
THE UNIVERSITY OF CHICAGO

DATA-DRIVEN INTERPRETATION AND DESIGN OF ORTHOLOGS AND

PARALOGS OF A SIGNALING PROTEIN

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMISTRY

BY

XINRAN LIAN

CHICAGO, ILLINOIS

MARCH 2024

Copyright © 2024 by XINRAN LIAN

All Rights Reserved

I dedicate this thesis to my two esteemed supervisors, Rama Ranganathan and Andrew

Ferguson, whose mentorship and guidance have been invaluable throughout my PhD

journey. Your encouragement, knowledge, and insights have been instrumental in shaping

my research and pushing me to achieve more than I thought possible. I am truly grateful

for the opportunities you have provided me and for always challenging me to think

critically and creatively.

I also dedicate this thesis to my collaborators, who have contributed to my research in

many ways. Your expertise and support have been invaluable, and I am fortunate to have

had the opportunity to work with such talented and dedicated individuals. Together, we

have tackled complex problems and achieved meaningful results that will have a lasting

impact on the scientific community.

"Science knows no country, because knowledge belongs to humanity, and is the torch which

illuminates the world." - Louis Pasteur

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . xxv

ACKNOWLEDGMENTS . xxvii

ABSTRACT .xxviii

1 INTRODUCTION . 1
1.1 Exploring Protein Function and Sequence Space 1
1.2 Diversity and Specificity of the SH3 Protein Family in Protein-Protein Inter-

actions and Cellular Signaling . 2
1.3 Date-driven Protein Design . 3

2 YEAST OSMOSENSOR SHO1-SH3 – A MODEL SYSTEM FOR PROTEIN FUNC-
TION . 5
2.1 High-throughput Osmosensing Assay . 5

2.1.1 Gene construction . 5
2.1.2 Yeast transformation . 6
2.1.3 SH3 domain selection assay . 7

2.2 in vitro SH3 Test Assays . 8
2.2.1 Peptide synthesis . 8
2.2.2 Protein expression and purification 9
2.2.3 Biophysical evaluation of SH3 in vitro binding assay 9
2.2.4 Melting temperature measurements 10

3 DATA-DRIVEN MODELS FOR DESIGNING NOVEL FUNCTIONAL OSMOSENS-
ING ORTHOLOGS . 11
3.1 Data Collection: Acquire the Natural SH3 Library 11
3.2 bmDCA . 12
3.3 Variational Autoencoders (VAEs) . 13
3.4 Experimental Evaluation . 15

3.4.1 High-throughput Osmosensing Assay 15
3.4.2 in vitro SH3 Test Assays . 16

3.5 Methods . 17
3.5.1 bmDCA . 17
3.5.2 Vanilla VAE . 18
3.5.3 InfoMax VAE . 20

v

4 EXPANDING THE FUNCTIONAL SPACE OF NATURAL PROTEINS 24
4.1 Spatial characteristics of the Sho1-SH3 function in the infoVAE latent space 24
4.2 Locality in the latent space exposes global amino acid constraints 25
4.3 Methods . 26

4.3.1 Convex hull analysis . 26
4.3.2 Calculation of Kullback-Leibler relative entropy 26

5 EXAMINING THE PRINCIPLES OF POSITIVE AND NEGATIVE DESIGN OF
ORTHOLOGS AND PARALOGS OF SH3 DOMAINS 27
5.1 Orthology and Phylogeny in VAE Latent Spaces 28
5.2 Relationship between Osmosensing Function and Evolutionary Distance from

S. cerevisiae . 30

6 IMPLICATIONS FOR FUTURE RESEARCH IN PROTEIN DESIGN 31
6.1 Advantages and Impact of the Experimental Model System 31
6.2 Deep Mutational Scan for Different Paralogs for the Same Function 32
6.3 Semi-supervised InfoMax VAE . 33

7 SUPPLEMENTARY CODES . 35
7.1 Vanilla VAE . 35
7.2 InfoMax VAE . 46
7.3 Others . 51

REFERENCES . 67

vi

LIST OF FIGURES

1 Positive and negative design of the osmosensing function of Sho1SH3. viii
2 Principle of the data-driven models for protein design ix
3 Analysis of bmDCA sampled sequences x
4 Projection into the 3D InfoVAE latent space of the synthetic sequences xi
5 The InfoVAE latents learns a nested hierarchical partitioning of natural

fungal SH3 homologs by function and phylogeny. xii
6 InfoVAE latent space embeddings and phylogenetic annotation of the

three additional SH3 paralog groups. xiii
7 InfoVAE latent space embeddings of all annotated SH3 paralog groups. xiv
8 The latent space of the vanilla VAE learns a nested hierarchical par-

titioning of natural fungal SH3 homologs by function and phylogeny.
. xv

9 Structure of the oligo nucleotide sequences containing SH3 domains
and adaptors. xvi

10 Guidelines for verifying the designed oligo nucleotide sequences. . . . xvi
11 Full experimental workflow for the yeast osmosensing assay xvii
12 Validation of the high-throughput select-seq assay. xviii
13 Function and diversity of natural and synthetic SH3 variants. xix
14 Natural and synthetic functional Sho1SH3 orthologs in the VAE latent

space . xx
15 Spatial localization of Sho1SH3 function in the VAE latent space. . . xxi
16 The structural basis for Sho1SH3 function. xxiii
17 Fluorescence titration curves of the five designed functional Sho1-SH3

orthologs listed in Table 1. xxiv

vii

High-throughput
gene synthesis

and
selection assay

A B

C

Sho1

pbs2
PXXP

SH3

Natural
ITTFFVRAAYNYQSHDSSS...
PPSFFVRALYDFESHDASS...
IPTFWCRALYDYTAQDSSA...
TTKFSVLCLFDFDSEDPDH...
YQTFFCRALYDYQSTDASS...
SPTFYCKALYDYSSTDPSS...
ITTFFCRALYDYEAQDASA...

...
MTTFWCRALYDYQKSDASS...

Synthetic
SNSVNARALQPYAKSGACQ...
WNKVQARALWMFNGQEPGD...
PQEPQARALWEFNGQDPND...
GGRPRVRALWDFNGEDPND...
QPALYARALWDWNGEDPDD...
QEREQARALWYENGESPDD...
EAVSQVRALWDLTSTEAGD...

...
PAVSWVRALFWYNSTDPGD...

Compress Design

Osmotic
stress

MAP kinase
signaling pathway

Glycerol
production

Cell membrane

C

Figure 1: Positive and negative design of the osmosensing function of Sho1SH3.
(A) Binding between the Sho1SH3 domain and its target sequence in the Pbs2 MAP kinase
kinase mediates responses to fluctuations in external osmotic pressure by controlling the

production of internal osmolytes.(B)A structure of the S. cerevisiae Sho1SH3 domain (PDB
2VKN) in complex with the Pbs2 peptide ligand (yellow stick bonds). SH3 domains are
protein interaction modules that bind to polyproline containing target ligands. (C) The

growth of cells that contain Sho1 chimaeras with swapped SH3 domains on high-osmolarity
medium, along with the SH3 binding arrays presented in Zarrinpar et al’s paper[Zarrinpar
et al., 2003]. The left side of the figure displays the arrangement of the chimaeras, and the

subscript denotes the domain number in multidomain proteins.

viii

High-throughput
gene synthesis

and
selection assay

C
Natural

ITTFFVRAAYNYQSHDSSS...
PPSFFVRALYDFESHDASS...
IPTFWCRALYDYTAQDSSA...
TTKFSVLCLFDFDSEDPDH...
YQTFFCRALYDYQSTDASS...
SPTFYCKALYDYSSTDPSS...
ITTFFCRALYDYEAQDASA...

...
MTTFWCRALYDYQKSDASS...

Synthetic
SNSVNARALQPYAKSGACQ...
WNKVQARALWMFNGQEPGD...
PQEPQARALWEFNGQDPND...
GGRPRVRALWDFNGEDPND...
QPALYARALWDWNGEDPDD...
QEREQARALWYENGESPDD...
EAVSQVRALWDLTSTEAGD...

...
PAVSWVRALFWYNSTDPGD...

Compress Design

DecoderEncoder

Variational autoencoder

A

B C

Figure 2: Principle of the data-driven models for protein design
(A) Schematic of evolutionary-based data-driven generative models, consisting of a

compression step that maps a sequence alignment of natural homologs to a low-dimensional
parameter space (blue box), and a de-compression step which design protein sequences

from the parameters. The protein sequences are then synthesized and tested by
high-throughput gene synthesis and selection assays.(B) Principle of the bmDCA model

[Russ et al., 2020]. MSA of M natural homologs provides empirical first- and second-order
statistics of amino acids (fai ; f

ab
ij), which are used to infer a statistical model with the

bmDCA method. The probability of sequence a = (a1; . . . ; aL) is an exponential function
of a Hamiltonian, or statistical energy, parameterized by intrinsic fields hi(a) and couplings
Jij(a, b) acting on amino acids. (C) Structure of the VAE models. The encoder encodes
protein sequences into a continuous latent representation and the decoder subsequently

decodes them back to the original space, thereby learning to generate novel protein
sequences with similar properties to those in the training dataset.

ix

A B

Figure 3: Analysis of bmDCA sampled sequences
(A) Parity plot of the one- and two-body amino acid frequencies computed over the 5299

natural sequences and an ensemble of 3740 bmDCA designed synthetic variants sampled at
T = 1. The red lines indicate the identity relationship. The excellent agreement (one-body:

ρPearson=0.99, n= 5000, p < 1× 10−307; two-body: ρPearson=0.82, n= 5000,
p < 1× 10−307) demonstrates the validity of the bmDCA model in accurately learning and
reproducing the one- and two-body amino acid frequencies. (B) Distribution of statistical
energies for natural (blue) and bmDCA designed sequences sampled at T = 0.9 (orange).

The two distributions lie on the same range and with a similar distribution.

x

Figure 4: Projection into the 3D InfoVAE latent space of the synthetic sequences
Projection into the 3D InfoVAE latent space of the synthetic sequences designed by global
(n=2000) and local (n=987) sampling over the InfoVAE latent space, global (n=3984) and
local (n=896) sampling over the vanilla VAE latent space, and MCMC sampling from the

bmDCA generative model (n=3740). Designed sequences are shown in black and
superposed on the n=170 natural SH3 homologs that possess high-r.e. scores and rescue

osmosensing function (red) and the remaining n=5129 that fail to rescue (blue).

xi

Blmembrane

Sho1

ic

Pbs2
PXXP

SH3

Glycerol
production

MAP kinase
signalingpathway

DSSS. . .
DASS. . .
DSSA. . .
DPDH. . .
DASS. . .
DPSS. . .
DASA. . .

DASS. . .

DecoderEncoder

Synthetic
SNSVNARALQPYAKSGACQ. . .
WNKVQARALWMFNGQEPGD. . .
PQEPQARALWEFNGQDPND. . .
GGRPRVRALWDFNGEDPND. . .
QPALYARALWDWNGEDPDD. . .
QEREQARALWYENGESPDD. . .
EAVSQVRALWDLTSTEAGD. . .

. . .
PAVSWVRALFWYNSTDPGD. . .

Variational autoencoder

Sho1

c

Pbs2
PXXP

Glycerol
production

DSSS. . .
DASS. . .
DSSA. . .
DPDH. . .
DASS. . .
DPSS. . .
DASA. . .

DASS. . .

DecoderEncoder

Synthetic
SNSVNARALQPYAKSGACQ. . .
WNKVQARALWMFNGQEPGD. . .
PQEPQARALWEFNGQDPND. . .
GGRPRVRALWDFNGEDPND. . .
QPALYARALWDWNGEDPDD. . .
QEREQARALWYENGESPDD. . .
EAVSQVRALWDLTSTEAGD. . .

. . .
PAVSWVRALFWYNSTDPGD. . .

Variational autoencoder

Sho1

DASS. . .
DPSS. . .
DASA. . .

DASS. . .

DecoderEncoder
QPALYARALWDWNGEDPDD. . .
QEREQARALWYENGESPDD. . .
EAVSQVRALWDLTSTEAGD. . .

. . .
PAVSWVRALFWYNSTDPGD. . .

A

'

B

C

B

Sho1 paralog group

Figure 5: The InfoVAE latents learns a nested hierarchical partitioning of natural
fungal SH3 homologs by function and phylogeny.
(A) InfoVAE 3D latent space embedding of the 5299 natural SH3 homologs annotated by

the three main fungal phylogeny groups. (B) Annotation by paralog group and
phylogenetic annotation within the Sho1 paralog cluster (red): Saccaromycotina (circle),
Pezizomycotina (triangle), Basidiomycota (star) and non-dikarya (plus). Analogous plots

for the remaining 3 paralog groups are presented in Figs. 6.

xii

3 2 1 0

0.5

0.0

0.5

D
im

 2

3 2 1 0

2

1

0

D
im

 3

0.5 0.0 0.5

2

1

0

D
im

 3

Saccharomycotina
Pezizomycotina
Basidiomycota
non-Dikarya fungi

2 1 0 1

2

1

0

1

D
im

 2

2 1 0 1

0.5

0.0

0.5

1.0

1.5

D
im

 3

2 1 0 1

0.5

0.0

0.5

1.0

1.5

D
im

 3

Saccharomycotina
Pezizomycotina
Basidiomycota
non-Dikarya fungi

0.0 0.5 1.0
Dim 1

2

1

0

D
im

 2

0.0 0.5 1.0
Dim 1

0.0

0.5

1.0

1.5

2.0

2.5

D
im

 3

2 1 0
Dim 2

0.0

0.5

1.0

1.5

2.0

2.5

D
im

 3

Saccharomycotina
Pezizomycotina
Basidiomycota
non-Dikarya fungi

Figure 6: InfoVAE latent space embeddings and phylogenetic annotation of the
three additional SH3 paralog groups.

Color schemes: Bzz11 (yellow), Abp1 (green), and Rvs167 (blue), showing the nested
hierarchical organization by function (color) and phylogeny (symbol).

xiii

2

0

2

D
im

 2

2

0

2

D
im

 3

2

0

2

D
im

 3

Lsb3/Ysc84
Myo3/Myo5
Cyk3
Hse1
Hof1
Cdc25
Bzz11
Bzz12
Bzz13

2

0

2

D
im

 2

2

0

2

D
im

 3

2

0

2

D
im

 3

Lsb1/Pin3
Abp1
Rvs167
Pex13
Bem11
Bem12
Boi1
Fus1
Sho1

2.5 0.0 2.5
Dim 1

2

0

2

D
im

 2

2.5 0.0 2.5
Dim 1

2

0

2

D
im

 3

2.5 0.0 2.5
Dim 2

2

0

2

D
im

 3

Bud14
Nbp2
Boi2
Sla11
Sla12
Sla13

Bbc1

Figure 7: InfoVAE latent space embeddings of all annotated SH3 paralog groups.

xiv

2 0 2

2

0

2

D
im

 3

4 2 0 2

Bzz11
Abp1
Rvs167
Sho1

2 1
Dim 1

0.0

0.5

1.0

1.5

2.0

D
im

 3

0.8 0.6 0.4
Dim 2

Saccharomycotina
Pezizomycotina
Basidiomycota
non-Dikarya fungi

2 0 2
Dim 1

4

2

0

2

D
im

 3

2 0 2
Dim 2

Saccharomycotina
Pezizomycotina
Basidiomycota

A

B

Figure 8: The latent space of the vanilla VAE learns a nested hierarchical parti-
tioning of natural fungal SH3 homologs by function and phylogeny.

(A) Annotation by paralog group and phylogenetic annotation within the Sho1 paralog
cluster (red). (B) The vanilla 3D latent space embedding of the 5299 natural SH3

homologs annotated by the three main fungal phylogeny groups.

xv

Figure 9: Structure of the oligo nucleotide sequences containing SH3 domains and
adaptors.

Figure 10: Guidelines for verifying the designed oligo nucleotide sequences.
Steps of sequence checking to ensure accuracy, specificity, and compatibility with

experimental conditions.

xvi

in vivo expression and selection

Reverse-translated
genes

ACGGCACGGATATTCTT…
GATCGCATACAATTTAG…
CTCGCGCTGTGAACGAA…

…
AATATAGGAACGCCATT…

Synthesize gene library cloning

Transform to
Osmosensitive yeast

High-throughput
sequencing

E. Coli

Measure
growth rate
ofthe cells

Figure 11: Full experimental workflow for the yeast osmosensing assay

xvii

0

1000

2000

3000

nu
m

be
r

2 1 0
en en(wt) Selected (1M KCl)

1.0

0.5

0.0

0.5

1.0

1.5

en
en

(w
t)

U
ns

el
ec

te
d

(0
M

 K
C

l)

0 2500
number

A B

Figure 12: Validation of the high-throughput select-seq assay.
(A) A scatterplot of the enrichment score relative to wild-type [en− en(wt)] for two
independent (n = 11,442) trials of the select-seq assay under the same experimental
conditions. The position of the wild-type Sho1 sequence and the null allele (no Sho1

activity) are indicated by the blue circle and blue dashed lines. The red dashed line is the
identity trace. Values at low values of [en− en(wt)] are subject to more variability as

expected from poorer counting statistics. The data show that the select-seq assay shows
good reproducibility between independent runs (ρPearson = 0.87, n = 11,442,

p < 1× 10−307). (B) The relationship between en− en(wt) of the SH3 genes in S.
Cerevisiae grown in selective (1M KCl) and non-selective (0M KCl) media. No statistically

significant correlation is observed (ρPearson = 0.10, n = 10,448, p = 6× 10−23). This
control experiment shows that bimodal distribution of enrichment in the selected

population resulted from differential adaptability under high osmotic pressure conditions.

xviii

0.5 0.0 0.5 1.0
0

500

1000

1500

co
un

t
natural MSA

 N = 5299, Nf = 132
(2.5%)

0.5 0.0 0.5 1.0
0

250

500

750

1000

1250

1500
Vanilla VAE global
 N = 3984, Nf = 22

(0.6%)

0.5 0.0 0.5 1.0
0

50

100

150

200

250
Vanilla VAE local

 N = 896, Nf = 158
(17.6%)

0.5 0.0 0.5 1.0
r.e.

0

250

500

750

1000

1250

1500

co
un

t

bmDCA
 N = 3740, Nf = 0

(0.0%)

0.5 0.0 0.5 1.0
r.e.

0

200

400

600

InfoVAE global
 N = 2000, Nf = 35

(1.8%)

0.5 0.0 0.5 1.0
r.e.

