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Abstract 

Obesity is a complex disease, with both environmental and genetic causes, and it confers 

a significant global health burden while remaining difficult to treat and prevent. A better 

understanding of the risk factors that lead to disease and the underlying regulatory responses of 

specific disease states can provide insight into possible new treatments and interventions to 

improve health outcomes worldwide. Here, I provide insight into both environmental and genetic 

causes for obesity through two parallel studies. First, I investigate one of the main environmental 

factors leading to obesity: diet. In particular, I dissect the impact of differences in dietary 

macronutrient composition on metabolic measures and gene regulation in adipose tissue, 

measuring both gene expression and splicing changes. I identify thousands of genes and exons 

that are responsive to dietary macronutrient composition in adipose tissue, and link them to 

specific macronutrient patterns and cellular functions. One particularly strong gene regulatory 

response is the differential expression of genes associated with Bardet-Biedl syndrome in 

response to dietary fat content. In my second study, I expand our understanding of the 

contribution of genetics to obesity through assaying alternative splicing across the differentiation 

of preadipocytes isolated from lean, obese, and obese with type 2 diabetes (T2D) individuals. I 

find that splicing is highly dynamic across adipocyte differentiation and is impacted by 

metabolic phenotype. I also find that there is significant enrichment for an overlap between 

regions that are differentially spliced across adipocyte differentiation and variants that are 

associated with T2D. In both studies, I find that there is very little overlap between genes that are 

differentially expressed in response to the perturbation of interest and those that are differentially 

spliced. These results suggest that alternative splicing and expression may represent largely 

separate modes of gene regulation, and that studies that seek to describe gene regulatory 
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responses to stimuli should strive to measure alternative splicing in addition to gene expression 

to capture a more complete picture of the gene regulatory change. Overall, these studies provide 

insight into adipose tissue function and both environmental and genetic risk for obesity, and can 

serve as a resource to guide future variant-to-function studies.
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Chapter I: Introduction 

The etiology of obesity 

 Obesity is a complex disease that presents a major public health challenge. In the past 

four decades, the prevalence of obesity has risen substantially across the world, with more than a 

third of adults now being classified as overweight or obese.1 The rise in the prevalence of obesity 

confers a significant health burden, as obesity is associated with increased mortality and a wide 

range of co-morbidities, including cardiovascular disease, diabetes, musculoskeletal dysfunction, 

and some cancers.2–5 The health risk of obesity is further confounded by the fact that it remains 

difficult to prevent and treat.1,6,7 There are both environmental and genetic contributions to 

obesity, and a better understanding of the precise causes and consequences of obesity can 

provide insight into the etiology of the disease and provide avenues for possible treatment and 

prevention.  

The main environmental factors that have been associated with obesity risk are energy 

expenditure and energy intake, with an imbalance between the two leading to weight gain.8–10 

However, there has also been considerable evidence to suggest that it is not just how much we 

eat that matters, but also what and when we eat. For example, consumption of high amounts of 

ultra-processed food has been associated with increased risk for obesity, possibly due to a 

decrease in diet quality.11–13 Other research has suggested that intermittent fasting can improve 

cardiometabolic outcomes and increase weight loss when carried out on its own or in 

combination with other dietary treatments.14–16 The impact of environmental factors, including 

diet, on obesity is therefore multifactorial and complex, with many different aspects of an 

individual’s lifestyle contributing to obesity risk and outcomes. 
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 In addition to environmental risk factors, there are also significant genetic contributions 

to obesity. Heritability estimates of obesity from family studies cluster around 40-50%,17,18 

suggesting that a large proportion of variation in body weight is due to genetic factors. In recent 

years, genome-wide association studies (GWAS) for body mass index (BMI) and waist-to-hip 

ratio (WHR) have identified thousands of single nucleotide polymorphisms (SNPs) across 

hundreds of loci that are associated with obesity risk.19,20 These GWAS provide a rich body of 

evidence for the role of genetics in obesity, but stop short of providing clear mechanistic links 

between specific genes and disease risk or development.   

 

Genetic contributions to obesity: from GWAS to function 

In the past two decades, an ever-growing repertoire of GWAS has contributed to our 

understanding of the genetic underpinnings of human disease. The result of these studies is tens 

of thousands of genetic variants that have been associated with thousands of traits in millions of 

individuals,21,22 including obesity-related traits such as BMI, WHR, and T2D.19,20,23 As larger 

and better-powered GWAS have identified more and more variants associated with disease, the 

question becomes how to link these numerous variants to specific genes and functions to provide 

insight into disease etiology and possible therapeutic targets. 

There are a number of key intermediate questions that must be answered to definitively 

link a GWAS result to a specific gene or mechanism. Important considerations include which 

variant in the locus is the causal variant (or variants), what gene (or genes) that variant is acting 

on, what the impact of the variant on the gene is, and what tissue (or tissues) and developmental 

time point or cell state the gene-variant interaction is relevant in.24–26 In the post-GWAS era, 

researchers in the field have developed a number of tools and assays to answer these questions. 

For example, fine-mapping algorithms can help identify the likely causal variants in a locus,27,28 
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often aided by annotation data.29,30 Assays such as promoter-capture HiC can provide insight into 

what genes a variant may be regulation,31–33 and a growing collection of datasets across tissues 

and developmental time points can help identify the tissue and cell state of interest.  

By combining many of these tools and datasets with functional validation, it is possible to 

precisely link a GWAS signal to a specific gene or genes driving disease risk. One example of 

this is the dissection of the obesity-associated FTO locus. The FTO locus is so named because 

the association signal falls within an intron of the gene FTO, and initially it was thought that 

FTO itself was the gene driving the association.34,35 However, subsequent work dissecting the 

locus has revealed a more complex story. Annotation data and function characterization 

identified the locus as an enhancer, and promoter capture HiC identified long range connections 

between the locus and two other genes, IRX3 and IRX5.36–38 The signal was further narrowed 

down to four putatively causal SNPs using a massively parallel reporter assay (MPRA).38 

Confirmation of the role of IRX3 and IRX5 in body weight and the effect of the causal SNPs was 

obtained through functional characterization of both mouse and cell line models. This story 

illustrates the power of existing genetic datasets and tools to dissect and causally link variants to 

function. However, there remain many more GWAS variants that have not been linked to 

specific genes or function despite our best effort.  

Although existing tools can help narrow down and direct the search for genetic 

mechanisms, linking variants to genes and functions remains a difficult process and to do so 

systematically requires accurate annotation data across may cell types and conditions. Therefore, 

one avenue to aid in our ability to link variants to function is to develop a deeper and broader 

catalogue of genetic and molecular annotations. One modality of annotation data that has proven 

particularly fruitful in recent years is the catalogue of quantitative trait loci (QTLs).39–41 QTL 
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analysis allows us to link a particular genetic variant to a specific molecular trait of interest, 

often gene expression.42,43 QTLs can therefore serve as a key intermediary link between a 

GWAS locus or a fine-mapped variant and a potential causal gene. Many studies to date have 

focused on expression QTLs (eQTLs) and have used this data to identify genetic variants that 

confer disease risk through perturbing gene expression.40,44,45 

However, there are other molecular phenotypes, such as splicing, that may be equally 

impactful in disease risk but that have not been studied as extensively. Alternative splicing is a 

key source of functional complexity in human tissues and is known to play an important role in 

tissue identity and development.46,47 Alternative splicing is also a highly regulated process, and 

perturbations in specified splicing patterns can lead to disease.48–51 Although there has been an 

increase in recent years in studies that investigate sQTLs and their role in disease,52–54 there are 

challenges in interpreting splicing events and sQTL results that must be overcome before we can 

access their full potential for elucidating mechanisms of disease risk. In particular, it remains 

difficult to determine the impact of a specific splicing event on gene function or disease state, as 

many splicing events still lack annotation or experimental data linking them to specific cellular 

or regulatory functions. 

One mechanism that could underlie some functionally uncharacterized variants 

associated with obesity or other metabolic disorders is that the variant perturbs splicing in a 

tissue specific or developmental specific manner, such as during adipocyte differentiation, 

leading to impaired tissue development and function. However, to investigate this mechanism 

and definitively link variants to splicing events that are integral for tissue identity and 

development we need a deeper understanding of what splicing events are occurring in relevant 

tissue types and time points, and which are important for tissue function or associated with 
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disease. Therefore, an atlas of splicing events across adipocyte differentiation, their role in 

adipocyte function, and their perturbation in metabolic disease could provide a valuable resource 

to link GWAS variants to specific molecular functions. 

 

Environmental contributions to obesity: insights from Nutritional Geometry 

 In addition to genetic contributions to obesity, there are also significant environmental 

contributions to disease risk. One important environmental risk factor to consider is diet. 

However, research into the impact of diet on obesity risk is complicated by the fact that diet is an 

incredibly complex environmental variable, made up of not just how much we eat, but also what 

and when we eat.55,56 To simplify this complex space, many dietary studies focus on a single 

nutrient and compare across a small number of diets, for example by investigating the impact of 

a low fat diet or a low protein diet compared to a control “Western” diet or through the use of a 

high fat vs. chow diet in mice.56–60 Although these studies have generated important insights into 

the impact of diet on obesity, they are limited by their ability to assess only a small amount of the 

nutritional space that diets encompass and often conflate separate dietary components such as 

dietary composition and energy density. To gain a more complete understanding of the impact of 

diet on metabolic health, we must move beyond a two-diet-at-a-time paradigm and capture data 

across a more complete dietary space.  

 One approach to address this issue that has proven successful in recent years is the 

Nutritional Geometry framework. The Nutritional Geometry framework conceptualizes diets as 

falling in a nutritional space defined by the amount of fat, carbohydrates, and protein in a diet 

and the energy density of a diet.61,62 Using this framework, studies can be designed to 

systematically explore the dietary space and capture a more complete picture of the impact of 

specific dietary parameters and their interactions on health outcomes.63,64 By considering a larger 
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number of diets and ensuring that differences in energy density are not confounded with 

differences in macronutrient composition, this framework can help tease out complex dietary 

effects on metabolic health.  

 Previous work in the field of Nutritional Geometry has demonstrated that both 

macronutrient composition and energy density have important and sometimes contrasting effects 

on metabolic health. For example, a large mouse study that considered 25 diets that differed 

systematically in their macronutrient composition and energy density found that lifespan and 

late-life health were maximized on low-protein, low-carbohydrate diets, and were not 

significantly impacted by caloric restriction.65 Interestingly, subsequent work showed that many 

measures of reproductive function were optimized on high-protein, low-carbohydrate diets,66 

indicating a potential tradeoff between environments that encourage high reproductive rates and 

those that extend lifespan. These studies demonstrate the power of the Nutritional Geometry 

framework to dissect complex relationships between diet and health, and to provide important 

insights that can guide future research and dietary recommendations. 

 These studies also provide ample evidence that changes in macronutrient composition, 

even in the absence of changes in caloric intake, can have profound and sometimes contrasting 

impacts on metabolic health and overall lifespan. These results therefore have important 

implications for public health guidelines and for our understanding of what constitutes a healthy 

diet. However, the mechanism underlying the impact of macronutrient composition on metabolic 

health remains largely unexplored and unclear. A deeper understanding of how macronutrient 

composition leads to the observed changes in metabolic function can provide insights into the 

genes and pathways involved in response to diet and potentially elucidate new mechanisms of 

metabolic disease.  



7 

 

 To begin to answer this question, it will be important to capture the gene regulatory 

response of key metabolic tissues to changes in dietary macronutrient composition. By 

identifying genes and pathways that are responsive to different macronutrients, macronutrient 

interactions, or individual dietary states we can begin to establish links between the observed 

phenotypic changes and specific dietary parameters. A better understanding of the mechanism 

underlying metabolic response to diet can help us more clearly define what makes a diet healthy, 

guide future dietary studies in humans, and possibly provide therapeutic targets to help improve 

metabolic health.  

 

The role of adipose tissue in obesity and metabolic function 

Obesity and metabolic function are complex phenotypes regulated jointly by many 

tissues, including the brain, liver, and adipose tissue.67,68 Adipose tissue was once considered a 

fairly static tissue that played a passive role in fat storage, but we now know that adipose tissue 

is a dynamic regulatory tissue involved in endocrine signaling.69,70 The dysregulation of adipose 

tissue is a hallmark of obesity, and is a complex phenotype involving tissue remodeling 

(hypertrophy), changes in cell type composition (immune cell invasion), and changes in insulin 

sensitivity.71,72 These changes in adipose tissue function are also involved in many co-

morbidities associated with obesity, such as insulin resistance leading to T2D and an increase in 

free fatty acids leading to fatty liver disease.71–73 The gene regulatory landscape of adipose tissue 

is also known to be responsive to dietary change, exhibiting dynamic gene expression and 

alternative splicing changes after exposure to high fat diet.74 Adipose tissue is therefore an 

important site of both physiological and gene regulatory changes in response to obesity and in 

response to upstream risk factors such as diet and genetic risk.  
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Although much is known about the physiological response of adipose tissue to various 

environmental and genetic perturbations, the gene regulatory response, especially with regards to 

alternative splicing, is less well studied. Previous work has established the importance of some 

individual splicing events in adipocyte function and identified specific splicing regulators 

involved in adipogenesis.74–76 This work has established the importance of alternative splicing in 

adipose tissue function and development, but has stopped short of fully characterizing the role of 

alternative splicing in adipocyte function in relevant phenotypic states, such as in response to 

complex dietary perturbation and across differentiation time.  

The role of alternative splicing in adipocyte differentiation is of particular interest 

because adipose tissue is a heterogeneous tissue, comprised of many cell types including mature 

adipocytes and differentiating preadipocytes.69,77 Many of the key characteristics of adipose 

tissue dysfunction and eventual disease, such as hypertrophy, insulin resistance, and decreased 

differentiation capacity of adipose tissue, may be due to gene regulatory changes that occur in 

preadipocytes or during the process of differentiation to mature adipocytes.78–80 We can therefore 

gain insight into adipose dysregulation and its role in obesity through investigating gene 

regulatory changes across the differentiation process from preadipocytes to adipocytes. A 

comprehensive catalog of gene regulation changes, including splicing changes, across adipocyte 

differentiation could provide insight into genes and pathways involved in the development of 

healthy mature adipocytes as well as into ways in which the gene regulatory landscape is 

perturbed in metabolic disease.  

