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6.16 Nonlinearity (K) plotted as a function of total linewidth (γT ) for the microwave ti-
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(highlighted by the dashed circle), all grouped by wire width. Notably the re-
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7.1 Junction fabrication process. (a) Trilayer is deposited and oxidized in-situ. (b)
First layer is etched with a chlorine RIE. (c) SiO2 is grown isotropically. (d) Side-
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etch selective against Al. (g) Final devices undergo a wet etch to further remove
SiO2, exposed Al and some NbOx . (h) Color-enhanced electron micrograph of a
finished trilayer junction with an area of ∼ (500 nm)2. . . . . . . . . . . . . . . 144
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in oxygen depletion on the sapphire surface, creating a coral-like surface. Data
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7.3 Spacer Growth, imaged in cleaved samples from HDPCVD growth methods and
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860mK with Ic = 38 µA and an energy gap 2∆ = 2.89meV. Bulk resistivity
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7.7 Superconductor material quality. (a) Niobium superconducting critical tempera-
ture TC extracted from resistivity measurements as a function of metal deposition
rate. At rates above 0.6 nm/s, TC approaches bulk value (dashed line). The inset
shows deviations from bulk ∆TC = Tbulk

C − TC are correlated with the residual
resistivity ratio, implying high deposition rates result in high-quality films. (b)
Sheet kinetic inductance Lk and observed London penetration depth λL plot-
ted as a function of deposition rate suggesting that films deposited at higher
rates are closer to the clean superconductor limit. (c) Specific junction resistance
RJ = R/N obtained by measuring the resistance R of a chain of N = 12 junctions
as a function of temperature. A sharp drop in resistance is observed above 9K
as the niobium electrodes begin to superconduct. As the temperature decreases,
the junction critical currents increase above the excitation current (10 µA), and
below 5K the measured resistance drops to zero as the excitation is confined
to the superconducting branch, indicating proximitization of the aluminum and
superconducting contact between the counterelectrode and wiring layers. . . . . 153

7.8 Superconductor grain size. (a) In a tilted scanning electron microscope image of
a junction, microscopic grains are observed on the metal surface. In regions of
the wiring layer that lie directly on the sapphire substrate, the columnar grain
growth is uninterrupted, and the grain pattern is transferred to the top surface of
the metal. (b) A top down high-resolution scanning electron micrograph reveals
the hexagonal arrangement of the grains. The grain size can be estimated by
measuring the narrow dimension of a grain, marked d. (c) A histogram of repeated
measurements of grain width are fitted to a normal distribution which suggests
an average grain width of 16.386 nm. . . . . . . . . . . . . . . . . . . . . . . . 155

7.9 Etch residue chemical analysis. (a) Scanning electron micrograph of a plasma
etch residue located on the wiring layer near a junction. (b) Composite Energy
Dispersive Spectroscopy (EDS) image overlaid on the image in (a) showing nor-
malized element density regions for F, Nb, Al, and O, with individual element
density maps shown in their respective color on the right. Along with clear Nb
and sapphire (Al2O3) regions, a high concentration of fluorine relative to the
background is found in the residue region, suggesting the residue is composed of
fluorinated polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.10 Lossy silicon oxide spacer residue, which is insoluble in HF of NH4F. . . . . . . 158
7.11 Etch residue NaK reactivity. (a) Scanning electron micrograph of a plasma etch

residue on the edges of the wiring layer. A closer inspection of the bottom left
reveals that the residue extends to cover the sides of the metal, even where the top
crust has been mechanically removed. (b-c) The wiring layer and a junction from
the same wafer imaged after a 15 min exposure to sodium-potassium amalgam
(NaK) showing nearly complete removal of the etch residue. . . . . . . . . . . . 159

xx



7.12 Residue treatment with potassium napthalenide K[Nap]. (a) Scanning electron
micrograph of a wiring layer residue after immersion in a room temperature
K[Nap] solution for 15 minutes. The residue remains, however is thinner and
slightly damaged. (b) A junction from the same sample shows residue damage
visible as vertical striations especially near the junction. While the residues are
partially attacked by the K[Nap] solution, this treatment is not sufficient for full
lossy residue removal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.13 Residue treatment with EKC. (a-b) Finished junction treated with the EKC
mixture nearly 20 degrees above the target etching temperature, showing signif-
icant metal attack (nearly 60 nm). Notably no sign of the fluorocarbon residues
on the edges of the Nb wiring layer remain. Traces of material remains on the
spacer-niobium interface, which warrants further study. (c-d) When treated be-
tween 70–75 ◦C, the metal etch rate is reduced to a reasonable level, while the
organometallic residue is still efficiently removed. This leaves incredibly smooth
and virtually residue-free surfaces on the junction. . . . . . . . . . . . . . . . . 162

7.14 (a) Room temperature junction resistance and junction inductance plotted as
a function of junction area (corrected for lithographic reduction). Original un-
treated junction resistances are shown in red, and etched junctions in teal, with
fits to an inverse relationship to area (dashed lines) yielding the original critical
current density Jc and an etch dimension reduction of approximately 160 nm.
(b) Junction resistances as a function of the final junction area with a inverse fit
(dashed line) which gives the critical current density. For illustrative purposes
we have shown PECVD junctions in (a) and HDPCVD junctions in (b). (c) To
estimate reproducibility, spectroscopically measured qubit frequencies are plotted
as a function of design junction area, labelled by wafer and cooldown. Expected
values for the two different qubit capacitor designs (120 and 160 fF) are shown
with dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.15 (a) Average junction critical current density on an individual chip measured across
several chips across a wafer, with deviations from nominal values (2.088 kA/cm2)
highlighted with color. (b) Junction area measured with optical microscopy rel-
ative to the expected design area, highlighting the distribution of deviations re-
sulting from lithography. (c) Long term stability of junctions measured by the
relative change in Josephson inductance for 5 month old junctions relative to
their original values. Notably the change in high temperature PECVD junctions
is much lower than HDPCVD junctions. . . . . . . . . . . . . . . . . . . . . . . 165

7.16 (a) HDPCVD Junction critical current density reduction after annealing for 5
min plotted as a function of anneal temperature showing activation at 250 ◦C.
(b) Critical current density reduction as a function of anneal time at 300 ◦C,
which approaches the factor of 50 reduction observed in the main text (red lines).
The purple line represents an exponential fit saturating at the observed reduction
factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
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7.17 Low temperature PECVD junctions (primarily used in Chapter 8). (a) Junction
critical density as a function of oxygen exposure (same as 7.6b) with the addi-
tion of low temperature PECVD junctions, which still have high critical current
density. (b) Critical current density reduction as a function of anneal tempera-
ture, with the addition of the low-temperature PECVD junctions, which are only
mildly annealed. The HDPCVD junctions were annealed for 5 minutes, while
the junctions that went through PECVD spent approximately 15 minutes at the
temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.18 Schematic of the microwave measurement setup used for qubit characterization.
Colored tabs show temperature stages inside the dilution refrigerator. A compos-
ite microscope image (top right) shows a single qubit and its readout resonator,
coupled to a waveguide for measurement. A photograph (bottom right) shows
the chip containing 6 qubits mounted in its copper circuit board. . . . . . . . . 169

7.19 Qubit Properties. (a) Average qubit decay time T1 extracted by fitting the ex-
ponential decay of excited state population in (b) plotted as a function of qubit
frequency, grouped by wafer. Lines indicate qubit quality factor Q1 = ωqT1. We
find an overall mean Q1 of 2.57 × 105 with some wafer to wafer variation. (c)
Ramsey dephasing time T ∗

2 (filled points) and Hahn-echo dephasing time T2 (hol-
low points) extracted by fitting the exponential decay of oscillations in (d) as a
function of qubit frequency. We find an overall average T ∗

2 and T2 of 6.643 µs and
12.916 µs respectively. (e) Qubit quality factors as a function of their junction
participation ratio plotted for devices in this chapter (reds) and in literature (blue,
black, green). Lines and shaded confidence regions show Q−1

1 = pJ/QJ + p0/Q0
as a guide to the eye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.20 Qubit quality factors as a function of their junction participation ratio plotted
for our trilayer qubits (reds) aluminum junction qubits from our lab (purple) and
selected qubits in literature (blue, black, green). Lines and shaded confidence
regions show Q−1

1 = pJ/QJ + p0/Q0 as a guide to the eye. . . . . . . . . . . . 173
7.21 (a) Power dependence of the internal quality factor for a readout resonator (Qe =

2.6 × 105) with no qubit present. The red line is a fit to a model including
loss from two-level systems (TLS). The insets show the lineshape and fits at an
average photon occupation n̄ph ≈ 0.96. (b) Internal quality factor of resonators
without qubits measured as a function of temperature. Solid lines are fits to a
model including TLS loss and quasiparticle loss. The three red resonators are
formed from the wiring layer, and the blue resonators from the base electrode.
Measurements are taken at n̄ph ≈ 104 so some TLS loss is saturated. (c) Qubit
quality factors Q1 plotted as a function of their readout resonator quality factors
Qi (measured at nph < 1). A grey line indicates a 1:1 relationship. . . . . . . . 174
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7.22 Junction loss regions (a) Cartoon showing regions defined for a resonator made
with the first layer, with dimensions exaggerated. Niobium oxide (metal-air inter-
face) is separated into top oxide (Tox) and side oxide (Sox) regions. For a wiring
layer resonator, the dirty substrate region (DMS) is merged with the substrate
layer. (b) Cartoon showing regions for a junction, which adds the junction barrier
region (Jox) and the spacer region (SiOx). (c) Three dimensional rendering of
the junction with realistic dimensions. Simulated regions are colored in the same
way as in parts (a-b). (d) Transparent rendering of the junction visualizing the
spacer remaining percentage PS relative to the junction width jw. . . . . . . . 176