0

50

100

150

200

250

300 InfoVAE local
 N = 987, Nf = 433

(43.9%)

A

B

Figure 13: Function and diversity of natural and synthetic SH3 variants.
(A-F) Distribution of r.e. scores measured by high-throughput select-seq assay for the 5299
natural SH3 homologs (A), 3740 bmDCA synthetic variants (B), 3984 global (C) and 896
local (D) vanilla VAE synthetic variants, and 2000 global (E) and 987 local (F) InfoVAE

synthetic variants. (G-I) Scatterplots of r.e. vs. sequence identity (ID) to the nearest
natural homolog or S. Cerevisiae Sho1SH3 for the 5299 natural sequences (G), 4880 global
and local vanilla VAE synthetic sequences (H) and 2987 global and local InfoVAE synthetic

sequences (I).

xix

Figure 14: Natural and synthetic functional Sho1SH3 orthologs in the VAE latent
space

xx

Figure 15: Spatial localization of Sho1SH3 function in the VAE latent space.

xxi

Figure 15
(A-B) Convex hull (black lines) of the natural functional SH3 orthologs (red) defined as the
smallest convex polygon that encloses 132 functional SH3 homologs. A small number of 23
non-functional natural sequences (blue) are contained within the convex hull construction.
The preponderance 85.2% of sequences contained within the convex hull are functional,

indicating that localization within the region of latent space defined by the convex hull is a
good proxy for osmosensing function. (C-D) Analysis of the synthetic sequences locally

designed by the InfoVAE lying within the natural convex hull reveals 288 functional
(yellow) and 80 non-functional (blue) synthetic variants, indicating that 78.3% of synthetic
InfoVAE variants residing within the convex hull are functional. (E-F) Analysis of locally
designed InfoVAE synthetic sequences lying outside the natural convex hull reveals 145

functional (yellow) and 451 non-functional (blue) synthetic variants, indicating that 24.3%
of local InfoVAE variants residing in the vicinity of the convex hull are functional. (G)

Illustration of the hulls scaled by 1/3, 2/3, 1, 4/3, 5/3, and 2 within 2D projections of the
InfoVAE latent space and superposed upon the 132 functional natural SH3 orthologs (red),
468 functional synthetic proteins, and the rest of non-functional synthetic proteins (blue)

generated by the InfoVAE. (H) Probability (P) of functional natural and InfoVAE designed
sequences contained within each hull as a function of scaling factor.

xxii

Figure 16: The structural basis for Sho1SH3 function.
(A) Positional conservation (measured by Kullback-Leibler relative entropy D) in sequences
sampled globally from the InfoVAE latent space (top panel),locally from the convex hull

bounding functional natural sequences (middle panel), and the difference of the two
(bottom panel). This analysis exposes the extra constraints in SH3 domains to be

specifically functional in the Sho1 osmosensing pathway. (B) The distribution of differences
in conservation, with a fit to a double Gaussian mixture model (blue). For illustrative
puproses, the mixture model helps to identify a population of 21 positions showing the

largest change in conservation (red curve). (C) The positions showing the largest change in
conservation (red speheres) are located at specificity determining regions of the ligand

binding pocket and extending throughout the tertiary structure. The imgages show three
rotations of the Sho1SH3 structure, with the co-crystallized Pbs2 peptide ligand in yellow

stick bonds.

xxiii

10
2

10
1

10
0

10
1

Pbs2 [uM]

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

bo
un

d
O1-SH3Sho1: Kd = 1.11 ± 0.12

10
2

10
1

10
0

10
1

Pbs2 [uM]

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

bo
un

d

O2-SH3Sho1: Kd = 0.67 ± 0.1

10
2

10
1

10
0

10
1

Pbs2 [uM]

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

bo
un

d

O3-SH3Sho1: Kd = 0.3 ± 0.03

10
2

10
1

10
0

10
1

Pbs2 [uM]

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

bo
un

d

O4-SH3Sho1: Kd = 2.15 ± 0.42

10
2

10
1

10
0

10
1

Pbs2 [uM]

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

bo
un

d

O5-SH3Sho1: Kd = 0.84 ± 0.04

20 40 60 80 100
Temperature (°C)

0

500

1000

1500

2000

2500

3000

3500

C
p

(H
ea

t c
ap

ac
ity

)

O1
O2
O3
O4
O5
Sho1-WT

A B

C D

E F

Figure 17: Fluorescence titration curves of the five designed functional Sho1-SH3
orthologs listed in Table 1.

(A-E) Titration curves of designed sequences InfoVAE_1 (O1), InfoVAE_2 (O2),
InfoVAE_6 (O3), InfoVAE_10 (O4) and InfoVAE_11 (O5). (F) Melting temperatures

were measured for the five designed sequences by differential scanning calorimetry (DSC).

xxiv

LIST OF TABLES

1 Sequences of the five synthetic InfoVAE synthetic SH3 variants that
rescue osmosensing function selected for purification and in vitro bio-
physical evaluation of ligand binding and folding xxv

2 Five synthetic InfoVAE synthetic SH3 variants that rescue osmosensing
function plus wild-type S.cerevisiae Sho1SH3 selected for purification
and in vitro biophysical evaluation of ligand binding and folding . . . xxvi

Table 1: Sequences of the five synthetic InfoVAE synthetic SH3 variants that
rescue osmosensing function selected for purification and in vitro biophysical
evaluation of ligand binding and folding

Header Sequence
InfoVAE_local_1 EYPYRAKAIYSYEADPDDANEISFTKHEILEISDVSGRWWQAKKADGTIGIAPSNYLILL
InfoVAE_local_2 DYAYKARALYAYTADDDDPNELSFAKGEVLDIVDNSGKWWQARKADGRTGIVPSNYMQLL
InfoVAE_local_6 PPAIKAKALYAYTADDDDPNELSFAKGEILDILDKSGKWWEARKADGSTGIAPSNYLQLV
InfoVAE_local_10 EYPYRAKAIYSYEADDDDANEISFTKGEILEISDVQGRWWQAKKADGTIGIAPSNYLQLL
InfoVAE_local_11 EYPYRAKALYSYQANPDDANEISFAKGEVLDISDVSGRWWQARKANGETGIAPSNYLQLL

xxv

Table 2: Five synthetic InfoVAE synthetic SH3 variants that rescue osmosensing
function plus wild-type S.cerevisiae Sho1SH3 selected for purification and in vitro
biophysical evaluation of ligand binding and folding

ID (WT) = sequence identity to wild-type Sho1SH3 [Marles et al., 2004],
ID (closest) = sequence identity to nearest natural SH3 homolog,

Kd = pbs2 MAPKK ligand dissociation constant measured by titration,
Tm = melting temperature measured by DSC,

∆H = enthalpy of folding from two-state fit to DSC data.
Header Closest Sho1SH3 ortholog ID (WT) ID (closest) Kd [µM] Tm [◦C] ∆H [kJ/mol]

WT Saccharomyces cerevisiae 1.00 1.00 3.0±0.1 59.1 41.2± 0.3
InfoVAE_local_1 Trichophyton rubrum 0.53 0.92 1.1±0.1 44.5 41.5± 1.9
InfoVAE_local_2 Moesziomyces antarcticus 0.53 0.90 0.7±0.1 65.0 50.9± 0.7
InfoVAE_local_6 Fistulina hepatica 0.54 0.83 0.3±0.03 58.5 38.0± 0.3
InfoVAE_local_10 Trichophyton rubrum 0.56 0.85 2.2±0.4 62.5 41.6± 1.1
InfoVAE_local_11 Neurospora crassa 0.59 0.88 0.8±0.04 66.5 56.3± 0.6

xxvi

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my supervisor, Rama Ranganathan, for

his outstanding guidance and expertise in the wet lab research in biology. His vast knowl-

edge in protein design, his exceptional mentoring, and his endless support have been critical

to the success of my research. I feel fortunate to have worked with such a dedicated and

brilliant mentor and I am indebted to him for his constant encouragement and support.

I would also like to acknowledge my co-supervisor, Andrew Ferguson, for his exceptional

guidance in the computational research aspect of my project. His expertise in deep learning,

his insightful feedback, and his unwavering support have been instrumental in my work. I

am grateful for his mentorship and the opportunity to work with him.

I would also like to extend my gratitude to Niksa, an expert in deep learning, for his collab-

oration and contribution to this project. His expertise and insights in this field have been

invaluable to the success of this research.

Lastly, I would like to thank all the collaborators and colleagues who have supported me

during my Ph.D. journey. Their feedback, encouragement, and advice have been essential

to my growth as a researcher, and I am deeply grateful for their help and support.

xxvii

ABSTRACT

Protein design has emerged as an important field in contemporary biology, driven in part by

the accumulation of vast amounts of protein data in public databases like the Protein Data

Bank (PDB). The challenge now is to use this data to decipher the principles underlying

protein design, as guided by nature, and to develop novel proteins with desired properties.

To this end, we investigated the design principles of orthologs and paralogs of a small binding

protein - Sho1SH3 - in the yeast osmosensing pathway. Using this natural system as a tem-

plate, we employed deep learning models to design novel functional osmosensing orthologs.

Our results demonstrate that these models not only accurately captured the distribution of

functionality of natural proteins, but also expanded the functional space by designing novel

proteins that extended beyond the functional constraints of natural proteins. This work

provides valuable insights into the principles governing protein design and opens up new

avenues for the development of novel proteins with desirable functions.

xxviii

CHAPTER 1

INTRODUCTION

1.1 Exploring Protein Function and Sequence Space

Proteins are fundamental building blocks of living organisms, performing a wide variety of

functions that are essential for life. The design of novel proteins with desired properties

has become a crucial challenge in contemporary biology. With advances in technology, large

amounts of protein data have been accumulated in public databases, it is now possible to

mine this data and decipher the principles underlying protein design, as guided by nature,

in order to develop novel proteins with specific functions.

Proteins with a wide range of properties and functions can potentially be designed and

synthesized, opening up new avenues in biology and medicine. One particularly interesting

protein module, the SH3 (Src Homology 3) domain [Musacchio et al., 1992] is a small binding

protein found in many organisms, including yeast. It is involved in many cellular processes,

including signal transduction and cell division, and has been extensively studied as a model

system for protein design. In yeast, Sho1SH3 is part of the osmosensing pathway (Fig. 1A),

which is responsible for the regulation of cellular responses to changes in osmotic pressure

[Zarrinpar et al., 2003]. The orthologs and paralogs of Sho1SH3 in this pathway provide

an excellent opportunity to investigate the principles of protein design and to design novel

proteins with desired osmosensing functions.

In this study, we examined the design principles of orthologs and paralogs of SH3 do-

mains in the yeast osmosensing pathway. We then used deep learning models to design novel

functional osmosensing orthologs. Our results demonstrate that these models not only accu-

rately captured the distribution of functionality of natural proteins, but also expanded the

functional space by designing novel proteins that extended beyond the functional constraints

of natural proteins. This work provides valuable insights into the principles governing pro-

1

tein design and opens up new avenues for the development of novel proteins with desirable

functions.

Overall, this study highlights the importance of using natural systems as templates for

protein design and the potential of deep learning models to expand the functional space of

natural proteins. These insights provide a foundation for future research in protein design

and have implications for the development of novel proteins with desired properties.

1.2 Diversity and Specificity of the SH3 Protein Family in

Protein-Protein Interactions and Cellular Signaling

SH3 domains play a crucial role in protein-protein interactions and signaling pathways. They

are present in a wide variety of proteins with diverse functions in different paralogous families.

For example, in humans, SH3 domains are present in proteins such as Src and Grb2, which

are involved in cell signaling and regulation.

SH3 domains are small all-beta folds that bind to type II poly-proline containing peptides

of the form N-R/KXXPXXP-C or N-XPXXPXR/K-C [Musacchio et al., 1992](Fig. 1B) and

mediate diverse signaling functions in cells [Mayer, 2001]. For example, a C-terminal SH3

domain in the Sho1 transmembrane receptor in fungi (Sho1SH3) mediates the response to

external osmotic stress through binding to a polyproline ligand in the Pbs2 MAP kinase

(Fig. 1A). The Sho1 pathway has been conserved within the fungal kingdom through many

speciation events, creating a diverse ensemble of extant Sho1SH3 ortholog sequences. In ad-

dition, duplication events have occurred during natural evolution, creating many paralogous

SH3 domains that have diverged to acquire distinct and non-overlapping ligand specificities.

For example, in S. cerevisiae, the Sho1SH3 is the only SH3 domain amongst 26 other par-

alogous domains in genome that can support osmosensing in the Sho1 pathway [Zarrinpar

et al., 2003]. This exclusivity in vivo is recapitulated in direct binding assays with the Pbs2

ligand, demonstrating that the specificity is directly encoded in the Sho1SH3 amino acid

2

sequence.

However, when move out from S. cerevisiae to a wider range of species, the situation

appears to change. Of 12 metazoan SH3 domains tested by Zarrinapar et al, six reconstituted

osmo-resistance when swapped into Sho1. Notably, these same six domains also exhibited

binding to the Pbs2 ligand in vitro, as demonstrated through SH3 domain arrays and in

solution binding assays using the free Pbs2 peptide (Fig. 1C).

The conservation and divergence of SH3 domains in different species have significant

implications for their functional roles in mediating osmotic stress response and binding to the

Pbs2 ligand. While the Sho1SH3 domain in S. cerevisiae demonstrates exclusive osmosensing

capabilities among the 26 paralogous SH3 domains in its genome, the situation changes when

considering a broader range of species. This observation suggests a potential variation in

the specificity and functionality of SH3 domains across different species. Understanding the

underlying factors governing the conservation and divergence of SH3 domains is critical for

unraveling the intricate mechanisms of protein-protein interactions and signaling pathways

in diverse organisms.

1.3 Date-driven Protein Design

An emerging approach for understanding and designing synthetic proteins is learning the

design principles of natural proteins evolved through variation and natural selection. These

principles are encoded within ensembles of homologous amino acid sequences and define the

mapping from primary sequence to multifaceted protein phenotypes, including foldability,

biochemical activities, and organismal fitness in a natural biological context [Anfinsen, 1973,

Bowie et al., 1990, Socolich et al., 2005, Russ et al., 2005, 2020]. Evolution-based algorithms

that learn these rules have the potential to generate new hypotheses for protein mechanism,

and to permit the design of diverse synthetic variants with novel functions, with powerful

implications for medicine, biotechnology, chemical engineering, and public health [Ferguson

3

and Ranganathan, 2021].

Historically, protein design typically involve physics-based scoring functions that adopt

tertiary structure as the central object to bridge sequence to function [Huang et al., 2016,

Kiss et al., 2013, Anand et al., 2022] or involve directed evolution to learn a sequence to

function mapping through iterative rounds of mutation and functional selection [Arnold,

2018, Jäckel et al., 2008, Romero and Arnold, 2009]. In recent years, advances in deep

machine learning have driven exciting developments in machine learning-assisted directed

evolution (MLDE) [Ferguson and Ranganathan, 2021, Freschlin et al., 2022, Bepler and

Berger, 2021, Mazurenko et al., 2019, Wittmann et al., 2021, Frappier and Keating, 2021]

that train models to learn the sequence to function map. The central idea of these strategies

is to replace a blind mutational search through the vast gulf of protein sequence space with a

model-guided search, and to eliminate the need for the direct use of structural information by

implicitly representing the underlying physics in the model-learned parameters. The learned

models provide a new understanding of the organizing principles of natural proteins at both

in terms of general “linguistic rules” underpinning the patterns amino acids in all natural

proteins and the local and global epistatic interactions between amino acids in individual

proteins that provide for protein phenotypes [Halabi et al., 2009, Rivoire et al., 2016, Russ

et al., 2020, Morcos et al., 2011, Ferguson et al., 2013, Hart and Ferguson, 2015, Mann et al.,

2014, Hopf et al., 2017, Ding et al., 2019].

4

CHAPTER 2

YEAST OSMOSENSOR SHO1-SH3 – A MODEL SYSTEM FOR

PROTEIN FUNCTION

Due to extensive past work documenting tight functional specificity in vivo and great func-

tional diversity [Zarrinpar et al., 2003, Saksela and Permi, 2012], the SH3 domain family

serves as a productive model system for studying the generative potential of data-driven

models. In this chapter, we provide an overview of our experimental model system, which

includes both in vivo and in vitro SH3 binding experiments. We specifically focus on our

simple and efficient high-throughput yeast osmosensing experimental protocol (11), which

allows for rapid validation of data-driven protein design models.

2.1 High-throughput Osmosensing Assay

2.1.1 Gene construction

Before gene construction, 1-3 positions of a small number of designed sequences were hand-

adjusted to correct effect of misalignment in the training data. Residues 16D, 17D and 46A

of Sho1 (PDB 2VKN) were inserted into each designed sequence to make a final length of 62.

To avoid over-similarity, sequence samples were successively picked and filtered to maintain

at least 3 amino acids distance away from any other candidates in each sample set.

S. cerevisiae codon-optimized genes coding (codes for reverse translation can be found

at https://github.com/ranganathanlab/Reverse_translation and section 7.3)

for all synthetic SH3 proteins were amplified from a mixed pool of oligonucleotide frag-

ments synthesized on microarray chips (Twist). The oligonucleotides corresponding to

each gene were designed with primer annealing sites and a padding sequence to make

them uniform 300-mer (Fig. 9 and 10). PCR was performed using KAPA-Hifi polymerase

5

https://github.com/ranganathanlab/Reverse_translation

with 1X KAPA HiFi Buffer (Roche), 0.2 mM dNTPs and 1.0 µm of each forward (5’-

CCGGTTGTACCTATCGAGTG-3’) and reverse primer (5’-GACCATGCAAGGAGAGGTAC-

3’) in 25 µl total volume, with an initial activation (95◦C, 2 min), followed by 14 cycles of

denaturation (95◦C, 20 s), annealing (65◦C, 10 s) and primer extension (70◦C, 10 s). A

final extension step (70◦C, 2 min) was performed subsequently. Amplified products were

column purified (Zymo Research), digested with EcoR1 and BamH1, ligated into the di-

gested PRS136 plasmid with N-terminal membrane domain of Sho1 [Zarrinpar et al., 2003],

and transformed into Agilent Electrocompetent XL1-Blues to yield >250× transformants

per gene. The entire transformation was cultured in 50 ml LB media containing 100 µg/ml

sodium ampicillin (Amp) at 37◦C overnight after which plasmids were purified and pooled.

2.1.2 Yeast transformation

The haploid S. cerevisiae strain SS101 was constructed on the W303 background gifted by

Wendell Lim (UCSF) [Zarrinpar et al., 2003]. Genetic knockouts of Ssk2 and Ssk22 were

created to remove the Sho1-independent branch of the osmoresponse pathway [Posas and

Saito, 1997]. The pooled pRS316 plasmids with the SH3 gene library were transformed into

SS101 cells using the LiAc-PEG high efficiency transformation protocol [Gietz and Schiestl,

2007]. Plate check was performed to confirm at least 50 copies of each gene were successfully

transformed. Transformed SS101 cells were grown in liquid Sc-Ura media for 24 h (add 20

mL Sc-Ura media for each 108 total transformed cells) at 30◦C, and then passaged to 250

mL fresh liquid Sc-Ura media to make OD = 0.05. After another 24 h of growth at 30◦C,

the Sc-Ura culture can be kept at 4◦C for up to two weeks. It is feasible to "accumulate"

transformation efficiency by conducting 2-3 rounds of transformations on separate days, en-

abling the testing of approximately 12,000 SH3 sequences totally in one trial.

6

2.1.3 SH3 domain selection assay

All growth was at 30◦C on shaker. The stock Sc-Ura culture was transferred to YPD media

for a 24 h growth to get the t0 sample. The culture was diluted every 8 h to keep the

cell density below 0.2 OD600. A small volume of the t0 sample was transferred to YPD

media supplemented with either (1) no KCl (non-selective) or (2) 1M KCl (selective), and

the rest was span down and minipreped to extract plasmids from yeast. Both non-selective

and selective cultures were grew for 24 h with OD600 maintained under 0.2 to obtain the t24

samples. The two t24 samples were span down and minipreped using the same protocol as

the t0 sample.

Plasmids purified from both t0 and t24 samples were amplified using two rounds of PCR with

Q5 polymerase (New England Biolabs) to add adapters and indices for Illumina sequencing.