A more comprehensive characterization of changes in alternative splicing in adipocytes 

across a broad range of states would provide important insights into adipose function and 
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dysfunction, and possibly provide therapeutic targets to help treat many aspects of metabolic 

dysregulation.  

 

Dissertation overview 

In this thesis, I investigate the etiology of obesity through the lens of both environmental 

and genetic contributions. In Chapter 2, I use the Nutritional Geometry framework to 

systematically characterize the impact of macronutrient composition on gene expression and 

splicing in adipose tissue in mice. I identify gene expression and alternative splicing changes 

across ten diets in sixty mice, and identify clusters of gene regulation changes that respond to 

different macronutrients and macronutrient interactions. I provide evidence for the role of both 

gene expression and splicing changes in the response of adipose tissue to macronutrient 

composition and expand our understanding of the mechanisms behind metabolic response to diet. 

In Chapter 3, I analyze alternative splicing across adipocyte differentiation in preadipocytes 

isolated from lean, obese, and obese with T2D individuals. I show that alternative splicing is 

incredibly dynamic across adipocyte differentiation, is impacted by metabolic phenotype, and 

may be involved in genetic risk for T2D. These results can serve as a resource to help dissect 

previously uncharacterized GWAS variants associated with metabolic disorders and expand our 

understanding of the role of splicing in adipocyte biology. Together, these studies provide insight 

into the gene regulatory landscape of adipose tissue in multiple conditions (across a large dietary 

space and across differentiation time), and improve our understanding of the role of both 

environment and genetics in metabolic disease risk. 
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Chapter II: Dietary macronutrient composition impacts gene 

regulation in adipose tissue 

Note: The following chapter is reproduced from the manuscript titled “Dietary macronutrient 

composition impacts gene regulation in adipose tissue”. An earlier version of this manuscript 

was published on Research Square in 2023.81  

 

Abstract 

Diet is a key lifestyle component that influences metabolic health through several factors, 

including total energy intake and macronutrient composition. While the impact of caloric intake 

on gene expression and physiological phenomenon in various tissues is well described, the 

influence of dietary macronutrient composition on these parameters is less well studied. Here, we 

use the Nutritional Geometry framework to investigate the role of macronutrient composition on 

metabolic function and gene regulation in adipose tissue. Using ten isocaloric diets that vary 

systematically in their proportion of energy from fat, protein, and carbohydrates, we find that 

gene expression and splicing are highly responsive to macronutrient composition, with distinct 

sets of genes regulated by different macronutrient interactions. Specifically, the expression of 

many genes associated with Bardet-Biedl syndrome is responsive to dietary fat content. Splicing 

and expression changes occur in largely separate gene sets, highlighting distinct mechanisms by 

which dietary composition influences the transcriptome and emphasizing the importance of 

considering splicing changes to more fully capture the gene regulation response to environmental 

changes such as diet. Our study provides insight into the gene regulation plasticity of adipose 

tissue in response to macronutrient composition, beyond the already well-characterized response 

to caloric intake. 
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Introduction 

Diet and nutrition are key determinants of metabolic health, with implications for both 

personal and public health. However, what defines a metabolically healthy diet remains elusive. 

Some studies have focused on total energy and caloric restriction as the most impactful 

components of a healthy diet,82,83 while others have argued for the importance of particular 

nutrients such as fat, carbohydrates, or protein.84,85 One contested component of a healthy diet is 

therefore macronutrient composition, namely the ratio of fat, carbohydrates, and protein in a diet. 

Therefore, understanding the impact of these macronutrients on metabolic health is important for 

defining a healthy lifestyle and may lead to better-informed nutritional guidelines.  

Studies that investigate the impact of diet on metabolic health often rely on a high-fat diet 

paradigm, where a high-fat, energy-dense diet is compared to a control diet. This study design 

focuses on a single macronutrient and conflates changes in macronutrient composition with 

changes in the energy density of the diet. The Nutritional Geometry framework moves beyond 

this single-macronutrient-at-a-time paradigm by considering a wide range of diets that vary 

systematically in their ratios of fat, carbohydrates, and protein.61,62,86,87 By considering a large 

number of isocaloric diets, this framework allows us to determine the metabolic impact of each 

individual macronutrient and interactions between macronutrients, while controlling for caloric 

density through titrating indigestible cellulose. Previous work using the Nutritional Geometry 

framework has shown that both total energy intake and dietary macronutrient composition 

impact metabolic health, lifespan, and fertility,65,66,88,89 but the mechanisms underlying these 

effects are not fully known. 

A deeper understanding of the molecular mechanisms underlying changes in metabolic 

function in response to dietary macronutrient composition may provide insights into what 
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constitutes a healthy diet and possible interventions to maintain a healthy metabolic profile. One 

mechanism that may underlie the observed changes in metabolic function is changes in gene 

regulation in metabolic tissues, which may lead to changes in tissue function and overall health. 

Adipose tissue is a key metabolic tissue that is highly functionally dynamic in response to 

metabolic change90,91 and is known to have dynamic gene regulation after exposure to high fat 

diet.74 By investigating gene regulation changes in adipose tissue in response to differences in 

macronutrient composition, we can gain further insights into the impact of diet on adipose tissue 

function and possibly undercover mechanisms underlying previously reported effects of dietary 

macronutrients on metabolic health. 

Many studies that consider gene regulation change focus on gene expression alone, but it 

is important to also consider the role of other forms of gene regulation, such as alternative 

splicing, in the metabolic response to diet. Alternative splicing is a fundamental source of 

functional complexity in tissues and contributes to tissue identity and development.46,47 

Alternative splicing is also a highly regulated process, and its misregulation can lead to 

developmental defects and disease.92,93 However, in the context of gene regulation under 

environmental effects such as diet, splicing remains relatively understudied compared to other 

mechanisms of gene regulation, such as transcriptional regulation.  

Here, we used the Nutritional Geometry framework to investigate the effects of dietary 

macronutrient composition on metabolic function and gene regulation in the fat pads of male 

mice. This framework provides insight into a more complete dietary space than previously 

considered, allowing us to determine the impact of each macronutrient singly and in 

combination. Using RNA-seq data collected from the fat pads of mice fed one of ten isocaloric 

diets ad libitum, we identified extensive differences in both gene expression and splicing in 
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response to dietary composition and determined the primary macronutrients driving the observed 

differences. The majority of alternative splicing events we identified are in genes whose 

expression is not significantly different in response to dietary composition, highlighting a 

pervasive and complementary mechanism by which cells regulate their transcriptome beyond 

regulation of gene expression. Using this comprehensive dietary paradigm we are able to cluster 

the gene regulation changes on the basis of their functional response to macronutrients and 

identify several common patterns of gene regulation associated with dietary macronutrient 

composition, providing insight into the effect of different macronutrients and macronutrient 

interactions on adipose tissue function. 

 

Results 

Body composition and metabolic health 

To measure the impact of dietary macronutrient composition on metabolic health, we fed 

60 male mice one of 10 isocaloric diets that differed systematically in their ratios of protein, 

carbohydrates, and fat (Figure 2-1a, Table 2-1). For each mouse, we collected data on body 

composition, including body weight, fat mass, and lean mass, as well as other measures of 

metabolic health such as glucose tolerance (Supplementary Figure 2-1). To analyze these data we 

used a mixture-model framework, where models were fitted for each metabolic response over the 

dietary space, exploring linear, non-linear, and interactive effects of the macronutrients. 

Predictions from fitted models were then plotted as a right-angled mixture triangle with the 

percent dietary protein on the x-axis, percent dietary carbohydrate on the y-axis, and percent 

dietary fat as the distance from the hypotenuse to the origin.94  
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Table 2-1. Dietary macronutrient composition. The macronutrient composition of each 

experimental diet as a percent of total energy. 

 
 

Using this framework, we found that dietary macronutrient composition had a significant 

impact on body composition and metabolic health (Figure 2-1b). Body weight, fat mass, lean 

mass, and glucose tolerance all differed significantly across the diets. Body weight and fat mass 

were both maximized on a moderate fat, moderate carb, and moderate protein diet (diet 7, 

Supplementary Table 2-1) and minimized on a low protein, moderate carb, high fat diet (diet 1, 

Supplementary Table 2-1). When considering associations with single macronutrients, body 

weight was positively correlated with protein content (r = 0.26, P = 0.043) and negatively 

correlated with fat content (r = -0.40, P = 0.0017) whereas fat mass was positively correlated 

with carbohydrate content (r = 0.40, P = 0.0015) and negatively correlated with fat content (r = -

0.39, P = 0.0019) (Supplementary Figure 2-2).  

In contrast, lean mass was positively correlated with protein content (r = 0.52, P = 2.0e-

05) and not correlated with fat or carbohydrate content (Supplementary Figure 2-2). Lean mass 



15 

 

was maximized on a moderate protein, high carb, and low fat diet (diet 5) and minimized on low 

protein diets (diets 1 and 2) (Supplementary Table 2-1). Glucose tolerance was also impacted by 

differences in dietary macronutrient composition (Figure 2-1b). The incremental area under the 

curve (iAUC) in an oral glucose tolerance test was positively correlated with protein content (r = 

0.40, P = 0.0017) and negatively correlated with carbohydrate content (r = -0.28, P = 0.033), but 

not correlated with fat content (Supplementary Figure 2-2).  

Dietary macronutrient composition therefore had diverse impacts on body composition 

and metabolic health. Using the Nutritional Geometry framework, we are able to determine the 

impact of differences in macronutrient composition alone, in the absence of differences in caloric 

density. This allows us to ask more precise questions about the impact of individual 

macronutrients on metabolic health without confounding with the energy density of the diet, as is 

common in a high fat diet context. In this context, we found evidence for both linear and non-

linear effects of dietary macronutrients on various metabolic measures. Body weight and fat 

mass were both negatively correlated with fat content, with some interactions with protein and 

carbohydrate content as well. On the other hand, lean mass and glucose tolerance were correlated 

with protein content but not fat content. Overall, in an isocaloric context the ratio of dietary 

macronutrients significantly altered the metabolic profiles of these mice.  
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Figure 2-1. Metabolic response to dietary macronutrient composition. a. A diagram of the 

experimental setup and data collection. b. Surfaces of metabolic measures across the 10 diets 

plotted as a right-angled mixture triangle, with color indicating the level of the measured variable 

(red = higher, blue = lower) and isolines showing the model predicted response. The diagonal 

lines are included to help visualize fat content and are isolines of dietary fat content. At the 

origin, dietary fat content is 100% and it decreases to 0% as you move away from the origin 

along the y = x line. n = 6 mice per diet. 

    

Changes in gene regulation in response to diet  

To better understand how differences in dietary macronutrient composition led to the 

observed effects on metabolic health in vivo, we investigated alterations in gene regulation 
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programs associated with the observed changes in body composition and metabolic parameters. 

We performed RNA-seq in the inguinal fat pads of each of the 60 mice to measures changes in 

gene expression and splicing across the 10 diets. Following quality assessment, 57 samples were 

retained for all genomics analyses (n = 5 or 6 per diet). We tested the response of each gene or 

exon across the macronutrient space, and found that there were 4,308 differentially spliced exons 

in 2,615 unique genes (Figure 2-2a, Supplementary Figure 2-3a, Supplementary Table 2-2) and 

5,644 differentially expressed genes (Figure 2-2c, Supplementary Figure 2-3b, Supplementary 

Table 2-2). Only 967 genes were both differentially expressed and differentially spliced, with the 

majority of genes that underwent gene regulatory changes being acted on by only one of the two 

measured mechanisms (Figure 2-2b).  

We were also interested in whether any of the splicing changes we identified may be 

driven by expression changes, in particular by the differential expression of splicing factors 

known to be involved in adipogenesis or adipocyte function. We therefore asked whether 

splicing factors that have previously been identified as having a role in adipocyte function were 

differentially expressed across the diets, possibly leading to associated changes in alternative 

splicing. We considered six splicing factors with known roles in adipogenesis and adipocyte 

function, and found that none were significantly differentially expressed in response to dietary 

macronutrient composition (Supplementary Table 2-3). This indicates that the splicing changes 

we see may be due to the perturbation of other, unknown splicing factors or may be responding 

to diet without the intermediary effect of a differentially expressed splicing factor. 
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Figure 2-2. Significant regulatory response to dietary macronutrient composition. a. 

Volcano plot of differential splicing changes, plotting the log fold change between 15% dietary 

fat and 60% dietary fat. Blue dots are significant, black are non-significant. Extreme exons in 

terms of log fold change or p-value are labeled. b. Venn diagram of differentially expressed 

and/or differentially spliced genes. c. Volcano plot of differential expression changes, plotting 

the log fold change per percent dietary fat. Red dots are significant, black are non-significant. d. 

Venn diagram of the correlation of each differentially spliced exon with the three macronutrients. 

E. Venn diagram of the correlation of each differentially expressed gene with the three 

macronutrients. n = 57 mice. 

 

We therefore observed abundant changes in gene regulation in response to differences in 

dietary macronutrient composition, with expression and splicing changes largely occurring in 

distinct genes, underscoring how distinct gene regulatory strategies may impact the 

transcriptome in cells quantitatively (through transcription regulation) and qualitatively (through 

differential usage of exons encoding specific protein domains). This analysis identifies genes and 
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exons that were significantly impacted by diet, but doesn’t provide insight into what 

macronutrient or macronutrients these genes and exons might be responding to. We found that 

metabolic measures can have disparate responses to macronutrient composition (Figure 2-1b), 

and therefore sought to better understand what macronutrient interactions might be driving the 

observed changes in gene expression and splicing.  