7.23 Junction losses by region. (a) Participation ratios of the primary lossy materials
in the junction, plotted as a function of niobium oxide thickness tNbOx

. As
expected the niobium oxide participation ratio increases as the layer gets thicker.
(b) Junction loss tangent expressed as visual sum of losses from various materials
in the junction with assumed loss tangents, plotted as a function of niobium
oxide thickness. For thicker oxide layers (eg. those used in anodization processes)
niobium oxide loss dominates the junction loss. The junction loss calculated from
Fig. 7.19c is shown in black dashed lines. (c) We can also solve for the barrier
quality factor based on the junction quality factor and the calculated participation
ratios for varying material quality factors. Solid and dashed lines correspond to
a SiO2 loss tangent of tan δ = 2.7× 10−3 and 2.9× 10−3 respectively. In (d-f) we
repeat parts (a-c) but measure the effect of partially un-removed spacer material
expressed as a fraction PS of the junction width. We find that residual spacer
material contributes a significant amount of loss. For both sets of simulations,
the unswept variable is set to nominal values of tNbOx = 2 nm and PS = 0.2. . 177

7.24 Qubit quality factors from wafers B, D as a function of temperature. A mild
decrease is observed at higher temperatures consistent with the system bath tem-
perature Qbath, however lifetimes are virtually unaffected by quasiparticles Qqp
(red lines). We also plot quality factors of an Al junction qubit, whose perfor-
mance is noticeably limited by quasiparticles above 160mK (green lines), whereas
the Nb junction wouldn’t see an effect until 1.6K. . . . . . . . . . . . . . . . . 181

8.1 Qubit geometry. a) A scanning electron micrograph of a low-loss niobium trilayer
junction at the core of the qubit. b) A micrograph of the qubit and readout
resonator geometry, with the junction location marked at the top. c) Equivalent
circuit of the qubit and readout resonator coupled inductively to a transmission
line. d) Photograph of a chip containing six qubits mounted in a low-loss K band
circuit board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.2 Cross section view of the K band packaging, showing the chip (blue) secured to
the high-frequency circuit board (gold) by the copper enclosure. . . . . . . . . 186

8.3 Mode-free K Band packaging. Three copper pieces align the chip containing
qubits with the low-loss printed circuit board. . . . . . . . . . . . . . . . . . . 187
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8.4 Optimized launcher geometry and wirebond configuration which achieves max-
imal transmission up to 27 GHz. Using a manual wirebonder, we attempt to
replicate this wirebond shape, however in practice the circuit board dimensions
requires slightly longer bonds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.5 Qubit dynamics. a) Deflection of the readout resonator transmission signal as a
function of applied qubit pulse frequency, shown for increasing qubit pulse power.
At low powers (blue) a single peak is observed when the pulse is resonant with
the qubit frequency (fge = 18.474 GHz). As power increases, the linewidth of
this transition increases, and additional peaks appear from excitations into higher
qubit levels through many-photon excitations (fgf/2 etc). These features have
a spacing of α/2 = (fge − fef )/2. b) Measured excited state probability shows
Rabi oscillations when a fixed-length pulse with varying amplitude is applied at
the qubit frequency. The red line is a fit to the expected sinusoidal behavior.
c) Rabi oscillations are measured for frequencies near fge, with brighter colors
corresponding to higher excited state probabilities. Away from the transition
frequency, the Rabi frequency increases while the oscillation amplitude decreases
and becomes power dependent. d) Rabi oscillations as a function of pulse am-
plitude and length σ, with brighter colors corresponding to higher excited state
probabilities. Dashed red lines mark contours of integer π pulses where σΩ = mπ. 189

8.6 Number splitting. a) Deflection of the readout resonator transmission signal as
a function of applied qubit probe frequency shown for increasing powers. We ob-
serve the level transitions separated by anharmonicity α/2 similar to Figure 8.5a,
however on closer inspection each peak is split into smaller features. b) With
non-negligible readout resonator population, the sub-peaks for each transition
are split by the dispersive shift 2χ. . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.7 Qubit Properties. a) Average qubit decay time T1 extracted by fitting the expo-
nential decay of excited state population. b) T1 plotted as a function of qubit
frequency, grouped by wafer. Lines indicate qubit quality factor Q1 = ωqT1.
We find an overall mean Q1 of 0.792 × 105 with some wafer to wafer variation.
c) Ramsey dephasing time T ∗

2 (filled points) and Hahn-echo dephasing time T2
(hollow points) extracted by fitting the exponential decay of oscillations in (d) as
a function of qubit frequency. Lines indicate dephasing quality factor. We find
an average T ∗

2 and T2 of 1.124 µs and 1.357 µs respectively. . . . . . . . . . . . 192
8.8 Thermal decoherence and dephasing. a) Decoherence time T1 of three represen-

tative qubits measured as a function of temperature. A mild decrease is observed
at higher temperature, consistent with a model including loss from increased sys-
tem bath temperature (solid lines). b) Ramsey dephasing time T ∗

2 as a function
of temperature. The behavior is largely captured by a parameter-free thermal
dephasing model assuming a fixed T1 (solid lines). c) Pure dephasing rate Γϕ
which has dephasing from relaxation subtracted, resulting in better agreement
with the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
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9.1 Cutaway diagram showing assembled back-to-back waveguide to on-chip slotline
transition structures, with signal propagation marked in red. In the slotline region
the waveguide geometry is constricted to prevent spurious propagating modes. On
the chip corners, rounded channels allow indium wire (yellow) to deform, which
secures the chip in place. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9.2 Side and top section views of the transition structure geometry, with reference
planes and relevant dimensions marked. Un-metallized sections of the chip are
shown in blue. The rounded corner channels are completely filled by indium. . . 199

9.3 a) Simulated electric field distribution (log scale) viewed from the top for a wave
traveling through the structure. Notably, a much greater dynamic range of electric
field strengths is achieved as the signal is compressed into the slotline, as compared
to just the waveguide field. b) Photograph of a mounted chip with back to back
transition structures, with top copper block removed. The indium, visible on the
corners of the chip, deforms and fully fills the designated channels, thermalizing
and securing the chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

9.4 a) Schematic of cryogenic millimeter-wave measurement setup. Colored tabs show
temperature stages inside the Helium-4 adsorption refrigerator, which reaches a
base temperature of 0.86 K. b) A photograph highlights relevant hardware inside
the fridge. c) Adjusted error network used for cryogenic TRL calibrations, where
Sx are the respective S-parameters of the sample, and the measurement paths
a0, a1 and b2 are also labelled in the schematic. . . . . . . . . . . . . . . . . . . 203

9.5 De-embedded insertion loss for two back-to-back transitions along with simulated
values. In the band of interest (highlighted), we find an insertion loss better than
0.46 dB, limited by de-embedding calibration uncertainty (∼ 0.3 dB). . . . . . . 206

9.6 Wideband de-embedded scattering matrix parameter measurements (solid lines)
for two transitions back-to-back along with respective simulations (dashed lines)
showing good agreement. In the operating band marked in gray, we find a total
insertion loss better than 0.5 dB, and return loss less than -13 dB. . . . . . . . . 207

9.7 Simulated transmission parameters for: a single transition terminated by an on-
chip short, a sapphire chip with no metallization, and the structure with the chip
removed. The operating band is highlighted in gray. . . . . . . . . . . . . . . . . 208

9.8 Electron micrograph of resonator geometry and coupling arrangement relative
to feedline. This structure can be approximated by a simplified circuit diagram
(top-right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

9.9 Simulated (red) resonator couplingQe as a function of separation from the slotline
with an empirical fit (red line) used for predictions. Experimental measurements
of Qe (blue) are in reasonable agreement. . . . . . . . . . . . . . . . . . . . . . . 211
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9.10 a-b) Complex transmission spectrum of a typical resonator, and power depen-
dence of its internal quality factor along with fits to a model including TLS and
independent loss (red). Here, Qi is primarily limited by non-TLS loss (Qother). c)
Temperature dependence of Qi for resonators from chip D. The black dashed line
corresponds to a Bardeen-Cooper-Schrieffer (BCS) model of conductivity loss,
and solid lines are respective fits to a model including conductivity and TLS loss.
d-e) Complex transmission spectrum and Qi power dependence of the best res-
onator measured in this study. For this device, QTLS is the dominant loss source.
f) Internal quality factors for resonators in this study, grouped by etching condi-
tions and elapsed time after fabrication. The top and bottom of the colored bars
correspond to measured low-power and high-power limits of Qi, and the points
correspond to TLS induced loss QTLS,0 with averages for each chip denoted by a
dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.11 Resonator loss (internal Q) for single-photon (red) and high-powers (blue) as a
function of coupling Q, showing no correlation and confirming coupling does not
increase loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

10.1 Millimeter-wave qubit geometry. a) Photograph of several qubits and readout
resonators coupled to the tapered finline transmission structure used for mea-
surement (see previous Chapter 9 for details). b) Scanning electron micrograph
of a readout resonator (top) which is capacitively coupled to the qubit capacitor
(bottom) c) A close up image of the niobium trilayer Josephson junction at the
heart of the qubit. d) Equivalent circuit representation of the experiment along
with the refrigeration mechanism shown in e . . . . . . . . . . . . . . . . . . . 219

10.2 Simulated resonator coupling Qe as a function of separation from the slotline
with a empirical fits (dashed lines) used for predictions. Resonators coupled
capacitively (blue) similar to those measured in Chapter 9 have orders of magni-
tude weaker coupling which is a strong function of separation, while inductively-
coupled (red) resonators (flipped by 180◦) couple much more strongly. . . . . . . 220