In the first round the DNA was amplified using primers that add from 6 to 9 random bases

(Ns) for initial focusing, as well as part of the i5 or i7 Illumina adapters. Six cycles were used

to minimize amplification-induced bias, followed by ampure purification before the second

round PCR. In the second round of PCR, the remaining adapter sequence and TruSeq indices

were added, where 20 cycles were used. The final products were gel purified (Zymo Research)

, quantified using Qubit (ThermoFisher) and sequenced in an Illumina MiSeq system with

a paired-end 300 cycle kit. Allele counts were obtained using standard procedures. Paired-

end reads were joined using FLASH, trimmed to the EcoR1 and BamH1 cloning sites and

translated. Only exact matches to the designed genes were counted. Enrichment (en) and

relative enrichment (r.e.) values for each gene x of the three growth conditions were calculated

according to equation:

en(x) = log10

(
fxt24
fxt0

)
(2.1)

r.e.(x) =
en(x)− en(null)

en(wt)− en(null)
(2.2)

7

where fxt24 and fxt0 represents the frequency of observing gene x in the t24 and t0 sample,

respectively. The wild-type sequence (wt) is the Sho1 gene of S. cerevisiae and the null

genes are TAGNTAATTTCGGCGTGGGTATGGTGGCAGGCCCCGTGGCCGGGGGA

CTGTTGGGCGCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGTGCTCAA

CGGCCTCAACCTACTACTGGGCTGCTTCCTAATGCAGGAGTCGCATAAGGGAG

AGCGTCGAGAT, where the stop codon TAG produces a Sho1 without the C-terminal

SH3 domain. A second independent selection assays was performed to ensure reproducibil-

ity (Fig. 12A). The average en of the two trials was used to calculate r.e.. r.e. values of

SH3 variants with at least five counts in the input population in both trials were used for

analysis. The r.e. scores between the natural and synthetic libraries were globally normalized

to a single null allele by linear regression fitting over the 393 sequences shared between the

two pools (ρPearson = 0.94, n = 393). The standard curve relating r.e. to binding affinity

was made from a set of 11 variants of S. cerevisiae Sho1SH3, comprising D18I, R38L, Y56I,

Y56F, Y56M, Y56A (from published data [Marles et al., 2004]), A8V, Y10M, P11D, E21G

and wild-type.

2.2 in vitro SH3 Test Assays

2.2.1 Peptide synthesis

The pbs2 MAPKK peptides were synthesized with standard 9-fluorenylmethoxycarbonyl

(Fmoc) chemistry in Protein Chemistry Technology Center of UT Southwestern Medical

Center. Molecular masses were verified by mass spectrometry. Concentrations were verified

by quantitative amino acid analysis.

8

2.2.2 Protein expression and purification

pET-28b plasmids encoding selected C-terminally His6-tagged versions of functional SH3

domains were transformed into E. coli strain BL-21 (DE3). 1L of TB media containing 50

µg/mL kanamycin were inoculated 1:1000 with overnight starter LB cultures, grown in 37◦C

and 200 rpm to an OD600 of 0.8-1.2, induced with 200 µM IPTG and further incubated at

18◦C overnight. Cells were harvested by centrifugation (2560 g, 15min) and resuspended in

500 mM NaCl, 10 mM imidazole, 25 mM Tris-HCl, pH 8.0 and 1:1000 Tween® 20 detergent,

lysed by sonication on ice (3 rounds for each 100 mL cell suspension, 90% amplititude, 2s

on 2s off for 1 min in total) with 1mM PMSF, 10 µg/mL leupeptin and 2 µg/mL pepstatin,

and centrifuged at 48000 g for 1 h at 4◦C. SH3 proteins were purified from the cleared lysate

by Ni-NTA affinity chromatography (Qiagen) , dialyzed overnight in 100 mM NaCl, 50 mM

Tris, pH 7.5, and run through size exclusion in fast protein liquid chromatography (AKTA

Pure 25 L1). Purified SH3 protein can be flash frozen and stored at (-80)◦C.

2.2.3 Biophysical evaluation of SH3 in vitro binding assay

Binding affinity to synthetic pbs2 MAPKK ligands for Sho1SH3 domains were measured by

increase in the intrinsic tryptophan fluorescence on titration of peptide ligand into a solution

of Sho1SH3 protein at a fixed concentration of 0.25 µM (less than one fourth of expected

Kd) in HEPES buffer (20mM HEPES, 50mM NaCl, pH 7.3-7.6). Fluorescence titration was

performed on Fluorolog-3 with λex = 296 nm and λem = 330 nm. Data were fitted to the

equation

y = Fmin + (Fmax − Fmin)

(
x

Kd + x

)
(2.3)

with scipy.optimize.curve_fit module in Python, where y is the fluorescence reading, x is lig-

and concentration, Kd is dissociation constant, Fmin and Fmax are minimum and maximum

fluorescence values.

9

2.2.4 Melting temperature measurements

The melting temperature (Tm) of SH3 domains was determined using a MicroCal VP-

Capillary DSC (Malvern Instruments). Purified protein (60 µM-180 µM) in 100mM NaCl,

50mM Tris·HCl, pH 7.5 was heated from 10◦C-110◦C at 60◦C/hour and the resulting curve

was fit using a two-state model.

10

CHAPTER 3

DATA-DRIVEN MODELS FOR DESIGNING NOVEL

FUNCTIONAL OSMOSENSING ORTHOLOGS

Two MLDE approaches that have demonstrated particular promise are direct coupling anal-

ysis (DCA) and deep generative modeling (DGM). (Fig. 2A) These models may differ in

their underlying principles, but share a common paradigm involving a compression step that

maps a sequence alignment of natural homologs onto a low-dimensional parameter space,

followed by a de-compression step that designs protein sequences from these parameters. In

the osmosensing design task, The synthesized protein sequences are then subject to high-

throughput gene synthesis and selection assays to evaluate their functionality as is described

in 2.1.

3.1 Data Collection: Acquire the Natural SH3 Library

We assembled a comprehensive library consisting of SH3 domains extracted from a diverse

array of genomes of 222 fungal species. This collection encompasses 5610 unique sequences,

which includes, on average, 24 SH3 paralogs and one Sho1SH3 ortholog per genome. In

addition, we incorporated a set of non-fungal SH3 domains, amounting to 2255 sequences.

The total repertoire, therefore, stood at 7865 SH3 domains. The data for this extensive

compilation were sourced from three major databases. The JGI Mycocosm database (https:

//jgi.doe.gov), which houses the data from the "1000 fungal genomes" project, the PFAM

database (https://pfam.xfam.org/), and the NCBI non-redundant sequence database

(https://www.ncbi.nlm.nih.gov), accessed through BLAST searches. We retained the

natural nucleotide sequences of all SH3 domains and cloned them into an appropriate vector

for subsequent expression and selection assay in S. cerevisiae as is described in section 2.1.

11

https://jgi.doe.gov
https://jgi.doe.gov
https://pfam.xfam.org/
https://www.ncbi.nlm.nih.gov

3.2 bmDCA

The essence of DCA is to start with a multiple sequence alignment (MSA) of a protein family

and infer a generative model representing the intrinsic constraints on amino acids (the "one-

body" terms) and the pairwise interactions between amino acids (the "two-body" terms)

[Morcos et al., 2011, Cocco et al., 2018, Ferguson et al., 2013, Hopf et al., 2017, Tian et al.,

2018]. For the chorismate mutase enzyme family, recent work showed that the DCA model

is sufficient to design of synthetic variants that function in a manner equivalent to natural

enzymes both in vitro and in vivo, in E. coli cells [Russ et al., 2020]. The relative simplicity

of the constraints imposed by the DCA model led to considerable sequence divergence in

the synthetic proteins, demonstrating access to an enormous space of functional proteins

consistent with the evolutionary constraints.

The DCA model is relatively simple because it is inferred only from the first- and second-

order statistics of sequence alignments. Given this, it is impressive that it can suffice to

capture the design constraints for specifying proteins that can fold and function in their

natural cellular context. However, it is also true that the chorismate mutases largely repre-

sent a family of orthologs - extant proteins that are descended by speciation events and are

expected to share the same function across species. Indeed, a large fraction of homologous

chorismate mutases operate in E. coli in the specific experimental conditions in which the

design was carried out [Russ et al., 2020]. Such consistency of function in a protein family

likely represents a simpler problem for inference of generative models. A deeper and more

general test of evolution-based generative models would come from a study of a family of

paralogs - proteins that arose through gene duplication events and typically have diverged

to carry out distinct and specialized functions. Hence, we used Boltzmann machine direct-

coupling analysis (bmDCA) [Cocco et al., 2018] for this test (Fig. 2B). The DCA approach

assumes that the probability of each natural amino acid sequence x = (x1, . . . , xL) to occur

is exponentially related to an "energy" function parameterized by the intrinsic constraints

12

on each amino acid xi at each position i (hi(xi)) and the pairwise couplings between amino

acids (xi, xj) at positions (i, j) (Jij(xi, xj)):

P (x) ∝ exp

∑
i

hi(xi) +
∑
i<j

Jij(xi, xj)

 (3.1)

The parameters (h, J) are trained to reproduce the empirical positional frequencies and

pairwise correlations of amino acids (the one- and two-body statistics) in the input MSA.

If the model accounts for the information content of natural sequences, synthetic sequences

drawn from this probability distribution with low energy (that is, high probability) should be

natural-like proteins. Boltzmann machine learning is computationally intensive but provides

accurate fitting; for example, the trained bmDCA model for the SH3 family shows excellent

reproduction of the input sequence statistics. As with any machine learning algorithm,

bmDCA involves setting various parameters during model training. Here we follow the

approach in previous work [Russ et al., 2020] to test whether the design of members of the

ortholog family studied in that work generalizes to a functionally diverse family of paralogs.

We generated synthetic sequences (N = 3740) that reproduce the same distribution of

statistical energies (e.g. same probability) as the natural homologs (Fig. 3B) [Russ et al.,

2020].

3.3 Variational Autoencoders (VAEs)

The second class of models we examined are DGMs known as a variational autoencoders

(VAEs) [Kingma and Welling, 2013], consisting of two back-to-back deep neural networks:

an encoder qϕ(z|x) that compresses the information content of sequences x in the MSA

into low-dimensional latent space vectors z, and a decoder pθ(x|z) that performs the reverse

process, transforming latent vectors z back into protein sequences x (Fig. 2C). If the learning

was effective, the latent space should reveal functional and/or evolutionary relationships

13

between sequences, and the decoding process should generate novel sequences from latent

space coordinates not occupied by natural sequences. The former operation can be thought

of as an interpretive function of the VAE, while the latter represents novel design. In contrast

to bmDCA, which learns on the one- and two-body amino acid statistics, the VAE models

are trained to reconstruct all features of the input data, and make no assumptions about

the form of the sequence-function model. This approach takes advantage of the powerful

representational capacity of the deep neural networks [Chen and Chen, 1995, Hassoun, 1995],

and provides a direct solution for designing novel sequences from the latent space without

the need for computationally expensive numerical simulations [Hawkins-Hooker et al., 2021,

Sinai et al., 2021, Dean and Walper, 2020, Giessel et al., 2022].

We implemented two forms of a VAE: (1) a generic, widely-used form that we call the

"vanilla-VAE", and (2) a variant known as an information maximizing VAE (InfoVAE) [Zhao

et al., 2019]. While the generic algorithms have proven useful for studying protein properties

[Doersch, 2016, Guo et al., 2020, Greener et al., 2018, Riesselman et al., 2018, Sinai et al.,

2017, Ding et al., 2019, Hawkins-Hooker et al., 2021, Dean and Walper, 2020, Sinai et al.,

2021], they can also lead to inaccurate latent inference and non-optimal decoder performance

[Sutskever et al., 2014, Rezende and Viola, 2018]. The InfoVAE addresses these problems,

incorporating additional constraints during training models that encourages more accurate

decoding from the latent space for design [Zhao et al., 2019]. We present data on both

VAE architectures in this work, but for brevity, we illustrate features of the latent space

representations in figures below using the infoVAE method.

For the SH3 designing task, we generated libraries of synthetic sequences from the latent

space of both vanilla (N=3984) and infoMAX (N=2000) models by randomly sampling latent

space coordinates and passing them through the decoder to convert into protein sequences.

Re-embedding the designed sequences using the encoder demonstrates that they globally

sample the latent space in both models (Fig. 4).

14

3.4 Experimental Evaluation

3.4.1 High-throughput Osmosensing Assay

Results of the yeast osmosensing assay shows no bmDCA designed sequences are capable

of full complementation of the Sho1 deletion phenotype, though a few sequences fall into a

partial rescue range (Fig. 13B). This result is particularly interesting since previous work by

Best and colleagues [Tian et al., 2018] convincingly demonstrates that the bmDCA model

is fully capable of producing well-folded and stable SH3 domains. Thus, it appears that

bmDCA suffices to make folded SH3 proteins, but at least as tested here, does not capture

enough information to specify orthologous function. This outcome could arise either from

limitations imposed by using only pairwise statistics in the MSA or from the various approxi-

mations and parameter choices used in inferring the model [Kleeorin et al., 2021]. Regardless,

the central conclusion is that at least for Sho1SH3, simply reproducing the statistical ener-

gies of natural sequences in the bmDCA model is not sufficient to reproduce the distribution

of function. In contrast, both VAE models are able to produce variants that rescue Sho1

function to the same level as wild-type S. cerevisiae Sho1SH3 (Fig. 13C, 13E), albeit with

different yields. Specifically, 0.6% of vanilla-VAE and 1.75% of infoVAE designed sequences

fully function in the Sho1 pathway. A two-sample Kolmogorov-Smirnov test shows that the

vanilla-VAE distribution deviates from the natural distribution (p = 1× 10−4), but that the

InfoVAE distribution is statistically nearly the same (p = 0.06). These data show that both

VAE models have the capabilities to design functional synthetic orthologs of S. cerevisiae

Sho1SH3 but as expected, the InfoVAE model more accurately represents the design rules

embedded in the natural ensemble.

The localization of natural Sho1SH3 orthologs in the latent space (Fig. 5B) suggests an

additional hypothesis - that sampling in the immediate vicinity of natural orthologs should

enrich the yield of synthetic orthologs. To test this, we computed the mean and variance

15

of the functional natural orthologs and designed libraries of sequences from latent space

coordinates sampled from the corresponding Gaussian distribution (N = 896 and N = 987

for vanilla- and info-VAE, respectively). A re-embedding of these sequences shows that

they return to the environment from which they were sampled (Fig. 4), a quality check

on the robustness of the VAE model in these regions. Experimental testing shows that

indeed, local sampling produces a much higher density of fully functional synthetic orthologs

(Fig. 13D, 13F). Thus, locality in latent space corresponds to locality the sequence-function

mapping, even for models trained on sequence data alone and no prior knowledge of function.

What is the diversity of the new synthetic variants with respect to natural SH3 domains?

For comparison, Fig. 13G shows the distribution of top sequence identities of natural se-

quences to their nearest natural counterpart or to S. cerevisiae Sho1SH3. Functional Sho1SH3

orthologs are more sequence similar to each other (>60% top-hit identity) than to SH3 par-

alogs, but can be quite diverged from S. cerevisiae Sho1SH3 (as low as 40% identity). The

vanilla- and info-VAE methods approximate the same diversity, both in terms of distance

from all Sho1SH3 orthologs and from the S. cerevisiae variant (Fig. 13H-I). The ability to

reproduce the sequence diversity of natural homologs suggests that the models learn the

physical constraints on orthologs without extensive overfitting on irrelevant idiosyncrasies of

extant variants.

3.4.2 in vitro SH3 Test Assays

We selected five synthetic orthologs that show full function in vivo (1) for in-depth bio-

chemical characterization. These proteins were expressed in Escherichia coli as His6-tagged

fusions, purified to homogeneity, and assayed for (1) binding to the S. cerevisiae Pbs2 target

peptide using a standard tryptophan fluorescence assay [Lim et al., 1994] and (2) thermal

stability by differential scanning calorimetry. The data show that the synthetic proteins

are well expressed, soluble, and display a range of binding affinities that are comparable

16

to, or stronger than, the value for wild-type S.cerevisiae Sho1SH3 (Table 2, Fig. 17). Ther-

mal denaturation experiments show that the synthetic proteins show cooperative unfolding

transitions with half-maximal melting temperatures (Tm) and enthalpies of unfolding that

span a range around the wild-type protein. Thus, the synthetic variants display biochemical

properties similar to natural Sho1SH3 domains.

3.5 Methods

3.5.1 bmDCA

The 5299 natural sequences in MSA were used to infer the bmDCA model [Russ et al., 2020],

assigning a probability P (a1, ..., aL) = 1
Z exp{−H(a1, ..., aL)/T} to each aligned sequence

(a1, ..., aL) with L = 59. The statistical energy H(a1, ..., aL) = −
∑

1≤i<j≤L Jij(ai, aj) −∑
1≤i≤L hi(ai) of the Potts model is given in terms of the direct coevolutionary coupling

Jij(a, b) between amino acids a and b at positions i and j, and propensities hi(a) for the

usage of amino acid a at position i. The bmDCA model was inferred at λ = 0.01 and M=500

using 1600 thermalization steps, and the temperature T is set to unity during inference. The

accuracy of the inferred model was checked by comparing first order empirical frequencies

fai for each amino acid a at position i, and the joint frequencies fabi,j of amino acids (a, b)

at positions (i, j), between the MSA and sequences generated by MCMC at T = 1. Af-

ter the correspondence of the natural and predicted one- and two-body amino acid statistics

were validated (Fig. 3A), the final bmDCA designed sequences for experiments were sampled

under a lower temperature T = 0.9 to produce sequences that have compatible statistical

energies with natural sequences (Fig. 3B) [Russ et al., 2020]. Codes for bmDCA are available

at https://github.com/ranganathanlab/bmDCA [Barrat, 2020].

17

https://github.com/ranganathanlab/bmDCA

3.5.2 Vanilla VAE

Each natural homolog within the MSA was converted into a one-hot encoded tensor [Har-

ris David, 2013], which maps each individual amino acid label found along a specific sequence

into a vector consisting of zeros and ones, where the value 1 indicates the amino acid label.

The unique labels consist of at maximum 20 amino acids and deletion gap from the multiple

sequence alignment algorithm, and each amino acid position was indexed individually to

avoid all-zero features. Thus, the MSA with size 5299×59 is converted into size 5299×1178,

where the values 5299 and 1178 corresponds to the number of natural homologs used for

training and length of the one hot encoded vectors. By using a training dataset that consists

of homologs, a variational autoencoder (VAE) was employed as a generative model admit-

ting a low-dimensional embedding of sequence space [Ferguson and Ranganathan, 2021, Sinai

et al., 2017]. With the ability to capture meaningful SH3 evolutionary information through

the latent space, this modeling approach has been attractive for protein design, while also

introducing the opportunity to capture the distribution of this large homology family which

can lead to better understanding of the evolutionary constraints for orthology and paralogy.

For example, the decoder can sample from the latent space embedding and generate new

artificial and functional protein sequences, while also localizing function within the latent

space.