Correlation between gene regulation changes and individual macronutrients 

To quantify the impact of individual macronutrients on gene expression and splicing, we 

calculated the correlation of each differentially expressed gene or differentially spliced exon with 

fat, protein, and carbohydrate content. We found that dietary fat content is the predominant 

driver of the observed gene expression and splicing changes (Figures 2-2d, 2-2e). This was 

particularly true for the differential splicing changes, where 4,128 differentially spliced exons in 

2,510 genes (96% of all differentially spliced exons) were correlated with dietary fat content 

(Figure 2-2d). Of note, the diets in this study contained varying amounts of non-digestible 

cellulose to maintain their caloric density. Cellulose content of the diet is positively correlated 

with fat content, so it is possible that some of the gene regulation changes that are correlated with 

fat content are actually responding to fiber content of the diet. However, due to the indigestible 

nature of the cellulose we believe that fat content is the main driver of the observed gene 

regulation changes. 

Although fat content was the strongest driver of gene regulation changes, protein and 

carbohydrate content were also correlated with many of the changes in gene expression and 

splicing, often in conjunction with fat content. Gene regulation changes correlated with more 

than one macronutrient represent 46% of all differentially expressed genes, and 45% of all 

differentially spliced exons. While correlations with individual macronutrients can capture some 
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of the dynamics of this dietary space, they do not necessarily capture the full response of genes 

and exons across all 10 diets, especially for gene regulation changes that respond to multiple 

macronutrients or interactions between macronutrients. To better capture these complex dietary 

responses, we sought to categorize the gene regulation changes that we observed in terms of their 

holistic response across the nutrient space encompassed by the 10 diets, as opposed to focusing 

on each macronutrient separately.  

Clustering analysis of differentially spliced exons 

We identified complex gene regulation responses to differences in dietary macronutrient 

composition, including many genes and exons that responded to multiple macronutrients or 

possibly interactions between macronutrients. To better partition these complex responses, we 

can quantify the response of each differentially spliced exon to macronutrient composition using 

the regression coefficients from a mixture model. Nutritional Geometry then allows these 

responses to be visualized as response surfaces (topologies) mapped onto dietary macronutrient 

space. We therefore clustered all the differentially spliced exons based on the regression 

coefficients for all three nutrients using fuzzy c-means clustering and visualized each cluster 

using a response surface generated from the mean exon usage for all exons assigned to that 

cluster. Using this method, we can observe a more representative range of dietary response 

landscapes than simple linear correlations with individual macronutrients. The results of this 

analysis with five clusters are shown (Figure 2-3a).  

Consistent with the results from the correlation analysis, we see that the three largest 

clusters (clusters 3 – 5) show a predominant response to fat content, either positive (clusters 3 

and 4, which were closely similar in topology) or negative (cluster 5). The remaining two 

clusters capture interaction effects, namely a positive carbohydrate by negative protein gradient 
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(cluster 1) and a positive protein by negative fat gradient (cluster 2). These interaction effects 

were not identified as strong signals from the single-nutrient correlation analyses (Figure 2-2d) 

and would most likely have been missed had we not considered the full response of each exon 

across nutrient space and instead considered one macronutrient at a time, as is conventional. 

We next investigated whether these groups of exons that were clustered based on their 

response to diet also fell into shared functions or pathways. Using functional enrichment 

analysis,95 we found that the clusters were significantly enriched for distinct functional terms 

(Figure 2-3b). Cluster 1, which demonstrated a primarily carb by protein gradient, was enriched 

for terms related to cell adhesion, such as cell-cell adhesion and focal adhesion. The protein by 

fat cluster (cluster 2) was also enriched for focal adhesion, but showed stronger enrichment for 

regulation of cell morphogenesis involved in differentiation and regulation of protein catabolic 

processes. In contrast, the exons responding more to fat content, such as cluster 5, show 

enrichment for terms related to intracellular transport and organization.  

Overall, we observe distinct functional enrichment in groups of exons that respond 

differently to dietary macronutrient composition, demonstrating the importance of capturing the 

full dietary response to understand gene regulation changes in response to diet. Further, most of 

these genes would not have been identified as undergoing gene regulation change if we had 

considered expression differences alone, emphasizing the need to consider splicing as well as 

expression changes when analyzing gene regulation responses.  
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Figure 2-3. Differential splicing changes clustered into five distinct groups. a. Surfaces 

generated from the mean centered and scaled exon usage of each exon assigned to the cluster, 

with color indicating the level of exon usage (red = higher, blue = lower). b. The five most 

significantly enriched functional terms for each cluster. n = 6 for diets 1, 5, 6, 7, 8, 9, and 10 and 

n = 5 for diets 2, 3, and 4 
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Differential splicing of key adipocyte genes 

In addition to considering the differential splicing changes at the level of clusters and 

functional groups, we also identified individual splicing events predicted to have significant 

impact on adipocyte function. These include differential splicing events in Vegfa and Igf1.  

Vegfa regulates angiogenesis, and has been implicated in adipose tissue response to diet-

induced obesity.96,97 Specifically, overexpression of Vegfa in the fat pads of mice leads to 

increased vascularization and a healthier phenotype in response to high fat diet.97 In our study, 

we found that exon 6 of Vegfa was differentially spliced in response to dietary composition, and 

demonstrated a predominant response to carb and protein content of the diet (Figure 2-4a). Exons 

6 and 7 contain heparin-binding domains, and are known to be differentially spliced to produce 

isoforms that contain one, both, or neither domain98 (Figure 2-4b). Transcripts lacking exon 6 

and 7 produce a variant of Vegfa that does not bind heparin and is fully soluble, whereas heparin-

binding variants of Vegfa bind to the cell surface and extracellular matrix, with different 

isoforms leading to different sites of angiogenesis.99 Therefore, differential splicing of exon 6 in 

response to macronutrient composition suggests that changes in dietary carb and/or protein 

content may lead to changes in the angiogenic potential and patterns of fat tissue. 

Another key adipocyte gene that we identified as differentially spliced is Igf1. Igf1 

regulates adipocyte differentiation100,101 and controls the response of adipose tissue to metabolic 

stress.102 Alternative splicing produces isoforms of IGF1 that differ in their N-terminus (known 

as the signal peptide) and C-terminus (known as the E peptide), which are removed post-

transcriptionally to produce the same mature peptide.103 In mice, there are two main variants of 

the E peptide based on whether exon 5 is spliced in or out103 (Figure 2-4d). The E peptide that 

includes exon 5 has been functionally implicated in IGF1 bioavailability, via more strongly 
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facilitating IGF1 binding to the extracellular matrix than the shorter E peptide,104 and increases 

the adipogenic potential of bone marrow mesenchymal stem cells.105 Here, we found that exon 5 

of Igf1 was differentially spliced in response to dietary composition, and identified a specific 

response to the protein by fat ratio of the diet (Figure 2-4c).  

Figure 2-4. Differential splicing of Vegfa and Igf1. a. Surface of the centered and scaled exon 

usage of Vegfa exon 6. b. Diagram of selected Vegfa isoforms. Exon 6 is highlighted in pink. c. 

Surface of the centered and scaled exon usage of Igf1 exon 5. d. Diagram of selected Igf1 

isoforms. Exon 5 is highlighted in pink. n = 6 for diets 1, 5, 6, 7, 8, 9, and 10 and n = 5 for diets 

2, 3, and 4 

 

Although adipose tissue does express Igf1, it is not the main source of circulating IGF1. 

Rather, the main contributor to circulating IGF1 levels is hepatocytes.106 To further support our 

finding that dietary macronutrient composition significantly impacts Igf-1 splicing and adipose 

tissue function, we therefore asked whether Igf-1 splicing in the liver was also responsive to diet. 

Using liver samples collected from the same 60 mice in which we assayed adipose gene 
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regulation changes, we used RNA-seq to measure the impact of dietary macronutrient 

composition on Igf-1 splicing in the liver. We found that Igf-1 exon 5 is indeed differentially 

spliced in response to diet in the liver, and responds primarily to protein content of the diet 

(Supplementary Figure 2-4). The Igf-1 exon 5 splicing surfaces are distinct between adipose and 

liver tissue, with the liver splicing displaying a more marked response to dietary protein content. 

Notably, in both tissues exon 5 of Igf-1 is responsive to diet and minimized on low protein diets. 

This result suggests that there may be differences in IGF1 bioavailability in response to different 

dietary macronutrient compositions in both liver and adipose tissue, potentially leading to 

changes in adipose tissue function. 

Since neither Vegfa nor Igf1 were differentially expressed in response to dietary 

macronutrient composition, the impact of macronutrient composition on these biological 

processes would not have been detected by measuring differential expression. By analyzing 

differential splicing changes, we were able to detect gene regulation changes that may alter 

adipocyte function and that would have been missed when considering gene expression alone. 

Clustering analysis of differentially expressed genes 

Next, we performed fuzzy c-means clustering on the responses of the 5,644 differentially 

expressed genes to capture the differential expression dynamics across all ten diets. The results 

of this analysis with five clusters are shown (Figure 2-5a). From these five clusters, the largest 

two clusters show a strong positive (cluster 4) or negative (cluster 5) fat gradient. This is 

consistent with the single-nutrient correlation results that identified fat content as the strongest 

driver of the observed expression changes (Figure 2-2e), as well as the splicing clustering results 

in which the three largest clusters (clusters 3 – 5) also show a predominant response to fat 

(Figure 2-3a). The remaining three clusters capture interaction effects between the 
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macronutrients, specifically fat by protein gradients (cluster 2 showing a negative fat by positive 

protein interaction and cluster 3 showing a positive fat by negative protein interaction) and a 

positive carbohydrate by negative protein gradient (cluster 1). Again, these dietary interactions 

were not apparent in single nutrient analyses. 

We next investigated whether genes falling into these distinct clusters based on their 

response to diet also had distinct biological functions. Using functional enrichment analysis, we 

found that the clusters differed not just in their response to diet but also in their functional 

enrichment (Figure 2-5b). One particularly strong enrichment signal was for immune function in 

genes assigned to cluster 1, possibly representing an inflammatory phenotype associated with 

carb and protein content in the diet. We found another strong enrichment signal for cilium 

function in cluster 4, where the enriched categories included cilium organization, cilium 

assembly, and intraciliary transport. Differentiating preadipocytes are ciliated, and cilia function 

is known to be involved in adipocyte differentiation.107,108 The observed gene expression 

differences in cilia function could therefore indicate changes in adipogenic potential in the fat 

pad in response to dietary fat content. Overall, these data demonstrate that there are distinct sets 

of genes that respond differently to dietary macronutrient composition and carry out distinct 

functions in adipose tissue. 
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Figure 2-5. Differential expression changes clustered into five distinct groups. a. Surfaces 

generated from the mean centered and scaled expression of each gene assigned to the cluster, 

with color indicating the level of expression (red = higher, blue = lower). b. The five most 

significantly enriched functional terms for each cluster. n = 6 for diets 1, 5, 6, 7, 8, 9, and 10 and 

n = 5 for diets 2, 3, and 4 
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Changes in the expression of cilium-associated genes in response to dietary fat 

One of the most striking enrichment signals that arose from the clustering analysis of 

differentially expressed genes was the enrichment in cluster 4 for genes involved in ciliary 

function (Figure 2-5b). When we investigated this signal more closely, we found that the signal 

was driven in part by a set of genes associated with Bardet-Biedl syndrome (BBS). BBS is an 

autosomal recessive ciliopathy with symptoms that include obesity.109 At least 19 genes have 

been shown to cause BBS, many of which are associated with a structure called the BBSome, 

which is a protein complex that is involved in protein trafficking to the cilium.110  

In our differential expression analysis, we found that nine BBS-associated genes were 

differentially expressed in response to dietary macronutrient composition. These nine genes have 

a variety of ciliary-related functions, including some that are components of the BBSome itself 

(Figure 2-6a). Eight of the nine differentially expressed BBS-associated genes were assigned to 

cluster 4 and one (Ift27) was assigned to cluster 3 (Figure 2-5a). As expected from the clustering 

analysis, the surface plots for each individual gene assigned to cluster 4 demonstrated a strong 

expression response to dietary fat content (Figure 2-6b). This may represent a novel association 

of BBS genes with diet-induced metabolic changes, in particular in response to differences in 

dietary fat content. 

Many BBS genes are known to be upregulated during adipocyte differentiation.111 It is 

therefore possible that the increase of BBS gene expression in response to dietary composition 

represents a change in cell type composition of the fat pads, with more differentiating 

preadipocytes present in diets with high fat content. We therefore sought to determine if there 

were changes in cell type composition associated with changes in BBS gene expression. All 

analyses in this study were done in bulk tissue samples, and we do not have direct access to 
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measurements of cell type composition of the tissue. Using the dampened weighted lease squares 

(DWLS) method,112 we performed cellular deconvolution to computationally estimate the cell 

type composition of each bulk tissue sample based on bulk gene expression and a reference 

single-cell RNA-seq dataset of mouse adipose tissue.77 We found that there were significant 

differences in predicted cell type composition in response to dietary composition, including a 

change in the estimated proportion of adipocyte progenitor cells that was predominately 

associated with protein content in the diet (Supplementary Figure 2-5). 

We next asked whether BBS gene expression was correlated with cell type composition. 

We limited this analysis to the five cell types that were identified at greater than 1% frequency in 

at least one sample. We found that there were correlations between BBS gene expression and 

predicted cell type composition (Figure 2-6c). In particular, seven of the nine differentially 

expressed BBS genes were positively correlated with mAd3 proportion and negatively correlated 

with mAd5 proportion. Although this correlation may suggest an association between BBS gene 

expression and these specific adipose subclusters, it may also simply be due to the fact that both 

BBS genes and the proportion of adipocyte subclusters are independently correlated with fat 

content in the diet. These mouse adipocyte subclusters have previously been identified as 

responding to high fat diet, with mAd3 proportion reduced after high fat diet and mAd5 

increased.77 Here, we saw a negative association between mAd5 proportion and fat content, and 

a positive association between mAd3 proportion and fat content (Supplementary Figure 2-5). 

