjs

ą ϵ

¸

ď 4N8

´αϵ

5
,G

¯

exp

ˆ

´
3ϵ2αK

40B

˙

.

Proof. By Theorem 11.6 from Györfi et al. [2002], we know that

Pr

˜

sup
gPG

1
K

řK
j“1 gpZjq ´ ErZjs

α ` 1
K

řK
j“1 gpZjq ` ErZjs

ą ϵ

¸

ď 4E
”

N1

´αϵ

5
,G, tZju

K
j“1

¯ı

exp

ˆ

´
3ϵ2αK

40B

˙

,

where N1

´

αϵ
5 ,G, tZjuKj“1

¯

is the cardinality of the smallest set of functions tgluLl“1 such

that for all g P G there exists some l P rLs where

1

K

K
ÿ

j“1

ˇ

ˇ

ˇ
gpZjq ´ glpZjq

ˇ

ˇ

ˇ
ď
αϵ

5
.

See Section 11.4 from Györfi et al. [2002] for a detailed proof of the statement above. We

then show that for any tZjuKj“1, N1

´

αϵ
5 ,G, tZjuKj“1

¯

ď N8

`

αϵ
5 ,G

˘

. Let trgluLl“1 be an αϵ
5 -

covering of G with respect to the ℓ8-norm. We then know that for any g P G, there exists

some l P rLs such that

1

K

K
ÿ

j“1

|gpZjq ´ rglpZjq| ď
1

K

K
ÿ

j“1

αϵ

5
“
αϵ

5
.

Therefore trgluLl“1 satisfies the requirement above, concluding our proof.
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Let h P rHs, r P rR be arbitrary and fixed. First, we show

Pr
´

Df, f 1
P F , π P Π : Eµh

”

}fh ´ T π
h,rf

1
h`1}

2
ı

´ Lh,rpfh, f
1
h`1, π;Dq

` Lh,rpT π
h,rf

1
h`1, f

1
h`1, π;Dq ě ϵ

`

α ` β ` Eµh

”

}fh ´ T π
h,rf

1
h`1}

2
ı

˘

¯

ď 14

ˆ

N8

ˆ

ϵβ

140HRmax
,F

˙˙2

N8,1

ˆ

ϵβ

140H2R2
max

,Π

˙

exp

ˆ

´
ϵ2p1 ´ ϵqαK

214p1 ` ϵqH4R4
max

˙

.

for all α, β ą 0, 0 ă ϵ ď 1{2.

Let Z be the random vector psh, ah, rhpsh, ahq, sh`1q where psh, ah, sh`1q „ µh. Let Zj

be its realization for any j P rKs drawn independently from Dh. For any f, f 1 P F , and

π P Π, we further define the random variable

gπf,f 1pZq “ pfhpsh, ahq ´ rh ´ f 1
h`1psh`1, πh`1qq

2

´ pT π
h,rf

1
h`1psh, ahq ´ rh ´ f 1

h`1psh`1, πh`1qq
2,

and gπf,f 1pZjq its empirical counterpart evaluated on Z’s realization, Zj . We begin by showing

some basic properties of the random variable gπf,f 1pZq. Recall that by definition of the

Bellman evaluation operator

T π
h,rf

1
h`1psh, ahq “ EP

“

rh ` f 1
h`1psh`1, πh`1q|sh, ah

‰

. (4.5.12)
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Since T π
h,rfh`1psh, ahq “ Eµh

”

rh ` f 1
h`1psh`1, πh`1q|sh, ah

ı

, by the law of total probability

EZ„µhrgπf,f 1pZqs

“ Esh,ah„µh

”

Esh`1„µh|sh,ah
rpfhpsh, ahq ´ rh ´ f 1

h`1psh`1, πh`1qq
2
´

pT π
h,rf

1
h`1psh, ahq ´ rh ´ f 1

h`1psh`1, πh`1qq
2
|sh, ahs

ı

“ Eµh

”

Esh`1„µh|sh,ah
rpfhpsh, ahq ` T π

h,rf
1
h`1psh, ahq ´ 2prh ` f 1

h`1psh`1, πh`1qqq

ˆ pfhpsh, ahq ´ T π
h,rf

1
h`1psh, ahqq|sh, ahs

ı

“ Eµh

”

}fhpsh, ahq ´ T π
h,rf

1
h`1psh, ahq}

2
ı

.

Additionally, recalling that rh P r´Rmax, Rmaxs, f 1
h`1 P r´pH´hqRmax, pH´hqRmaxs, fh P

r´pH ´ h` 1qRmax, pH ´ h` 1qRmaxs, we know that gπf,f 1pZq P r´16H2R2
max, 16H

2R2
maxs.