10.3 Experiment temperature during a helium cycle. For maximum stability, data is
taken below 0.868 K of the lowest temperature. . . . . . . . . . . . . . . . . . . 221

10.4 Power dependence of the readout resonator. (a) Transmission measurement of
the readout resonator, taken at low power. At the resonant frequency (which is
modified by the coupled qubit), we observe a dip in transmission. (b) Since the
readout resonator is coupled to a highly nonlinear qubit, it will inherit some non-
linearity as well. Because of this, the readout resonator shifts down in frequency
as power is increased. At sufficiently high powers, the readout resonator returns
to its rest frequency. Measuring the frequency difference between these low and
high power resonant frequencies (green dashed lines) allows us to determine the
qubit-readout coupling g2/∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

10.5 Frequency breakdown of the signals used to measure the qubit with continuous-
wave spectroscopy. Microwave input signals are harmonically multiplied to the
millimeter-wave band. The blue regions are down-mixed to the idler frequency
measurement window (purple). . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
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10.6 Two tone spectroscopic identification of qubit transitions. For each readout res-
onator, we measure transmission at its low-power resonance, while simultaneously
applying a second probe signal at varying frequency and power. Here we are
showing linear deflection from the idle state (lighter colors are larger deflection).
When the fundamental harmonic or any other harmonic is resonant with a qubit
or resonator the readout resonator measured will shift, registering a deflection.
By measuring all resonators (two examples shown here) we can identify which
features are harmonic excitations, and which are fundamental excitations, which
locates the qubit transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

10.7 Resolved level transitions of the millimeter-wave qubit. a) Deflection of the read-
out resonator transmission signal as a function of applied qubit pulse frequency,
shown for increasing qubit pulse power. Line cuts for indicative qubit drive pow-
ers are shown in b). At low powers (blue) a single peak is observed when the
pulse is resonant with the qubit frequency (fge = 72.1 GHz). With higher probe
powers, the linewidth of this transition increases, and additional peaks appear
corresponding to higher energy level transitions through many-photon excitations
(fgf/2 etc). These features have a spacing of α/2 = (fge − fef )/2. . . . . . . . 226

10.8 AC Stark shift. a)Deflection of the readout resonator transmission signal as
a function of applied probe frequency, shown for increasing readout power (in
dBm). Due to the resonator-qubit interactions, the qubit transition frequency
shifts as the average readout resonator photon number increases. b) The qubit
frequency shift is shown to be linear with respect to readout drive power. Since
the frequency shift per photon can be calculated from qubit parameters, this
allows us to obtain an accurate calibration for readout resonator photon number,
and by extension the qubit photon number. . . . . . . . . . . . . . . . . . . . . 228

10.9 The feature corresponding to the ground–excited state transition in the readout
resonator deflection measurements has a gaussian profile, allowing us to fit the
linewidth of the transition. Measurements on the left and right are shown for
drive strengths corresponding to 2.12 × 10−4 and 3.02 × 10−5 qubit photons
respectively. For sufficiently high powers, the edges of the transition overlap with
the next two-photon transition, so the model includes both of these transitions. 230

10.10The fitted g–e transition linewidths σ are plotted as a function of drive photon
number. The square of the linewidth is determined by the qubit dephasing time,
and increases linearly with drive power, with a rate set by the qubit decoherence
time. Having calibrated the photon number relative to drive power, a linear fit
can extract a dephasing time of 21 ns and with lesser accuracy a decoherence
time of 47 ns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

10.11Millimeter-wave pulsed measurement setup. Double lines indicate waveguide re-
gions. Red and blue regions highlight they cryogenic sections of the experiment.
Components highlighted in green, red and orange are millimeter-wave compo-
nents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

10.12Frequency breakdown of the signals used for pulsed qubit measurements. . . . . 234
10.13Millimeter-wave pulse timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
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10.14Time breakdown of a millimeter-wave experiment (not to scale). Most of the time
is spent processing data and communicating with instruments. . . . . . . . . . 236

10.15Millimeter-wave pulse envelope shape. . . . . . . . . . . . . . . . . . . . . . . . 236
10.16Frequency dependence of Rabi oscillation experiments. a) Inverse deflection of

the readout signal with relative to its rest state with respect to original pulse am-
plitude, for varying pulse frequencies. Darker colors are higher deflection magni-
tudes corresponding to the excited states of the qubit. Near the qubit resonance
(72.1 GHz) the oscillation fringes slow and increase in contrast. Below the qubit
frequency, oscillations between higher order transitions (g–f and e–f) are also
visible, complicating the spectrum. Horizontal stripes are a result of interleaved
experiments with different averaging conditions. b The same experiment is re-
peated with shorter pulses (τ = 0) less attenuation, which increases the overall
oscillation rate. This broadens the features in the frequency domain, causing the
various transition oscillations to overlap and interfere. Because the qubit is now
oscillating between superpositions of the first four energy levels the initial fringe
contrast is reduced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

10.17a) Rabi oscillations as a function of pulse length and pulse frequency for a large
amplitude pulse. As the pulse detuning increases, the Rabi oscillation frequency
should increase. However in this experiment the pulse amplitude is high enough
such that the Rabi fringes for higher level transitions interfere with each other,
resulting in fringes that merge as the frequency drops below the qubit frequency.
b) A master equation simulation of the qubit shows qualitative similarity in fringe
patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

10.18Rabi oscillations. When a pulse is applied at the qubit frequency, we expect
it to oscillate between its ground and excited states. The readout resonator
transmission is measured for various applied qubit pulse lengths τ . Here the
pulse edges have a gaussian profile with σ = 1.5 ns. The red line is a fit to a
decaying sinusoid, yielding a Rabi frequency of 208.6 MHz. . . . . . . . . . . . 240

10.19The final qubit state following a resonant pulse should depend on the product of
pulse length and pulse amplitude. To verify this we perform a sequence of Rabi
experiments while varying pulse length τ and pulse amplitude. To limit the effects
of pulse bandwidth, the gaussian edges of the pulse are kept to σ = 1.5 ns. The
raw data for this experiment is shown on the left, where qualitatively we observe
that as pulse amplitude increases, so does the Rabi oscillation rate, evidenced
by the reduced vertical fringe spacing. Since the pulse gain is compressed by
an amplifier, it is more useful to examine this data in terms of the calibrated
millimeter-wave pulse amplitude seen by the qubit, as shown on the right. From
this we can overlay the expected contours where the qubit is in its excited state. 241

10.20Qubit coherence properties. A relaxation experiment (illustrated in the inset)
measuring qubit decay time T1 by fitting the exponential decay of excited state
population following a time delay t after a π pulse. The same data is shown on
a logarithmic scale on the right, confirming the exponential decay. From this
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10.21Ramsey experiment (illustrated in inset) measuring qubit dephasing time T2 by
fitting the decay of oscillations. The second π/2 pulse has its phase advanced by
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11.3 Qubit quality factors as a function of their junction participation ratio plotted
for our high frequency qubits (hollow points) our microwave trilayer qubits (reds)
aluminum junction qubits from our lab (purple) and selected qubits in literature
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ABSTRACT

To continue achieving ever faster computation speeds, future computer processors may need

to increase their operating frequency to achieve clock speeds beyond several GHz. Quantum

computing offers an alternate approach by leveraging quantum mechanical superposition to

make each clock operation more efficient, allowing the processor to solve certain problems

much more efficiently. Current quantum processors operate slower than their classical coun-

terparts, with the fastest quantum operations at microwave frequencies and utilizing super-

conducting artificial atoms (qubits)–a promising platform for quantum experiments studying

light-matter interactions in the strong coupling regime. Increasing qubit frequency to the

millimeter-wave range (∼100 GHz) offers a straightforward way to increase quantum com-

puting speed for any qubit design. Crucially, millimeter-wave frequencies also have greatly

reduced sensitivity to thermal noise, and whereas microwave qubits require extremely low

temperatures (<50 mK) and isotopic enrichment of 3He and 4He in order to reduce sources

of decoherence, millimeter-wave qubits can operate at significantly higher temperatures near

1 K. These temperatures are achievable using simpler methods such as direct 4He evapora-

tion, which translates to orders of magnitude higher cooling power. This is transformative

for scaling up superconducting quantum processors by significantly increasing the number

of qubit control channels possible in a single cryostat, enabling direct integration of qubits

with superconducting digital processors, and allowing for more energy efficient possibilities

for quantum communication between cryostats. In this thesis, we introduce millimeter-wave

superconducting devices as a platform for quantum experiments. We develop a robust nio-

bium trilayer Josephson junction with improved quantum coherence properties capable of

operating at higher frequencies and temperatures than conventional aluminum junctions.

Based on this technology we explore the thermal resilience of qubits with higher and higher

frequency, finally demonstrating a 72 GHz millimeter-wave qubit cooled entirely with 4He.
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CHAPTER 1

INTRODUCTION

For the last 120 years, classical computing has scaled exponentially [120], most recently visu-

alized by the number of transitors in circuit doubling every two years (referred to as Moore’s

law). As a result, current processors also get denser with each year by reducing transistor

size. However, as shown in Figure 1.1, processor clock speed has plateaued around 2005,

and has remained approximately constant since as processsors reached the limits of thermal

dissipation. Computation speed has meanwhile continued to increase at the expense of tran-

sitor count through synchronous operation, and increased instruction count per clock cycle.

Current commercial transistors have reached dimensions of 20 nm [18], and are approaching

fundamental limits to transistor size, making heat management increasingly difficult.