Given that our diets were isocaloric, our results suggest that these adipocyte subclusters may be 

responding to caloric density rather than fat content in the high fat diet context. Notably, none of 

the differentially expressed BBS genes were associated with the predicted proportion of 
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adipocyte progenitors, suggesting that the observed gene expression changes are not due to a 

change in cell type composition. 

 
Figure 2-6. Response of BBS genes to dietary fat. a. Diagram of the primary cilia, with BBS 

genes organized by their role in cilia function. Differentially expressed BBS genes are 

highlighted in orange. BBS-associated gene functions adapted from previous work.109,113,114 b. 

Surfaces generated from the expression of each differentially expressed BBS gene. c. Heatmap 

of the correlation of each differentially expressed BBS gene’s expression with the cell type 

proportions estimated by deconvolution. d. Plots of the correlation between food intake (grams 

per day) and the expression of Bbs2, Bbs10, and Bbs12. n = 6 for diets 1, 5, 6, 7, 8, 9, and 10 and 

n = 5 for diets 2, 3, and 4 
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To complement and extend these results based on computational deconvolution of cell 

type composition, we also performed single-nucleus RNA-seq in adipose tissue from one mouse 

from a diet with high fat content (diet 4, 60% fat) and one mouse from a diet with low fat content 

(diet 7, 30% fat). After anchoring the resulting single-nucleus datasets to the same single-cell 

atlas that was used for deconvolution,77 we identified clusters associated with all of the major 

cell types we expected to find in adipose tissue, such as adipocytes, adipose stem and progenitor 

cells (ASPCs), immune cells, and mesothelial cells (Supplementary Figure 2-6a). We do observe 

some differences in cell type composition between these two samples, most notably a decrease in 

the proportion of total cells identified as adipocytes in the diet 7 sample as compared to diet 4.  

To assess the expression of the differentially expressed BBS genes in each sample and cluster, 

we calculated a BBS expression score based on the sum of the normalized, centered, and scaled 

expression across the nine BBS-associated genes of interest. As expected from the bulk 

expression results, we see that the BBS genes are overall more lowly expressed in the diet 7 

sample than in diet 4 (Supplementary Figure 2-6b), with a particular depletion of BBS gene 

expression in the adipocyte and mesothelial cell clusters in diet 7. Overall, these results suggest 

that BBS gene expression is lowered in multiple cell types, including adipocytes and ASPCs, in 

response to differences in dietary fat content, possibly leading to altered adipogenic potential in 

response to diet. 

Finally, some BBS genes, such as Bbs2,115 Bbs10,116 and Bbs12,117 are associated with 

changes in food intake. We therefore tested the association between the expression of these BBS 

genes and the food intake of each individual mouse. We found that there were no significant 

correlations (Figure 2-6d), suggesting that in this context BBS gene expression is not a 

significant driver of food intake. 
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Altogether, our results indicated that the observed changes in BBS gene expression may 

regulate ciliary function in response to dietary macronutrient composition, which does not appear 

to be caused by changes in cell type composition in adipose tissue. This suggests a possibly 

novel role for the BBSome and other BBS-associated genes in response to diet. 

 

Discussion 

In this study, we aimed to use the Nutritional Geometry framework to dissect the effects 

of dietary composition and interactions between macronutrients on gene regulation in adipocytes. 

By using ten isocaloric diets that cover a large range of the macronutrient space, we could 

precisely assign the observed gene regulation changes to specific macronutrient gradients and 

control for effects of caloric density and energy intake. Using this framework, we have generated 

a comprehensive analysis of gene regulation changes in fat tissue in response to differences in 

macronutrient composition, and identified key changes that may be important for adipocyte 

biology. 

Our results illustrate the power of the Nutritional Geometry framework to identify 

patterns of regulation beyond linear relationships with single macronutrients. Using RNA-seq 

data from a broad range of diets, we are able to quantify the holistic response of each gene 

regulation change to macronutrient composition and cluster the gene regulation responses across 

nutrient space. This clustering analysis identified a positive carbohydrate by negative protein 

gradient (cluster 1) and a positive protein by negative fat gradient (cluster 2) as key patterns in 

both the differential splicing and differential expression analyses (Figures 2-3a, 2-5a). Interaction 

effects such as these would be difficult or impossible to identify from single nutrient analyses or 

a standard high fat diet paradigm. Clustering gene regulation responses across the nutrient space 
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encompassed by these 10 diets therefore allows for more precise interpretation of response to 

diet than was previously possible. 

We also showed that both expression and splicing in fat tissue are dynamic in response to 

environmental change such as dietary composition, and that they act on largely separate gene 

sets (Figure 2-2). Many studies of gene regulatory responses focus solely on gene expression 

changes, and in doing so may miss a great deal of impactful regulatory changes that are due to 

alternative splicing. Here, we see large changes in the transcriptome in response to macronutrient 

composition that are regulated at the level of alternative splicing and would not have been 

detected by looking at gene expression alone. Of note, it is possible that the lack of overlap 

between gene expression and splicing changes is due to lower power to detect changes at the 

splicing level than at the expression level. However, if that were the case we would expect the 

splicing results to largely be a subset of the expression results, whereas we identify more genes 

that are acted on solely by splicing than genes that are impacted by both splicing and expression. 

We therefore conclude that these findings suggest that thousands of differentially spliced exons 

represent a concerted cellular response to dietary composition that impacts the transcriptome in a 

mechanism independent of gene expression, highlighting the importance of giving further 

consideration to the role of alternative splicing in adipocyte biology and in the response of other 

tissues to dietary composition. 

Our results also have implications for the interpretation of the effects of genetic variants 

on metabolic traits and diseases. Metabolic disorders such as obesity and diabetes are complex 

diseases, with both genetic and environmental components.118,119 When considering the 

contribution of genetics to these diseases, previous studies have demonstrated that splicing 

quantitative trait loci (sQTLs) play an important role in disease risk and etiology.53,54,120 While 
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some genetic variants have been associated with gene expression and metabolic traits,26,36,38,121 

the functional impact of most GWAS variants associated with metabolic disease remains 

uncharacterized.24,122,123 We found that splicing is highly dynamic in response to dietary 

composition, including alternative splicing changes that may have significant impacts on 

adipocyte biology. One possible mechanism underlying these uncharacterized GWAS variants is 

therefore that they modulate splicing, but not gene expression, in response to environmental 

inputs such as diet. These results highlight the role of splicing in the response of adipose tissue to 

dietary composition, and provide a foundation from which to consider the impact that genetic 

variation may have on these processes. 

Further research will be required to determine the similarity between the changes seen 

here and the gene regulatory impact of differences in macronutrient composition in humans. Of 

particular interest is determining whether there may be any genotype by environment interactions 

governing these responses in humans, with implications for public dietary guidelines and 

personalized medicine approaches. Of note, this study was conducted in only young male mice 

of a single strain, and future studies are needed to determine whether these results replicate fully 

in both female mice and humans.  

Finally, although the diets used in this study were isocaloric per gram of food (i.e. all of 

the diets had the same energy density), the mice were ad libitum fed and there was variation in 

food intake (and therefore energy intake) across the diets, as show in Figure 1d in Crean et al.124 

In particular, mice on the lowest protein diets (7% of energy from protein) showed increased 

food intake, as previously reported.65,125 Although we cannot rule out the possibility that some of 

the gene regulation changes we see are due to differences in energy intake between the diets, 

food intake was not significantly correlated with fat content (Supplementary Figure 2-7), which 
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we identified as the strongest driver of gene regulation changes in this study. As this study 

focused on isocaloric diets, further research is necessary to consider the impact of energy level 

on these processes. 

Overall, this study utilizes the Nutritional Geometry framework to expand our 

understanding of the impact of macronutrient composition on metabolic function and gene 

regulation in adipose tissue. We find that both expression and splicing are highly dynamic across 

the dietary space, and that considering multiple modes of gene regulation change provides novel 

insights into the processes underlying the metabolic response to macronutrient composition. 

 

 

Methods 

Animal husbandry 

C57BL/6J male mice (n = 60), housed in the Charles Perkins Centre (Sydney, Australia) 

animal facility (24-26◦C, 44-46% humidity, 12h day/light cycle), were used in this study. Four-

week-old mice were purchased from the Animal Resources Centre (Murdoch, Australia) and 

allowed to acclimate for 3 days before being randomly assigned to dietary treatments. Food and 

water were supplied ad libitum, mice were weighed weekly, and health checks performed at least 

twice weekly. Mice were anaesthetized with sodium pentobarbital (100mg/kg) and culled at 21 

weeks of age for tissue collection. Gonadal white adipose tissue deposits and liver tissue deposits 

were weighed, snap frozen in liquid nitrogen, and stored at -80◦C until further use. All 

procedures were reviewed and approved by the University of Sydney animal ethics committee 

(project number 2019/1610). We have complied with all relevant ethical regulations for animal 

use. 
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Diets 

Ten treatment diets, manufactured by Specialty Feeds (Glen Forrest, Australia), were 

designed to include ingredients of AIN-93G in varying proportions to cover the full range of 

physiologically viable macronutrient intake space (Figure 2-1). Non-digestible cellulose was 

included at varying amounts to maintain the net metabolizable energy of diets at 14.7MJ/kg (3.5 

kcal/g). Micronutrient content was equal across diets. Protein content was exome-matched to the 

Mus musculus genome,126 achieved by mixing casein and whey protein isolates supplemented 

with leucine, threonine, methionine, tyrosine, phenylalanine, tryptophan, alanine, aspartic acid, 

arginine, glycine, histidine and serine. Omega 3 to omega 6 fatty acid ratio was maintained at 

1:3.7 using a combination of soybean oil, linseed oil and lard, with saturated fats making up 

23.2% of dietary fats. Carbohydrate sources included wheat starch, dextrinised starch and 

sucrose at a ratio of 4: 1.3: 1. Individual food intake was measured at 16 and 20 weeks of age by 

weighing food before and after a 24- hour feeding period. Bedding was changed at the start of 

intake measures and sifted for food crumbs at the end of the feeding period to obtain as accurate 

measures of food consumed as possible. 

Body composition and metabolic phenotyping 

Metabolic phenotyping was completed at 18 weeks of age. Body composition was 

measured using an EchoMRI-900-A130 (EchoMRI, Houston, USA). Oral glucose tolerance tests 

were performed after 4h of fasting. Blood samples were obtained by tail tipping and blood 

glucose measured using a clinical glucometer (Accu-Chek Performa, Roche Diagnostics 

Australia Pty Ltd). Glucose (2g/kg lean mass) was administered via oral gavage and blood 

glucose was measured at baseline, 15, 30, 45, 60 and 90 min. Blood from tail tipping was also 
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used to measure blood insulin at baseline, 15 and 30 min, using an enzyme-linked 

immunosorbent assay (ELISA) following manufacturer’s instructions (Crystal Chem IL).  

Bulk RNA extraction and sequencing 

Fat tissue was lysed with a 20G needle in Trizol (Life Technologies, #15596018) and 

total RNA was extracted using the Zymo Direct-zol RNA Miniprep kit (Zymo, #R2052). RNA 

quantity and quality were measured using the Agilent 2100 Bioanalyzer (Agilent). RNA-seq 

libraries were generated from 1 μg of total RNA using the NEBNext Ultra II Directional RNA 

library prep kit (NEBNext, #E7765) and NEBNext Poly(A) mRNA magnetic isolation module 

(NEBNext, #E7490) with a size selection step to generate 300 bp inserts. The libraries were 

sequenced using an Illumina NovaSeq 6000 machine (Illumina) with 100-bp paired end reads. 

Samples were sequenced to an average depth of 84,769,220 reads per sample (54,667,206 – 

209,155,949). 

10 - 20mg of flash-frozen liver tissue was disrupted using a Dounce homogenizer in ice-

cold homogenization buffer (250 mM sucrose, 25 mM KCl,  5mM MgCl2, 20 mM Tricine pH 

7.8). The homogenate was mixed 1:3 with Tri-Reagent (Zymo) and passed through a 20g-syringe 

10X. The Zymo Direct-zol RNA Microprep kit (Zymo) was used to isolate total RNA according 

to the manufacturer’s recommendations. RNA integrity and concentration was assessed with the 

Agilent Bioanalyzer Nano kit (Agilent) and 1 ug of mRNA was reverse transcribed and 

amplified using the NEB Ultra II Directional RNA library prep kit (NEBNext). Sequencing was 

performed on an Illumina NovaSeq 6000 (Illumina) with 50-bp paired end reads. Samples were 

sequenced to an average depth of 25,421,980 reads per sample (11,447,079 – 54,008,386). 
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Response surfaces 

Response surfaces were created by fitting a series of mixture models (a.k.a, Scheffe’s 

polynomials) to each response variable in R using the mixexp package. We started by fitting a 

null model (i.e., intercept only; y ~ 1), before also fitting a linear and a non-linear mixture model, 

equivalent to equations 1 and 2 in Lawson and Willden.127 We then selected among models using 

Akaike Information Criterion, where the simplest model (i.e., fewest terms) within 2 points of 

the minimal AIC score was selected. In the event that a non-null model was favored we infer an 

effect of the diet composition on the outcome of interest. To visualize the effects to diet 

composition we created response surfaces by taking the predicted values from AIC-favored 

models, and projecting them in to the right-angle mixture triangle (RMT) compositional space.94 

AIC values and a summary of the selected model are provided for all variables in Supplementary 

Table 2-4. 