A standard “vanilla” VAE [Doersch, 2016, Guo et al., 2020, Greener et al., 2018, Ries-

selman et al., 2018, Sinai et al., 2017, Ding et al., 2019, Hawkins-Hooker et al., 2021, Dean

and Walper, 2020, Sinai et al., 2021] was trained to learn the joint probability from Bayes

inference: pθ(x, z) = p(z)pθ(x|z) = pθ(x)pθ(z|x), where θ represents learned parameters of

the joint distribution, z ∈ Z represents latent variables, and x ∈ X represents each sequence

x in the training set X of MSA. pθ(x, z) denotes the probability of correctly constructing a

sequence like those in X given a z from the latent distribution p(z). Each designed sequence

x̂ was generated by the decoder pθ(x̂|z) and z was sampled from p(z). To learn pθ(x̂|z), we

18

need to approximate pθ(x):

pθ(x) =

∫
pθ(x|z)p(z)dz (3.2)

Because it is intractable to directly compute parameters θ for the probability pθ(x), we ap-

plied an approximation method called variational inference. Namely, we trained the encoder

qϕ(z|x) ∼ N (z|µϕ(X),Σϕ(X)) parametered by ϕ, which takes values from X and outputs a

multivariable Gaussian distribution over Z to approximate the posterior distribution pθ(z|x)

[Doersch, 2016, Ding et al., 2019], by minimizing the Kullback-Leibler divergence DKL

between qϕ(z|x) and the multivariable normal prior distribution p(z) ∼ N (z|0, 1). The log-

arithm of pθ(x|z) term is approximated by the expectation Eqϕ(z|x)[log pθ(x|z)]. Hereby, the

VAE uses the loss function called Evidence Lower BOund (LELBO) to maximize log pθ(x)

[Doersch, 2016]:

logpθ(x) ≥ LELBO = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)) (3.3)

where the encoder qϕ(z|x) is learned by taking X and optimizing ϕ, and the decoder pθ(x̂|z)

is learned by taking Z and optimizing θ.

Both the encoder and decoder are implemented as fully connected feedforward artificial

neural networks with three hidden layers (En1, En2, En3 for encoder and De1, De2, De3

for decoder). Two Dropout layers (p = 0.7) are between (En1, En2) and (De2, De3). Three

Batchnorm layers are between (En2, En3); (De1, De2), and De3 and the output layer. The

number of units in each hidden layer is 1.5 times length of the one-hot sequence. The

activation functions between linear layers is tanh, while final decoder layer uses softmax

neurons. We used PyTorch [Paszke et al., 2017] to implement our VAE model and trained

our model using ADAM optimizer [Kingma and Ba, 2014] with a learning rate of 0.001.

We used a 3D latent space based on results of five-fold cross validation [Kohavi, 1995] by

taking into consideration both validation error and gap between training and validation error.

19

Training was conducted for 55 epochs where validation loss stopped decreasing. Codes for the

vanilla VAE model are available at https://github.com/ranganathanlab/VAEforDesign

and chapter 7.

Global sampling from the trained vanilla VAE model was conducted by randomly sam-

pling 400 latent vectors from the Gaussian prior p(z) ∼ N (0, 1). We passed each latent

vector z through the trained neural network decoder pθ(x|z) to convert these into complete

protein sequence with amino acid labels. Decoding requires multinomial sampling over the

decoded probability distributions over the amino acids at each position in order to collapse

the probability distribution into an unambiguous amino acid label. As such, we perform the

decoding operation 10 times for each latent vector z to generate a total of 4000 globally-

designed sequences. Local sampling was conducted by randomly sampling 150 latent vectors

from the Gaussian prior p(z) ∼ N (µtop,Σtop), where µtop and Σtop are mean and vari-

ance respectively of latent vectors of the high-r.e. natural homologs that rescue osmosensing

function. For each vector, 10 sequences were generated by multinomial sampling from the de-

coded vector for a total of 1500 locally-designed sequences. The sequences were then filtered

to eliminate highly similar sequence resulting in the production of 3984 globally-sampled

sequences and 896 locally-sampled sequences.

3.5.3 InfoMax VAE

The implementation of InfoVAE is a collaborative effort with N. Praljak, as described in [Lian

et al., 2022]. One limitation of Vanilla VAE is that optimizing the evidence lower bound

objective (ELBO) is prone to learning a poor amortized inference distribution qϕ(z|x) that

may not closely approximate the true and expected posterior distribution pθ(z|x) [Zhao

et al., 2019]. There are two main reasons why these issues arise: (1) inherent properties of

the ELBO objective and (2) implicit modeling bias. To overcome these issues, we defined a

new training objective which learns a model to correctly reconstruct sequence and amortized

20

https://github.com/ranganathanlab/VAEforDesign

inference distributions [Zhao et al., 2019]. First, we used an equivalent formation of the

vanilla VAE ELBO objective:

LELBO = −DKL

(
qθ(z)

∣∣∣∣∣∣p(z))− Eqϕ(z)

[
DKL

(
qϕ(x|z)

∣∣∣∣∣∣pθ(x|z))]

where DKL is the Kullback-Leibler divergence. We include a λ prefactor which counter-

acts the imbalance in terms of dimensionality of the sequence space X and latent space

Z. For example, in our implementation, we have x ∈ R59×21 and z ∈ R3. To achieve an

Information Maximizing VAE (InfoVAE), we will add a mutual information term Iq(x; z) so

that the above equation becomes:

LInfoV AE = −λDKL

(
qϕ(z)

∣∣∣∣∣∣p(z))− Eqϕ(z)

[
DKL

(
qϕ(x|z)

∣∣∣∣∣∣pθ(x|z))]+ αIq(x; z)

where Iq(x; z) and α encourages the model to use the latent codes, potentially avoiding

posterior collapse, and weighing the influence of this mutual information term accord-

ingly. Since the above LInfoV AE expression cannot be directly optimized, we can rewrite

it into an equivalent form which can be optimized. By using the following definitions

Iq(x; z) = Eqϕ(x,z)

[
log

qϕ(x,z)

qϕ(x)qϕ(z)

]
= −Eqϕ(x,z)

[
log

qϕ(z)

qϕ(z|x)

]
and the fact that qϕ(x|z) =

pD(x)qϕ(z|x)/qϕ(z), we can rewrite the objective as follows:

LInfoV AE = Eqϕ(x,z)

[
− λlog

qϕ(z)

pθ(z)
− log

qϕ(x|z)
pθ(x|z)

− αlog
qϕ(z)

qϕ(z|x)

]

= Eqϕ(x,z)

[
logpθ(x|z)− log

qϕ(z)
λ+α−1pD(x)

pθ(z)
λqϕ(z|x)α−1

]
LInfoV AE = EPD(x)Eqϕ(z|x)

[
log

(
pθ(x|z)

)]
−

(
1− α

)
EPD(x)

[
DKL

(
qϕ(z|x)

∣∣∣∣∣∣pθ(z))]−
(α + λ− 1)DKL

(
qϕ(z)

∣∣∣∣∣∣pθ(z))− EPD(x)

[
log

(
pD(x)

)]
(3.4)

21

where EPD(x)

[
log

(
pD(x)

)]
is a constant with no trainable parameters that can be omit-

ted since it does not play a role in terms of the loss gradient ∇LInfoV AE . For our implemen-

tation, we find setting the hyperparameters α = 1 and λ = 2 perform quite well in terms of

sequence reconstruction and novel design generation. Thus, the overall expression becomes:

L = EPD(x)Eqϕ(z|x)
[
log

(
pθ(x|z)

)]
+ 2DKL

(
qϕ(z)||p(z)

)
= LRecon + 2LKL (3.5)

Furthermore, we can swap out the KL-divergence loss with a strict divergence loss, in

particular the max-mean discrepancy which quantifies the distance between two distributions

by comparing all of their moments when implementing the kernel embedding trick with a

characteristic kernel [Gretton et al., 2006, Li et al., 2015, Dziugaite et al., 2015]. Thus, the

regularized term LKL is replaced with the following expression:

LMMD = DMMD

(
qϕ(z)|p(z)

)
= Ep(z),p(z′)

[
k(z, z′)

]
−

2Eq(z),p(z′)
[
k(z, z′)

]
+ Eq(z),q(z′)

[
k(z, z′)

] (3.6)

where k(·, ·) is a positive definite kernel and DMMD = 0 if and only if p(z) = q(z).

We choose the radial basis function (i.e., Gaussian) kernel k(z, z′) = e(z−z′)2/σ2 as our

characteristic kernel k(·, ·). We found that setting σ equal to the size of the latent space led

to adequate performance in learning a continuous latent space, leading to excellent generative

performance via sampling z vectors and decoding protein sequences x.

Both the encoder and decoder are implemented as fully connected feedforward artificial

neural networks with three hidden layers (En1, En2, En3 for encoder and De1, De2, De3

for decoder). Two Dropout layers are employed between (En1, En2) and (De2, De3) with

dropout hyperparameters of p = 0.3 and p = 0.7. The number of units in each hidden

22

layer is 1.5 times length of the one-hot encoded sequence (59× 21 = 1239). The activation

function between linear layers along the encoder is leaky ReLU with 0.1 negative slope

hyperparameter, while the activation function is simple ReLU functions between linear layers

along the decoder. The final activation function for the decoder is a softmax function, which

maps the logits to categorical probability distributions for each amino acid position along

the whole sequence. We used Tensorflow [Abadi et al., 2016] and Keras [Chollet, 2018] to

implement our MMD-InfoVAE model and trained our model using ADAM optimizer [Kingma

and Ba, 2014] with a learning rate of 0.0001. We used a 3D latent space based on results

of five-fold cross validation [Kohavi, 1995] by taking into consideration both validation error

and gap between training and validation error. Training was conducted for 1000 epochs

with batch size equal to 128 where validation loss stopped decreasing. Codes for the MMD-

InfoVAE model are available at https://github.com/Ferg-Lab/Protein_design_mmdVAE

_torch and chapter 7.

Global sampling from the trained MMD-InfoVAE model was conducted by randomly sam-

pling 2000 latent vectors from the Gaussian prior p(z), z ∼ N (0, I). We passed each latent

vector z through the trained neural network decoder pθ(x|z) to convert these into complete

protein sequence with amino acid labels. We converted and decoded probabilities along

each amino acid position to amino acid labels by using the argmax function, which assigns

the amino acid based on the highest probability label. Local sampling was conducted by

randomly sampling 1000 latent embeddings from an anisotropic Gaussian distribution esti-

mated by the functional Sho1 embedded orthologs in the 3D latent space. The sequences

were then filtered to eliminate highly similar sequence resulting in the production of 2000

globally-sampled sequences and 987 locally-sampled sequences.

23

https://github.com/Ferg-Lab/Protein_design_mmdVAE_torch
https://github.com/Ferg-Lab/Protein_design_mmdVAE_torch

CHAPTER 4

EXPANDING THE FUNCTIONAL SPACE OF NATURAL

PROTEINS

4.1 Spatial characteristics of the Sho1-SH3 function in the

infoVAE latent space

The generative efficiency of the infoVAE latent space inspires a deeper study of how Sho1SH3

function maps to latent space position. As noted, the functional natural Sho1SH3 and syn-

thetic orthologs are tightly localized to a radially extended wedge-like structure in the VAE

latent space (Fig. 14). To make this quantitative, we defined a minimal polygon in the latent

space (a so-called "convex hull") that bounds the natural sequences displaying full function

in the S. cerevisiae Sho1 pathway (Fig. 15A). The majority of Sho1SH3 orthologs in the

fungal kingdom (155/172) lie within the hull, and very few sequences within the hull are not

functional (Fig. 15B). Also, synthetic orthologs embedding inside the hull show the same

distribution of function as their natural counterparts (Fig. 15C-D). Thus, the hull repre-

sents a bounding box that defines the space of extant and synthetic functional Sho1SH3-like

orthologs.

How does Sho1SH3-like function change as one exits the convex hull? Consistent with

the idea that the hull defines Sho1SH3 function, synthetic orthologs re-embedding outside

the convex hull are largely non-functional, with the few that do show Sho1SH3-like function

occurring in the immediate shell outside the hull (Fig. 15E-F). To quantitatively examine

how Sho1SH3 function varies across the boundary of the hull, we computed the probability of

functional sequences in the S. cerevisiae Sho1 pathway as a function of scaled volume shells

of the convex hull moving from within the hull to outside (Fig. 15G-H). The data show that

Sho1SH3-like function drops sharply across the boundary, supporting the idea that the hull

largely encloses the sequence rules for Sho1SH3 function.
24

An interesting feature is that the immediate environment outside the convex hull includes

some bonafide Sho1SH3 synthetic orthologs (Fig. 15E, yellow symbols). This demonstrates

a principle of extrapolation in the VAE model in which the space of designable functional

sequences extends beyond the limits defined by natural orthologs alone.

4.2 Locality in the latent space exposes global amino acid

constraints

The finding that locality within the convex hull of the InfoVAE latent space defines Sho1SH3

function provides an opportunity to examine the pattern of amino acid constraints that

specifically underlie orthologous function. A simple approach is to compare the conservation

of sequence positions in sequences sampled globally from the VAE latent space with that from

sequences embedded within the convex hull (Fig. 16). In essence, this analysis provides as

first-order view of where the "extra" constraints to be a Sho1SH3 ortholog occur in the amino

acid sequence. The conservation pattern for globally sampled sequences is nearly the same

as for the natural MSA (Fig. Sxx), a result consistent with the finding that global design

reproduces the distribution of function in the natural MSA. However, it is quite different for

sequences sampled within the convex hull bounding Sho1SH3-like function (Fig. 16A). The

differences in conservation can be modeled by a double Gaussian mixture model, providing

a statistical basis to identify positions that contribute the most to Sho1 function (Fig. 16B).

The extra constraints for Sho1SH3 function arise both at known specificity determining sites

in the ligand binding pocket Feng et al. [1994], Saksela and Permi [2012] and at a set of

weakly-conserved and solvent-exposed positions distributed throughout the protein structure

(Fig. 16C). These findings illustrate the use of VAE models to provide new hypotheses for

mechanisms of protein function in specific cellular contexts in vivo.

25

4.3 Methods

4.3.1 Convex hull analysis

To inspect relationship between location in the latent space and functionality, convex hull

analysis was performed through the scipy.spatial.ConvexHull method [Virtanen et al., 2020]

with a tolerance of 10−12. The hull in the latent space was defined by all functional sequence

(r.e. > 0.5) in the whole dataset of 5299 sequences. For outlier removal, since these func-

tional sequences do not form any well-defined distribution, we excluded sample points with

latent coordinate z0 < (−0.4) or z1 > 0.0.

4.3.2 Calculation of Kullback-Leibler relative entropy

Computation of D is based on our previous work of Statistical Coupling Analysis (SCA)

[Rivoire et al., 2016]. For position i in our MSA, we have

Di =
20∑
a=0

fai ln
fai
q̄a

(4.1)

where q̄a = (1 − q̄0)qa, q̄0 represents the fraction of gaps in the alignment, and qa is

the background distribution of amino acid a computed over the non-redundant database of

protein sequences. fai is the observed frequency of amino acid a at position i in the MSA

where length of each sequence is 59.

26

CHAPTER 5

EXAMINING THE PRINCIPLES OF POSITIVE AND

NEGATIVE DESIGN OF ORTHOLOGS AND PARALOGS OF

SH3 DOMAINS

The evolutionary constraints on proteins can involve positive design, selection for biochemical

function, and negative design, selection against biochemical functions. Previous research

on the Sho1SH3 domain in S. cerevisiae osmosensing pathway has proposed a model to

understand these natural constraints. Substituting the Sho1SH3 domain with any of the 26

paralogous SH3 domains fails to rescue growth under 1M KCl conditions (although all SH3

domains exhibit equal growth under 0M KCl). However, replacing the Sho1SH3 domain with

an ensemble of mammalian SH3 domains does provide some level of rescue [Zarrinpar et al.,

2003]. Moreover, the growth rates were found to be proportional to the binding free energy

between the SH3 variants and the Pbs2 target ligand (1C). Therefore, it is argued that the

specificity of the SH3 domains is a result of both positive and negative design, and that

evolutionarily distant domains from the S. cerevisiae genome have lost negative selection.

This work raises an interesting question about the rate of divergence of SH3 positive and

negative design. Is selection for orthologous Sho1SH3 domains to bind Pbs2 more conserved

than the selection for the paralogs to not bind Pbs2? And in that context, how are positive

and negative design encoded in the pattern of constraints on amino acids? These questions

relate to a more general issue of the rate of functional variation in orthologs versus paralogs of

a protein family. Orthologs are homologs that are the result of divergence after a speciation

event. In contrast, paralogs are homologs that are the result of divergence after a duplication

event. Orthologs are typically proteins found in the same functional context (multidomain

protein, pathway, or biological process) in many different species. For example, the SH3

domains attached to the transmembrane domains of the Sho1 receptor (Sho1SH3) in many

27

species can operationally be defined as orthologs.

But at a biochemical level, are orthologs more functionally similar to each other than to

paralogs? Orthologs are commonly thought to be more similar in function than paralogs,

following the "standard model" of orthology. However, some have questioned the validity

of this assertion. For example, in steroid hormone receptors, some orthologs have diverged

to bind different ligands, while some paralogs have acquired the capacity to bind the same

ligand. Hence, orthologs can vary, and paralogs need not necessarily vary much, challenging

the notion of a fundamental difference between orthologs and paralogs.

In the case of Sho1SH3, it may be interesting to have a model system that allows clear,

distinct, and measurable definitions of function in orthologs and paralogs. This would en-

able a systematic study of the divergence of these properties as a function of evolutionary

distance. In this context, orthologs of Sho1SH3 can be defined as those SH3 domains that

present in the Sho1 receptor, and paralogs as those SH3 domains attached to other molecules.

The "function of orthologs" can be defined as the capacity to support growth in high-osmolar

external conditions (by binding Pbs2, positive design), while the "function of paralogs" can

be defined as not carrying out that function (not binding Pbs2, negative design). Investigat-

ing whether paralogs show similar or different divergence of function compared to orthologs

as a function of evolutionary distance can provide insights into the implementation of var-

ious aspects of fitness, such as how fitness is positively and negatively designed in natural

proteins.

5.1 Orthology and Phylogeny in VAE Latent Spaces

We firstly embedded the SH3 sequences into VAE latent spaces to identify potentially insight-

ful evolutionary patterns. Fig. 5 and 6 shows the structure of the 3D InfoVAE latent space for

the SH3 family. Interestingly, annotation shows that phylogeny is not the primary organizing

principle [Ding et al., 2019]. For example, SH3 sequences from the Saccaromycotina family,

28

the Pezizomycotina class, and the Basidiomycota division are distributed throughout the

latent space with no immediately obvious pattern of localization (Fig. 5A). In contrast, se-

quences are more distinctly organized by paralog group in the fungal genomes. The (Bzz11,

Abp1, Rvs167, and Sho1 SH3 domains fall into distinct wedge-like divisions of the latent

space (Fig. 5B and 6). However, within each paralog wedge, a sub-organization by phy-

logeny is evident. For example, for the Sho1SH3 group, the Ascomycota and Basidomycota

divisions form two branches extending radially from the origin of the latent space, and the

non-dikarya SH3 domains are more proximal. The precise meaning of the spatial distribu-

tion within the patterns is a matter for further study, but we can conclude that the InfoVAE

produces a hierarchical organization of SH3 homologs in which functional distinctions are

primary, and phylogeny is secondary. In the mean time, the vanilla VAE latent space shows

a similar hierarchical clustering (Fig. 8).

Further more, we used the trained InfoVAE encoder to embed sequences with only intrin-

sic constraints at the bmDCA generated sequences into the latent space. These embeddings

test how sequences made with just first- and second-order MSA statistics are represented

(Fig. 4). The data show that these sequences localize closer to the origin of the VAE latent

space, with no observed probability density in the peripheral regions that best distinguish

the fungal paralog groups (Fig. 5B and 6). Note that the VAEs are trained to produce latent

space that are multi-dimensional Gaussians; thus, the basic result here is that the bmDCA

sequences tend towards the average position in latent space. In contrast, VAE sequences ex-

tend to more unique positions in the tails of the distribution. These findings suggest that the

VAE is learning a different and potentially deeper representation of the information content

of SH3 sequences.

29

5.2 Relationship between Osmosensing Function and Evolutionary

Distance from S. cerevisiae

To explore the connection between osmosensing function and the evolutionary distance of the

SH3 domain from S. cerevisiae genome, we conducted a high-throughput yeast osmosensing

assay on 7865 natural SH3 sequences. The results are depicted in Figure...