Lastly, notice that

Varpgπf,f 1pZqq ď Erpgπf,f 1pZqq
2
s

“ E
”

Erpfhpsh, ahq ` T π
h,rf

1
h`1psh, ahq ´ 2prh ` f 1

h`1psh`1, πh`1qqq
2

ˆ pfhpsh, ahq ´ T π
h,rf

1
h`1psh, ahqq

2
|sh, ahs

ı

ď Er16H2R2
maxpfhpsh, ahq ´ T π

h,rf
1
h`1psh, ahqq

2
s “ 16H2R2

maxErgπf,f 1pZqs,

(4.5.13)

where for the last inequality we noticed that

fhpsh, ahq ` T π
h,rf

1
h`1psh, ahq ´ 2prh ` f 1

h`1psh`1, πh`1qq P r´4HRmax, 4HRmaxs.

Our ensuing proof largely follows the structure of Section 11.5 of Györfi et al. [2002] and

we reproduce the proof below for completeness. Let α, β ą 0 and 0 ă ϵ ď 1
2 be arbitrary

and fixed constants. We now proceed with the proof.

Symmetrization by Ghost Sample. Consider some pfn, f
1
n, πnq P F ˆ F ˆ Π depending
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on tZjuKj“1 such that

Ergπn
fn,f 1

n
pZq|tZju

K
j“1s ´

1

K

K
ÿ

j“1

gπn
fn,f 1

n
pZjq ě ϵpα ` β ` Ergπn

fn,f 1
n

pZq|tZju
K
τ“1sq,

if such pfn, f
1
n, πnq exists. If not, choose some arbitrary pfn, f

1
n, πnq. As a shorthand notation,

let gn “ gπn
fn,f 1

n
. Finally, introduce ghost samples tZ 1

juKj“1 „ µh, drawn i.i.d. from the same

distribution as tZjuKj“1. Recalling that the variance of gn is bounded by 16ErgnpZqs, by

Chebyshev’s inequality we have

Pr

ˆ

ErgnpZq|tZju
K
j“1s ´

1

K

K
ÿ

j“1

gnpZ 1
jq ě

ϵ

2
pα ` βq `

ϵ

2
ErgnpZq|tZju

K
j“1s|tZju

K
j“1

˙

ď
VarpgnpZq|tZjuKj“1q

Kp ϵ2pα ` βq ` ϵ
2ErgnpZq|tZjuKj“1sq2

ď
16H2R2

maxErgnpZq|tZjuKj“1s

Kp ϵ2pα ` βq ` ϵ
2ErgnpZq|tZjuKj“1sq2

ď
16H2R2

max

ϵ2pα ` βqK
,

where the last inequality comes from the fact that s0
pa`s0q2

ď 1
4a for all s0 ě 0 and a ą 0.

Thus, for all K ě
128H2R2

max
ϵ2pα`βq

,

Pr

ˆ

ErgnpZq|tZju
K
j“1s ´

1

K

K
ÿ

j“1

gnpZ 1
jq ě

ϵ

2
pα ` βq `

ϵ

2
ErgnpZq|tZju

K
j“1s|tZju

K
j“1

˙

ď
7

8
.
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We then know that

Pr

ˆ

Df, f 1
P F , π P Π :

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZ 1
iq ´

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZjq ě
ϵ

2
pα ` βq `

ϵ

2
Ergπfh,f 1

h`1
pZqs

˙

ě Pr

ˆ

1

K

K
ÿ

j“1

gnpZ 1
iq ´

1

K

K
ÿ

j“1

gnpZjq ě
ϵ

2
pα ` βq `

ϵ

2
ErgnpZq|tZju

K
j“1s

˙

ě
7

8
Pr

ˆ

Df, f 1
P F , π P Π :

Ergπfh,f 1
h`1

pZqs ´
1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZjq ě ϵpα ` βq ` ϵErgπfh,f 1
h`1

pZqs

˙

.

In other words, for K ě
128H2R2

max
ϵ2pα`βq

,

Pr

ˆ

Df, f 1
P F , π P Π : Ergπfh,f 1

h`1
pZqs ´

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZjq ě ϵpα`βq ` ϵErgπfh,f 1
h`1

pZqs

˙

ď
8

7
Pr

ˆ

Df, f 1
P F , π P Π :

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZ 1
jq

´
1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZjq ě
ϵ

2
pα ` βq `

ϵ

2
Ergπfh,f 1

h`1
pZqs

˙

. (4.5.14)

Replacement of Expectation by Empirical Mean of Ghost Sample We begin by
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noticing

Pr

ˆ

Df, f 1
P F , π P Π :

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZ 1
iq ´

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZjq ě
ϵ

2
pα ` βq `

ϵ

2
Ergπfh,f 1

h`1
pZqs

˙

ď Pr

ˆ

Df, f 1
P F , π P Π :