Differential expression and splicing analysis 

RNA-seq reads were aligned to the GRCm39 genome using STAR two-pass mapping128 

and read counts per gene were quantified. For the adipose tissue samples, on average 93.67% of 

reads per sample uniquely mapped to the genome, with a range of 89.39% – 94.53%, resulting in 

an average of 79,365,634 mapped reads per sample (51,015,437 – 196,899,410). For the liver 

tissue samples, on average 83.82% of reads per sample uniquely mapped to the genome, with a 

range of 78.91% – 90.20%, resulting in an average of 21,322,851 mapped reads per sample 

(9,577,376 – 43,882,813). Sample quality was assessed using principal components analysis 

(PCA) and three samples were removed from all genomics analyses in adipose tissue. To test for 

differential expression, we used edgeR129 and treated the percent fat and percent carbohydrates in 

the diets as continuous variables, testing the model ~ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑓𝑎𝑡 +  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒𝑠. 
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As the percent fat, carbohydrates, and proteins in each diet always sum to 100 the third 

macronutrient is redundant. Genes with an FDR < 0.05 in this analysis were considered 

significantly differentially expressed. To test for differential splicing, we used DEXSeq130 and 

exons with an FDR < 0.05 in this analysis were considered significantly differentially spliced. In 

the liver analysis, RNA collection date was included as a covariate. When considering the 

overlap between differential expression and splicing, genes with at least one significantly 

differentially spliced exon were considered to be differentially spliced. 

Macronutrient correlation 

To identify genes or exons with a significant correlation with individual macronutrients, 

we calculated the Pearson’s correlation between the expression of each differentially expressed 

gene or the exon usage of each differentially spliced exon and the percentage of each 

macronutrient in the diets. Multiple test correction was performed and correlations with FDR < 

0.05 were considered significant. 

Fuzzy c-means clustering 

Two separate clustering analyses were performed, one for differentially expressed genes 

and one for differentially spliced exons. All genes that were significantly differentially expressed 

or exons that were significantly differentially spliced were included. Genes and exons were 

clustered based on their model coefficients from fitting the model ~0 +  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑓𝑎𝑡 +

 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒𝑠 +  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 in edgeR. Model coefficients were centered and 

scaled to account for differences in expression across genes. Using the e1071 package in R, 

fuzzy c-means clustering was performed on the centered and scaled model coefficients for every 

differentially expressed gene or every differentially spliced exon. Genes or exons were assigned 
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to the cluster for which they had the highest membership. Functional enrichment analysis of the 

gene sets associated with each cluster was performed using Metascape (http://metascape.org).95 

Cell type deconvolution of bulk tissue samples 

To estimate the cell type proportions of each bulk tissue sample, we performed cellular 

deconvolution based on gene expression signatures using the DWLS method112 and a single-cell 

atlas of mouse white adipose tissue.77 Any cell type that was estimated at > 1% proportion in at 

least one sample was considered in further analyses. To determine the relationship between BBS 

gene expression and cell type proportion, Pearson’s correlation with two-sided hypothesis testing 

was calculated between each differentially expressed BBS gene and each estimated cell type. 

Multiple test correction was performed via FDR estimation. 

Single nucleus extraction and sequencing 

Nuclei were isolated from 200-300mg of flash-frozen mouse white adipose tissue 

according to Van Hauwaert, E. L. et al.131 Briefly, adipose tissue was finely minced on a petri 

dish in nuclei isolation buffer (NIB, 250 mM sucrose, 10 mM HEPES, 1.5 mM MgCl2, 10 mM 

KCl, 0.001% triton-x100, 0.2 mM DTT, 0.5U ul RNase inhibitor). Minced tissue was disrupted 

with a Dounce homogenizer in NIB, filtered through a 70 um cell strainer and nuclei isolated 

from contaminating lipids and cellular debris by differential centrifugation. Nuclei were 

suspended in nuclei resuspension buffer (NRB, 1x PBS with 1% BSA, 2 mM MgCl2, and 0.04 

U/ul RNase inhibitor) for 10X genomics. All steps were performed rapidly on ice and all 

reagents were ice-cold. The resulting suspensions were processed using the Chromium Next 

GEM Single Cell 3’ Kit v3.1 according to the manufacturer’s instructions (10X Genomics). 

Barcoding was performed using the Chromium Controller (10X Genomics) and sequencing was 

performed on an Illumina NovaSeq X (Illumina) with 100-bp paired end reads. 



41 

 

FASTQ files derived from sequencing were aligned to GRCm38/mm10 genome using 

10X Cell Ranger v7.1.0. (10X Genomics). Filtered counts matrices were inspected and then re-

filtered for minimum total read count of 1500 Unique Molecular Identifiers (UMIs) per nucleus. 

After filtering, 18,101 cells from the sample from diet 4 and 11,727 cells from the sample from 

diet 7 were retained for analysis. Count matrices for both sample data sets and for reference 

nuclei from Emont et al.77 were normalized and regressed for cell cycle (s.score, g2m.score) and 

mitochondrial read percentage using the SCTransform algorithm included as a part of the Seurat 

R Package.132 Reference nuclei were subset to include only murine nuclei derived from 

perigonadal adipose tissue of male mice fed chow diets. Cell-type labels for the two diet samples 

were learned using the reference dataset using Seurat’s FindTransferAnchors and MapQuery 

functions. UMAP projections were generated using the first 30 principal components of gene 

expression computed on the normalized reference dataset.  

For each sample data set, BBSome gene expression scores were calculated as the sum of 

normalized, centered, and scaled expression across nine BBS-associated genes of interest (Bbs1, 

Bbs2, Arl6, Bbs9, Bbs10, Bbs12, Mks1, Ift27, and Ift74) and plotted by the learned cell type 

groups for each diet. 

Statistics and reproducibility 

Biological replicates were employed in this study, using n = 6 per diet for all metabolic 

measures and the liver genomic analyses and n = 5 or 6 per diet for the bulk adipose genomic 

analyses (n = 6 for diets 1, 5, 6, 7, 8, 9, and 10 and n = 5 for diets 2, 3, and 4). Statistical analyses 

were performed using R (v. 4.1.1), specifically the DEXSeq (v 1.40.0), edgeR (v 3.36.0), e1071 

(v 1.7-9), mixexp (v 1.2.7), and seurat (v 5.0.0) packages. In the differential expression analysis, 

lowly expressed genes were filtered out (less than 10 reads in 53 or more samples) and in the 
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differential splicing analysis, lowly expressed exons were filtered out (less than 10 reads across 

all samples). All data exclusions were performed before performing any analyses. Correlations 

were measured using Pearson’s correlation. Results with an FDR < 0.05 were considered 

significant.  

Data availability 

All RNA-seq data generated by this study is available through SRA (bulk and snRNA-

seq adipose samples: PRJNA987348, liver samples: PRJNA1043119). All other source data have 

been provided in the Supplementary Information and Source Data. 
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Supplementary Figures for Chapter II 

 

Supplementary Figure 2-1. Experimental timeline. Timeline showing the age of the mice (in 

weeks) when each measurement or intervention was carried out (wo = weeks old). 
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Supplementary Figure 2-2. Correlations of metabolic traits with each dietary macronutrient. 

Plots of the correlation of each dietary macronutrient with each metabolic trait in Figure 2-1. 

Correlation was assessed using Pearson’s correlation with two-sided hypothesis testing. Each 

point is a mouse, colored by diet. n = 6 mice per diet.  
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Supplementary Figure 2-3. Gene regulatory changes relative to dietary carbohydrates. a. 

Volcano plot of differential splicing changes, plotting the log fold change between 20% dietary 

carbohydrates and 78% dietary carbohydrates. Blue dots are significant, black are non-

significant. Extreme exons in terms of log fold change or p-value are labeled. b. Volcano plot of 

differential expression changes, plotting the log fold change per percent dietary carbohydrates. 

Red dots are significant, black are non-significant. n = 57 mice.  
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Supplementary Figure 2-4. Differential splicing of Igf1 in the liver. Surface of the centered and 

scaled exon usage of Igf1 exon 5 in the liver. n = 6 mice per diet. 
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Supplementary Figure 2-5. Computationally estimated cell type proportions. Surfaces 

generated from the computationally estimated cell type proportions of each fat tissue sample. For 

the proportion of macrophages (mMac2), the data supported a null model with no impact of 

dietary macronutrients. n = 6 for diets 1, 5, 6, 7, 8, 9, and 10 and n = 5 for diets 2, 3, and 4 
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Supplementary Figure 2-6. Single nucleus RNA-seq results from diets 4 and 7. a. UMAP 

projections of the reference dataset (perigonadal adipose tissue from chow-fed male mice from 

Emont et al.77), the diet 4 cells, and the diet 7 cells. Each point is a cell, colored by cell type. b. 

Violin plots of the BBSome expression score for each cell type in diet 4 and diet 7. The 

expression score is based on the nine BBS genes that were identified as differentially expressed 

in the bulk analysis. 
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Supplementary Figure 2-7. Correlations of food intake with each dietary macronutrient. 

Plots of the correlation of each dietary macronutrient with food intake. Correlation was assessed 

using Pearson’s correlation with two-sided hypothesis testing. Each point is a mouse, colored by 

diet. n = 6 mice per diet.  
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Supplementary Tables for Chapter II 

Supplementary Table 2-1. Metabolic trait values. Mean and standard deviation for the 

measurements of each metabolic trait in Figure 2-1 in each diet. n = 6 mice per diet. 

Diet Body Weight Fat Mass Lean Mass Glucose iAUC 

1 24.7 ± 2.5 2.04 ± 0.55 21.6 ± 2.1 343 ± 240 

2 28.0 ± 4.4 4.95 ± 3.52 21.9 ± 1.0 214 ± 115 

3 33.0 ± 2.9 8.03 ± 2.80 23.8 ± 0.5 307 ± 170 

4 28.2 ± 1.7 3.58 ± 0.89 23.5 ± 1.0 186 ± 125 

5 33.7 ± 2.9 7.23 ± 1.74 25.5 ± 1.4 320 ± 211 

6 29.9 ± 0.9 4.28 ± 0.74 24.5 ± 0.4 420 ± 133 

7 34.1 ± 2.3 8.15 ± 1.95 24.7 ± 1.6 476 ± 211 

8 30.2 ± 1.7 3.57 ± 2.01 25.2 ± 1.8 469 ± 145 

9 29.5 ± 2.8 3.88 ± 2.20 24.3 ± 0.9 397 ± 127 

10 30.4 ± 1.6 3.59 ± 1.53 25.2 ± 1.9 462 ± 171 
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Supplementary Table 2-2. Differential splicing and expression results for all genes in adipose 

tissue. Available as an excel file online. 

 

Supplementary Table 2-3. Differential expression results for known adipose splicing factors. 

Splicing Factor 
Differential expression 

corrected p-value 
References 

Nova1 0.125 Vernia et al74 

Nova2 0.283 Vernia et al74 

Sam68/Khdrbs1 0.175 Huot et al,133 Song and Richard134 

Srsf1 0.158 Aprile et al135 

Srsf10 0.851 Li et al136 

Tra2b/Sfrs10 0.498 Patel et al,137 Mikoluk et al138 

 

Supplementary Table 2-4. AIC values and mixture model summaries for all variables. 

Available as an excel file online. 
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Chapter III: Splicing across adipocyte differentiation is highly 

dynamic and impacted by metabolic phenotype 

Note: The following chapter is reproduced from the manuscript titled “Splicing across adipocyte 

differentiation is highly dynamic and impacted by metabolic phenotype”. An earlier version of 

this manuscript was published on Research Square in 2023.139  

 

Abstract 

Adipose tissue dysfunction underlies many of the metabolic complications associated 

with obesity. A better understanding of the gene regulation differences present in metabolically 

unhealthy adipose tissue can provide insights into the mechanisms underlying adipose tissue 

dysfunction. Here, we used RNA-seq data from a differentiation time course of lean, obese, and 

obese with T2D individuals to characterize alterative splicing in adipocyte differentiation and 

function. Splicing was highly dynamic across adipocyte differentiation in all three cohorts, and 

the dynamics of splicing were significantly impacted by metabolic phenotype. There was very 

little overlap between genes that were differentially spliced in adipocyte differentiation and those 

that were differentially expressed, positioning alternative splicing as a largely independent gene 

regulatory mechanism whose impact would be missed when looking at gene expression changes 

alone. To assess the impact of alternative splicing across adipocyte differentiation on genetic risk 

for metabolic diseases, we integrated our differential splicing results with GWAS results for BMI 

and T2D, and found that variants associated with T2D were enriched in regions that were 

differentially spliced in early differentiation. These findings provide insight into the role of 

alternative splicing in adipocyte differentiation and can serve as a resource to guide future 

variant-to-function studies. 
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Introduction 

Metabolic diseases represent a significant global health burden, with obesity and its 

often-associated cardiometabolic complications representing the largest contributor of this health 

burden.140 A key characteristic of the metabolic complications of obesity is adipose tissue 

dysfunction, with adipose tissue from obese individuals exhibiting abnormal phenotypes such as 

hypertrophy, increased inflammation, decreased differentiation capacity, and impaired insulin 

sensitivity.71,72,78 These differences in obese adipose tissue function may already be present in 

adipocyte precursors such as preadipocytes, or may develop over the course of differentiation or 

in mature adipocytes.78–80 Therefore, by considering the transcriptomic and epigenomic 

differences between lean and obese individuals across the differentiation of preadipocytes to 

mature adipocytes we can gain insights into the pathophysiological mechanisms of obesity and 

its comorbidities.  

In a previous study, our collaborators demonstrated that preadipocytes from obese 

subjects with or without type 2 diabetes (T2D) have distinct transcriptomic and epigenomic 

changes across differentiation when compared to lean individuals.79 In all three cohorts, the 

transcriptome was significantly remodeled across differentiation, with thousands of differentially 

expressed genes between each time point comparison. Further, preadipocytes isolated from obese 

individuals exhibited reduced adipogenic potential that may be linked to differences in DNA 

methylation, suggesting that preadipocytes may be epigenetically reprogrammed in vivo in 

response to obesity and T2D. This work therefore showed that gene expression and DNA 

methylation are significantly altered in preadipocytes isolated from obese and obese with T2D 

individuals when compared to lean individuals, and that there are significant transcriptomic 

differences between these cohorts across adipocyte differentiation that impact genes involved in 
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important pathways such as PPAR signaling, oxidative phosphorylation, fatty acid metabolism, 

and insulin signaling. These results provided insights into possible mechanisms underlying 

adipose tissue dysfunction in obesity and T2D. 