30

CHAPTER 6

IMPLICATIONS FOR FUTURE RESEARCH IN PROTEIN

DESIGN

We investigated the diversity and specificity of the SH3 protein family and their role in

protein-protein interactions and cellular signaling using the yeast osmosensor, Sho1SH3, as

a model. Various experimental techniques, such as high-throughput osmosensing assays and

in vitro SH3 tests, were employed to acquire robust experimental data. This data was used

to build data-driven models, including bmDCA and VAEs for designing novel functional

osmosensing orthologs. The designed sequences reproduced the diversity, and expanded the

functional space of natural proteins. In this last chapter, we will discuss the impact of the

computational models and the experimental systems built in this study, and point out future

directions of research based on our findings.

6.1 Advantages and Impact of the Experimental Model System

The high-throughput yeast osmosensing experimental system has proven itself as a power-

ful tool in the fields of protein design and understanding protein binding properties. This

system allows for the straightforward design of SH3 domains based on model sequences and

readily facilitates their testing. One of the system’s paramount advantages is its efficiency.

The entire process, encompassing gene cloning, yeast transformation accumulation across

2-3 batches, and the selection assay, takes merely a week each. This streamlines the process

and ideally allows for a full iteration to be completed in just a month. Furthermore, the

osmosensing system is cost-effective. The absence of expensive reagents dramatically reduces

the costs associated with each iteration. The requirements are limited to an osmosensitive

yeast strain and a vector containing the Sho1 gene.

This experimental system facilitates research on data-driven, iterative optimization of pro-

31

tein function. Data obtained from the assay can be promptly incorporated back into the

model to enhance its accuracy and predictability, effectively creating a loop of continuous

improvement.

The practical utility and effectiveness of this experimental workflow have been validated by

the several data-driven protein design studies we have conducted using this assay [Lian et al.,

2022, Fields et al., 2023, Praljak et al., 2023]. These studies underscore the system’s ability

to expedite research in protein design and binding properties, demonstrating its significant

potential in advancing the field.

6.2 Deep Mutational Scan for Different Paralogs for the Same

Function

DMS provides a quantitative measure of the functional effects of mutations. Subramanian

et al. conducted a DMS experiment on the wild-type S. cerevisiae Sho1SH3 domain Subra-

manian [2017], revealing a bimodal distribution, indicating that the majority of mutations

across most positions are neutral. What about the behavior for different SH3 homologs for

osmo-sensing function? It would be intriguing to carry out DMS experiments for several

other SH3 domains:

(1) a partial rescuing Sho1SH3 in Basdiomycota;

(2) a partial rescuing Hof1SH3 in Basdiomycota.

By analyzing the DMS outcomes of distantly related Basidiomycota SH3 domains, we can

gain insights into their functional diversity and potentially uncover novel allosteric effects.

It is possible that these domains exhibit different responses to mutations, which could con-

tribute to variations in their overall functional outcomes.

Furthermore, we are interested in investigating whether specific mutations in these Basid-

iomycota SH3 domains could result in a gain-of-function phenotype. Understanding the

potential for gain-of-function mutations is crucial as it sheds light on the evolutionary paths

32

and adaptive strategies employed by these domains.

Finally, it would be intriguing to show which positions within these Basidiomycota SH3 do-

mains contribute to the diminishing of "design effects." Identifying the specific positions that

are more tolerant of mutations or have a greater impact on functional outcomes will provide

valuable insights into the structural and functional constraints acting on these domains.

By conducting DMS experiments on Basidiomycota SH3 domains, we aim to expand our

understanding of their functional effects, uncover potential allosteric mechanisms, explore

gain-of-function possibilities, and identify critical positions for future design considerations.

Overall, this can be a promising direction based on our work for future researchers.

6.3 Semi-supervised InfoMax VAE

In the previous chapters, we have focused on the unsupervised VAEs, which rely solely on

the intrinsic structure of the protein sequence data for representation learning and genera-

tion. To expand the potential applications and capabilities of VAE guided protein design,

it is worthwhile to consider the incorporation of labeled information or fitness scores (rel-

ative enrichments) within the framework. In this chapter, I will introduce the concept of

semisupervised InfoVAE as a promising model for further research [Praljak and Ferguson,

2022, Praljak et al., 2023]. The Semi-supervised InfoMax Variational Autoencoder (VAE) is

an advanced framework employed in protein design that leverages fitness scores of protein

sequences to guide the design process. By sampling from the latent space where fitness scores

are high, the approach aims to enhance the efficiency of generating functional proteins.

The loss function for the Semi-supervised InfoMax (MMD) VAE can be represented as

follows:

LMMD = Epdata(x)
Eqϕ(z|x) [log pθ(x|z)]− Epdata(x)

MMD
[
qϕ(z)∥p(z)

]

33

LSS-MMD = LMMD + γEpdata(x,y)
[log pω(y|z)]

LMMD represents the MMD loss term, which computes the discrepancy between the

distributions of qϕ(z|x) and the prior distribution p(z). The term LSS-MMD denotes the

semi-supervised MMD loss, which incorporates the MMD loss with an additional term in-

volving labeled data. The additional term includes the likelihood of y given z in the form

of log pω(y|z). The parameter γ controls the importance of the supervised term (here is the

fitness score) relative to the MMD loss. Sample codes of a simple SS-MMD VAE can be

found at https://github.com/Ferg-Lab/Protein_design_mmdVAE_torch and chapter 7.

34

https://github.com/Ferg-Lab/Protein_design_mmdVAE_torch

CHAPTER 7

SUPPLEMENTARY CODES

7.1 Vanilla VAE

Listing 7.1: Model Architecture for the vanilla VAE
1 import numpy as np
2 import torch
3 import torch.nn as nn
4 import torch.nn.parallel
5 import torch.optim as optim
6

7 class VAE(nn.Module):
8 def __init__(self, q, d, n, q_n):
9 super(VAE, self).__init__()

10 self.hsize=int(1.5*q) # size of hidden layer
11 self.q = q
12 self.d = d
13 self.n = n
14 self.q_n = q_n
15

16 self.en1 = nn.Linear(self.q, self.hsize)
17 self.en2 = nn.Linear(self.hsize, self.hsize) #
18 self.en3 = nn.Linear(self.hsize, self.hsize)
19 self.en_mu = nn.Linear(self.hsize, d)
20 self.en_std = nn.Linear(self.hsize, d) # Is it logvar?
21

22 self.de1 = nn.Linear(d, self.hsize)
23 self.de2 = nn.Linear(self.hsize, self.hsize) #
24 self.de22 = nn.Linear(self.hsize, self.hsize)
25 self.de3 = nn.Linear(self.hsize, self.q)
26

27 self.relu = nn.ReLU()
28 self.sigmoid = nn.Sigmoid()
29 self.tanh = nn.Tanh()
30 self.softmax = nn.Softmax(dim=1)
31

32 self.dropout1 = nn.Dropout(p=0.3)
33 self.dropout2 = nn.Dropout(p=0.3)

35

34

35 self.bn1 = nn.BatchNorm1d(self.hsize) # batchnorm layer
36 self.bn2 = nn.BatchNorm1d(self.hsize)
37 self.bn3 = nn.BatchNorm1d(self.hsize)
38 self.bnfinal = nn.BatchNorm1d(self.q)
39

40 def encode(self, x):
41 """Encode a batch of samples, and return posterior parameters for each

point."""
42 x = self.tanh(self.en1(x)) # first encode
43 x = self.dropout1(x)
44 x = self.tanh(self.en2(x))
45 x = self.bn1(x)
46 x = self.tanh(self.en3(x)) # second encode
47 return self.en_mu(x), self.en_std(x) # third (final) encode, return mean

and variance
48

49 def decode(self, z):
50 """Decode a batch of latent variables"""
51 z = self.tanh(self.de1(z))
52 z = self.bn2(z)
53 z = self.tanh(self.de2(z))
54 z = self.dropout2(z)
55 z = self.tanh(self.de22(z))
56

57 # residue-based softmax
58 # - activations for each residue in each position ARE constrained 0-1 and

ARE normalized (i.e., sum_q p_q = 1)
59 z = self.bn3(z)
60 z = self.de3(z)
61 z = self.bnfinal(z)
62 z_normed = torch.FloatTensor() # empty tensor?
63

64 for j in range(self.n):
65 start = np.sum(self.q_n[:j])
66 end = np.sum(self.q_n[:j+1])
67 z_normed_j = self.softmax(z[:,start:end])
68 z_normed = torch.cat((z_normed,z_normed_j),1)
69 return z_normed
70

71 def reparam(self, mu, logvar):
72 if self.training:

36

73 std = logvar.mul(0.5).exp_()
74 eps = std.data.new(std.size()).normal_() # torch variable
75 return eps.mul(std).add_(mu)
76 else:
77 return mu
78

79 def forward(self, x):
80 """Takes a batch of samples, encodes them, and then decodes them again to

compare."""
81 mu, logvar = self.encode(x.view(-1, self.q)) # get mean and variance
82 z = self.reparam(mu, logvar)
83 return self.decode(z), mu, logvar
84

85 def loss(self, reconstruction, x, mu, logvar):
86 """ELBO assuming entries of x are binary variables, with closed form

KLD."""
87 bce = torch.nn.functional.binary_cross_entropy(reconstruction, x.view(-1,

self.q))
88 KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
89 # Normalise by same number of elements as in reconstruction
90 KLD /= x.view(-1, self.q).data.shape[0] * self.q
91 return bce + KLD
92

93 def get_z(self, x):
94 """Encode a batch of data points, x, into their z representations."""
95 mu, logvar = self.encode(x.view(-1, self.q))
96 return self.reparam(mu, logvar)

37

Listing 7.2: Train the vanilla VAE
1 import sys
2 import numpy as np
3 import argparse
4 import os
5 import time
6 import pickle
7 from model import *
8 import matplotlib as mpl
9

10

11 def VAEtrain(model, epoch, batches_per_epoch, v_train, v_val):
12

13 # optimizer
14 optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=0)
15

16 # batching and training
17 ind = np.arange(v_train.shape[0])
18 for i in range(batches_per_epoch):
19 data = torch.FloatTensor(v_train[np.random.choice(ind, size=batch_size)])

randomly sample training set
20 data = data.to(device)
21 optimizer.zero_grad()
22 pred, mu, logvar = model(data)
23 loss = model.loss(pred, data, mu, logvar) #loss(self, reconstruction, x,

mu, logvar)
24 loss.backward()
25 optimizer.step() # optimize function...
26

27 # training loss
28 data = torch.FloatTensor(v_train)
29 data = data.to(device)
30 pred, mu, logvar = model(data)
31 train_loss = model.loss(pred, data, mu, logvar)
32 train_loss = train_loss.cpu().detach().numpy() # network is trained on this

loss, maximize P(X), what the network see
33

34 diff = pred.cpu().detach().numpy() - v_train
35 train_loss_MSE = np.mean(diff**2) # mean square error per position, for human

to see. Network does not know it.
36

38

37 # validation loss
38 data = torch.FloatTensor(v_val)
39 data = data.to(device)
40 pred, mu, logvar = model(data)
41 val_loss = model.loss(pred, data, mu, logvar)
42 val_loss = val_loss.cpu().detach().numpy()
43

44 diff = pred.cpu().detach().numpy() - v_val
45 val_loss_MSE = np.mean(diff**2)
46

47 if (epoch % 10 == 0):
48 print(’====> Epoch %d done! Train loss = %.2e, Val loss = %.2e, Train loss

MSE = %.2e, Val loss MSE = %.2e’ %
(epoch,train_loss,val_loss,train_loss_MSE,val_loss_MSE))

49

50 return train_loss, val_loss, train_loss_MSE, val_loss_MSE
51

52

53 def VAEtest(model, v_test):
54

55 data = torch.FloatTensor(v_test)
56 data = data.to(device)
57 pred, mu, logvar = model(data) # model is VAE?
58

59 # ELBO test loss
60 test_loss = model.loss(pred, data, mu, logvar)
61 test_loss = test_loss.cpu().detach().numpy()
62

63 # MSE test loss
64 diff = pred.cpu().detach().numpy() - v_test
65 test_loss_MSE = np.mean(diff**2)
66

67 return pred, test_loss, test_loss_MSE
68

69

70 if __name__ ==’__main__’:
71 parser = argparse.ArgumentParser()
72 parser.add_argument("-n", dest ="name", default=’protein’, type=str,

help="Name of your protein.")
73 parser.add_argument("-e", dest ="nbepoch", default=55, type=int, help="number

of training epochs.")
74 options = parser.parse_args()

39

75

76 if os.environ.get(’DISPLAY’,’’) == ’’:
77 print(’no display found. Using non-interactive Agg backend’)
78 mpl.use(’Agg’)
79

80 if torch.cuda.is_available():
81 print("=> Using GPU")
82 print("CUDA device count =")
83 print (torch.cuda.device_count())
84 print("Selecting decvice = cuda:0")
85 device = torch.device("cuda:0")
86 print("Device name = ")
87 print (torch.cuda.get_device_name(0))
88 else:
89 print("=> Using CPU")
90 device = torch.device("cpu")
91

92 # fix random seed for reproducibility
93 randstate = 200
94 np.random.seed(randstate)
95 torch.manual_seed(randstate)
96 if device == torch.device("cuda:0"):
97 randstate = 2000 # RCC fela #1234
98 np.random.seed(randstate)
99 torch.manual_seed(randstate)

100 torch.cuda.manual_seed_all(randstate)
101

102

103 path = ’../Outputs/’
104 parameters = pickle.load(open(path + options.name + ".db", ’rb’))
105 q_n = parameters[’q_n’]
106 v_traj_onehot = parameters[’onehot’]
107

108 print(v_traj_onehot.shape)
109 print(’number of possible amino acids in each position q_n = \n’,q_n)
110 print(’length(q_n) = ’,len(q_n))
111

112 N=np.size(v_traj_onehot,axis=0)
113 q=np.size(v_traj_onehot,axis=1)
114 n=np.size(q_n)
115 idx = np.arange(N)
116

40

117 test_frac = 0.01
118 val_frac = 0.20
119 v_train_val, v_test, idx_train_val, idx_test = train_test_split(v_traj_onehot,

idx, test_size=test_frac, random_state=randstate)
120

121 print ("N = %d" % N)
122

123 v_train, v_val, idx_train, idx_val, = train_test_split(v_train_val,
idx_train_val, test_size=val_frac/(1-test_frac), random_state=randstate)

124 print ("Training starts...")
125

126 # training final VAE over all train_val data at optimal d
127 # manually modify after finding optimal training length.
128 start=time.time()
129

130 d=3
131 batch_size = 40
132 over_batch = 5
133 batches_per_epoch =

np.int32(over_batch*np.ceil(v_train_val.shape[0]/batch_size))
134 nb_epoch = options.nbepoch # Optimal nb_epoch is 55.
135

136 model = VAE(q, d, n, q_n).to(device)
137

138 loss_train = []
139 loss_train_MSE = []
140 for epoch in range(1, nb_epoch+1):
141 train_loss, _, train_loss_MSE, _ = VAEtrain(model, epoch,

batches_per_epoch, v_train_val, v_val)
142 # training together with validation set are used together to train the

final VAE.
143 loss_train.append(train_loss)
144 loss_train_MSE.append(train_loss_MSE)
145

146 end = time.time()
147 print("Using device = %s" % device)
148 print("Elapsed time %.2f (s)" % (end - start))
149

150 # saving trained model
151 save_path = "./VAE_"+options.name+".pyt"
152 torch.save(model.state_dict(), save_path)

41

Listing 7.3: Generate novel protein sequences by the vanilla VAE
1 #!/usr/bin/env python
2 # coding: utf-8
3

4 import sys
5 import numpy as np
6 import os
7 import argparse
8 import pickle
9 import multiprocessing as mp

10 import time
11 import shutil
12 from itertools import repeat
13

14 import toolkit
15 from model import *
16

17 from Bio import SeqIO
18 from Bio import AlignIO
19

20

21 if __name__ ==’__main__’:
22 parser = argparse.ArgumentParser(description=’Hint: In total ngen*nsamp new

sequences are generated, default 1000. Then they are filtered according to
thresholds of minimum Hamming distance.’)

23

24 parser.add_argument("-g", "--ngen", dest ="ngen",
25 default=1000, type=int,
26 help="times of sampling in the latent space. Default 1000.

Recommended to enter a multiple of 10.")
27 parser.add_argument("-s", "--nsamp", dest ="nsamp",
28 default=10, type=int,
29 help="times of throwing dice at each sampling point. Default

10")
30 parser.add_argument("-r", "--randseed", dest ="randseed",
31 default=1000, type=int, help="Random seed. Default 1000.")
32 parser.add_argument("-n", "--name", dest ="name",
33 default=’protein’, type=str, help="Name of your protein.")
34 parser.add_argument("-c", "--custom", dest ="custom",
35 default=’’, type=str,
36 help="A custom string for your generated sequence file name.