An alternative approach takes advantage of the minimal dissipation in superconductors,
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Figure 1.1: Processor clock speed in MHz over time. After an initial exponential increase,
the clock speeds plateau after 2005 reaching a limit of 4-5 GHz. (manufacturers not labelled
for brevity). Data from [51, 52]
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in which currents can flow without resistance. By manipulating quantized units of flux,

superconducting processors are capable of immense clock speeds above 100 GHz [226, 237]

and have proven invaluable for high-speed computation tasks such as real-time signal pro-

cessing [102]. While the future may show the full speed benefits of superconducting digital

logic have in a large-scale classical processor, high frequencies have already proven useful for

high-speed communications [244], capable of reaching data transfer speeds above a terabyte

per second [105]. As it stands however, increasing transistor count has proven to be a more

efficient and less costly route to increasing computation speed.

Another direction for improving computation speed is through the development of quan-

tum computing, which leverages quantum mechanical superposition of information in a sin-

gle bit to perform much more complex operations. This special behavior has the possibility

to allow quantum computers to solve different types of problems that would be otherwise

incredibly challenging to do via traditional methods. Interestingly, some of the original

quantum experiments utilized high frequency atomic transitions [35], precise control over

miniaturized circuits along with the availability of microwave components popularized the

microwave frequency for superconducting quantum devices [111]. These microwave quantum

bits (qubits) are a promising platform for realizing a quantum processor, and in part due to

the large interaction strengths available in superconducting circuits they have some of the

fastest operating speeds1, achieving effective clock speeds up to 5 MHz (when taking into

account 25 ns qubit gates [15] and 100 ns measurement and reset [218]). By comparison,

other promising quantum computing platforms such as neutral atoms or trapped ions [36]

rely on weaker interactions, resulting in comparatively slow gate speeds even compared to

classical computers. Solid state spin qubits [212], use DC pulses to perform gate operations

comparable to microwave qubits, however require fairly slow measurement and preparation

protocols, though they do have high frequency transitions.

1. See Ref. [139] for a colloquial discussion of qubit speeds for different quantum processor architectures.
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The strengths of quantum computing lie not in their speed but rather in the efficiency of

each gate operation, which thanks to quantum mechanics can provide exponential improve-

ments [206] for particular problems. So in the immediate future the key to realizing the

full potential of quantum computing lies in increasing the interactions a qubit can perform

before the losing its quantum information [55]. Looking towards the future however, increas-

ing the operating clock speed of a processor is still a straightforward method to speed up

computation speeds– so increasing frequencies of a quantum processor beyond the microwave

range can offer even faster computation while still taking advantage the benefits of quan-

tum computing. At the same time higher frequency quantum devices also allow quantum

experiments to explore new ranges of frequencies, energy scales and interactions.
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Figure 1.2: Electromagnetic spectrum in terms of frequency, along with atmospheric at-
tenuation which highlighting regions with low attenuation where communication technology
helped develop instrumentation and components.

These higher frequencies from 30–300 GHz are referred to as millimeter-waves: a fas-

cinating regime between microwaves and optics, sharing some aspects of both frequency

ranges. Aside from high-speed communication, millimeter-waves are also used extensively

in astronomy in studying the cosmic microwave background [70, 83, 172]. This frequency

range is particularly alluring for quantum experiments due to the higher energy scales of

millimeter-wave photons, which directly translates to lower sensitivity to environment noise,
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be it thermal photons, or cosmic radiation. As shown in figure 1.3 an increase in fre-

quency exponentially reduces the number of thermal photons in the system. In this way,

translating superconducting quantum hardware to higher frequencies directly reduces qubit

dephasing from thermal photons [43] and reduces the need for artificial cooling methods

[84, 135, 233, 245] to reset qubits to their ground state before experiments begin.
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Figure 1.3: Average number of photons in a harmonic oscillator as a function of temperature,
plotted for varying resonant frequencies.

Most importantly, higher frequencies increase the operating temperatures for the quan-

tum system, as shown in Figure 1.3. This is extremely significant since the cryogenic re-

frigeration power scales with temperature squared. In other words a factor of 10 increase

in qubit frequency proved 100 times more cooling power! In this way increased qubit fre-

quencies could help managing the heat load from expanding numbers of qubit control lines

[117] required for scaling up current superconducting quantum processors beyond hundreds

of qubits. Thermally-resilient qubits could also reduce hardware overhead for microwave

quantum links [181] (which currently can require a third dilution refrigerator for cooling the

interconnect [136]), and could enable direct integration with superconducting digital logic

[126, 131, 147], forming an integrated hybrid classical-quantum processor.

Superconducting qubits have also found uses in hybrid systems, coupling different types
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of quantum emitters [44, 254]. Many of these experiments pose additional challenges by

exposing qubits to magnetic fields or direct optical illumination [96, 119, 156, 240], so more

resilient qubits could help reduce hybrid experiment complexity and improve performance,

and enable even more diverse applications. Additionally, qubits built from higher-Tc super-

conductors are less sensitive to decoherence from quasiparticles [144], and have increased

nonequilibrium quasiparticle recombination rates [125], enabling higher repetition rates for

quantum transduction experiments.

Our aim is thus to increase frequency of microwave superconducting qubits (typically

4–8 GHz) by a factor of 20 into the millimeter-wave range (70–100 GHz). To achieve this

we will need to realize a strongly nonlinear quantum system with low enough loss to be

resolvable at the single photon level.

1.1 Thesis Organization

This thesis is organized as follows.

In Chapter 2 will first explore the key superconductor properties that underpin the work-

ings of our devices.

In Chapter 3 will then discuss linear circuit elements in the context of millimeter-wave

frequencies, with particular attention on resonators, which we will use throughout the rest

of the thesis.

Following this in Chapter 4 we will build on our understanding of linear systems and use a

general language to describe nonlinearity, focusing on the requirements for a millimeter-wave

qubit.

In Chapter 5 we use devices with kinetic inductance to explore weak nonlinearity at

millimeter-wave frequencies and high temperatures.

We discuss methods of increasing this nonlinearity strength in Chapter 6 with high-kinetic

inductance microwave resonators.
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In Chapter 7 we explore niobium trilayer Josephson junctions as a stronger source of

high-temperature high-frequency nonlinearity, verifying their behavior in the established

microwave qubit platform (1–6 GHz).

We begin to scale the qubit technology up in frequency in Chapter 8, where we explore

the thermal resilience of K Band qubits (up to 24 GHz).

In Chapter 9 we revisit the millimeter-wave measurement and coupling methods from ear-

lier, and demonstrate that millimeter-wave resonator loss can be comparable to conventional

microwave devices.

Finally, in Chapter 10 we demonstrate a millimeter-wave qubit with single-photon re-

solved level transitions, and characterize its coherence properties in the time domain, fulfill-

ing our goal.
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CHAPTER 2

SUPERCONDUCTORS AND THEIR PROPERTIES

For alternating currents, dissipation is a significant problem as the frequency of a signal

increases. In particular, due to the skin effect, higher frequency current is carried by an

increasingly thin layer of the metal surface, making microwave and especially millimeter-

wave circuits incredibly sensitive to surface resistance. This is particularly problematic

for quantum circuits, for which we would like to eliminate every last bit of dissipation in

order to preserve as much coherence as possible. For this reason, superconductors have been

particularly transformative for quantum circuits since they have zero DC electrical resistance,

and only tiny amounts of frequency-dependent loss.
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Figure 2.1: Periodic table highlighting elements with superconducting transitions (labeled
in Kelvin) and colored by transition temperature TC . Data taken from [68].

When cooled below a particular critical temperature Tc, many metals (and alloys) exhibit

superconductivity as their electrons condense into a Bose-Einstein condensate of Cooper
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pairs [48]. The many electron pairs can collectively be described by a single wavefunction

with a well defined phase ϕ: this is a powerful effect that gives us a macroscopic quantum

degree of freedom, and allows us to build and easily manipulate artificial quantum systems.

Despite being a very special property, superconductivity at ambient pressure is surprisingly1

common among the metallic elements [68], as shown in Figure 2.1. Of these, the group V

elements stand out since their transition temperatures are uniformly higher. Already we

see that niobium (Nb), which has the highest transition temperature for a pure element, is

a particularly tantalizing material for its superconducting properties, and because of this

shows up frequently in this work.

Material λ0 (nm) ξ0 (nm) 2∆0/kTc Tc (K)
Al 16 1500 3.4 1.2
In 25 400 3.5 3.3
Sn 28 300 3.6 3.7
Pb 28 110 4.1 7.2
Nb 50 39 3.7 9.2

Nb3Sn 50 5 4.4 18

Table 2.1: Superconducting properties, ordered by transition temperature Tc, for several
popular superconducting metals and alloys. Data from [16]

Of course as with other properties, superconducting characteristics of pure materials can

also be enhanced by alloying them with other elements. In particular, nitrogen can enhance

the superconducting properties of metals: notably niobium nitride [] and titanium nitride [],

both of which have significantly increased critical temperatures than the base metal, as shown

in Table 2.1. Superconductivity is found in even more complex materials, such as in cuprates,

nickelates and ferrites with transition temperatures exceeding liquid nitrogen temperatures

[68]. While some of these materials have actually been explored as millimeter-wave resonator

materials [20], in this work we will only consider conventional superconductors with Cooper

1. You don’t normally think of actinides like uranium as a superconductor, but the transition temperature
of one of its metallic phases is higher than that of aluminum!
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pairs formed through s-wave pairing, specifically materials that we can easily deposit and

pattern into circuits.

The nature, and microscopic mechanisms of superconductivity are fairly extensive topics

for which Refs. [16, 224] are particularly useful. In the following sections we will cover a few

particular properties of superconductors that are relevant to high-frequency circuits.