It has therefore been shown that gene expression and DNA methylation changes across 

adipocyte differentiation are important for adipocyte biology and function. However, other forms 

of gene regulation may also play important roles in adipocyte function, such as alternative 

splicing. Specifically, alternative splicing can lead to variations in exon usage in mature mRNAs, 

resulting in distinct protein domains being present in the cell. This represents a regulatory 

strategy for modifying the cellular proteome which is independent of detectable gene expression 

differences measured by RNA-seq. Previous work has shown that alternative splicing in 

adipocytes is dynamic in response to diet-induced obesity in mice, and can be critical for key 

adipocyte functions such as thermogenesis.74,141 However, relative to other modes of gene 

regulation, such as transcriptional regulation, the role of alternative splicing in adipocyte 

differentiation and function remains understudied. Splicing may play an essential role in the 

function of preadipocytes and adipocytes, and may underlie some differences between adipose 

tissue function in lean and obese individuals. In this study, we aim to systematically characterize 

the dynamic scope of alternative splicing during adipocyte differentiation in health and disease. 

In addition to providing insights into adipocyte function and dysfunction, a better 

understanding of the role of splicing in adipocyte differentiation may also provide insights into 

the genetic underpinnings of metabolic disorders. Genome-wide association studies (GWAS) 

have identified hundreds of loci associated with metabolic disorders such as obesity and T2D, 

but the mechanisms of action for most of these genetic associations remain unclear.20,23 By 

expanding our understanding of the scope of splicing in adipocyte differentiation and key 
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adipocyte functions, we may be able to identify variants associated with metabolic disorders that 

confer risk through disrupting splicing during adipocyte differentiation, thus leading to impaired 

or altered adipocyte function and eventually disease. A better understanding of the splicing 

events that occur across adipocyte differentiation and how they are perturbed in obesity may 

therefore provide insights into the genetic underpinnings of metabolic disorders.   

Here, we extend our collaborators’ previous study to consider changes in splicing across 

adipocyte differentiation between lean, obese, and obese with T2D humans and investigate 

whether any identified splicing differences may play a role in disease risk. Focusing on a subset 

of individuals that were deeply sequenced to identify a large number of splicing events, we 

identified thousands of differential splicing events across adipocyte differentiation in each 

cohort. We found that these splicing events largely occurred in genes that were not differentially 

expressed and would thus not be detectable by gene expression analyses, emphasizing the 

importance of considering splicing in addition to expression when measuring gene regulation 

changes. Finally, we considered the role these splicing events may play in the genetic risk for 

obesity and T2D, providing a resource to potentially help disentangle previously uncharacterized 

genetic associations with metabolic disease.  

 

Results 

Identifying splicing changes across adipocyte differentiation 

To investigate the role of splicing in adipocyte differentiation, we used RNA-seq data 

collected from a differentiation time course of preadipocytes isolated from visceral adipose tissue 

of lean, obese, and obese with T2D subjects79 (Supplementary Table 3-1). Isolated preadipocytes 

were plated and proliferated to confluence, and once they reached confluence they were induced 

to differentiate into adipocytes. Aliquots for RNA-seq were collected at confluence, day 3, and 
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day 15 of differentiation. Using data collected from a subset of the original cohort (three 

individuals per cohort per time point, see Supplementary Table 3-2), we tested for differential 

splicing and differential expression across adipocyte differentiation in each of the three cohorts. 

For each cohort, we used DEXSeq130 to test for differential splicing between confluence and day 

3 and between day 3 and day 15 of differentiation, and for each time point comparison in each 

cohort exons with an FDR < 0.05 were considered significantly differentially spliced.  

We found that alternative splicing is dynamic across adipocyte differentiation, with the 

number of differential splicing events identified at each time point comparison ranging from 

1999 (in the obese with T2D cohort at confluence vs. day 3) to 9229 (in the obese with T2D 

cohort at day 3 vs. day 15) (Figure 3-1A, Supplementary Table 3-3). However, the dynamics of 

splicing were different between the groups, with an especially pronounced difference in the 

obese with T2D cohort, where we saw a large number of differential splicing events during late 

differentiation. This pattern was the reverse of what we saw in the other two cohorts, in which 

there were more differential splicing events during early differentiation and fewer during late 

differentiation. This pattern was not apparent in the differential expression data, where all three 

cohorts had largely similar numbers of differentially spliced genes in later differentiation (Figure 

3-1B). These results demonstrate that differential splicing is pervasive and dynamic across 

adipocyte differentiation, that those dynamics are impacted by diseases status, and that they often 

are not mimicked or observable in expression data. 

We also investigated whether we identified any splicing events with previous evidence of 

a role in adipocyte biology and adipogenesis. Previous work has identified naturally occurring 

alternative splicing variants in PPARG, one of the master regulators of adipocyte differentiation. 

In particular, exon skipping of exon 5 produces an isoform of PPARG that lacks the ligand-
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binding domain and leads to impaired differentiation. Further, expression of this isoform in 

subcutaneous adipose tissue has been shown to positively correlated with BMI.135 In our data, 

consistent with previous reports, we saw that exon 5 of PPARG was significantly differentially 

spliced between day 3 and day 15 in our obese cohort, with exon 5 showing lower exon usage at 

day 15 than day 3 (Supplementary Table 3-3). In addition to PPARG, we also identified a known 

alternative splicing event in the gene LPIN1. LPIN1 is involved in adipogenesis and mutations in 

the gene in mice lead to lipodystrophy.142 Two isoforms of LPIN1 have been identified, lipin-α 

and lipin-β, that differ in exon 7, with lipin-β containing exon 7 and lipin-α lacking it. These two 

isoforms have unique temporal expression patterns across adipocyte differentiation, with lipin-α 

expression peaking in early differentiation and thought to be involved in adipocyte 

differentiation and lipin-β expression peaking in late differentiation and thought to be involved in 

lipogenesis.143 In each of our cohorts, we see increased usage of exon 7 between day 3 and day 

15 of differentiation, representing this previously identified isoform switch (Supplementary 

Table 3-3)  Some previously identified splicing events, such as alternative splicing of 

DLK1/PREF1144 and INSR,145 were not identified in our data. 
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Figure 3-1. Characterizing differential splicing across adipocyte differentiation in lean, 

obese, and obese with T2D cohorts. A. Bar plot of the number of significantly differentially 

spliced exons in each cohort and each time point comparison. B. Bar plot of the number of 

significantly differentially expressed genes in each cohort and each time point comparison. C. 

Heat map of the pairwise sharing between the differential splicing sets (red) or between the 

differential expression sets (blue). D. Heat map of the pairwise sharing between differential 

expression sets and differential splicing sets. Pairwise sharing was calculated using MASH. 

 

Investigating patterns of gene regulation sharing between groups 

After observing that there was abundant differential splicing across adipocyte 

differentiation in each of the three cohorts, we next investigated whether the differential splicing 

changes we observed were shared across the groups, and how the dynamics of splicing sharing 
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compared to expression. Using MASH,146 we quantified the degree of sharing between each 

cohort both within and across time points (Figure 3-1C). We found that, overall, most of the 

differential splicing events identified were unique to each cohort. For example, at confluence vs. 

day 3 the splicing changes in the lean cohort have an estimated pairwise sharing of only 23% and 

37% with the obese and obese with T2D groups respectively. The obese and obese with T2D 

cohorts showed higher sharing overall, with an estimated pairwise sharing of 47% at confluence 

vs. day 3 and 59% at day 3 vs. day 15, indicating more similarity between the splicing patterns in 

the two obese cohorts than between either obese cohort and the lean cohort. These results 

indicate that there are distinct differential splicing profiles between all three cohorts, with the 

lean cohort in particular showing low degrees of sharing with either of the obese cohorts.  

We also investigated the degree of sharing among the differentially expressed genes, and 

found that they showed overall higher degrees of sharing than differential splicing (Figure 3-1C). 

For differential expression, the pairwise sharing between any two cohorts at the same time point 

ranged from 47-64% as compared to 15-59% for differential splicing. For differential expression, 

the obese cohorts had higher degrees of sharing at later differentiation than early differentiation 

(64% vs 55%), in contrast to the lean cohort which had higher pairwise sharing with the obese 

cohorts at early differentiation as opposed to late (61% and 64% vs 57% and 47%). The amount 

and patterns of sharing between the cohorts therefore differ between differential splicing and 

differential expression, suggesting that these two forms of regulation are being affected 

differently by changes in phenotype. 

In addition to investigating the degree of sharing within differential expression and 

differential splicing, we also estimated the degree of sharing between these two modes of gene 

regulation. We summarized the differential splicing results to the gene level by considering the 
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most significant differential splicing change for each gene and used MASH to determine the 

pairwise sharing between each set of differential splicing changes and each set of differential 

expression changes. Overall, we found that the sharing between expression and splicing changes 

in this context is very low, ranging from 10-19% (Figure 3-1D), indicating that analysis of gene 

expression alone would miss thousands of splicing events that lead to quantitative and qualitative 

changes in the proteome of adipocytes. These results underscore the importance of considering 

splicing in addition to expression when measuring the transcriptomic response of adipocytes, as 

splicing changes can represent a largely orthogonal form of genetic regulation that is not 

captured by looking at expression changes alone. 

Characterizing splicing dynamics by clustering analysis 

After detecting pervasive differences in alternative splicing across differentiation that 

were distinct between the cohorts and largely not overlapping with gene expression changes, we 

next asked whether there might be distinct groups of alternative splicing events involved in 

specific biological processes in each cohort. We therefore sought to classify the differential 

splicing events we identified in each cohort into distinct response patterns. This analysis allows 

us to ask not just whether individual splicing events are shared or not, but whether the dynamic 

patterns of splicing changes overall are different between the groups. To address this question, 

we used fuzzy c-means clustering to cluster all the differential splicing events from each cohort 

across the three differentiation time points considered (confluence, day 3, and day 15). We 

performed a separate clustering analysis for each cohort that assigned each differentially spliced 

exon to one of six distinct clusters based on its dynamics across the time course (Supplementary 

Table 3-4).  
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Using this approach, we find that the clusters are largely shared between cohorts, 

although with some notable differences (Supplementary Figures 3-1, 3-2, and 3-3). Specifically, 

cluster 6 in the lean cohort, which contained exons whose usage was largely unchanged from 

confluence to day 3 and increased from day 3 to day 15, was not identified as one of the six 

strongest clusters in the obese cohort, where we instead identified the opposite - a cluster of 

exons whose usage was unchanged from confluence to day 3 and then decreased from day 3 to 

day 15. The other five clusters that were identified in the lean cohort represent dynamic patterns 

that were the same or very similar to clusters that were identified in the other two cohorts. 

However, although five of the six clusters were largely similar across the three cohorts, 

there were notable differences in the prevalence of each splicing pattern between the cohorts 

(Figure 3-2A). When we consider the percent of total differential splicing events assigned to 

each cluster for each group, we find that cluster 2, which is comprised of exons whose usage 

decreases between confluence and day 3 and increases between day 3 and day 15, is much more 

prevalent in the obese and obese with T2D cohorts as compared to the lean (23% and 22% of 

exons compared to 15%). There were also differences in cluster prevalence between the two 

obese cohorts, with the obese with T2D cohort having a marked decrease in exons assigned to 

cluster 5 (exons whose usage decreases across all three time points) compared to both the lean 

and obese cohort, and the obese cohort having a marked increase in exons assigned to cluster 1 

(exons whose usage increases between confluence and day 3 and is largely unchanged from day 

3 to day 15) compared to both the lean and obese with T2D cohort. The three metabolic cohorts 

therefore exhibited distinct dynamics of alternative splicing across adipocyte differentiation.   
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Figure 3-2. Functional enrichment differences between lean, obese, and obese with T2D 

cohorts within a shared splicing cluster. A. Plot showing the percent of all differentially 

spliced exons assigned to each of the six clusters for each cohort. Clusters are identified by a 

simplified representation of the cluster dynamics. B. Plots of the scaled and centered exon usage 

of each exon assign to lean cluster 2, obese cluster 3, and obese with T2D cluster 2. For each 

plot, the black line connects the cluster centroids of the cluster. C. The five most significantly 

enriched functional terms for each cluster, plotted against the –log10 of the enrichment p-value 

for each term. 

 

Finally, in addition to changes in splicing dynamics across differentiation, we also 

observed differences in the functional enrichment of splicing events, even within a shared 

cluster. Lean cluster 2, which represents exons whose usage decreases between confluence and 
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day 3 and then increases between day 3 and day 15, is also found in the obese and obese with 

T2D cohorts (Figure 3-2B). However, functional enrichment analysis revealed key differences 

between the exons assigned to these three clusters (Figure 3-2C). Notably, the exons assigned to 

lean cluster 2 are enriched for functional terms such as metabolism of lipids, VEGFA-VEGFR2 

signaling, and extracellular matrix organization, indicating that this may be an important splicing 

dynamic for key adipocyte functions. However, the obese and obese with T2D cohorts enriched 

for less relevant terms such as nervous system development and viral infection pathways 

(although the obese cohort is also enriched for VEGFA-VEGFR2 signaling). These results 

demonstrate that there are both qualitative and quantitative changes in the overall dynamics of 

splicing between the three cohorts, and that the genes and functions being acted on by these 

splicing patterns have shifted in ways that may have implications for adipocyte function and 

development.   

Role of alternative splicing across adipocyte differentiation in GWAS for BMI and T2D 

After observing that splicing is highly dynamic across adipocyte differentiation and 

involved in key adipocyte functions that may be perturbed in obesity, we next asked whether 

these splicing events might play a role in the genetic risk for metabolic diseases such as obesity 

and T2D. GWAS have identified hundreds of SNPs associated with metabolic disorders, and the 

mechanisms by which these SNPs confer risk remains largely unknown.24,122 One possible 

mechanism of action for some SNPs associated with metabolic disorders is that they disrupt key 

splicing events during adipocyte differentiation, leading to impaired adipocyte differentiation or 

function. To assess whether any SNPs associated with BMI or T2D may be impacting splicing 

across adipocyte differentiation, we overlapped the flanking introns of differentially spliced 

exons in each cohort and time point with SNPs significantly associated with BMI or T2D in two 
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large meta-analyses20,23 (Supplementary Table 3-5). For each differential splicing analysis, we 

compared the number of introns overlapping at least one SNP with a null distribution generated 

from the flanking introns of randomly selected exons. The exons in each control set were 

randomly sampled from all tested exons in that analysis, removing exons or genes that did not 

meet the minimum expression threshold for differential splicing testing. 