42

Default None.")
37

38 parser.add_argument("-a", "--sca", dest="sca", action="store_true",
39 default=False, help="Compute SCA for generated sequecnes")
40

41 options = parser.parse_args()
42 device = torch.device("cpu")
43 torch.manual_seed(20)
44

45 print(’Loading data...’)
46 path = ’../Outputs/’
47 parameters = pickle.load(open(path + options.name + ".db", ’rb’))
48 q_n = parameters[’q_n’]
49 aaindex = parameters[’index’]
50 v_traj_onehot = parameters[’onehot’]
51 records_MSA = parameters[’seq’]
52

53 N=np.size(v_traj_onehot,axis=0)
54 q=np.size(v_traj_onehot,axis=1)
55 n=np.size(q_n)
56

57 print(’Loading VAE...’)
58 d=3
59 model = VAE(q, d, n, q_n)
60 model.load_state_dict(torch.load(’VAE_SH3.pyt’,map_location=’cpu’))
61 model.eval()
62

63 # Generate new sequences
64 start_all = time.time()
65

66 seed = options.randseed
67 n_gen = options.ngen
68 n_sample = options.nsamp
69

70 np.random.seed(seed)
71 real_nohot_list = toolkit.convert_nohot(v_traj_onehot, q_n)
72 seed_list = np.random.randint(0, 2**32, 10)
73 #pool = mp.Pool(mp.cpu_count())
74

75 print(’Start generating sequences...’)
76 st_time = time.time()
77

43

78 np.random.seed(seed)
79 z_gen = np.random.normal(0., 1., (n_gen, d)) #generate normal distribution of

random numbers
80 data = torch.FloatTensor(z_gen).to(device)
81 data = model.decode(data) # Use the decoding layer to generate new sequences.
82 v_gen = data.cpu().detach().numpy()
83 sample_list = []
84 z_list = []
85

86 for i in range(int(n_gen/10)):
87 for k in range(n_sample):
88 v_samp_nothot = toolkit.sample_seq(seed+k, q, n, q_n, i, v_gen)
89 sample_list.append(v_samp_nothot)
90 z_list.append(z_gen[i])
91

92 alp_new_seq = toolkit.convert_alphabet(np.array(sample_list), aaindex, q_n)
93 end_time = time.time()
94 print("Elapsed time %.2f (s)" % (end_time - st_time))
95

96 print(’Computing VAE logP for selected sequences...’)
97 st_time = time.time()
98

99 print(’Converting generated sequences to Potts...’)
100 new_potts, _ = toolkit.convert_potts(alp_new_seq, aaindex)
101 print(’Reconstructing with VAE...’)
102 pred_ref,_,_ = model(torch.FloatTensor(new_potts))
103 p_weight = pred_ref.cpu().detach().numpy()
104 print(’computing logP...’)
105 log_norm = toolkit.make_logP(new_potts, p_weight, q_n)
106

107 if options.sca:
108 print(’Start computing SCA...’)
109 filename = options.name+ options.custom+’_sca’
110 if os.path.isdir(’output’)==0:
111 os.mkdir(’output’)
112 with open(’output/’ + filename+’.fasta’, ’w’) as f:
113

114 # write the reference sequence
115 f.write(">2vkn_chainA_p001\n")
116 f.write("NFIYKAKALYPYDADDAYEISFEQNEILQVSDIEGRWWKARRNGETGIIPSNYVQLIDG\n")

#2vkn_chainA_p001
117

44

118 for item in alp_new_seq[:-1]:
119 f.write(">gi\n")
120 f.write("%s\n" % item)
121 os.system(’scaProcessMSA -a output/’ + filename +’.fasta -b data -s 2VKN

-c A -p 0.3 0.2 0.2 0.8’)
122 # Note: the above line should be customes based on the protein family you

chose
123 os.system(’scaCore -i output/’ + filename +’.db’)
124 os.system(’scaSectorID -i output/’ + filename +’.db’)
125

126 if os.path.isfile(path + filename +’.db’):
127 os.remove(path + filename +’.db’)
128 os.rename(’output/’+filename +’.db’,path + filename +’.db’)
129 shutil.rmtree(’output’)
130 print(’SCA computing finished.’)
131

132 end_time = time.time()
133 print("Elapsed time %.2f (s)" % (end_time - st_time))
134

135 np.savez(path + options.name + options.custom + ’gen_data.npz’, seq =
alp_new_seq, ham = 0, logP = log_norm, z_list = z_list)

136

137 end_all = time.time()
138 print("\nTotal elapsed time %.2f (s)" % (end_all - start_all))

45

7.2 InfoMax VAE

Listing 7.4: Model Architecture for Unsupervised and Supervised InfoVAEs
1 import torch
2 import torch.nn as nn
3 import torch.nn.parallel
4 import torch.optim as optim
5 import torch.utils.data
6 from sklearn.model_selection import train_test_split
7

8 class Encoder(nn.Module):
9

10 def __init__(self, seq_len, aa_var, zdim, alpha):
11 super(Encoder, self).__init__()
12

13 self.zdim = zdim
14 self.seq_len = seq_len
15 self.aa_var = aa_var
16 self.alpha = alpha
17 self.q = seq_len * aa_var
18 self.hsize=int(1.5*self.q)
19 #self.en_mu = nn.Linear(self.hsize, d)
20 #self.en_std = nn.Linear(self.hsize, d)
21

22 self.model = nn.Sequential(
23 #encoder layer 1
24 nn.Linear(self.q, self.hsize),
25 nn.LeakyReLU(self.alpha, inplace=True),
26 nn.Dropout(p=0.3),
27

28 #encoder layer 2
29 nn.Linear(self.hsize, self.hsize),
30 nn.LeakyReLU(self.alpha, inplace=True),
31 nn.BatchNorm1d(self.hsize), # BN1
32

33 #encoder layer 3
34 nn.Linear(self.hsize, self.hsize),
35 nn.LeakyReLU(self.alpha, inplace=True),
36

37 nn.Linear(self.hsize, self.zdim)
38)

46

39 def forward(self, x):
40 x = x.view(x.size(0), self.q)
41 return self.model(x)
42

43 class Decoder(nn.Module):
44

45 def __init__(self, seq_len, aa_var, zdim, alpha):
46 super(Decoder, self).__init__()
47

48 self.seq_len = seq_len
49 self.aa_var = aa_var
50 self.alpha = alpha
51 self.q = seq_len * aa_var
52 self.zdim = zdim
53 self.hsize=int(1.5*self.q)
54

55 self.model = nn.Sequential(
56 #decoder layer 1
57 nn.Linear(self.zdim, self.hsize),
58 nn.LeakyReLU(self.alpha, inplace=True),
59 nn.BatchNorm1d(self.hsize), #BN2
60

61 #decoder layer 2
62 nn.Linear(self.hsize, self.hsize),
63 nn.LeakyReLU(self.alpha, inplace=True),
64 nn.Dropout(p=0.3),
65

66 #decoder layer 3
67 nn.Linear(self.hsize, self.hsize),
68 nn.LeakyReLU(self.alpha, inplace=True),
69 nn.BatchNorm1d(self.hsize),
70

71 nn.Linear(self.hsize, self.q),
72 #nn.BatchNorm1d(self.q), #BNfinal
73)
74 def forward(self, z):
75 outputs = self.model(z)
76 outputs = outputs.view(z.size(0), self.seq_len, self.aa_var)
77 outputs = nn.Softmax(dim = 2)(outputs)
78 return outputs
79

80 class Regression(nn.Module):

47

81 def __init__(self, zdims, omega = 10, p = 0.2):
82 super(Regression, self).__init__()
83 self.zdims = zdims
84 self.omega = omega
85 self.tanh = nn.Tanh()
86 self.relu = nn.ReLU()
87 self.p = p
88

89 self.dropout = nn.Dropout(p)
90

91 self.regressor = nn.Linear(self.zdims, self.omega)
92 nn.init.xavier_normal_(self.regressor.weight)
93

94 self.regressor_out = nn.Linear(self.omega, self.omega)
95 nn.init.xavier_normal_(self.regressor_out.weight)
96

97 self.dense_out_R = nn.Linear(self.omega, 1)
98 nn.init.xavier_normal_(self.dense_out_R.weight)
99

100 def forward(self, z):
101 h_R = self.dropout(self.tanh(self.regressor(z)))
102 h_R = self.dropout(self.relu(self.regressor_out(h_R)))
103 out = self.dense_out_R(h_R)
104 return out
105

106

107 def loss_function(recon_x, x, z, device_name):
108 batch_size = x.size(0)
109 zdim = z.size(1)
110 true_samples = torch.randn(batch_size, zdim, requires_grad =

False).to(device_name)
111

112 loss_MMD = compute_mmd(true_samples, z)
113 loss_REC = (recon_x - x).pow(2).mean()
114

115 return loss_REC + 2*loss_MMD, loss_REC, loss_MMD
116

117 def loss_ss(recon_x, x, z, y, y_pred, device_name):
118 batch_size = x.size(0)
119 zdim = z.size(1)
120

121 mask = ~torch.isnan(y)

48

122

123 true_samples = torch.randn(batch_size, zdim, requires_grad =
False).to(device_name)

124

125 loss_MMD = compute_mmd(true_samples, z)
126 loss_REC = (recon_x - x).pow(2).mean()
127 loss_pred= (y[mask] - y_pred[mask]).pow(2).mean()
128

129 return loss_REC + 2*loss_MMD + 0.5 * loss_pred, loss_REC, loss_MMD, loss_pred
130

131 def compute_kernel(x, y):
132 x_size = x.size(0)
133 y_size = y.size(0)
134 dim = x.size(1)
135 x = x.unsqueeze(1)
136 y = y.unsqueeze(0)
137

138 tiled_x = x.expand(x_size, y_size, dim)
139 tiled_y = y.expand(x_size, y_size, dim)
140 kernel_input = (tiled_x - tiled_y).pow(2).mean(2)/float(dim)
141 return torch.exp(-kernel_input)
142

143 def compute_mmd(x, y):
144 x_kernel = compute_kernel(x, x)
145 y_kernel = compute_kernel(y, y)
146 xy_kernel = compute_kernel(x, y)
147 mmd = x_kernel.mean() + y_kernel.mean() - 2*xy_kernel.mean()
148 return mmd
149

150 class MMD_VAE(nn.Module):
151 def __init__(self, zdims, seq_len, aa_var, alpha):
152 super(MMD_VAE, self).__init__()
153 self.zdims = zdims
154 self.seq_len = seq_len
155 self.aa_var = aa_var
156 self.alpha = alpha
157 self.encoder = Encoder(self.seq_len, self.aa_var, self.zdims, self.alpha)
158 self.decoder = Decoder(self.seq_len, self.aa_var, self.zdims, self.alpha)
159

160 def forward(self, x):
161 z = self.encoder(x)
162 recon_x = self.decoder(z)

49

163 return z, recon_x
164

165

166 class SS_MMD(nn.Module):
167 def __init__(self, zdims, seq_len, aa_var, alpha):
168 super(SS_MMD, self).__init__()
169 self.zdims = zdims
170 self.seq_len = seq_len
171 self.aa_var = aa_var
172 self.alpha = alpha
173

174 self.encoder = Encoder(self.seq_len, self.aa_var, self.zdims, self.alpha)
175 self.decoder = Decoder(self.seq_len, self.aa_var, self.zdims, self.alpha)
176

177 self.regressor = Regression(self.zdims)
178

179 def forward(self, x):
180 x = x.view(x.size(0), self.seq_len*self.aa_var)
181 z = self.encoder(x)
182

183 recon_x = self.decoder(z)
184 pred_y = self.regressor(z)
185

186 return z, recon_x, pred_y

50

7.3 Others

Listing 7.5: Codes for reverse translation and verification
1 #!/usr/bin/env python
2 # coding: utf-8
3

4 # In[1]:
5

6

7 from __future__ import division
8 import sys
9 import numpy as np

10 import csv
11 import pandas as pd
12 from Bio.Seq import Seq
13 from Bio import SeqIO
14 import Bio.SeqUtils.MeltingTemp as mt
15 import scipy.io as sio
16 import matplotlib.pyplot as plt
17

18

19 # In[2]:
20

21

22 # function to get sequences
23 def get_seq(filename, get_header = False):
24 records = list(SeqIO.parse(filename, "fasta"))
25 records_seq = [i.seq for i in records]
26 headers = [i.description for i in records]
27 if get_header == True:
28 return records_seq, headers
29 else:
30 return records_seq
31

32

33 # ## Get fasta file for protein sequences to be reverse-translated
34 #
35 # * Gaps in the fasta file should be removed in advance. Use *remove_gap_fasta.py*

to remove gaps:
36 #
37 # python remove_gap_fasta.py *input_file.fasta* *output_name*

51

38 #
39 # example:
40 #
41 # python remove_gap_fasta.py *Inputs/test.fasta* *test2*
42

43 # In[3]:
44

45

46 filename = ’Final_New_Proteins_nogap.fasta’
47 seq, head = get_seq(’Inputs/’+filename, get_header = True)
48 N = len(seq)
49

50 fill_to = 250
51

52

53 # ---
54 # ## Process BLAST results
55 # If there is already *localkeep_New_Proteins.fasta* and *lib_local.mat*, **skip

these two steps.**
56 # 1. In this repository folder, run following commands to blast the local library:
57 #
58 # cd Inputs
59 # tblastn -query Final_New_Proteins_nogap.fasta -subject

../Utility/twist_red_seqs_forblast.an -max_target_seqs 1 -evalue 1e-3
-word_size 6 -outfmt 6 > blast_local.txt

60 #
61 # 2. Running following codes to remove sequences without blast results or

duplicated in blast results.
62

63 # In[4]:
64

65

66 blast = pd.read_csv("Inputs/blast_local.txt", sep = ’\t’, header=None)
67 Nb = len(blast)
68 print(’%d sequences blasted’ %Nb)
69

70

71 # In[5]:
72

73

74 keep = []
75 blast_head = np.array(blast[0])

52

76 for i in range(N):
77 if head[i] in blast_head:
78 keep.append(i)
79 print(’%d Sequences out of %d are kept.’ %(len(keep), len(seq)))
80

81

82 # In[6]:
83

84

85 blast_head = np.array(blast[0])
86 for i in range(N):
87 if head[i] not in blast_head:
88 a = int(head[i][4:])
89 #print(a)
90 print(seq[a])
91

92

93 # In[7]:
94

95

96 blast_new = blast.copy()
97 blast_new2 = blast_new.loc[~blast_new[0].duplicated(keep=’first’)] # remove

dulicated blast results
98

99 # Check header match
100 for i in range(len(keep)):
101 assert np.array(blast_new2[0])[i] == head[keep[i]]
102

103

104 # In[7]:
105

106

107 # Write non-redundant protein list for kept after blast
108 with open(’Outputs/localkeep_New_Proteins.fasta’, ’w’) as f:
109 for i in range(N):
110 if i in keep:
111 f.write(">%s\n" %head[i])
112 f.write("%s\n" %seq[i])
113

114

115 # In[8]:
116

53

117

118 tfile = open(’Outputs/local_blast_keep.txt’, ’w’)
119 tfile.write(pd.DataFrame.to_csv(blast_new2, sep = ’\t’, index = 0, header = False))
120 tfile.close()
121

122

123 # In[9]:
124

125

126 seqg, headg = get_seq(’Utility/twist_red_seqs_forblast.an’, get_header = True)
127 Ng = len(seqg)
128

129 local_gene = []
130 bind_array = np.array(blast_new[1]).astype(str)
131 for i in range(Nb):
132 for j in range(Ng):
133 if bind_array[i] == headg[j]:
134 local_gene.append(seqg[j])
135 break
136

137

138 # In[10]:
139

140

141 a = [str(i).lower() for i in local_gene]
142 sio.savemat(’Outputs/local_gene.mat’, {’gene’:a})
143 # genes for the local blasted result, use the matlab file to trim...
144

145

146 # ---
147 # 3. Trim genes and get alignment using the matlab codes (*local.m*).
148 # 4. Run following codes to remove RE sites and add assembly primers.
149

150 # In[8]:
151

152

153 def sampling(aa, transdict, randstate):
154 # Sample the codon for a single amino acid position (return nothing if the

position is gap)
155 if aa == ’-’:
156 return ’’
157 elif np.size(TransDict[aa][’frequency’]) ==1:

54

158 #For AA with only one codon
159 return(TransDict[aa][’codon’])
160 else:
161 # for AA with more than one codons
162 np.random.seed(randstate)
163 sample_tmp = np.random.multinomial(1,np.array(TransDict[aa][’frequency’]))
164 sample_index = np.where(sample_tmp!=0)[0]
165 return TransDict[aa][’codon’][sample_index][0]
166

167

168 # In[9]:
169

170

171 seqkeep, headkeep = get_seq(’Outputs/localkeep_New_Proteins.fasta’, get_header =
True)

172 # Get genes trimmed by matlab
173 lib = sio.loadmat(’Outputs/lib_local.mat’)[’lib’]
174 CodonUsageTable = pd.ExcelFile(’Utility/yeast_codon.xlsx’).parse().set_index(’aa’)
175

176

177 # In[10]:
178

179

180 TransDict = {} # dictionary to map amino acid with codons. One AA corresponds to
>=1 codons

181 for i in set(CodonUsageTable.index): # Add dictionary for each amino acid
182 TransDict.update({i:CodonUsageTable.loc[i]})
183

184

185 # In[11]:
186

187

188 gene = [lib[i][0][5][0].upper() for i in range(len(seqkeep))] # top-hitting
natural genes of the designed seqs

189 Nm = len(gene)
190

191

192 # In[12]:
193

194

195 # split gene by codons
196 gene_split = []

55

197 for i in gene:
198 assert len(i)%3 == 0, ’length error’
199 length = int(len(i)/3)
200 codon_split = []
201 for j in range(length):
202 codon_split.append(i[j*3:j*3+3])
203 assert i == ’’.join(codon_split)
204 gene_split.append(codon_split)
205

206

207 # In[13]:
208

209

210 # Proteins to be reverse translated, use the one aligned by matlab to keep
consistent for translation.

211 protein, ref = [], []
212 for i in range(Nm):
213 protein.append(lib[i][0][4][0])
214 ref.append(lib[i][0][4][2])
215 assert protein[i].replace(’-’,’’) == str(seqkeep[i]).replace(’-’,’’)
216

217

218 # In[14]:
219

220

221 fw_assembly_p = ’CCGGTTGTACCTATCGAGTG’+’GGATCC’ # bamH1 + forward primer
222 rv_assembly_p = ’GAATTC’+’GTACCTCTCCTTGCATGGTC’ # EcoR1 + reverse component of

reverse primer
223

224 resites={’GGATCC’,’GAATTC’,’AAAAA’,’GGGGG’,’CCCCC’,’TTTTT’}; # BamH1, EcoR1 and
replicating pattern

225

226

227 # In[29]:
228

229

230 gene_design, problematic_index = [], []
231 global_rand = 1
232 for i in range(Nm):
233 gene_tmp, flag, gene_ind, pro_ind = ’’, 0, 0, 0
234 # Initially flag=0, if sampled gene is problematic flag=1, if it’s good flag=2
235 avoid_homology_para = 0

56

236 for j in range(len(protein[i])):
237 if protein[i][j] == ’-’:
238 pass
239 elif protein[i][j] != ref[i][j] or avoid_homology_para == 5:
240 # Sample a new codon if AA don’t match at the position.
241 # protein[i]: i th designed protein
242 # ref[i]: top hit natural protein of i th designed protein, according

to blast result
243 gene_tmp += sampling(protein[i][j], TransDict, global_rand)
244 global_rand += 1
245 # Use a global random number to get different sampled codon every time.
246 # here the randomseed=0 problem should be solved.
247 avoid_homology_para = 0
248 # avoid_homology_para is a parameter to avoid homology caused by

multiple designed seqs are
249 # "mutated" from one natural allele. after each 5 continuous codons

same with the natural allele,
250 # it makes the 6th to be a newly sampled codon.
251 else:
252 gene_tmp += gene_split[i][gene_ind] # use the original codon if match
253 avoid_homology_para += 1
254 if ref[i][j] != ’-’: # skip gaps
255 gene_ind += 1
256 if protein[i][j] != ’-’:
257 pro_ind += 1
258 gene_tmp = gene_tmp.replace(’U’,’T’) # replace codon to gene
259

260 # Special treatment to terminals of the gene to avoid unwanted RE sites at
terminals.

261 # This check is specific for BamHI and EcoRI. Should be modified for other RE
sites.

262

263 if protein[i].replace(’-’,’’)[0] == ’T’:
264 gene_tmp = ’ACA’ + gene_tmp[3:]
265 if protein[i].replace(’-’,’’)[0] == ’P’:
266 gene_tmp = ’CCG’ + gene_tmp[3:]
267 if protein[i].replace(’-’,’’)[-1] == ’S’:
268 gene_tmp = gene_tmp[:-3]+’AGC’
269 if protein[i].replace(’-’,’’)[-1] == ’G’:
270 gene_tmp = gene_tmp[:-3]+’GGC’
271

272 flag = 2

57

273 for k in resites:
274 if k in gene_tmp:
275 flag, modify_pos = 1, int(gene_tmp.find(k)/3)
276 break
277

278 randseed = 1
279 while flag ==1: # Correct problematic sequences by resampling
280 gene_fix, pro_ind = ’’, 0
281 left, right = int(modify_pos!=0), int(modify_pos<len(gene_tmp)-1) # if

it’s a terminal position
282 for j in range(len(protein[i])):
283 if pro_ind in np.arange(modify_pos-left,modify_pos+right+1):
284 gene_fix += sampling(protein[i][j], TransDict,

randseed+global_rand) # resampling
285 #print(i,j,randseed)
286 if protein[i][j] != ’-’:
287 pro_ind += 1
288 gene_tmp = gene_tmp[:(modify_pos-left)*3] + gene_fix +

gene_tmp[(modify_pos+right+1)*3:]
289 gene_tmp = gene_tmp.replace(’U’,’T’)
290

291 # Redo the treatment for terminal positions...
292 if protein[i].replace(’-’,’’)[0] == ’T’:
293 gene_tmp = ’ACA’ + gene_tmp[3:]
294 if protein[i].replace(’-’,’’)[0] == ’P’:
295 gene_tmp = ’CCG’ + gene_tmp[3:]
296 if protein[i].replace(’-’,’’)[-1] == ’S’:
297 gene_tmp = gene_tmp[:-3]+’AGC’
298 if protein[i].replace(’-’,’’)[-1] == ’G’:
299 gene_tmp = gene_tmp[:-3]+’GGC’
300

301 flag = 2
302 for k in resites: # Check again
303 if k in gene_tmp:
304 flag, modify_pos = 1, int(gene_tmp.find(k)/3)
305 randseed +=1
306 global_rand+=1
307 break
308 if randseed > 80:
309 flag = 2
310 for k in resites:
311 if k in gene_tmp:

58

312 problematic_index.append(i)
313 break
314 gene_design.append(gene_tmp)
315 if i%1000 == 0 and i!=0:
316 print(’%d finished...’ %i)
317 print(’Finished!’)
318

319

320 # In[30]:
321

322

323 print(’There are %d problematic sequences.’ %len(problematic_index))
324

325

326 # In[31]:
327

328

329 # Append the RE site + primer sequences to the genes
330 gene_design_fill = []
331 for i in gene_design:
332 gene_design_fill.append(fw_assembly_p + i + rv_assembly_p)
333

334

335 # 3. Generated random pudding sequences and append to the beginning to fill the
gene to 300mers.