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZ 1
iq ´

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZjq ě
ϵ

2
pα ` βq `

ϵ

2
Ergπfh,f 1

h`1
pZqs,

1

K

K
ÿ

j“1

pgπfh,f 1
h`1

q
2
pZ 1

iq ´ Erpgπfh,f 1
h`1

q
2
pZqs ď

ϵ
´

α ` β `
1

K

K
ÿ

j“1

pgπfh,f 1
h`1

q
2
pZjq ` Erpgπfh,f 1

h`1
q
2
pZqs

¯

,

1

K

K
ÿ

j“1

pgπfh,f 1
h`1

q
2
pZ 1

iq ´ Erpgπfh,f 1
h`1

q
2
pZqs ď

ϵ
´

α ` β `
1

K

K
ÿ

j“1

pgπfh,f 1
h`1

q
2
pZ 1

iq ` Erpgπfh,f 1
h`1

q
2
pZqs

¯

˙

` 2Pr

ˆ

Df, f 1
P F , π P Π :

1
K

řK
j“1pgπ

fh,f
1
h`1

q2pZjq ´ Erpgπ
fh,f

1
h`1

q2pZqs

α ` β ` 1
K

řK
j“1pgπ

fh,f
1
h`1

q2pZjq ` Erpgπ
fh,f

1
h`1

q2pZqs

˙

.

(4.5.15)

Citing Theorem 4.5.13, we may bound the second probability term on the right hand side as

Pr

¨

˚

˚

˝

Df, f 1
P F , π P Π :

1
K

řK
j“1pgπ

fh,f
1
h`1

q2pZjq ´ Erpgπ
fh,f

1
h`1

q2pZqs

ˆ

α ` β ` 1
K

řK
j“1pgπ

fh,f
1
h`1

q2pZjq ` Erpgπ
fh,f

1
h`1

q2pZqs

˙

˛

‹

‹

‚

ď 4N8

ˆ

pα ` βqϵ

5
, tgπfh,f 1

h`1
: f, f 1

P F , π P Πu

˙

exp

ˆ

´
3ϵ2pα ` βqK

40p16H2R2
maxq

˙

.
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For the first probability term, notice that the second event in the conjunction implies

p1 ` ϵqErpgπfh,f 1
h`1

q
2
pZqs ě p1 ´ ϵq

1

K

K
ÿ

j“1

pgπfh,f 1
h`1

q
2
pZjq ´ ϵpα ` βq,

which is equivalent to

1

32H2R2
max

Erpgπfh,f 1
h`1

q
2
pZqs ě

p1 ´ ϵq 1
K

řK
j“1pgπ

fh,f
1
h`1

q2pZjq

32H2R2
maxp1 ` ϵq

´
pα ` βqϵ

32H2R2
maxp1 ` ϵq

.

A similar bound may be obtained for the term involving Z 1
i. Noticing that by equa-

tion (4.5.13), we have Ergπ
fh,f

1
h`1

pZqs ě 1
16H2R2

max
Erpgπ

fh,f
1
h`1

q2pZqs, and we know the first

probability term in (4.5.15) can be bounded by

Pr

˜

Df, f 1
P F , π P Π :

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZ 1
iq ´

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZjq ě
ϵ

2
pα ` βq´

2ϵ2pα ` βq ` ϵp1 ´ ϵq

ˆ

1
K

řK
j“1ppgπ

fh,f
1
h`1

q2pZ 1
jq ` pgπ

fh,f
1
h`1

q2pZjqq

˙

64H2R2
maxp1 ` ϵq

¸

.

Additional Randomization by Random Signs Let tUjuKj“1 be i.i.d. Rademacher random

variables drawn independently from tZjuKj“1 and tZ 1
juKj“1. Because tZjuKj“1 and tZ 1

juKj“1
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are i.i.d., we know that

Pr

˜

Df, f 1
P F , π P Π :

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZ 1
jq ´

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZjq ě
ϵ

2
pα ` βq´

2ϵ2pα ` βq ` ϵp1 ´ ϵqp 1
K

řK
j“1ppgπ

fh,f
1
h`1

q2pZ 1
jq ` pgπ

fh,f
1
h`1

q2pZjqqq

64H2R2
maxp1 ` ϵq

¸

ď 2Pr

ˆ

Df, f 1
P F , π P Π :

1

K

K
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

Ujg
π
fh,f

1
h`1

pZjq

ˇ

ˇ

ˇ

ˇ

ě
ϵ

4
pα ` βq´

ϵ2pα ` βq

64H2R2
maxp1 ` ϵq

`
ϵp1 ´ ϵq

64H2R2
maxp1 ` ϵq

1

K

K
ÿ

j“1

ppgπfh,f 1
h`1

q
2
pZjqq

˙

.