2.1 Magnetic Field Explusion

2.1.1 Drude Conductivity and London Equations

For normal metals, resistance arises from dissipation of conduction electrons through scatter-

ing events. Denoting the average time between scattering as τ , the Drude mode[16] predicts

the conductivity of a material:

σn =
nne

2τ

m(1 + ω2τ2)
− i

nne
2ωτ2

m(1 + ω2τ2)
(2.1)

Where the conduction carrier density nn in this case is the free electron density (for most

metals on the order of ∼ 1029), e is the carrier charge and m is the charge carrier mass2. τ

is typically on the order of 10−14s, so even at 100 GHz (ω ∼ 1011s−1) ωτ is negligible. This

simplifies the expression for conductivity:

σn ≃ nne
2τ

m
(2.2)

In this model, a superconductor would have no scattering, so τ → ∞. The superconducting

conductivity is then:

σs =
nse

2

m
τ +mω2τ

− i
nse

2ω
m
τ2

+mω2
≃ 0− i

nse
2

mω
(2.3)

2. For a superconductor, charge is carried by pairs of electrons, so m = 2me and e = 2e
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Thus, if we define a normal σ1 and complex σ2 conductivity from σs = σ1 + iσ2, then for

a superconductor we have σ2 = nse
2/mω. From ohms law (J = σE) applied to an electric

field oscillating at ω we arrive at the first London equation:

∂

∂t
J⃗ = −inse

2

mω

∂

∂t
E⃗ =

nse
2

m
E⃗ (2.4)

Taking the curl of both sides of Equation 2.4 and combining with the Maxwell equation

(∇× E⃗ = ∂B⃗/∂t) yields the second London equation:

∂

∂t
∇× J⃗ = −nse

2

m

∂B⃗

∂t
(2.5)

∇× J⃗ = −nse
2

m
B⃗ (2.6)

2.1.2 Meissner Effect

By taking the curl of Ampere’s law (∇× B⃗ = µ0J⃗) we obtain:

∇×∇× B⃗ = µ0∇× J⃗ (2.7)

−∇2B⃗ = µ0∇× J⃗ (2.8)

We can combine this result with Equation 2.6 to obtain:

∇2B⃗ =
µ0nse

2

m
B⃗ =

1

λ2L
B⃗ (2.9)

Where the eigenvalue of the equation is defined as the London length λL =
√
m/µ0nse2.

This equation highlights the fact a uniform non-zero magnetic field cannot exist within

a superconductor: this magnetic field expulsion property is known as the Meissner ef-

fect. To satisfy Equation 2.9, magnetic fields inside a superconductor must be of the type

B⃗(x) = B⃗0e
−x/λL . Thus, an applied external magnetic field will only penetrate a supercon-
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Figure 2.2: Illustration of the Meissner Effect. An external magnetic field outside of a
superconductor results in a magnetic field that decays exponentially on the length scale λL.

ductor by a distance λL, as illustrated in Figure 2.2. For this reason λL is also called the

London penetration depth. Table 2.1 lists the zero-temperature London lengths for various

superconductors.

B B

SuperconductorNormal Conductor

B = 0

Figure 2.3: The Meissner Effect in action: an external applied magnetic field B, which would
penetrate a normal conductor is expelled from a superconductor, inside which B = 0 (other
than a small distance λL from the surface).

Practically, this means that the magnetic field inside a superconductor is zero except for a

thin shell of thickness λL on ths surface. One result of of this effect is that a superconductor

will expel an applied external magnetic field, as shown in Figure 2.3. It follows that the

surface (more accurately a shell of thickness of λL) of the superconductor must be carrying
11



a circulating current that exactly opposes this magnetic field.

2.2 Kinetic Inductance

2.2.1 Currents in a superconducting wire

Previously we determined that an magnetic field applied on a superconductor generated

an opposing surface current on a shell of thickness λL. We will find that the reverse also

holds true. Consider a wire with circular cross section, with radius R carrying a current I, as

shown in Figure 2.4. In the normal conducting case, Ampere’s law means that a homogeneous

current density Jn would yield a magnetic field inside the wire B(r) = µ0rI/2πR
2. However

as a qualitative argument, we know that if R ≫ λL, then we must have B = 0 inside most

of the wire, except for a small shell on the surface.

B
rR

I
r’

0 R
0

JR

r

J Z
(r)

JsλL

a. b.

Figure 2.4: A cylindrical wire carrying a current generates a magnetic field inside the wire.
For a normal conductor this current depends linearly on radius, however for a superconductor
the current is localized on the surface in order to satisfy the London equations.

Indeed if we solve Equation 2.9 in cylindrical coordinates, we can approximate the solution

for the magnetic field (which is a Bessel J function) near the surface with the exponential

form:
Bθ(r)

Bθ(R)
= J1(ir/λL) ≈ e−(r−R)/λL (2.10)
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Applying Ampere’s law on the surface-approximated solution, we must have:

Jz(r) =
1

µ0
∇×B(r) ≈ I

2πRλL

(
1 +

λ

r

)
e(r−R)/λL (2.11)

In other words, like the magnetic field, the supercurrent density is exponentially localized

within a London length of the surface! As suggested by its prefactor, integrating Equation

2.11 across the entire cylindrical area of the wire gives exactly the same result as a fixed

current density Js over a shell of thickness λL on the surface S. 3

I =

∫ R

0
2πρJz(ρ)dρ = JsλLS (2.12)

2.2.2 Kinetic energy of a supercurrent

From the complex conductivity derived previously, we conclude the response of the super-

conducting charge carriers is purely reactive and not resistive. From Ohm’s law this also

suggests that current (or velocity of charge carriers) from an alternating electric field will be

out of phase, as is the case in an inductor. For a supercurrent carried by some density of

charge carriers ns, we can write out the density of its kinetic energy:

∂V Uk =
1

2
nsmv

2
s (2.13)

Where we have defined the velocity of superconducting charge carriers vs. This velocity is

related to the current density Js = nsevs, which allows us to rewrite the energy density in

terms of the London length:

∂V Uk =
1

2

m

nse2
J2s =

1

2
µ0λ

2
LJ

2
s (2.14)

3. It is fairly straightforward (and maybe simpler than our example) to convince yourself that this is also
the case in rectangular coordinates as well.
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Now if we equate this with the inductive energy for a wire section of length l, we obtain

1

2
LkI

2 =
l

2
µ0λ

2
L

∫
A
J2s (2.15)

t

W
W

t

λ No Current

Current flow

Figure 2.5: Cross sections of a rectangular wire in the thick and thin-film limits (with respect
with the London length). In the thin-film limit, the entire area of the wire carries the current,
while in the thick-film limit only the surface does.

To proceed with this integral, we should consider the geometry of the current carrying

conductor. Consider a rectangular wire of width W and thickness t in the limits shown

in Figure 2.5. If the film is thick, or t ≫ λ, then we
∫
A Js = I/(2W + 2t)λL ≈ I/2WλL.

However if the film is thin, then the current area is simply that of the wire, so
∫
A Js = I/Wt.

Thus, we can solve for the kinetic inductance Lk in these two limits:

Lk
l

=


µ0

λL
2W t≫ λL

µ0
λ2L
Wt t≪ λL

(2.16)

A practical concept for films of uniform thickness t is sheet inductance L□ (similar to sheet

resistance R□ = ρ/t). Knowing this property allows us to quickly estimate the inductance

of a wire from its width w and length l from L = L□l/w. The kinetic sheet inductance in

both limits is then:

L□(H/□) =


µ0

λL
2 t≫ λL

µ0
λ2L
t t≪ λL

(2.17)
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The thin-film case is particularly interesting, since we see an enhancement of λL/t in the

kinetic inductance. For extremely thin films and materials with high London lengths this

scaling factor can become quite significant!

2.2.3 Total Inductance

Thus far we have been sneaky by only considering the kinetic energy of the electrons. In

reality the energy of the charge carriers also contains a magnetic (or geometric) term [154]:

∂V Uk =
1

2
LmI

2 +
1

2
nsmv

2
s (2.18)

So the total inductance for a thin film will be LT = Lm + Lk.

We can also more accurately integrate the current density across the rectangular wire for

dimensions in between the two limits t ≫ λL and t ≪ λL. A full analytical expression can

be derived for both [42, 57, 154], from which we can obtain:

Lm,□ =
µ0λL
4

(
coth

t

2λL
−
(

t

2λL

)
csch2

t

2λL

)
(2.19)

Lk,□ =
µ0λL
4

(
coth

t

2λL
+

(
t

2λL

)
csch2

t

2λL

)
(2.20)

Combined, we arrive at the simplified expression for sheet inductance of a wire [57]:

L□ =
µ0λL
2

coth

(
t

2λL

)
(2.21)

In the limit t ≪ λL, the function approaches λ coth(t/2λ) → λ2/t and we recover the thin-

film expression in Equation 2.17, while in the thick limit t ≫ λL, the coth term goes to 1

leaving the thick-film expression in Equation 2.17.

An interesting note from this result is the source of inductance (inductive or kinetic) for

varying thickness limits. In Figure 2.6 we plot Lk and Lm as a function of t/2λL. For high
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Figure 2.6: Kinetic and magnetic (or geometric) inductance, plotted as a function of film
thickness relative to the London length. While for thick films the two are comparable, for
thin films we find that kinetic inductance becomes significantly higher.

values (or the thick limit) the two values are similar, however as we dive deeper into the

thin film limit, not only does the overall inductance rise, but Lk becomes significantly more

dominant. This highlights the power of film thickness for generating incredible amounts of

inductance with a simple rectangular wire!