336 #
337 # * Or 250mers if all of your SH3 genes are <= (250 - 52)/3 = 66 amino acids. View

Twist Price policy.
338

339 # In[15]:
340

341

342 # length of random sequences
343 def gen_randseq(gene):
344 len_randseq = []
345 for i in gene:
346 len_randseq.append(fill_to - len(i))
347

348 print(’Generating random sequences...’)
349 randseed = 0
350 randseq_list_fill = []
351 for i in len_randseq:

59

352 flag = 0
353 while flag == 0:
354 np.random.seed(randseed)
355 randseq = ’’.join([’ACTG’[j] for j in np.random.randint(0,4,i)])
356

357 flag = 1
358 for k in resites:
359 if k in randseq or k[:2] in randseq[-5:]:
360 flag = 0
361 randseed +=1
362 break
363 randseq_list_fill.append(randseq)
364 randseed +=1
365 return randseq_list_fill
366

367 def append_rand_seq(randlist, gene):
368 gene_fill_final = []
369 print(’Appending random sequences...’)
370 for i in range(len(gene)):
371 gene_fill_final.append(randlist[i]+gene[i])
372 return gene_fill_final
373

374

375 # In[33]:
376

377

378 randseq_list_fill = gen_randseq(gene_design_fill)
379 gene_fill_final = append_rand_seq(randseq_list_fill, gene_design_fill)
380 print(’Finished!’)
381

382

383 # 4. Append null alleles
384

385 # In[34]:
386

387

388 nulls = [’CCGGTTGTACCTATCGAGTGGGATCCTAGATAATTTCGGCGTGGGTATGGTGGCAGGCCCCGTGGCCGGGGGA
389 CTGTTGGGCGCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGTGCTCAACGGCCTCAACCTACTACTGGGCTGCTTCCT
390 AATGCAGGAGTCGCATAAGGGAGAGCGTCGAGATGAATTCGTACCTCTCCTTGCATGGTC’,
391 ’CCGGTTGTACCTATCGAGTGGGATCCTAGTTAATTTCGGCGTGGGTATGGTGGCAGGCCCCGTGGCCGGGGGACTGTTGGGC
392 GCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGTGCTCAACGGCCTCAACCTACTACTGGGCTGCTTCCTAATGCAGGA
393 GTCGCATAAGGGAGAGCGTCGAGATGAATTCGTACCTCTCCTTGCATGGTC’,

60

394 ’CCGGTTGTACCTATCGAGTGGGATCCTAGCTAATTTCGGCGTGGGTATGGTGGCAGGCCCCGTGGCCGGGGGACTGTTGGGC
395 GCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGTGCTCAACGGCCTCAACCTACTACTGGGCTGCTTCCTAATGCAGGA
396 GTCGCATAAGGGAGAGCGTCGAGATGAATTCGTACCTCTCCTTGCATGGTC’]
397

398 rand_for_null = gen_randseq(nulls)
399

400 nulls_fill = [rand_for_null[i]+nulls[i] for i in range(3)]
401

402

403 # 5. Write down the
404 # * Final list of designed proteins in the library
405 # * Final list of the filled oligos (250 or 300mer)
406

407 # In[41]:
408

409

410 with open(’Outputs/Final_New_Proteins_tosubmit.fasta’, ’w’) as f:
411 for i,item in enumerate(seqkeep):
412 f.write(">%s\n" %headkeep[i])
413 f.write("%s\n" %seqkeep[i])
414

415

416 # In[44]:
417

418

419 with open(’Outputs/oligo_fill.an’, ’w’) as f:
420 for i,item in enumerate(gene_fill_final):
421 f.write(">%s\n" %headkeep[i])
422 f.write("%s\n" %item)
423 for i in range(3):
424 f.write(">null%d\n" %i)
425 f.write("%s\n" %nulls_fill[i])
426

427

428 # In[26]:
429

430

431 print(’Writing excel file...’)
432 oligo = pd.DataFrame(data={’header’: headkeep,’gene’:gene_fill_final})
433 oligo.to_excel(’Outputs/oligo_fill.xlsx’)
434

435

61

436 # ## Check the final oligo
437 #
438 # Make sure of everything!
439 # 1. Check oligo structure
440

441

442 # In[16]:
443

444

445 tmp = pd.read_excel(’Outputs/oligo_fill_addNULL.xlsx’).iloc[:-3,:]
446 tmp_protein = get_seq(’Outputs/Final_New_Proteins_tosubmit.fasta’)
447 oligolist = tmp.gene
448

449

450 # In[29]:
451

452

453 frag_digest = []
454 for i in range(len(oligolist)):
455 oligo = oligolist[i]
456 frag_digest.append (oligo[oligo.find(’CCGGTTGTACCTATCGAGTGGGATCC’)+26 :

oligo.find(’GAATTCGTACCTCTCCTTGCATGGTC’)])
457

458

459 # In[18]:
460

461

462 # oligo length after digestion. check if (length % 3 == 0)
463

464 a = [len(i) for i in frag_digest]
465 plt.hist(a,30,edgecolor=’k’)
466 plt.xlabel(’Length’)
467 plt.ylabel(’Count’)
468 plt.show()
469

470

471 # In[19]:
472

473

474 for i in range(len(oligolist)):
475 assert len(oligolist[i]) == fill_to
476

62

477 # check if there is no RE sites, primers, replicated AAs in the oligos
478 for j in [’GGATCC’, ’GAATTC’, ’CCGGTTGTACCTATCGAGTGG’, ’GTACCTCTCCTTGCATGGTC’]:
479 assert oligolist[i].count(j)==1,i
480 for j in

[’GGGGG’,’AAAAA’,’TTTTT’,’CCCCC’,’GACCATGCAAGGAGAGGTAC’,’CCACTCGATAGGTACAACCGG’]:
481 assert j not in oligolist[i]
482

483 oligo = oligolist[i]
484 frag_digest = oligo[oligo.find(’CCGGTTGTACCTATCGAGTGGGATCC’)+26 :

oligo.find(’GAATTCGTACCTCTCCTTGCATGGTC’)]
485 translate = Seq(frag_digest).translate()
486

487 assert len(frag_digest)%3 ==0
488 assert str(translate) == str(tmp_protein[i])#.replace(’-’,’’) # translated

match protein
489

490

491 # In[73]:
492

493

494 for num, i in enumerate(oligolist):
495 for j in

[’CGGTTGTACCTATCGAGT’,’ACCATGCAAGGAGAGGTA’,’TACCTCTCCTTGCATGGT’,’ACTCGATAGGTACAACCG’]:
496 for k in range(1,17):
497 for h in [’A’,’C’,’T’,’G’,’AA’,’AC’,’AT’,’AG’,’CA’,’CC’,’CT’,’CG’,
498 ’TA’,’TC’,’TT’,’TG’,’GA’,’GC’,’GT’,’GG’]:
499 check_length = len(randseq_list_fill[num]) + 18
500 assert j[:k]+h+j[k+1:] not in str(i)[:check_length],i
501

502

503 # 2. GC ratio
504

505 # In[20]:
506

507

508 gc_ratio = []
509 for i in oligolist:
510 r=(i.count(’G’)+i.count(’C’))/fill_to
511 gc_ratio.append(r)
512 if r==0:
513 print(i)
514 break

63

515 plt.hist(gc_ratio,20,edgecolor=’k’)
516 print(’Max GC ratio = %.2f; Min GC ratio = %.2f’ % (max(gc_ratio),min(gc_ratio)))
517 plt.title(’library 1’)
518 plt.xlabel(’GC ratio’)
519 plt.ylabel(’Count’)
520 plt.show()
521

522

523 # 3. Codon usage
524

525 # In[21]:
526

527

528 frag_digest=[]
529 gene_split_new = []
530 for num, i in enumerate(oligolist):
531 frag_digest.append(i[i.find(’CCGGTTGTACCTATCGAGTGGGATCC’)+26 :

i.find(’GAATTCGTACCTCTCCTTGCATGGTC’)])
532 length = int(len(frag_digest[num])/3)
533 for j in range(length):
534 gene_split_new.append(frag_digest[num][j*3:j*3+3])
535

536

537 # In[22]:
538

539

540 plt.figure(figsize=[28,5])
541 plt.hist(gene_split_new,bins=122)
542 plt.title(’New’)
543 plt.show()
544

545

546 # In[23]:
547

548

549 gene_split_nat = [item for sublist in gene_split for item in sublist]
550 plt.figure(figsize=[28,5])
551 plt.hist(gene_split_nat,bins=122)
552 plt.title(’Natural’)
553 plt.show()

64

Listing 7.6: local.m used for trimming genes and getting alignment
1 lib=fastaread(’Outputs/localkeep_New_Proteins.fasta’);
2 localgene = load(’Outputs/local_gene.mat’).gene;
3 hits=blastreadlocal(’Inputs/blast_local.txt’, 8);
4

5 for i=1:numel(lib)
6 seq=lib(i).Sequence;
7 seq(seq==’-’)=[];
8 lib(i).protein=seq;
9 lib(i).len=numel(seq);

10 end
11 % now, retrieve the sequences from ncbi % load(’rid.mat’);
12

13 keep=zeros(size(lib));
14 for i=1:numel(hits)
15 percent=hits(i).Hits(1).HSPs(1).Identities(1).Percent;
16 if percent==100
17 keep(i)=1;
18 end
19 [mper, ind]=max(percent);
20 if mper ==100
21 hits(i).Hits(1:ind-1)=[]; keep(i)=1;
22 disp([num2str(i) ’ Corrected’]);
23 else
24 disp([num2str(i) ’ Fail’]);
25 end
26 end
27

28 per=zeros(1,1);
29 j=1;
30 per(j)=hits(i).Hits(j).HSPs(1).Identities(1).Percent;
31 for i=1:numel(lib)
32 region=hits(i).Hits(1).HSPs(1).SubjectIndices;
33 if region(2) < region(1) % reverse frame
34 region=sort(region);
35 sequence{i}=seqrcomplement(localgene(i,region(1):region(2)));
36 else
37 sequence{i}=localgene(i,region(1):region(2));
38 end
39

40 prot{i}=nt2aa(sequence{i},’AlternativeStartCodons’,’False’,’ACGTOnly’,’False’);

65

41 [a1,a2,a3]=nwalign(lib(i).Sequence, prot{i});
42 lib(i).a2=a2;
43 match(i)=sum(a2(2,:)==’|’)-lib(i).len;
44 disp(i);
45 end
46 % turns out, some 16 hits are not good matches. i’ll remove them from lib.
47

48 for i=1:numel(lib)
49 lib(i).dna=sequence{i};
50 end
51 %%save(’lib_local.mat’,’lib’)
52

53 lib1=lib;
54 save(’Outputs/lib_local.mat’,’lib’)

66

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian J.
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Józe-
fowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda B. Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

Ethan C Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M
Church. Unified rational protein engineering with sequence-based deep representation
learning. Nature Methods, 16(12):1315–1322, 2019.

D Altschuh, T Vernet, P Berti, D Moras, and K Nagai. Coordinated amino acid changes
in homologous protein families. Protein Engineering, Design and Selection, 2(3):193–199,
1988.

Namrata Anand, Raphael Eguchi, Irimpan I Mathews, Carla P Perez, Alexander Derry,
Russ B Altman, and Po-Ssu Huang. Protein sequence design with a learned potential.
Nature Communications, 13(1):1–11, 2022.

Christian B Anfinsen. Principles that govern the folding of protein chains. Science, 181
(4096):223–230, 1973.

Frances H Arnold. Directed evolution: Bringing new chemistry to life. Angewandte Chemie
International Edition, 57(16):4143–4148, 2018.

David Baker. An exciting but challenging road ahead for computational enzyme design.
Protein Science, 19(10):1817, 2010.

David Baker. Protein folding, structure prediction and design. Biochemical Society Trans-
actions, 42(2):225–229, 03 2014. ISSN 0300-5127. doi:10.1042/BST20130055. URL
https://doi.org/10.1042/BST20130055.

C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. The quickhull algorithm for
convex hulls. ACM Transactions on Mathematical Software, 22(4):469–483, 1996.

P. Barrat. bmDCA. https://doi.org/10.5281/zenodo.3825613, 2020.

Tristan Bepler and Bonnie Berger. Learning the protein language: Evolution, structure, and
function. Cell Systems, 12(6):654–669, 2021.

67

https://doi.org/10.1042/BST20130055
https://doi.org/10.1042/BST20130055

James U Bowie, John F Reidhaar-Olson, Wendell A Lim, and Robert T Sauer. Deciphering
the message in protein sequences: tolerance to amino acid substitutions. Science, 247
(4948):1306–1310, 1990.

David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sam-
pling for robust design. In International Conference on Machine Learning, pages 773–782.
PMLR, 2019.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems.
IEEE Transactions on Neural Networks, 6(4):911–917, 1995.

François Chollet. Keras: The python deep learning library. Astrophysics Source Code Library
(ascl-1806), 2018.

Simona Cocco, Christoph Feinauer, Matteo Figliuzzi, Rémi Monasson, and Martin Weigt.
Inverse statistical physics of protein sequences: a key issues review. Reports on Progress
in Physics, 81(3):032601, 2018.

Qian Cong, Ivan Anishchenko, Sergey Ovchinnikov, and David Baker. Protein interaction
networks revealed by proteome coevolution. Science, 365(6449):185–189, 2019.

Francis H Crick. On protein synthesis. In Symposia of the Society for Experimental Biology,
volume 12, pages 138–163. Symposia of the Society for Experimental Biology, 1958.

Vincent Dahirel, Karthik Shekhar, Florencia Pereyra, Toshiyuki Miura, Mikita Artyomov,
Shiv Talsania, Todd M. Allen, Marcus Altfeld, Mary Carrington, Darrell J. Irvine,
Bruce D. Walker, and Arup K. Chakraborty. Coordinate linkage of HIV evolution reveals
regions of immunological vulnerability. Proceedings of the National Academy of Sciences of
the United States of America, 108(28):11530–11535, 2011. doi:10.1073/pnas.1105315108.
URL https://www.pnas.org/doi/abs/10.1073/pnas.1105315108.

Bassil I Dahiyat and Stephen L Mayo. De novo protein design: fully automated sequence
selection. Science, 278(5335):82–87, 1997.

Payel Das, Kahini Wadhawan, Oscar Chang, Tom Sercu, Cicero Dos Santos, Matthew
Riemer, Vijil Chenthamarakshan, Inkit Padhi, and Aleksandra Mojsilovic. Pepcvae:
Semi-supervised targeted design of antimicrobial peptide sequences. arXiv preprint
arXiv:1810.07743, 2018.

Rhiju Das and David Baker. Macromolecular modeling with Rosetta. Annual Review of
Biochemistry, 77(1):363–382, 2008.

Kristian Davidsen, Branden J Olson, William S DeWitt III, Jean Feng, Elias Harkins, Philip
Bradley, and Frederick A Matsen IV. Deep generative models for t cell receptor protein
sequences. eLife, 8:e46935, 2019.

68

https://doi.org/10.1073/pnas.1105315108
https://www.pnas.org/doi/abs/10.1073/pnas.1105315108

Scott N. Dean and Scott A. Walper. Variational autoencoder for generation of antimicrobial
peptides. ACS Omega, 5(33):20746–20754, 2020. doi:10.1021/acsomega.0c00442. URL
https://doi.org/10.1021/acsomega.0c00442. PMID: 32875208.

Nicki Skafte Detlefsen, Søren Hauberg, and Wouter Boomsma. Learning meaningful repre-
sentations of protein sequences. Nature Communications, 13(1):1–12, 2022.

Wenze Ding, Kenta Nakai, and Haipeng Gong. Protein design via deep learning. Briefings
in Bioinformatics, 23(3):bbac102, 2022.

Xinqiang Ding, Zhengting Zou, and Charles L Brooks III. Deciphering protein evolution and
fitness landscapes with latent space models. Nature communications, 10(1):1–13, 2019.

Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training gener-
ative neural networks via maximum mean discrepancy optimization. arXiv preprint
arXiv:1505.03906, 2015.

Magnus Ekeberg, Cecilia Lovkvist, Yueheng Lan, Martin Weigt, and Erik Aurell. Improved
contact prediction in proteins: Using pseudolikelihoods to infer Potts models. Physical
Review E, 87(1):012707, 2013.

Sibo Feng, James K Chen, Hongtao Yu, Julian A Simon, and Stuart L Schreiber. Two
binding orientations for peptides to the src sh3 domain: development of a general model
for sh3-ligand interactions. Science, 266(5188):1241–1247, 1994.

Andrew L Ferguson and Rama Ranganathan. 100th anniversary of macromolecular science
viewpoint: Data-driven protein design. ACS Macro Letters, 10(3):327–340, 2021.

Andrew L Ferguson, Jaclyn K Mann, Saleha Omarjee, Thumbi Ndung’u, Bruce D Walker,
and Arup K Chakraborty. Translating HIV sequences into quantitative fitness landscapes
predicts viral vulnerabilities for rational immunogen design. Immunity, 38(3):606–617,
2013.

Peter Fields, Vudtiwat Ngampruetikorn, Rama Ranganathan, David Schwab, and Stephanie
Palmer. Finding the function-determining subset of amino acids in protein sequence data.
Bulletin of the American Physical Society, 2023.

Matteo Figliuzzi, Pierre Barrat-Charlaix, and Martin Weigt. How pairwise coevolution-
ary models capture the collective residue variability in proteins? Molecular Biology and
Evolution, 35(4):1018–1027, 2018.

Vincent Frappier and Amy E Keating. Data-driven computational protein design. Current
Opinion in Structural Biology, 69:63–69, 2021.

69

https://doi.org/10.1021/acsomega.0c00442
https://doi.org/10.1021/acsomega.0c00442

Chase R Freschlin, Sarah A Fahlberg, and Philip A Romero. Machine learning to navigate
fitness landscapes for protein engineering. Current Opinion in Biotechnology, 75:102713,
2022.

Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, and Jeffrey J Gray. Deep learning in
protein structural modeling and design. Patterns, 1(9):100142, 2020.

Andrew Giessel, Athanasios Dousis, Kanchana Ravichandran, Kevin Smith, Sreyoshi Sur,
Iain McFadyen, Wei Zheng, and Stuart Licht. Therapeutic enzyme engineering using a
generative neural network. Scientific Reports, 12(1):1–17, 2022.