(4.5.16)

Conditioning and Covering We then condition the probability on tZjuKj“1. Fix some

z1, . . . , zK and we consider instead

Pr

#

Df, f 1
P F , π P Π :

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujg
π
fh,f

1
h`1

pzjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě

ϵpα ` βq

4
´

ϵ2pα ` βq

64H2R2
maxp1 ` ϵq

`
ϵp1 ´ ϵq

64H2R2
maxp1 ` ϵq

1

K

K
ÿ

j“1

pgπfh,f 1
h`1

q
2
pzjq

+

.

Let δ ą 0 and let Gδ be an ℓ8 δ-cover of GF ,Π “ tgπ
fh,f

1
h`1

: f, f 1 P F, π P Πu. Fix some

pf, f 1, πq P F ˆ F ˆ Π and there exists some g P Gδ such that supz |gpzq ´ gπ
fh,f

1
h`1

pzq| ă δ.

We then know that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujg
π
fh,f

1
h`1

pzjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujgpzjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

` δ
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and

1

K

K
ÿ

j“1

pgπfh,f 1
h`1

q
2
pzjq “

1

K

K
ÿ

j“1

g2pzjq `
1

K

K
ÿ

j“1

ppgπfh,f 1
h`1

q
2
pzjq ´ g2pzjqq

ě
1

K

K
ÿ

j“1

g2pzjq ´ 8H2R2
maxδ.

Set δ “
βϵ
5 . Notice that as HRmax ě 1, 0 ă ϵ ď 1

2 , we have

ϵβ

4
´

ϵ2β

64H2R2
maxp1 ` ϵq

´ δ ´ δ
ϵp1 ´ ϵq

8p1 ` ϵq
“
ϵβ

2
´

ϵ2β

64H2R2
maxp1 ` ϵq

´
ϵ2p1 ´ ϵqβ

40p1 ` ϵq
ě 0.

Therefore we have

Pr

#

Df, f 1
P F , π P Π :

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujg
π
fh,f

1
h`1

pzjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě

ϵpα ` βq

4
´

ϵ2pα ` βq

64H2R2
maxp1 ` ϵq

`

ϵp1 ´ ϵq 1
K

řK
j“1pgπ

fh,f
1
h`1

q2pzjq

64H2R2
maxp1 ` ϵq

+

ď |Gϵβ{5| max
gPGϵβ{5

Pr

#

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujgpzjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě
ϵα

4
´

ϵ2α

64H2R2
maxp1 ` ϵq

`

ϵp1 ´ ϵq

64H2R2
maxp1 ` ϵq

1

K

K
ÿ

j“1

g2pzjq

+

. (4.5.17)

We then apply Bernstein’s inequality to bound

Pr

#

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujgpzjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě
ϵα

4
´

ϵ2α

64H2R2
maxp1 ` ϵq

`
ϵp1 ´ ϵq

64H2R2
maxp1 ` ϵq

1

K

K
ÿ

j“1

g2pzjq

+

for any g P Gϵβ{5. We begin by relating the variance of Ujgpzjq with 1
K

řk
j“1 g

2pzjq. Notice
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that as Uj is i.i.d. Rademacher,

1

K

K
ÿ

j“1

VarpUjgpzjqq “
1

K

k
ÿ

j“1

g2pzjqVarpUiq “
1

K

k
ÿ

j“1

g2pzjq.

Perform a simple change of variable and let Vj “ gpzjqUj . As gpzjq P r´4H2R2
max, 4H

2R2
maxs

for all zj , we know |Vj | ď 4H2R2
max. For convenience, further let A1 “ ϵα

4 ´ ϵ2α
64H2R2

maxp1`ϵq
,

A2 “
ϵp1´ϵq

64H2R2
maxp1`ϵq

, and σ2 “ 1
K

řK
j“1VarpUjgpzjqq “ 1

K

řk
j“1 g

2pzjq. We then have for

any g P Gϵβ{5

Pr

#

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujgpzjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě
ϵα

4
´

ϵ2α

64H2R2
maxp1 ` ϵq

`
ϵp1 ´ ϵq

64H2R2
maxp1 ` ϵq

1

K

K
ÿ

j“1

g2pzjq

+

ď 2 exp

¨

˚

˝

´
3KA2

16H2R2
max

´

A1
A2

` σ2
¯2

A1
A2

`

´

1 ` 3
8H2R2

maxA2

¯

σ2

˛

‹

‚

ď 2 exp

ˆ

´
ϵ2p1 ´ ϵqαK

140H2R2
maxp1 ` ϵq

˙

,

where the last inequality follows a series of manipulations discussed in greater detail in page

218 of Györfi et al. [2002] that we omit here for brevity. Plugging the result back into

equations (4.5.16) and (4.5.17) gives us

Pr

ˆ

Df, f 1
P F , π P Π :