2.2.4 Nonlinearity in kinetic inductance

One very important property of kinetic inductance is the fact that the inductance outlined

above actually increases with the current carried in the wire, or in other words the super-

conductors exhibit a nonlinear response. For low temperatures T ≪ Tc we can expand the

inductance in terms of current [269]:

Lk(I) ≃ Lk(0)

(
1 +

I2

I2∗

)
(2.22)

To satisfy time-reversal symmetry the inductance can’t have first order dependence on cur-

rent, so we have a quadratic dependence on current. The scale of the nonlinearity is set

by I∗, which is expected to be the same order as the depairing current [57, 269]. Thus the
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nonlinear portion of inductance will be:

δLk =
Lk(0)I

2

I2∗
=
Lk(0)J

2

J2∗
=
Lk(0)κ∗J

2

J2c
(2.23)

Which is written in terms of the depairing current (defined in terms of units we will examine

later)

J2∗ =
J2c
κ∗

=
1

κ∗

(π
ℏ
σnN(0)∆(0)3

)
(2.24)

The empirical proportionality constant κ∗ is of order unity (found to be between 0.6–0.95

[14, 269]).

The important thing to note is that the energy scale of the nonlinear inductance is set

by a combination of the linear inductance and material properties: leveraging both yields a

simple nonlinearity that scales with I2. We will be making good use of this property!

2.3 Vortices

2.3.1 Wavefunction and Velocity

Thus far we have treated the supercurrent charge carriers somewhat ambiguously with an

effective charge and mass. In reality, superconductivity is a result of electrons condensing

into Cooper pairs [48], so the charge carriers we have discussed thus far actually have mass

2m and charge 2e. More importantly, by condensing into pairs, the Fermionic electrons are

transformed into Bosons: the magic of this property is that we can now collectively describe

the condensate with a single wavefunction ψ which has a phase ϕ:

ψ = ψ0e
iϕ, |ψ|2 = ns/2 (2.25)

Here, the expectation of the wavefunction is defined as the electron density. In this picture,

a phase gradient (∇ϕ) will result in a supercurrent. If we combine this with the effects of
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any applied magnetic field (∇ × A = B) in the quantum mechanical picture, we have the

momentum, and thus velocity of the Cooper pairs [115]:

J⃗s = nsev⃗s = −nse
2

m

(
A⃗− ℏ

2e
∇ϕ
)

(2.26)

This is actually derived from the Landau-Ginzburg theory of superconductivity [73]

(touched on in next section) which establishes that the superconducting pairs interact on a

length scale ξ. In other words, their wavefunction can’t vary on a smaller scale than ξ. Thus

since ∇ϕ < 1/ξ, the velocity must stay below

vs <
ℏ

2mξ
(2.27)

As we will explore later, this also connects the coherence length to an energy scale.

2.3.2 Flux Quantization

Having established a general form for the Cooper pair wavefunction, we can quickly demon-

strate how a Superconductor can quantize magnetic flux. Consider a loop of superconductor

enclosing a region E penetrated by a magnetic field, as shown in Figure 2.7 (This center

region could be either vacuum, insulator or normal metal). For simplicity, let us assume the

superconductor dimensions are greater than λL and the core doesn’t magnetize (µ = µ0).

We pick a loop l of radius ρ inside the superconductor covering area S. Integrating the

current around this loop gives (dropping a few prefactors):

∮
l

(
A⃗− ℏ

2e
∇ϕ
)
dl =

∫ 2π

0
2πρdθ

(
A⃗(ρ, θ)− ℏ

2e
∇ϕ(θ)

)
(2.28)

=

∫
S
∇× AdS − ℏ

2e
(ϕ(2π)− ϕ(0)) (2.29)

Since the phase ϕ can’t be discontinuous, we must have ϕ(2π) − ϕ(0) = 2nπ for integer n.
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Figure 2.7: Superconducting vortex.

Now since we picked a loop inside the bulk of the superconductor, we must have J⃗s = 0.

Combining this with the definition of magnetic flux through the center
∮
S BdS =

∮
E BdE =

Φ, the above simplifies to:

0 = Φ− ℏ
2e

2nπ (2.30)

Thus we have a quantized unit of magnetic flux through a superconducting loop:

Φ0 =
h

2e
(2.31)

2.3.3 Vortices in the superconductor

Having established the magnetic flux inside the superconducting loop, we can repeat the

above process on the surface of the superconductor. Lets define the inside radius of the

hole as r. On the inside of the superconducting loop, we must have:

∮
Js(r) = nΦ (2.32)∮

ensvs(r) = nπr2B (2.33)
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Rewriting the magnetization field H = B/µ0, we find

vs(r) =
nπr2H

2πrλLensµ0
(2.34)

Evidently, at some applied magnetic field, our Cooper pairs will exceed the critical velocity

in Equation 2.27 which would lead to a breakdown in superconductivity. Now let us consider

the case where the core is infinitesimally thin, and the magnetic field penetrating it is just

strong enough to induce the critical velocity in the electrons. We can rearrange in terms of

the velocity, recovering familiar units:

Hc

eλLµ0ns
≃ ℏ

2mξ
(2.35)

Hc ≃
ℏ

2ξeλL
=

Φ0

2πξλL
(2.36)

Thus a sufficiently high magnetic field can penetrate a superconductor through tiny regions

surrounded by a ring of current, or superconducting Abrikosov vortices. Our derivation of

this was quite simplistic: in actuality the true critical field will be [115]:

Hc1 =
Φ0

4πλ2L
ln

(
λL
ξ

)
(2.37)

Something we haven’t touched on at all here is the fact that the critical field gets re-

duced for films thinner than λL [193]. This makes vortices even more prevalent in thin-film

superconductors (which from the last section is exactly the kind of films we would like to

work with). While a very neat effect, Vortices are actually quite problematic for microwave

superconducting circuits since they present several opportunities for dissipation. Examining

the simple picture of a infinitesimally thin vortex, nothing stops it from moving around in the

horizontal plane if the superconductor is uniform. In fact flowing current in the horizontal

plane of the superconducting sheet will apply a Lorentz force on each vortex, moving them
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around4.

This causes two primary issues. First, since the core of the vortex is no longer supercon-

ducting, a travelling vortex5 must break Cooper pairs that enter into its center into normal

electrons (or quasiparticles), and it follows that the vortex leaves behind it a wake of bro-

ken Cooper pairs. These take some time to recombine into cooper pairs [125], leading to

an excess of quasiparticles in the superconductor [144]. Second, the vortex energy depends

on the local superconductor properties. This means vortices are now able to interact and

worse, scatter with variations in an inhomogenous superconductor, leading to a new kind of

dissipation [174]! This is all not to mention direct inductive coupling to vortex motion which

can also cause energy decay.

In this work, we will attempt to avoid thinking about the vortex problem as much as

possible by reducing the magnetic fields penetrating our thin superconducting films. We

accomplish this by using magnetic shielding (discussed later) to block out external magnetic

fields (including Earth’s magnetic field) and also simply avoiding any kind of circuit with

loops that would be sensitive to global magnetic fields. Now the only vortices we should

have to worry about are the ones generated by our own currents!

2.4 Coherence Length and Proximity Effect

So far our treatment of superconductors has been fairly simple. The Landau Ginzburg theory

of superconductivity [73], which phenomenologically predicts a magnetic penetration depth

λ (similar to what we wrote out above with the London equations), also takes into account

a coherence length ξ setting the scale on which the superfluid density varies, which can

help us explain a few more key effects. We will keep this section very brief, so references

[16, 115, 224] are a good reference for more details.

4. Vortices can reach speeds of km/s!

5. If the travelling vortex needs to visit every Cooper pair, what is the optimal path it should take? ;)
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Using the same superconducting charge carrier wavefunction ψ as in last section, the

Landau Ginzburg differential equations dictate the behavior of ψ:

α(T )ψ +
β(T )

2
|ψ|2ψ − ℏ2

2m∗

(
∇+

2ie∗

ℏc
A

)2

ψ = 0 (2.38)

Js =
c

4π
∇×H =

eℏ
2im∗ (ψ

∗∇ψ − ψ∇ψ∗)− e∗2

m∗c
ψ∗ψA (2.39)

Here α(T ) ≈ α(T − Tc) and β(T ) ≈ β are parameters used to describe the material. Sim-

ilar to before, the wavefunction amplitude gives the charge carrier density ns = |ψ|2 =

−α(T )/β(T ). Taking the curl of Equation 2.39 gives us back the characteristic London

length for magnetic fields in the superconductor:

∇× Js = −e
∗2

mc
|ψ|2H = −nse

∗2

2m∗ H =
−1

µ0λ
2
L

H (2.40)

Now, consider Equation 2.38 with no magnetic field (A = 0). This yields:

α(T )ψ +
β(T )

2
|ψ|2ψ − ℏ2

2m∗∇
2ψ = 0 (2.41)

ψ =
ℏ2

2m∗α(T )
∇2ψ (2.42)

This gives us our second length scale, the coherence length ξ which governs the variation of

ψ in space.

ξ(T )2 =
ℏ2

2m∗|α(T )|
≈ ξ(0)2

(Tc − T )
(2.43)

Later on we can define this length explicitly using BCS theory of weak coupling.
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2.4.1 Superconductor Boundaries

Now consider Equation 2.38 at the interface between a superconductor and normal metal,

which will have the boundary condition [53, 224]:

(
ℏ
i
∇− e∗

c
A

)
ψn̂ =

iℏ
b
ψn̂ (2.44)

For some positive constant b. Thus if we ignore the vector potential, we must have a nonzero

derivative at the boundary! By extension, the wavefunction must also be nonzero at the

boundary, so ψ must effectively "leak" into the normal metal. Indeed, extrapolating ψ based

on the derivative condition at x = 0 we can estimate that the effect will extend by some

non-zero distance b into the normal metal, as illustrated in Figure 2.8.