 
Figure 3-3. Overlap between BMI GWAS SNPs and differentially spliced exons. Histograms 

showing the distribution of the number of introns that overlap at least one BMI SNP across 1000 

control sets of randomly selected exons. The dotted black line indicates the number of introns 

that overlap at least one BMI SNP in each set of differentially spliced exons. 
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When we performed this analysis using SNPs significantly associated with BMI, we 

found that there was no significant enrichment for SNPs associated with BMI in the introns of 

any of the differential splicing analyses tested (Figure 3-3). Instead, we found that in almost 

every comparison there was a significant depletion of SNPs associated with BMI in the introns 

of differential spliced exons. This result is consistent with previous work that has found that 

genetic associations with BMI are strongly enriched around genes that are specifically expressed 

in the central nervous system.38,121,147 This suggests that gene sets that are enriched for genes 

with specific functions in adipocytes would likely be depleted in SNPs associated with BMI. 

These results emphasize the complex nature of metabolic disorders and the many possible modes 

of action that can underlie GWAS associations.  

Next, we tested for significant enrichment of SNPs associated with T2D in each of our 

differential splicing analyses (Figure 3-4). We found that SNPs associated with T2D were 

significantly enriched in the flanking introns of exons that were differentially spliced between 

confluence and day 3 of differentiation in each of the three cohorts, but not significantly enriched 

in any cohort at day 3 vs. day 15 of differentiation. These results indicate that exons that are 

differentially spliced in the early stages of adipocyte differentiation are more likely to be 

functionally involved in disease risk for T2D than those that are differentially spliced in the later 

stages of differentiation. The differential splicing events identified here therefore provide a 

resource to investigate the role of differential splicing in T2D disease risk and potentially unravel 

the function of previously uncharacterized genetic associations with T2D. Overall, these results 

emphasize the importance of considering splicing as a possible disease mechanism in metabolic 

disorders, as well as the need to collect data across developmental time to capture possible 

transient associations or gene regulation changes.  
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Figure 3-4. Overlap between T2D GWAS SNPs and differentially spliced exons. Histograms 

showing the distribution of the number of introns that overlap at least one T2D SNP across 1000 

control sets of randomly selected exons. The dotted black line indicates the number of introns 

that overlap at least one T2D SNP in each set of differentially spliced exons. 
 

Discussion 

In this study, we aimed to expand our understanding of the impact of splicing in 

adipocyte biology and metabolic disease. Using isolated preadipocytes collected from lean, 

obese, and obese with T2D individuals, we were able to generate a comprehensive catalog of 
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alternative splicing changes across adipocyte differentiation in three different metabolic states. 

We identified shared and divergent splicing patterns between the three cohorts, as well as 

functional differences within a shared splicing pattern. Finally, we integrated our splicing results 

with GWAS results for BMI and T2D, generating a resource to help untangle the association 

between some genetic variants and disease.  

Our results emphasize the importance of considering splicing in addition to expression 

when measuring gene regulation, as it can act as an independent regulatory mechanism from 

expression. We found very little overlap between differentially spliced and differentially 

expressed genes in every cohort and adipocyte differentiation time point assayed, with no 

comparison having a pairwise sharing estimate higher than 20%. This is consistent with the small 

overlaps found in comparisons between alternative splicing and expression in other contexts, 

such as genes identified as differentially spliced and expressed across the cell cycle,148 in the 

aging hippocampus in mice,149 and in a rodent model of sarcopenia.150 This suggests that when 

considering the gene regulatory response to a perturbation or time course, it is essential to 

consider splicing as well as expression to capture the full spectrum of gene regulation events and 

changes that shape the cellular proteome, both quantitatively (measured by gene expression 

differences) and qualitatively (measured by splicing differences).  

By expanding our understanding of the role of splicing in adipocyte differentiation and 

function, we can gain insight into the mechanisms of genetic risk for metabolic diseases. In the 

past two decades, GWAS for metabolic traits such as BMI, T2D, and WHR have provided 

evidence for the association of hundreds of noncoding variants with metabolic disease.24,26,118,122 

In an effort to elucidate the mechanism underlying these associations, previous work has used 

sQTL mapping to established the regulation of alternative splicing as an important linking 
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mechanism between variant and disease.52,53,151 However, some molecular QTLs have been 

shown to be transient over differentiation time, and would likely not be detectable in mature 

tissues.152 Here, we collected data from multiple time points across the differentiation of 

preadipocytes to adipocytes, allowing us to capture splicing events and possible variant-splice 

event pairs that may have been missed by looking at preadipocytes or adipocytes alone. By 

linking GWAS variants to splicing events across adipocyte differentiation, we can identify 

otherwise undetectable mechanisms possibly underlying the association of those variants with 

metabolic disorders. Future studies that expand the number of individuals for which we have 

RNA-seq time-course data could extend these results through formal sQTL mapping. 

Of note, we found that there was a significant depletion of SNPs associated with BMI in 

the introns of differential spliced exons in many of the cohorts and time points. One possible 

explanation for this depletion is the previously characterized enrichment of genetic associations 

with BMI in genes highly expressed in the central nervous system.121,147 If our sets of 

differentially spliced genes across adipocyte differentiation are enriched for genes highly 

expressed and functional in adipose tissue, they would therefore likely be depleted in BMI-

associated SNPs. It is also important to note that we performed the GWAS-intron intersection 

analyses using the entire flanking introns of each exon in order to capture all possible intronic 

variants. However, previous work has shown that splicing variants tend to occur more frequently 

closer to the intron-exon border, and that the most proximal 200-400 bp of intronic sequence 

may be most important for splicing regulation.153–155 Although deep intronic variants can be 

involved in splicing, it is possible that by including the entire intron we are diluting the signal of 

enrichment of GWAS variants around differentially spliced exons by counting deep intronic 

variants in the control sets and weighing them equally with more proximal variants. Of note, 
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although we do not detect a significant enrichment of BMI-associated variants in the 

differentially spliced regions, we still identify hundreds of exons whose flanking introns contain 

BMI-associated variants that may act by perturbing splicing in the region. 

In conclusion, we have demonstrated that splicing is highly dynamic in adipocyte 

differentiation, is impacted by metabolic phenotype, and is acting on important adipocyte 

functions such as lipid metabolism and angiogenesis. We have also integrated our splicing results 

with genetic variants associated with BMI or T2D and generated a set of putative variant-splice 

event pairs that may be relevant in disease function. These results expand our understanding of 

the role of splicing in adipocyte differentiation and metabolic disease etiology, and can act as a 

resource to guide further research into the genetic underpinnings of metabolic disorders and the 

impact of individual splicing events on adipocyte biology. 

 

Methods 

Study participants  

The study was approved by the Ethics Committee from the Capital Region of Denmark 

(reference H-1-2011-077) and informed consent was obtained from all participants. This study 

included a total of five lean controls, five obese subjects with T2D according to ICPC-2-DK, and 

four obese subjects with no history of diabetes. The participants were recruited from Surgical 

Gastrointestinal Department, Hvidovre Hospital, Denmark. The lean controls were subjects 

undergoing surgery for laparoscopic inguinal hernia repair. Individuals of both the Obese T2D 

and Obese groups were subjects to laparoscopic gastric bypass operation. Prior to surgery, all 

study participants were measured and weighted. Exclusion criteria for all three groups were: 

alcohol consumption of more than 14 units/week, smoking, daily intake of medicine and 

presence of chronic/acute diseases. Lean men with diagnosed hypercholesterolemia, 
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hypertension and/or diabetes were excluded. Participants were fasted for at least 12 hrs and 

blood was drawn before undergoing anesthetics. Blood was analyzed at the Clinical 

Biochemistry Department, Hvidovre Hospital. Visceral adipose tissue was collected from the 

omental fat pat with laparoscopic surgery instruments under full narcosis during surgery.  

Isolation and culture of human preadipocytes  

Isolation and culture of preadipocytes was performed as previously described.156 The 

adipose tissue biopsy was immediately rinsed in Phosphate-buffered saline (PBS), minced and 

digested by collagenase for 2½ hours in 37°C water bath shaking. Digestion was stopped by 

adding Dulbecco's Modified Eagle Medium (DMEM) media supplemented with 10% Fetal 

Bovine Serum (FBS). The suspension was passed through a 200-µm sterile nylon filter 

(Spectrum Laboratories). The stromal vascular fraction (SVF) from the infranatant and the 

mature adipocytes from the upper fraction were washed 3 times with DMEM. The SVF was 

further processed through a 40-µm cell strainer and washed once in DMEM. Cells were plated at 

75x106 cells/80 cm2 flask and cultured at 37°C (95% air/5% CO2) in DMEM/F12, 10% (v/v) 

FBS, 100 U/ml penicillin and 100 mg/ml streptomycin until 3 days prior to induction of 

differentiation, where FBS was removed from the media. At day 0, cells were differentiated in 5 

µg/ml insulin, 10 µg/ml transferrin, 0.2 nM tri-iodothyronine (T3), 1 µM rosiglitazone, 50 µM 3-

isobutyl-1-methylxanthine (IBMX) and 1 µM dexamethasone for the first 3 days. Thereafter, 

IBMX and dexamethasone were removed. Insulin was removed at day 12 and cells were 

processed at day 15.  

Nucleic acid purification and RNA sequencing  

RNA and DNA were isolated with AllPrep DNA/RNA/miRNA Universal Kit (QIAGEN) 

according to the manufacturer’s protocols. Quality and yield were assessed by NanoDrop and 
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Qubit dsDNA HS Assay Kit (Life Technologies). For RNA undergoing RNA-seq library 

preparation, RIN value was determined by Bioanalyzer instrument (Agilent Genomics), using the 

Agilent RNA 6000 Pico Kit. RNA-sequencing libraries were prepared using the Illumina TruSeq 

Stranded Total RNA with Ribo-Zero Gold protocol (Illumina) and performed as described157. 

Libraries were sequenced on a NextSeq500 instrument (Illumina) with 38-bp paired end.  

Splicing and gene expression analysis 

RNA-seq reads were aligned to NCBI GRCh38 using STAR.128 Each sample was 

sequenced twice, and the two sequencing runs were treated as technical replicates, with 

sequencing run included as covariate in both the splicing and expression analyses. Differential 

splicing and differential expression were calculated for each cohort (lean, obese, and obese with 

T2D) and for two time point comparisons (confluence vs. day 3 of differentiation and day 3 vs. 

day 15 of differentiation). Differential splicing was assessed at the exon level using DEXSeq130 

and for each time point comparison in each cohort exons with an FDR < 0.05 were considered 

significantly differentially spliced. Differential expression was assessed using limma158 and for 

each time point comparison in each cohort genes with an FDR < 0.05 and a fold-change of at 

least 1.25 were considered significantly differentially expressed. 

Pairwise sharing analysis  

To assess the degree of sharing between the differential splicing and expression datasets, 

we performed three separate analyses – one comparing all differential splicing analyses 

generated here, one comparing all differential expression analyses, and one comparing 

differential splicing and differential expression for each cohort and time point. We estimated the 

degree of sharing in each of these sets of analyses using mashr146 and a matrix of Z scores (for 

the differential splicing analysis and the joint splicing-expression analysis) or matrixes of effect 
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sizes and standard errors (for the differential expression analysis). For the joint splicing-

expression analysis, we aggregated the splicing results to the gene level by considering the most 

significant exon for each gene. Using mash, significant effects were considered shared if they 

had the same sign and were within a factor of 0.5 of each other.  

Fuzzy c-means clustering 

We performed three independent clustering analyses, one for each cohort. In each, all 

exons that were differentially spliced in either time point comparison for that cohort were 

included. Differentially spliced exons were then clustered based on exon usage coefficients 

calculated using DEXSeq. The goal of this analysis was to capture overall patterns of expression, 

so exon usage coefficients were centered and scaled to account for differences in magnitude. 

Fuzzy c-means clustering with k = 6 was then performed on each of the three resulting datasets 

(for the lean, obese, and obese with T2D cohorts) using the e1071 package in R and each exon 

was assigned to the cluster for which it had the highest membership. Metascape95 

(http://metascape.org) was used to perform functional enrichment analysis on the gene sets 

associated with each cluster in each cohort. 

GWAS enrichment analysis 

We first assessed the degree of overlap between each differential splicing comparison and 

genetic variants associated with metabolic disorder using all significant SNPs from recent 

GWAS of BMI20 and T2D.23 SNP coordinates were converted from hg19 to hg38 using the 

LiftOver tool in the UCSC Genome Browser159 and intersected with the flanking introns of 

differentially spliced exons using bedtools.160 To determine if the resulting overlap represented a 

significant enrichment, we generated control sets of exons to compare to. For each differential 

splicing analysis, we generated 1000 control sets that had the same number of exons as were 

http://metascape.org/
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differentially spliced and were randomly sampled from all tested exons in that analysis. We then 

intersected each of those control sets with the same GWAS SNPs to generate a null distribution 

of the number of introns that overlap at least one GWAS SNP. Intron overlap values that were 

greater than 95% of the control sets were considered significantly enriched and values that were 

less than 5% of the control sets were considered significantly depleted. 
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Supplementary Figures for Chapter III 

 

 
 

Supplementary Figure 3-1. Lean splicing clusters. Plots showing the centered and scaled exon 

usage for each exon assigned to one of six clusters. For each plot, the black line connects the 

cluster centroids of the cluster. Clusters were generated by using fuzzy c-means clustering to 

cluster all differentially spliced exons from the lean cohort with k = 6. 
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Supplementary Figure 3-2. Obese splicing clusters. Plots showing the centered and scaled exon 

usage for each exon assigned to one of six clusters. For each plot, the black line connects the 

cluster centroids of the cluster. Clusters were generated by using fuzzy c-means clustering to 

cluster all differentially spliced exons from the obese cohort with k = 6. 
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Supplementary Figure 3-3. Obese with T2D splicing clusters. Plots showing the centered and 

scaled exon usage for each exon assigned to one of six clusters. For each plot, the black line 

connects the cluster centroids of the cluster. Clusters were generated by using fuzzy c-means 

clustering to cluster all differentially spliced exons from the obese with T2D cohort with k = 6. 
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Supplementary Tables for Chapter III 

Supplementary Table 3-1. Clinical parameters of study subjects. Data are mean ± SD. 