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZ 1
jq ´

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZjq ě
ϵ

2
pα ` βq´

2ϵ2pα ` βq ` ϵp1 ´ ϵqp 1
K

řK
j“1ppgπ

fh,f
1
h`1

q2pZ 1
iq ` pgπ

fh,f
1
h`1

q2pZjqqq

64H2R2
maxp1 ` ϵq

˙

ď 2N8

ˆ

ϵβ

5
, tgπfh,f 1

h`1
: f, f 1

P F, π P Πu

˙

exp

ˆ

´
ϵ2p1 ´ ϵqαK

140H2R2
maxp1 ` ϵq

˙

.
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Recalling equations (4.5.15) and (4.5.16), we have

Pr

ˆ

Df, f 1
P F , π P Π :

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZ 1
iq ´

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZjq

ě
ϵ

2
pα ` βq `

ϵ

2
Ergπfh,f 1

h`1
pZqs

˙

ď 4N8

ˆ

ϵβ

5
, tgπfh,f 1

h`1
: f, f 1

P F, π P Πu

˙

exp

ˆ

´
ϵ2p1 ´ ϵqαK

140H2R2
maxp1 ` ϵq

˙

` 8N8

ˆ

pα ` βqϵ

5
, tgπfh,f 1

h`1
: f, f 1

P F , π P Πu

˙

exp

ˆ

´
3ϵ2pα ` βqK

640H2R2
max

˙

.

Plugging the result back into equation (4.5.14) and we finally know for K ě
128H2R2

max
ϵ2pα`βq

,

Pr

ˆ

Df, f 1
P F , π P Π : Ergπfh,f 1

h`1
pZqs ´

1

K

K
ÿ

j“1

gπfh,f 1
h`1

pZjq

ě ϵpα ` βq ` ϵErgπfh,f 1
h`1

pZqs

˙

ď
32

7
N8

ˆ

ϵβ

5
, tgπfh,f 1

h`1
: f, f 1

P F, π P Πu

˙

exp

ˆ

´
ϵ2p1 ´ ϵqαK

140H2R2
maxp1 ` ϵq

˙

`
64

7
N8

ˆ

pα ` βqϵ

5
, tgπfh,f 1

h`1
: f, f 1

P F , π P Πu

˙

exp

ˆ

´
3ϵ2pα ` βqK

640H2R2
max

˙

ď 14N8

ˆ

ϵβ

5
, tgπfh,f 1

h`1
: f, f 1

P F, π P Πu

˙

exp

ˆ

´
ϵ2p1 ´ ϵqαK

214p1 ` ϵqH4R4
max

˙

.

When K ă
128H2R2

max
ϵ2pα`βq

, exp
ˆ

´
ϵ2p1´ϵqαK

214p1`ϵqH4R4
max

˙

ě exp
´

´128
214

¯

ě 1
14 and the claim trivially

holds.

Bounding the Covering Number. Our final task is bounding

N8

ˆ

ϵβ

5
, tgπfh,f 1

h`1
: f, f 1

P F, π P Πu

˙

using the covering numbers of Π and F . Let F0 be a ϵβ
140HRmax

-covering of F with respect

to ℓ8 and Π0 a ϵβ
140H2R2

max
-covering of Π with respect to } ¨ }8,1. We then know that for any
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f, f 1 P F , π P Π, there exits some f:, f; P F0, π
: P Π0 such that

sup
ps,aqPSˆA

|fhps, aq ´ f
:

hps, aq| ď
ϵβ

140HRmax
,

sup
ps,aqPSˆA

|f 1
h`1ps, aq ´ f

;

h`1ps, aq| ď
ϵβ

140HRmax
,

sup
sPS

ż

aPA
|πh`1pa|sq ´ π

:

h`1pa|sq| ď
ϵβ

140H2R2
max

.

Consider any arbitrary z “ ps, a, r, s1q „ µh. We know that

ˇ

ˇ

ˇ

ˇ

ˇ

g
πh`1

fh,f
1
h`1

pzq ´ g
π:

h`1

f:

h,f
;

h`1

pzq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

fhps, aq ` f
:

hps, aq ´ 2r ´ f 1
h`1ps1, πh`1q ´ f

;

h`1ps1, π
:

h`1q

ˇ

ˇ

ˇ

ˇ

ˆ

ˇ

ˇ

ˇ

ˇ

fhps, aq ´ f
:

hps, aq ` f 1
h`1ps1, πh`1q ´ f

;

h`1ps1, π
:

h`1q

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

T πh`1
h,r f 1

h`1ps, aq ` T
π:

h`1
h,r f

;

h`1ps, aq ´ 2r ´ f 1
h`1ps1, πh`1q ´ f

;

h`1ps1, π
:

h`1q

ˇ

ˇ

ˇ

ˇ

ˆ

ˇ

ˇ

ˇ

ˇ

T πh`1
h,r f 1

h`1ps, aq ´ T
π:

h`1
h,r f

;

h`1ps, aq ` f 1
h`1ps1, πh`1q ´ f

;

h`1ps1, π
:

h`1q

ˇ

ˇ

ˇ

ˇ

ď 4HRmax

ˇ

ˇ

ˇ

ˇ

fhps, aq ´ f
:

hps, aq ` f 1
h`1ps1, πh`1q ´ f

;

h`1ps1, π
:

h`1q

ˇ

ˇ

ˇ

ˇ

` 4HRmax

ˇ

ˇ

ˇ

ˇ

T πh`1
h,r f 1

h`1ps, aq ´ T
π:

h`1
h,r f

;

h`1ps, aq ` f 1
h`1ps1, πh`1q ´ f

;

h`1ps1, π
:

h`1q

ˇ

ˇ

ˇ

ˇ

,

(4.5.18)

where for the last inequality we used the boundedness of functions in Fh and Fh`1. We
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then notice that

ˇ

ˇ

ˇ

ˇ

fhps, aq ´ f
:

hps, aq ` f 1
h`1ps1, πh`1q ´ f

;

h`1ps1, π
:

h`1q

ˇ

ˇ

ˇ

ˇ

ď |fhps, aq ´ f
:

hps, aq| ` |f 1
h`1ps1, πh`1q ´ f

;

h`1ps1, π
:

h`1q|

ď
ϵβ

140HRmax
` |f 1

h`1ps1, πh`1q ´ f 1
h`1ps1, π

:

h`1q| ` |f 1
h`1ps1, π

:

h`1q ´ f
;

h`1ps1, π
:

h`1q|

ď
ϵβ

140HRmax
` }πh`1 ´ π

:

h`1}1}f 1
h`1}8 ` |f 1

h`1ps1, π
:

h`1q ´ f
;

h`1ps1, π
:

h`1q|

ď
ϵβ

140HRmax
`

ϵβ

140H2R2
max

HRmax ` |f 1
h`1ps1, π

:

h`1q ´ f
;

h`1ps1, π
:

h`1q|

ď
ϵβ

140HRmax
`

ϵβ

140HRmax
` E

a1„π:

h`1p¨|s1q
r|f 1

h`1ps1, a1
q ´ f

;

h`1ps1, a1
q|s

ď
3ϵβ

140HRmax
,

where the third inequality uses Holder’s inequality, the fourth definition of Π0 and bound-

edness of Fh, the fifth Jensen’s inequality, and the last inequality the definition of F0.

Additionally we have

|T πh`1
h,r f 1

h`1ps, aq ´ T
π:

h`1
h,r f

;

h`1ps, aq ` f 1
h`1ps1, πh`1q ´ f

;

h`1ps1, π
:

h`1q|

ď |T πh`1
h,r f 1

h`1ps, aq ´ T
π:

h`1
h,r f

;

h`1ps, aq| ` |f 1
h`1ps1, πh`1q ´ f

;

h`1ps1, π
:

h`1q|

ď |T πh`1
h,r f 1

h`1ps, aq ´ T
π:

h`1
h,r f

;

h`1ps, aq| `
2ϵβ

140HRmax

ď Es2„Php¨|s,aq|f 1
h`1ps1, πh`1q ´ f

;

h`1ps1, π
:

h`1q| `
2ϵβ

140HRmax

ď
4ϵβ

140HRmax
,

where the second inequality uses the same reasoning as above to bound |f 1
h`1ps1, πh`1q ´

f
;

h`1ps1, π
:

h`1q|, the third Jensen’s inequality, and the last inequality reuses the bound for

|f 1
h`1ps1, πh`1q´f

;

h`1ps1, π
:

h`1q| over arbitrary s1. Plugging these back into equation (4.5.18)
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shows
ˇ

ˇ

ˇ

ˇ

ˇ

g
πh`1

fh,f
1
h`1

pzq ´ g
π:

h`1

f:

h,f
;

h`1

pzq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
7ϵβ

140HRmax
ˆ 4HRmax “

ϵβ

5
.

Thus

N8

ˆ

ϵβ

5
, tgπfh,f 1

h`1
: f, f 1

P F, π P Πu

˙

ď

ˆ

N8

ˆ

ϵβ

140HRmax
,F

˙˙2

N8,1

ˆ

ϵβ

140H2R2
max

,Π

˙

,

showing one side of the inequality holds.

To show the other side holds, simply replace gπf,f 1pZq with its negative and repeat the

analysis above. We then complete the proof by taking a union bound over both halves.

Proofs of “Good Event”

With the help of the previous theorem, we are able to show that GpΠSPIq occurs with high

probability.