R Daniel Gietz and Robert H Schiestl. High-efficiency yeast transformation using the Li-
Ac/SS carrier DNA/PEG method. Nature Protocols, 2(1):31–34, 2007.

Ulrike Göbel, Chris Sander, Reinhard Schneider, and Alfonso Valencia. Correlated mutations
and residue contacts in proteins. Proteins: Structure, Function, and Bioinformatics, 18
(4):309–317, 1994.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D
Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-
driven continuous representation of molecules. ACS Central Science, 4(2):268–276, 2018.

Joe G Greener, Lewis Moffat, and David T Jones. Design of metalloproteins and novel
protein folds using variational autoencoders. Scientific Reports, 8(1):1–12, 2018.

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. A
kernel method for the two-sample-problem. Advances in Neural Information Processing
Systems, 19:513–520, 2006.

Xiaojie Guo, Sivani Tadepalli, Liang Zhao, and Amarda Shehu. Generating tertiary protein
structures via an interpretative variational autoencoder. arXiv preprint arXiv:2004.07119,
2020.

Najeeb Halabi, Olivier Rivoire, Stanislas Leibler, and Rama Ranganathan. Protein sectors:
Evolutionary units of three-dimensional structure. Cell, 138(4):774–786, 2009.

Harris Sarah Harris David. Digital Design and Computer Architecture (2nd ed.). Morgan
Kaufmann, 2013.

Gregory R Hart and Andrew L Ferguson. Empirical fitness models for hepatitis C virus
immunogen design. Physical Biology, 12(6):066006, 2015.

Mohamad H Hassoun. Fundamentals of Artificial Neural Networks. MIT Press, 1995.

Alex Hawkins-Hooker, Florence Depardieu, Sebastien Baur, Guillaume Couairon, Arthur
Chen, and David Bikard. Generating functional protein variants with variational autoen-
coders. PLoS Computational Biology, 17(2):e1008736, 2021.

70

Thomas A Hopf, John B Ingraham, Frank J Poelwijk, Charlotta PI Schärfe, Michael
Springer, Chris Sander, and Debora S Marks. Mutation effects predicted from sequence
co-variation. Nature Biotechnology, 35(2):128–135, 2017.

Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein
design. Nature, 537(7620):320–327, 2016.

John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for
graph-based protein design. In H. Wallach, H. Larochelle, A. Beygelzimer, F. Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/pap
er/2019/file/f3a4ff4839c56a5f460c88cce3666a2b-Paper.pdf.

Christian Jäckel, Peter Kast, and Donald Hilvert. Protein design by directed evolution.
Annual Review of Biochemistry, 37:153–173, 2008.

Neil P King, William Sheffler, Michael R Sawaya, Breanna S Vollmar, John P Sumida,
Ingemar André, Tamir Gonen, Todd O Yeates, and David Baker. Computational design
of self-assembling protein nanomaterials with atomic level accuracy. Science, 336(6085):
1171–1174, 2012.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Marc Kirschner and John Gerhart. Evolvability. Proceedings of the National Academy of
Sciences, 95(15):8420–8427, 1998.

Gert Kiss, Nihan Çelebi-Ölçüm, Rocco Moretti, David Baker, and KN Houk. Computational
enzyme design. Angewandte Chemie International Edition, 52(22):5700–5725, 2013.

Yaakov Kleeorin, William P. Russ, Olivier Rivoire, and Rama Ranganathan. Undersampling
and the inference of coevolution in proteins. bioRxiv, 2021. doi:10.1101/2021.04.22.441025.
URL https://www.biorxiv.org/content/early/2021/04/23/2021.04.22.441025.

Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In International Joint Conference on Artificial Intelligence (IJCAI), volume 14,
pages 1137–1145, 1995.

Brian Kuhlman, Gautam Dantas, Gregory C Ireton, Gabriele Varani, Barry L Stoddard, and
David Baker. Design of a novel globular protein fold with atomic-level accuracy. Science,
302(5649):1364–1368, 2003.

Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks. In
Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference

71

https://proceedings.neurips.cc/paper/2019/file/f3a4ff4839c56a5f460c88cce3666a2b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f3a4ff4839c56a5f460c88cce3666a2b-Paper.pdf
https://doi.org/10.1101/2021.04.22.441025
https://www.biorxiv.org/content/early/2021/04/23/2021.04.22.441025

on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages
1718–1727, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.pres
s/v37/li15.html.

Xinran Lian, Nikša Praljak, Subu Subramanian, Sarah Wasinger, Rama Ranganathan, and
Andrew L Ferguson. Deep learning-enabled design of synthetic orthologs of a signaling
protein. bioRxiv, page doi: 10.1101/2022.12.21.521443, 2022. URL https://doi.org/10
.1101/2022.12.21.521443.

Wendell A Lim, Robert O Fox, and Frederic M Richards. Stability and peptide binding
affinity of an sh3 domain from the caenorhabditis elegans signaling protein sem-5. Protein
Science, 3(8):1261–1266, 1994.

Jin Liu and Ruth Nussinov. Allostery: An overview of its history, concepts, methods, and
applications. PLoS Computational Biology, 12(6):e1004966, 2016.

Andrei N Lupas, Joana Pereira, Vikram Alva, Felipe Merino, Murray Coles, and Marcus D
Hartmann. The breakthrough in protein structure prediction. Biochemical Journal, 478
(10):1885–1890, 2021.

Ali Madani, Ben Krause, Eric R. Greene, Subu Subramanian, Benjamin P. Mohr, James M.
Holton, Jose Luis Olmos, Caiming Xiong, Zachary Z. Sun, Richard Socher, James S. Fraser,
and Nikhil Naik. Deep neural language modeling enables functional protein generation
across families. bioRxiv, page 2021.07.18.452833, 2021. doi:10.1101/2021.07.18.452833.

Jaclyn K Mann, John P Barton, Andrew L Ferguson, Saleha Omarjee, Bruce D Walker,
Arup Chakraborty, and Thumbi Ndung’u. The fitness landscape of HIV-1 gag: Advanced
modeling approaches and validation of model predictions by in vitro testing. PLoS Com-
putational Biology, 10(8):e1003776, 2014.

Jennifer A Marles, Samira Dahesh, Jennifer Haynes, Brenda J Andrews, and Alan R
Davidson. Protein-protein interaction affinity plays a crucial role in controlling the
Sho1p-mediated signal transduction pathway in yeast. Molecular Cell, 14(6):813–823,
2004. ISSN 1097-2765. doi:https://doi.org/10.1016/j.molcel.2004.05.024. URL https:
//www.sciencedirect.com/science/article/pii/S1097276504003260.

Bruce J Mayer. Sh3 domains: complexity in moderation. Journal of cell science, 114(7):
1253–1263, 2001.

John Maynard Smith. Natural selection and the concept of a protein space. Nature, 225
(5232):563–564, 1970.

Stanislav Mazurenko, Zbynek Prokop, and Jiri Damborsky. Machine learning in enzyme
engineering. ACS Catalysis, 10(2):1210–1223, 2019.

Conor J McClune, Aurora Alvarez-Buylla, Christopher A Voigt, and Michael T Laub. En-
gineering orthogonal signalling pathways reveals the sparse occupancy of sequence space.
Nature, 574(7780):702–706, 2019.

72

https://proceedings.mlr.press/v37/li15.html
https://proceedings.mlr.press/v37/li15.html
https://doi.org/10.1101/2022.12.21.521443
https://doi.org/10.1101/2022.12.21.521443
https://doi.org/10.1101/2021.07.18.452833
https://doi.org/https://doi.org/10.1016/j.molcel.2004.05.024
https://www.sciencedirect.com/science/article/pii/S1097276504003260
https://www.sciencedirect.com/science/article/pii/S1097276504003260

Faruck Morcos, Andrea Pagnani, Bryan Lunt, Arianna Bertolino, Debora S Marks, Chris
Sander, Riccardo Zecchina, José N Onuchic, Terence Hwa, and Martin Weigt. Direct-
coupling analysis of residue coevolution captures native contacts across many protein
families. Proceedings of the National Academy of Sciences of the United States of America,
108(49):E1293–E1301, 2011.

Andrea Musacchio, Martin Noble, Richard Pauptit, Rik Wierenga, and Matti Saraste. Crys-
tal structure of a Src-homology 3 (SH3) domain. Nature, 359(6398):851–855, 1992.

Margarita Osadchy and Rachel Kolodny. How deep learning tools can help protein engineers
find good sequences. The Journal of Physical Chemistry B, 125(24):6440–6450, 2021.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differen-
tiation in pytorch. In 31st Conference on Neural Information Processing Systems (NIPS
2017), 2017.

Jimin Pei, Bong-Hyun Kim, and Nick V Grishin. PROMALS3D: A tool for multiple protein
sequence and structure alignments. Nucleic Acids Research, 36(7):2295–2300, 2008.

Mark E Peterson, Feng Chen, Jeffery G Saven, David S Roos, Patricia C Babbitt, and Andrej
Sali. Evolutionary constraints on structural similarity in orthologs and paralogs. Protein
Science, 18(6):1306–1315, 2009.

Francesc Posas and Haruo Saito. Osmotic activation of the HOG MAPK pathway via Ste11p
MAPKKK: Scaffold role of Pbs2p MAPKK. Science, 276(5319):1702–1705, 1997.

Niksa Praljak and Andrew Ferguson. Auto-regressive wavenet variational autoencoders for
alignment-free generative protein design and fitness prediction. In ICLR2022 Machine
Learning for Drug Discovery, 2022.

Niksa Praljak, Xinran Lian, Rama Ranganathan, and Andrew Ferguson. Protwave-vae:
Integrating autoregressive sampling with latent-based inference for data-driven protein
design. bioRxiv, pages 2023–04, 2023.

Donatas Repecka, Vykintas Jauniskis, Laurynas Karpus, Elzbieta Rembeza, Irmantas
Rokaitis, Jan Zrimec, Simona Poviloniene, Audrius Laurynenas, Sandra Viknander, Wis-
sam Abuajwa, Otto Savolainen, Rolandas Meskys, Martin K. M. Engqvist, and Aleksej
Zelezniak. Expanding functional protein sequence spaces using generative adversarial net-
works. Nature Machine Intelligence, 3(4):324–333, 2021.

Kimberly A Reynolds, William P Russ, Michael Socolich, and Rama Ranganathan.
Evolution-based design of proteins. In Methods in Enzymology, volume 523, pages 213–235.
Elsevier, 2013.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pages 1530–1538. PMLR, 2015.

73

Danilo Jimenez Rezende and Fabio Viola. Taming VAEs. arXiv preprint arXiv:1810.00597,
2018.

Adam J Riesselman, John B Ingraham, and Debora S Marks. Deep generative models of
genetic variation capture the effects of mutations. Nature Methods, 15(10):816–822, 2018.

Adam J Riesselman, Jung-Eun Shin, Aaron W Kollasch, Conor McMahon, Elana Simon,
Chris Sander, Aashish Manglik, Andrew C Kruse, and Debora S Marks. Accelerating
protein design using autoregressive generative models. bioRxiv, page 757252, 2019.

Olivier Rivoire, Kimberly A Reynolds, and Rama Ranganathan. Evolution-based functional
decomposition of proteins. PLoS Computational Biology, 12(6):e1004817, 2016.

Philip A Romero and Frances H Arnold. Exploring protein fitness landscapes by directed
evolution. NatureRreviews Molecular Cell Biology, 10(12):866–876, 2009.

Philip A Romero, Andreas Krause, and Frances H Arnold. Navigating the protein fitness
landscape with gaussian processes. Proceedings of the National Academy of Sciences of
the United States of America, 110(3):E193–E201, 2013.

William P Russ, Drew M Lowery, Prashant Mishra, Michael B Yaffe, and Rama Ran-
ganathan. Natural-like function in artificial ww domains. Nature, 437(7058):579–583,
2005.

William P. Russ, Matteo Figliuzzi, Christian Stocker, Pierre Barrat-Charlaix, Michael So-
colich, Peter Kast, Donald Hilvert, Remi Monasson, Simona Cocco, Martin Weigt, and
Rama Ranganathan. An evolution-based model for designing chorismate mutase en-
zymes. Science, 369(6502):440–445, 2020. doi:10.1126/science.aba3304. URL https:
//www.science.org/doi/abs/10.1126/science.aba3304.

Kalle Saksela and Perttu Permi. Sh3 domain ligand binding: What’s the consensus and
where’s the specificity? FEBS letters, 586(17):2609–2614, 2012.

Jörn M Schmiedel and Ben Lehner. Determining protein structures using deep mutagenesis.
Nature Genetics, page 1, 2019.

Claude E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, 1948. doi:10.1002/j.1538-7305.1948.tb01338.x.

Karthik Shekhar, Claire F Ruberman, Andrew L Ferguson, John P Barton, Mehran Kardar,
and Arup K Chakraborty. Spin models inferred from patient-derived viral sequence data
faithfully describe HIV fitness landscapes. Physical Review E, 88(6):062705, 2013.

Jung-Eun Shin, Adam J Riesselman, Aaron W Kollasch, Conor McMahon, Elana Simon,
Chris Sander, Aashish Manglik, Andrew C Kruse, and Debora S Marks. Protein design
and variant prediction using autoregressive generative models. Nature Communications,
12(1):1–11, 2021.

74

https://doi.org/10.1126/science.aba3304
https://www.science.org/doi/abs/10.1126/science.aba3304
https://www.science.org/doi/abs/10.1126/science.aba3304
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Robert S Sikorski and Philip Hieter. A system of shuttle vectors and yeast host strains
designed for efficient manipulation of dna in saccharomyces cerevisiae. Genetics, 122(1):
19–27, 1989.

Sam Sinai, Eric Kelsic, George M Church, and Martin A Nowak. Variational auto-encoding
of protein sequences. arXiv preprint arXiv:1712.03346, 2017.

Sam Sinai, Nina Jain, George M Church, and Eric D Kelsic. Generative AAV cap-
sid diversification by latent interpolation. bioRxiv, page 2021.04.16.440236, 2021.
doi:10.1101/2021.04.16.440236. URL https://www.biorxiv.org/content/early/20
21/04/17/2021.04.16.440236.

Michael Socolich, Steve W Lockless, William P Russ, Heather Lee, Kevin H Gardner, and
Rama Ranganathan. Evolutionary information for specifying a protein fold. Nature, 437
(7058):512–518, 2005.

Michael A Stiffler, Doeke R Hekstra, and Rama Ranganathan. Evolvability as a function of
purifying selection in tem-1 β-lactamase. Cell, 160(5):882–892, 2015.

Subramanian Kanagarajan Subramanian. Distinct functional phases in proteins: A test by
large-scale protein design. PhD thesis, UT Southwestern Medical Center, 2017.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 27. Curran Asso-
ciates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/a14ac55
a4f27472c5d894ec1c3c743d2-Paper.pdf.

William R Taylor. A ‘periodic table’for protein structures. Nature, 416(6881):657–660, 2002.

Pengfei Tian, John M Louis, James L Baber, Annie Aniana, and Robert B Best. Co-
evolutionary fitness landscapes for sequence design. Angewandte Chemie International
Edition, 57(20):5674–5678, 2018.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay May-
orov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimr-
man, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental algorithms for scientific computing in python. Nature Methods, 17:261–272,
2020. doi:10.1038/s41592-019-0686-2.

Jing-Ke Weng. The evolutionary paths towards complexity: a metabolic perspective. New
Phytologist, 201(4):1141–1149, 2014.

75

https://doi.org/10.1101/2021.04.16.440236
https://www.biorxiv.org/content/early/2021/04/17/2021.04.16.440236
https://www.biorxiv.org/content/early/2021/04/17/2021.04.16.440236
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://doi.org/10.1038/s41592-019-0686-2

Timothy A Whitehead, Aaron Chevalier, Yifan Song, Cyrille Dreyfus, Sarel J Fleishman,
Cecilia De Mattos, Chris A Myers, Hetunandan Kamisetty, Patrick Blair, Ian A Wilson,
and David Baker. Optimization of affinity, specificity and function of designed influenza
inhibitors using deep sequencing. Nature Biotechnology, 30(6):543–548, 2012.

Bruce J Wittmann, Kadina E Johnston, Zachary Wu, and Frances H Arnold. Advances in
machine learning for directed evolution. Current Opinion in Structural Biology, 69:11–18,
2021.

Yuting Xu, Deeptak Verma, Robert P Sheridan, Andy Liaw, Junshui Ma, Nicholas M Mar-
shall, John McIntosh, Edward C Sherer, Vladimir Svetnik, and Jennifer M Johnston. Deep
dive into machine learning models for protein engineering. Journal of Chemical Informa-
tion and Modeling, 60(6):2773–2790, 2020.

Kevin K Yang, Zachary Wu, and Frances H Arnold. Machine-learning-guided directed evo-
lution for protein engineering. Nature Methods, 16(8):687–694, 2019.

Ali Zarrinpar, Sang-Hyun Park, and Wendell A Lim. Optimization of specificity in a cellular
protein interaction network by negative selection. Nature, 426(6967):676–680, 2003.

Cathleen Zeymer and Donald Hilvert. Directed evolution of protein catalysts. Annual review
of biochemistry, 87:131–157, 2018.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Information maximizing varia-
tional autoencoders. arXiv preprint arXiv:1706.02262, 2017.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Balancing learning and infer-
ence in variational autoencoders. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 5885–5892, 2019.

76

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	1.1 Exploring Protein Function and Sequence Space
	1.2 Diversity and Specificity of the SH3 Protein Family in Protein-Protein Interactions and Cellular Signaling
	1.3 Date-driven Protein Design

	2 YEAST OSMOSENSOR SHO1-SH3 – A MODEL SYSTEM FOR PROTEIN FUNCTION
	2.1 High-throughput Osmosensing Assay
	2.1.1 Gene construction
	2.1.2 Yeast transformation
	2.1.3 SH3 domain selection assay

	2.2 in vitro SH3 Test Assays
	2.2.1 Peptide synthesis
	2.2.2 Protein expression and purification
	2.2.3 Biophysical evaluation of SH3 in vitro binding assay
	2.2.4 Melting temperature measurements

	3 Data-Driven Models for Designing Novel Functional Osmosensing Orthologs
	3.1 Data Collection: Acquire the Natural SH3 Library
	3.2 bmDCA
	3.3 Variational Autoencoders (VAEs)
	3.4 Experimental Evaluation
	3.4.1 High-throughput Osmosensing Assay
	3.4.2 in vitro SH3 Test Assays

	3.5 Methods
	3.5.1 bmDCA
	3.5.2 Vanilla VAE
	3.5.3 InfoMax VAE

	4 Expanding the Functional Space of Natural Proteins
	4.1 Spatial characteristics of the Sho1-SH3 function in the infoVAE latent space
	4.2 Locality in the latent space exposes global amino acid constraints
	4.3 Methods
	4.3.1 Convex hull analysis
	4.3.2 Calculation of Kullback-Leibler relative entropy

	5 Examining the Principles of Positive and Negative Design of Orthologs and Paralogs of SH3 Domains
	5.1 Orthology and Phylogeny in VAE Latent Spaces
	5.2 Relationship between Osmosensing Function and Evolutionary Distance from S. cerevisiae

	6 Implications for Future Research in Protein Design
	6.1 Advantages and Impact of the Experimental Model System
	6.2 Deep Mutational Scan for Different Paralogs for the Same Function
	6.3 Semi-supervised InfoMax VAE

	7 Supplementary codes
	7.1 Vanilla VAE
	7.2 InfoMax VAE
	7.3 Others

	References