 
Lean Obese Obese type 2 diabetic 

N (male) 5 4 5 

Age [years] 43.8 ± 10.7 37.8 ± 4.5 47.6 ± 2.2 

Weight [kg] 79.0 ± 10.2 150.5 ± 23.8 150.3 ± 26.2 

Height [cm] 179.8 ± 4.4 184.0 ± 10.6 182.2 ± 4.6 

BMI [kg/m2] 24.4 ± 2.1 44.3 ± 3.5 45.3 ± 7.5 

Waist [cm] 93.4 ± 4.1 151.0 ± 14.7 163.3 ± 35.9 

Hip [cm] 101.4 ± 4.0 139.7 ± 13.3 132.5  ± 9.3 

Waist/Hip [cm] 0.9  ± 0.0 1.1 ± 0.0 1.2 ± 0.2 

SBP [mmHg] 120.0 ± 11.0 132.8 ± 8.2 127.3 ± 10.5 

DBP [mmHg] 76.8 ± 8.3 91.5 ± 8.0 78.3 ± 12.1 

C-Reactive Protein [mg/l] 0.7 ± 0.4 9.8 ± 3.0 10.5 ± 10.1 

HbA1c [mmol/mol] 35.0 ± 3.7 37.3 ± 1.7 46.8 ± 4.1 

gHbA1c [%] 5.9 ± 0.5 6.3 ± 0.3 7.7 ± 0.6 

C-peptide [pmol/l] 584.0 ± 111.6 1458.5 ± 288.0 1789.8 ± 493.7 

Cholesterol [mmol/l] 4.5 ± 0.4 5.3 ± 0.5 3.7 ± 1.2 

HDL [mmol/l] 1.4 ± 0.4 1.0 ± 0.3 1.0 ± 0.2 

LDL [mmol/l] 2.6 ± 0.4 3.7 ± 0.4 2.2 ± 1.1 

VLDL [mmol/l] 0.5 ± 0.3 0.6 ± 0.2 0.6 ± 0.2 

Triglyceride [mmol/l] 1.1 ± 0.7 1.4 ± 0.5 1.4 ± 0.5 

Leukocytes [x 109/l] 5.8 ± 1.1 7.6 ± 1.5 6.8 ± 1.2 

Insulin [pmol/l] 34 ± 0 183.3 ± 101.2 143.5 ± 73.9 

Alcohol/week [units] 6 ± 7.2 0 ± 0 0.3 ± 0.5 

Smoking/day [units] 0.6 ± 1.3 0 ± 0 0 ± 0 
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Supplementary Table 3-2. RNA-seq study design.  

Individual Confluence Day 3 Day 15 

Lean 1 x x x 

Lean 2  x x 

Lean 3 x  x 

Lean 4 x   

Lean 5  x  

Obese 1 x  x 

Obese 2  x x 

Obese 3 x x x 

Obese 4 x x  

Obese T2D 1 x x x 

Obese T2D 2 x  x 

Obese T2D 3  x  

Obese T2D 4  x x 

Obese T2D 5 x   
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Supplementary Table 3-3. Differential splicing results for each cohort and time point 

comparison. Available as an excel file online. 

 

Supplementary Table 3-4. Cluster assignments for each exon and cohort. Available as an 

excel file online.  

 

Supplementary Table 3-5. SNP-exon pairs from GWAS intersection analyses. Available as an 

excel file online.  
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Chapter IV: Discussion 

Principal findings 

In this work, I expand our understanding of the role of both environmental and genetic 

risk factors in obesity and metabolic disorder. I identify genes and exons that are responsive in 

adipose tissue to changes in dietary macronutrient composition, and cluster each set of gene 

regulatory responses into five main dynamic patterns across the diets. These data emphasize the 

importance of splicing in the response of a metabolic tissue to diet, and reveal complex response 

patterns that different functional groups of genes and exons have to macronutrient composition. I 

also demonstrate the power of this approach to identify possibly novel associations with diet-

induced obesity, identifying changes in the expression of genes encoding the BBSome and other 

BBS-associated genes in response to dietary fat content. In parallel, I also systematically 

characterize the role of alternative splicing in adipocyte differentiation in humans across three 

different metabolic states. This study provides further support for the importance of alternative 

splicing in adipocyte biology, and links splicing events across adipocyte differentiation to 

GWAS variants associated with BMI and T2D. Taken together, these studies provide a 

compelling body of data for the importance of splicing in adipocyte biology and obesity etiology 

and identify avenues for future exploration of specific splicing events. 

 

Future directions 

In Chapter 2, I found that there was a strong gene regulatory response to dietary 

macronutrient composition in mice that affected metabolically relevant genes and pathways. 

However, it is important to note that this study was performed exclusively in young males of a 

single strain. Weight and body fat distribution are sexually dimorphic traits,121,161,162 and it will 
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therefore be important to replicate these findings in female mice. Extending these results to 

include mice of both sexes would provide important evidence for the universality of the gene 

regulatory responses we observed and potentially provide insight into sex-specific responses in a 

subset of genes and pathways. Even a simplified experimental design with a smaller number of 

diets (such as a high, medium, and low fat content diet) would help establish whether the 

majority of observed gene regulatory signals are shared or divergent, and shed light on the 

degree of sexual dimorphism in the response to dietary macronutrient composition.   

In addition to extending these results to investigate sex-specific effects, future studies 

could expand on this work by investigating gene by environment interactions. Obesity and 

metabolic disorders are complex diseases with both environmental and genetic risk factors, but 

the contribution of interactions between the two to disease risk remains less well quantified.163,164 

Although ideally we would like to investigate gene by environment interactions in humans, there 

are a number of factors that complicate such studies. Accurate data on life-long environmental 

exposures in humans is difficult to come by, and even short-term dietary studies in humans face 

issues with compliance and dropout.165–167 To circumvent these challenges, we can begin to 

investigate the role of gene by environment interactions in response to diet in mice. Specifically, 

by replicating the dietary study presented here in mice of different strains and of crosses between 

strains we can answer questions like whether genetic background impacts response to diet, the 

degree of sharing of gene regulatory and phenotypic responses between different genetic 

backgrounds, and whether there are specific variants associated with changes in gene regulatory 

and phenotypic response to diet. Quantifying the impact of gene by environment interactions on 

response to diet in mice and identifying particular genes and pathways that are most impacted 

can help inform future studies in humans and provide candidate genes for further study. 



83 

 

In parallel with extending the results shown here to female mice and mice with different 

genetic backgrounds, we can also gain additional insight by expanding this study to include more 

tissues. Obesity and metabolic disorder are complex phenotypes involved many different tissues 

and body systems, of which adipose tissue is just one part.67,68 Here, we have established that 

differences in dietary macronutrient composition lead to extensive splicing and expression 

changes in adipose tissue, and it seems likely that other metabolic tissues would also have a 

significant gene regulatory response to dietary macronutrient composition. Efforts are now 

underway in our group to expand this work beyond adipose tissue to other relevant metabolic 

tissues such as liver, muscle, and brain. These investigations will compliment and extend the 

work detailed here by identifying shared pathways and gene regulatory patterns across metabolic 

tissues, as well as characterizing unique gene regulatory signals to each tissue. By combining 

data across multiple metabolically relevant tissues, we can get a more complete picture of the 

gene regulatory response to diet and continue to unravel the precise underpinnings of the 

observed phenotypic responses. 

To conclusively link gene regulatory changes to specific phenotypic responses, more 

work will need to be done to identify precise causal links. The work presented here has already 

identified some candidate gene regulatory changes such as the observed changes in BBS gene 

expression or IGF1 splicing. Expanding this work to additional tissues will aid in identifying and 

prioritizing more candidates, but functional characterization is needed to establish a causal link. 

To investigate the direct downstream consequences of observed gene regulatory changes, 

candidate genes or exons can be perturbed in mouse adipose tissue or in human mesenchymal 

stem cells differentiated into adipocytes and the direct phenotypic consequences can be 

observed. By establishing a clear causal link between specific gene regulatory changes and 
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phenotypes, this would help provide possible therapeutic targets for modulating the response to 

diet in humans and could improve our ability to treat obesity and provide actionable dietary 

guidelines with measurable metabolic outcomes.  

In addition to following up on the gene regulatory response to dietary change as outlined 

here, future studies could also delve deeper into the role of alternative splicing in adipocyte 

differentiation and function. One particularly impactful avenue of research that would greatly 

improve our ability to prioritize GWAS variants and provide insight into disease etiology is to 

expand on our knowledge of what splicing events are most impactful in adipocyte biology and 

development. In the work presented here, I identify thousands of differential splicing events 

across adipocyte differentiation and group them into shared splicing patterns and functional 

categories. This work provides a starting point to prioritize splicing events for functional 

validation in human preadipocyte lines, which would provide confirmation of the role of specific 

splicing events in adipocyte development and function. By perturbing individual splicing events, 

splicing patterns, or splicing regulators in human preadipocytes we can identify their precise 

impact on adipocyte differentiation and more accurately annotate the role of specific splicing 

events in particular cellular contexts and states.  

In this work we also investigate the intersection between exons that are differentially 

spliced in adipocyte differentiation and variants associated with BMI and T2D in GWAS. 

Unfortunately, our sample size was not large enough to perform sQTL mapping to formally 

identify variants associated with splicing changes across adipocyte differentiation. Extending the 

work presented here to include a larger number of individuals with complete genotyping data to 

enable sQTL mapping across adipocyte differentiation would improve our ability to predict 

which variants may be involved in splicing and which splicing events may be most important for 
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disease risk. Previous work focusing on cardiomyocyte differentiation has demonstrated that 

performing QTL mapping across differentiation time can identify novel QTLs not found in the 

starting or final cell type alone and can elucidate possible disease mechanisms that would have 

otherwise been missed.152 Therefore, performing sQTL mapping across adipocyte differentiation 

would likely contribute novel findings to existing catalogs of sQTLs and help link GWAS 

variants to specific cellular functions. 

Once high-certainty variant-splicing event pairs have been identified, studies should 

focus on confirming their role in disease risk. To investigate variants implicated in adipocyte 

differentiation and function, we can use CRISPR to create human mesenchymal stem cells that 

contain the variant of interest and observe the direct impact of that variant on splicing and 

adipocyte phenotypes such as differentiation efficiency and fat storage. Detailed functional 

characterization of variants prioritized by available genomics data will help dissect the precise 

role of GWAS variants in disease, providing insight into how they confer risk and what the 

mechanisms of disease progression are. As CRISPR technology continues to progress and more 

high-throughput techniques such as CRISPR screens are fine-tuned, it will likely soon become 

feasible to perform these types of validation in a high or medium throughput manner, allowing us 

to access the full potential of GWAS to elucidate disease risk.   

Beyond the specific avenues of research proposed here, there is a general need for better 

catalogs of splicing changes in different cellular states and in response to different perturbations, 

as well as better annotations of the impact of splicing events on cellular function. These data 

would improve our ability to study the role of splicing in metabolic disease, and in tissue 

function in general. The studies presented here are one step towards a more complete catalog, but 

more work is needed. In particular, it would be of great benefit to future splicing work to 
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improve existing annotation databases to include more precise annotations of what individual 

splicing events do and where and when they have been observed. Genomics work that focuses on 

gene expression is often aided by annotation data such as gene ontology databases, and creating 

similar bodies of data at the level of exons or splicing events would greatly speed up efforts to 

prioritize splicing events from high-throughput methods for follow-up in more low-throughput 

methods.  

Finally, a greater body of work measuring differential splicing in different conditions 

would also help elucidate whether the phenomenon we observed in both the gene regulatory 

response to dietary macronutrient change and to adipocyte differentiation of low overlap between 

splicing and expression changes is a general rule or is specific to adipose tissue or the conditions 

we measured. It will be important to know if splicing and expression changes are largely 

orthogonal in many different conditions and tissues, as this has important implications for 

experimental design and our understanding of gene regulatory mechanisms. If it is a general rule 

that splicing and expression changes occur in largely separate gene sets, it becomes even more 

important to not focus solely on gene expression when measuring gene regulatory changes and to 

investigate splicing in future studies, as the proteome is significantly impacted by both gene 

expression and splicing. The work presented here suggests that we are likely missing a great deal 

of impactful proteome changes by looking at gene expression alone, and future studies should 

prioritize testing both gene expression and splicing changes whenever possible when measuring 

gene regulatory landscapes. 

 

Concluding remarks 

Overall, in this thesis I provide insight into both genetic and environmental contributions 

to obesity and metabolic disorder, with a particular focus on adipocyte biology and the role of 
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alternative splicing. In Chapter 2, I characterize the gene expression and splicing response to a 

meaningful dietary perturbation, and identify BBS genes as candidate genes responding to 

dietary fat content. In Chapter 3, I provide a resource to help dissect previously uncharacterized 

GWAS associations with BMI and T2D and to gain insight into adipocyte development and 

function. These studies illustrate the importance of considering splicing alongside expression to 

capture a more complete picture of gene regulation in cellular states or in response to 

environmental change. The work presented here improves our understanding of the etiology of 

obesity and the role of splicing in human disease, and opens up many avenues for future 

discovery. 
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