Proof of Lemma 4.5.3. Taking a union bound over all h P rHs and reported reward r P rR

recalling that | rR| ď n ` 1 ď 2n, by Lemma 4.5.2, we have

Pr
´

Dh P rHs, r P rR, f, f 1
P F , π P Π :

ˇ

ˇ

ˇ
Eµh

”

}fh ´ T π
h,rf

1
h`1}

2
ı

´ Lh,rpfh, f
1
h`1, π;Dq ` Lh,rpT π

h,rf
1
h`1, f

1
h`1, π;Dq

ˇ

ˇ

ˇ

ě ϵ
´

α ` β ` Eµh

”

}fh ´ T π
h,rf

1
h`1}

2
ı¯¯

ď 56nH

ˆ

N8

ˆ

ϵβ

140HRmax
,F

˙˙2

N8,1

ˆ

ϵβ

140H2R2
max

,Π

˙

ˆ exp

ˆ

´
ϵ2p1 ´ ϵqαK

214p1 ` ϵqH4R4
max

˙

.
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Letting α “ β and ϵ “ 1
2 , setting the right hand side to δ, and solving for α gives us

α ď
1

K
max

$

&

%

5136H4R4
max, 5136H

4R4
max log

56nHN8

´

HRmax
K ,F

¯

N8,1

´

1
K ,Π

¯

δ

,

.

-

.

As log 56 ě 1, n,H ě 1, and 0 ă 1 ă δ, the second term always dominates the first and we

can simplify the inequality as

α ď
5136H4R4

max

K
log

56nHN8

´

19H3R3
max

K ,F
¯

N8,1

´

19H4R4
max

K ,Π
¯

δ
,

completing the proof.

Proof of Corollary 4.5.4. For convenience, let pgπh,r “ argmingPFh
Lh,rpg, f

π,˚
h`1,r, π;Dq. We

then know that

Eh,rpf
π,˚
h,r , π;Dq “ Lh,rpf

π,˚
h,r , f

π,˚
h`1,r, π;Dq ´ Lh,rppgπh,r, f

π,˚
h`1,r, π;Dq

“ Lh,rpf
π,˚
h,r , f

π,˚
h`1,r, π;Dq ´ Lh,rpT π,˚

h,r f
π,˚
h`1,r, f

π,˚
h`1,r, π;Dq

´

´

Lh,rppgπh,r, f
π,˚
h`1,r, π;Dq ´ Lh,rpT π,˚

h,r f
π,˚
h`1,r, f

π,˚
h`1,r, π;Dq

¯

.

By Lemma 4.5.3, conditionally on the event GpΠq we have the following simultaneously:

Lh,rpf
π,˚
h,r , f

π,˚
h`1,r, π;Dq ´ Lh,rpT π,˚

h,r f
π,˚
h`1,r, f

π,˚
h`1,r, π;Dq

ď ϵS `
3

2
Eµh

”

}f
π,˚
h,r ´ T π,˚

h,r f
π,˚
h`1,r}

2
ı

,

´ Lh,rppgπh,r, f
π,˚
h`1,r, π;Dq ` Lh,rpT π,˚

h,r f
π,˚
h`1,r, f

π,˚
h`1,r, π;Dq ď ϵS,
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where the second inequality uses the fact that } ¨ }2 is non-negative. Finally, noticing that

Eµh

”

}f
π,˚
h,r ´ T π,˚

h,r f
π,˚
h`1,r}

2
ı

ď 2Eµh

”

}f
π,˚
h,r ´ Qπ

hp¨, ¨; rq}
2
ı

` 2Eµh

”

}T π,˚
h,r f

π,˚
h`1,r ´ T π,˚

h,r Q
π
hp¨, ¨; rq}

2
ı

ď 2ϵF ` 2Eµ1
h`1

”

}f
π,˚
h`1,r ´ Qπ

h`1p¨, ¨; rq}
2
ı

ď 4ϵF ,

where µ1
h`1 shares the marginal distribution over S with µh`1 but the conditional distribu-

tion over A given s P S is given by πh`1p¨|sq. The final inequality comes from the fact that

µ1
h`1 is an admissible distribution under Assumption 4.2.3.

Proof of Corollary 4.5.5. Let pgπh,r “ argmingPFh
Eµhr}g ´ T π

h,rf
π
h`1,r}2s. Recalling the defi-

nition of Eh,r, we have

Eh,rpfπh,r, π;Dq “ Lh,rpfπh,r, f
π
h`1,r, π;Dq ´ min

gPFh

Lh,rpg, fπh`1,r, π;Dq

ě Lh,rpfπh,r, f
π
h`1,r, π;Dq ´ Lh,rppgπh,r, f

π
h`1,r, π;Dq

“ Lh,rpfπh,r, f
π
h`1,r, π;Dq ´ Lh,rpT π

h,rf
π
h`1,r, f

π
h`1,r, π;Dq

´

´

Lh,rppgπh,r, f
π
h`1,r, π;Dq ´ Lh,rpT π

h,rf
π
h`1,r, f

π
h`1,r, π;Dq

¯

.