0 b
0

ψ0

x

ψ
(x
)

ξn

ξ

Superconductor

Normal

Figure 2.8: Illustration of the proximity effect at the boundary between a superconductor
and normal metal, showing that superconductivity extends some distance into the normal
metal.

As another way to think about what happens in the normal metal, since |ψ|2 is nonzero

at the boundary, we must have some fraction of electrons that are still paired: these will

remain paired until they scatter in the normal metal. So the effective coherence length in

the normal metal will depend on its mean free path l (similar to how regular conductivity is

defined). Generally speaking, the wavefunction in the normal metal (in one dimension) will
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have the form:

ψ(x) = ψ0e
−x/ξn (2.45)

This normal coherence length ξn can be approximated in two limits [53, 224]:

ξn ≈


ℏvF
2πkT l ≫ ξn (clean)(
ℏvF l
6πkT

)1/2
l ≪ ξn (dirty)

(2.46)

On the superconductor side, the positional dependence of ψ is well defined by Equation

2.38, which gives solutions of the form ψ(x) = tanh((x − x0)/
√
2ξ), or in other words the

length scale on which ψ changes is the superconducting coherence length ξ. In this case

though, it means that while superconductivity extends into the normal metal, ψ also begins

to be suppressed in the superconductor. Large proximity lengths ξn will reduce the amount

ψ decreases at the boundary, but really we should make sure the superconductor is much

thicker than ξ to minimize the impact on ψ inside the superconductor.

2.4.2 Aluminum Proximitized by Niobium

Let’s consider a concrete example of a layer of aluminum (tAl) in contact with a layer of

superconducting niobium (tNb). Suppose the system is kept at 1.2 K (just above Tc,Al, so we

will consider Al a normal metal). From Table 2.1 we find that ξNb(1.2 K) ≈ ξ0,Nb = 39 nm.

tThis dictates that tNb ≫ 39 nm. Conservatively, this means that a >80 nm thick Nb layer

should suffice. For aluminum, vF = 2 × 106 m/s and l ∼ 20 nm. Thus at 1.2 K, we are in

the clean limit and ξn ∼ 2µm. So an aluminum film a few tens of nanometers thick will be

completely proximitized by the niobium, and in the niobium ψ is virtually unaffected!
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Figure 2.9: Illustration of the Josephson effect: two superconductors separated by a very
thin barrier d≪ ξ have two separate phases on either side

2.4.3 Josephson effect

Now instead of a superconductor near a metal, consider instead a superconductor separated

from an identical superconductor by a thin insulating6 barrier of thickness d, much thinner

than the coherence length in the superconductor ξ. Treating the barrier as infinitesimally

thin, we will assume the wavefunctions ψ = |ψ|eiϕ on either side will have differing values

ψ1(= 0) ̸= ψ2(x = 0). Similarly to the boundary condition between a normal metal and

superconductor, for two superconductors, we will have [53, 224]:

(
ℏ
i
∇− e∗

c
A

)
ψ1

∣∣∣∣
x=0

= aψ2

∣∣∣∣
x=0

(2.47)

For some real constant a. To simplify the problem we will consider a gauge where A = 0.

Consider the first superconductor at the boundary (x = 0): the supercurrent density will be

6. As it turns out you can recover a similar effect with more caveats with a conducting, ferromagnetic or
even a different superconductor as the barrier material
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given by Equation 2.39:

Js(x = 0) =
ℏe
2im

(
ψ∗1
∂ψ1
∂x

− ψ1
∂ψ∗1
∂x

)
(2.48)

=
ℏea
2im

(ψ∗1ψ2 − ψ1ψ
∗
2) (2.49)

=
ℏeans
2im

(
ei(ϕ2−ϕ1) − ei(ϕ1−ϕ2)

)
(2.50)

= Jc sin(ϕ2 − ϕ1) (2.51)

Thus the current tunneling through the barrier is determined by the two phases of the

wavefunctions on either side! From this we can write the total current through a Josephson

junction as

I = Ic sin(φ) (2.52)

This nonlinear dependence will come in handy later.

2.5 BCS theory and Superconducting Energy Gap

2.5.1 Quasiparticle Excitations

In a conductor at low temperatures, Fermionic electrons fill the lowest energy states, with

the highest of such being the Fermi energy ϵf . Working in terms of momentum, the highest

energy electrons can be pictured as filling a layer on the Fermi surface ξk = ϵk − ϵf , where

ϵk = (ℏk)2/2m is the energy of a particle with momentum ℏk. A plot of ξk is shown with

dashed lines in Figure 2.10. Below the superconducting critical temperature Tc, two electrons

with exact opposite momentum experience an attractive pairing potential7 W [16, 115, 224].

Since this interaction lowers the total energy, a pair of coupled electrons with momemtum k

taken from the Fermi surface will result in an energy below the Fermi surface. We call this

7. Usually labelled V, but we call it W for clarity.
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energy difference ∆, the superconducting energy gap.

-1 0 1

-ϵf

0
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k/kf

E
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0 ϵf
0

1

2

ϵk

N
(ϵ
)/
N
(0
)

2Δ
Quasiparticles

Figure 2.10: Left: Energy spectrum of unpaired electrons for a normal conductor (dashed)
with hole and electron solutions for energy. In a superconductor (solid lines), the excitations
are increased by a gap energy ∆. Right: Normalized density of states for quasiparticles and
quasiholes, which is split around the Fermi energy by ∆, so forming either kind of excitation
requires an energy of at least ∆.

Breaking a Cooper pair and returning to un-paired electrons or quasiparticles now re-

quires energy added to the system. This modifies the excitations of quasiparticles, which

now follows [115, 224]:

Ek = ±
√
ξ2k +∆2 = ±

√
(ϵk − ϵf )

2 +∆2 (2.53)

The modified spectrum is shown with sold lines in Figure 2.10. From this we see that the

minimum excitation energy (of a single particle with k = kf ) is ∆, so the energy required to

generate either a quasiparticle or quasihole is ∆. In this picture, superconducting electrons

are in pairs with energy ef , so to break a Cooper pair will require two excitations, or least

2∆.

This gap is more apparent if we solve for the density of states [115] by solving Equation
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2.53 for ϵk and differentiating with Ek:

N(E) =
dϵ

dE
= ± N(0)E√

E2 −∆2
(2.54)

This is the density of states relative to the Fermi energy, and assuming ∆ ≪ EF we can

approximate N(0) as the density on the fermi surface:

N(0) =
mk2F
2π2ℏ2

(2.55)

Figure 2.10 shows the density of states for the two excitations, in which the density has

effectively been pinched around the Fermi energy, leaving an apparent energy gap where no

states are available between ϵf ±∆.

Going one step further, since quasiparticles are by definition Fermions again, we can use

Fermi statistics (f(E, T ) = 1/(eβE + 1)) to calculate the density of quasiparticles.

Nqp(T ) = 4

∫ ∞

0
f(E)N(E)dE = 4

∫ ∞

ϵf−∆

1

eE/kT + 1

N(0)E√
E2 −∆2

(2.56)

The factor of 4 arises from each energy level accommodating two spins, and allowing for

both electron and hole excitations [57].

2.5.2 The Energy Gap

So far we haven’t said anything about the behavior of the superconducting energy gap. In

fact it has a significant dependence on temperature: which in turn determines nearly every

other superconductor property we’ve discussed thus far. In Bardeen Cooper Schrieffer’s

theory of superconductivity [48], pairing between electrons occurs on the (coherence) length

scale:

ξ0 =
ℏvF
2πkTc

(2.57)
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This interaction between electrons is mediated by phonons, so the attractive potential W is

only defined below a critical phonon frequency ωc (of order the Debye frequency ΘD so still

quite high). A critical assumption is that the coupling is weak, in other words kT ≪ ℏωc

[224]. This sets the limit of energy ranges we should sum over. Since the Fermi distribution

f(Ek, T ) = 1/(eβEk + 1) gives the excitation probability of quasiparticles, it follows that

the probability of Cooper pairs is 1− 2f(Ek). The superconducting energy gap can then be

defined from the following self-consistent equation:

∆ =
∑
k

(1− 2f(Ek))
∆

2Ek
= N(0)W

∫ ℏωc

0

∆√
ξ2k +∆2

tanh
1

2
β
√
ξ2k +∆2dξ (2.58)

Where N(0) is the maximum quasiparticle density (occuring at zero temperature). Figure

Figure 2.11 shows the temperature dependence of the superconducting gap, which has the

same fundamental behavior for superconductors with weak coupling.