By Lemma 4.5.3, conditionally on the event GpΠq we have the following:

Lh,rpfπh,r, f
π
h`1,r, π;Dq ´ Lh,rpT π

h,rf
π
h`1,r, f

π
h`1,r, π;Dq

ě ´ϵS `
1

2
Eµh

”

}fπh,r ´ T π
h,rf

π
h`1,r}

2
ı

,

´ Lh,rppgπh,r, f
π
h`1,r, π;Dq ` Lh,rpT π

h,rf
π
h`1,r, f

π
h`1,r, π;Dq

ě ´ϵS ´
3

2
Eµh

”

}pgπh,r ´ T π
h,rf

π
h`1,r}

2
ı

.
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Recalling that Eh,rpf, π;Dq ď ϵ0, we have

EµH

”

}fπh,r ´ T π
h,rf

π
h`1,r}

2
ı

ď 4ϵS ` 3Eµh

”

}pgπh,r ´ T π
h,rh

π
h`1,r}

2
ı

` 2ϵ0.

We conclude our proof by reminding ourselves of Assumption 4.2.4.
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CHAPTER 5

CONCLUSION

In this thesis, we explored three different variants of the same underlying question: can we

use reinforcement learning to learn the optimal dynamic mechanism? As we have shown

in these previous chapters, the answer to the question, specifically the resulting learning

algorithm, is heavily dependent on the combination of the following factors: the complexity

of the mechanism itself, the RL setup being considered, and the function approximation

setting being used.

From Chapter 2 to Chapter 3, we see how focusing only on revenue maximizing within a

specific subset of dynamic mechanisms significantly simplifies the characterization of the opti-

mal mechanism. On the other hand, we further see how an online learning setup complicates

the design of a learning algorithm, especially when we assume the buyers stay throughout

the learning process.

From Chapter 3 to Chapter 4, we observe that learning the welfare-maximizing mecha-

nism can be even easier and is equivalent to typical RL setups. On the other hand, Chapter 4

offers key insights on how RL can be used for learning dynamic mechanisms, specifically on

the learned policies’ uncertainties relate to violations in mechanism design desiderata. These

insights are repeatedly used by Chapter 2 and Chapter 3.

As we wrap up this thesis, below we list several promising research directions. Specifically,

we focus on those that draw inspiration from the setting in Chapter 2, which is discussed

in detail in Section 2.2. We hope that these directions will prove to be useful to future

researchers working in the same intersection of RL and dynamic mechanism design.

Enforcing seller constraints. Inspired by [Mirrokni et al., 2020], it may be interesting

to see if typical dynamic mechanism design constraints such as buyer budget could be incor-

porated in our setting. A more compelling class of constraints focuses on the seller, and is
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made especially interesting in the MDP setup. For instance, again using AWS spot instance

pricing as an example, the company may prefer a more stable allocation level, that is, an

allocation policy that has stable expected allocation at each of the H steps.

As another example, we may find ourselves in problem settings where the seller only has

a limited amount of inventory. That is, over the course of H steps, she may only be able to

allocate up to K items, with K ă H. Such a constraint could have interesting synergy with

the allocation’s impact on later type distributions: how should the seller drum up demand

when she only has a few items to sell?

Adapting to non-stationarity. When the learning algorithm discussed in 2.4 is deployed

in real-life, the underlying MDP being learned can be non-stationary. For instance, recalling

the AWS Spot Instance pricing example, the underlying MDP governing buyer’s willingness-

to-pay can change due to changes in underlying technology or research trends. The increased

interest in large language models, for instance, can cause customers to be willing to pay more

in general, due to increased demand for computation power.

We conjecture that the procedure described in Algorithm 1 can be combined with the

non-stationary online learning framework proposed by Wei and Luo [2021]. As Algorithm 1

is inherently an optimistic one, despite the lack of an explicit uncertainty bonus, it should

be fairly amenable to all meta-algorithms that takes an optimistic learning algorithm as

an input. We conjecture that such a combination should be straightforward, although it

remains interesting to see how the combined algorithm would perform in terms of regret.

Combining Chapter 2 and Chapter 3. Here, we refer to a combination of the setups

in Chapter 2 and Chapter 3. Specifically in Chapter 3, we discuss how the order in which a

seller sells a collection of items naturally affects later type distributions.

Consider the advertisement platform example provided in Chapter 2. What if the seller

is able to both determine which ad spot is sold, in addition to the allocation rule and pricing
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rule for the ad spot? Should a seller sell higher-valued ad spots first? Or should she save

the best for last? Such a synergy could make our MDP formulation even more realistic, yet

we must caution that having multiple items could quickly cause the computational costs to

blow up: the procedure discussed in Section 2.4 blows up in complexity as the number of

items increases.
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