0 0.5 1
0

0.5

1

T/Tc

Δ
(T
)/
Δ
(0
)

Figure 2.11: Exact solution for the temperature dependence of the superconducting energy
gap plotted in reduced units with respect to T/Tc

For zero temperatures, we can ignore the tanh term completely. Thus we have a much
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simpler expression for the zero-temperature gap:

1

N(0)W
=

∫ ℏωc

0

dξ√
ξ2k +∆(0)2

(2.59)

∆(0) ≈ 2ℏωce−1/N(0)W (2.60)

We can repeat the process for finite but low temperatures T ≪ Tc where the tanh term

is still negligible:

1

N(0)W
=

∫ ℏωc

0

dξ√
ξ2k +∆(0)2

(2.61)

∆(0) ≈ 2ℏωce−1/N(0)W (2.62)

Above a critical temperature Tc, superconductivity disappears, so we must have the gap

disappear also ∆(Tc) → 0 in order to return to the normal conductor model. This condition

means ϵ(k, Tc) = ξk, and we can solve a simpler integral:

1

N(0)W
=

∫ ℏωc

0

1

ξ
tanh

ξ

2kTc
dξ (2.63)

This yields a relation for critical temperature, which can be expressed as a function of the

zero-temperature gap in Equation 2.62:

kTc ≃ 1.13ℏωce−1/N(0)W = 1.76∆(0) (2.64)

For most superconductors 2∆/kTc is between 3.5–4 (see Table 2.1) so this reasonable accu-

rate. Notably for niobium this ratio tends to be a bit higher.
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2.6 Mattis-Bardeen Theory of Complex conductivity

2.6.1 Conductivity Integrals

Recalling Section 2.1.1, conductivity can be expressed as a real conductivity σn for nor-

mal electrons and a complex conductivity σs for superconducting Cooper pairs. Earlier we

saw that at finite temperatures T below Tc, there are a nonzero density of quasiparticles in

equilbrium. However since quasiparticles can also be generated dynamically (from incident

radiation hf > 2∆, or left behind by a vortex) the non-equilibrium quasiparticle density is

actually higher [144]. This suggests that we can’t neglect contributions from these un-paired

particles, and the current in a superconductor is carried partially by Cooper pair supercur-

rent and partially by a normal current. This means we should divide the superconductor

conductivity into real and imaginary parts:

σ = σ1 − iσ2 (2.65)

The full effects of the quasiparticle energy density along with the localized interactions of the

electron pairs on length scale ξ are taken into account by the Mattis-Bardeen integrals for

conductivity σ1 and σ2 [145, 167]. Relative to the normal conductivity σn, the conductivities

are defined by the following chonky integrals:

σ1 =
1

ω

∫ ∞

∆
dϵ

(ϵ+ ω)ϵ+∆2√
(ϵ+ ω)2 −∆2

√
∆2 − ϵ2

(
tanh

ϵ+ ω

2τ
− tanh

ϵ

2τ

)
(2.66)

σ2 =
1

ω

∫ ∞

∆−ω
dϵ

(ϵ+ ω)ϵ+∆2√
(ϵ+ ω)2 −∆2

√
∆2 − ϵ2

(
tanh

ϵ+ ω

2τ

)
(2.67)

Where τ = ℏ/kT and ω is written in energy units. With the gap solved for a particular

temperature (by integrating Equation 2.58), the conductivities can be solved for a given

frequency and temperature (also by integrating). Interestingly, this conductivity does not
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depend on any material properties [224]. The two conductivities are plotted relative to the

normal conductivity σn in Figure 2.12. Notably, higher frequencies cause σ2 to drop much

more dramatically than σ1, however their temperature dependence is approximately the

same.
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Figure 2.12: Numerically solved complex conductivities, solved for various frequencies (for
niobium this range roughly corresponds to 10-100 GHz). Real conductivity σ1 from quasi-
particles is shown on the left, and complex conductivity σ2 from Cooper pairs is shown on
the right.

2.6.2 Resistance and Reactance

Now that we split the conductivity into σs = σ1 − iσ2, we should also divide the supercon-

ductor conductivity and impedance into real and imaginary parts:

Zs = Rs + iXs (2.68)

We actually already kind of derived the reactance earlier in Equation 2.17 when we found

the kinetic inductance, where we determined Xs = ωLT. Knowing that for practical tem-

peratures, σ2 ≫ σ1 (see Figure 2.12), so we can take a similar approach to extract Rs. With

the same rectangular strip as before (in which the current flows in the surface), we can write
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the resistance in terms of resistivity ρ = 1/σ:

RsI
2 = Re

∫
A
ρJ2 = Re

∫
A

J2

σ1 − iσ2
=

σ1

σ21 + σ22

∫
A
J2 (2.69)

Remember, we already did a similar integral to find the sheet inductance in 2.17. This lets

us write
∫
A J

2 = LT I
2/µ0λ

2
L. Thus, the resistance is:

Rs =
σ1

σ21 + σ22

LT
µ0λ

2
L

≈ σ1
σ2

LT
µ0λ

2
L

(2.70)

Here we have assumed σ2 ≫ σ1. Importantly, from this we can determine how "good" our

superconductor is, by comparing the ideal reactance to the resistance (or the quality factor):

Q =
Xs

RS
=
σ2
σ1
ωµ0λ

2
L (2.71)

Thus, by integrating σ2(T )/σ1(T ) we can estimate superconductor losses as as function of

temperature.
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CHAPTER 3

HIGH-FREQUENCY CIRCUIT COMPONENTS

As the frequency of an signal increases, new complexities are continuously introduced to

designing electrical systems that interact with it. A conductive material of practically any

shape can hold a constant voltage and conduct a fixed current, so the only primary concern

for continuous currents is dissipation in the form of resistance. As a result, the basic passive

electrical components (capacitors, inductors and resistors) behave exactly as expected at

low frequencies regardless of their physical shape, making it quite simple to design complex

circuits. However as the wavelength of the signal begins to shrink at high frequencies, the

reactive components of impedance become more and more pronounced. While this means the

same effect can be accomplished with smaller components (both physically and electrically)

it also means that previously unimportant effects whose absence we took for granted when

designing low circuits become increasingly pronounced: capacitors gain parasitic inductance,

inductors gain parasitic capacitance, wire shapes begin to affect signal transmission, new

forms of energy dissipation become relevant, and signals are increasingly happy to radiate

and become increasingly less confined to the metal designed to carry them.

As a consequence, after frequency passes radio-waves and reaches into the microwave

range (∼ 1−10 GHz) the reactive impedance from shaped metal on a substrate is sufficient for

most applications, and we no longer have to rely on discrete capacitors and inductors! This

means microwave circuits frequently look quite different from low-frequency counterparts,

since filters, shunts, splitters, couplers etc. can be printed directly on the circuitboard. 1

For microwaves, planar structures have low enough parasitic effects that we can also still

use geometry to define discrete capacitors or inductors and expect them to behave correctly.

In practice this method of trying to form systems out of discrete microwave components

1. It is a fun exercise to visually locate the high-frequency microwave signal in a commercial circuitboard
containing elements with multiple frequencies (such as one from an oscilloscope).
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is frequently done by physicists designing complex circuits in order to simplify the task of

modeling their theoretical behavior.

Relying to this low-frequency component-first approach proves increasingly less tractable

as the circuit frequency increases into the millimeter-wave range (30-300 GHz). In this

domain microfabricated planar geometries have such pronounced parasitic reactance that

capacitance and inductance begin to blur together, and even simple geometry results in

unexpected resonances. Empowered by the modern computational power of electromagnetic

simulations, we can embrace this fluid nature of high-frequency signals and arrive at more

organic-looking circuit designs. Rather than deal with parasitic reactances and attempt to

refine the design until it matches the circuit we want, we can instead take a phenomenological

approach and model the design behavior with very abstract components.

In this chapter, we will discuss basic components (inductors and capacitors), waveguides,

resonators, and nonlinear resonators in context of high-frequency devices. While this list

seems short, we can get a lot of mileage out of just these few components!

3.1 Circuit Components at High Frequencies

Passive circuits, which can store energy, move it around and behave in a linear fashion, can

be fundamentally broken up into a network of inductors, capacitors and resistors. Consider

the impedance of these components in an ideal case:

Z = R + iX =


R

1/(iωC)

iωL

(3.1)

From the dependence on ω we see that capacitor reactance drops at higher frequencies, mak-

ing them more transparent; meanwhile inductor reactance increases, making small inductive
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effects more pronounced. Real devices however are inherently a combination of ideal compo-

nents, since the device geometry itself contributes to the overall reactance. These (typically

unwanted) effects result in small amounts of extra parasitic inductance and capacitance,

and are particularly noticeable when considering the behavior deviations of real inductors

or capacitors from ideal components, especially when reactance of the ideal component is

small.

Metal

Dielectric
Metal

Dielectric

Non-Ideal Capacitor Non-Ideal Inductor

Approximating Circuits Approximating Circuits

≈ ≈

Figure 3.1: Illustration of a realistic non-ideal capacitor (left) and inductor (right). Parasitic
reactances (inductive and capacitive respectively) are shown with dashed lines. Approximate
circuits modelling the parasitics are shown below. Since the parasitics should be small we
should be able to take some shortcuts.

Consider a simple capacitor such as the one shown on the left of Figure 3.1 consisting of

two long plates on a dielectric substrate. Now considering the nonzero self inductance (or

parasitic inductance) of any wire section2, we subdivide the overall capacitance into smaller

capacitors, and assign each length of wire between them a tiny inductance dL, resulting in

2. From Chapter 1, we found that kinetic inductance alone can quickly generate appreciable inductance
in just one square of material, making the motivation for this kind of analysis clear.
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the approximating circuit shown in Figure 3.1. The total impedance becomes:

ZC,eff = 2iωdL+

(
iω
C

2
+

1

2iωdL− 2i/ωC

)−1

(3.2)

This is a much nastier expression, and even has zeros– meaning that at a particular frequency

the capacitor will resonate! However since we are relatively sure the parasitic effects are small,

we can approximate dL≪ C, which simplifies the expression to

ZC,eff ≃ 1

iωC
+

5

2
iωdL (3.3)

From which we see that the capacitor has gained an inductive correction term to its total

reactance (this term is reduced but still there if we don’t consider the leads).

We can follow a similar approach to consider the parasitic capacitance of an inductor,

such as the one shown on the right of Figure 3.1, and subdivide the inductor with parasitic

capacitors dC inserted. Making a symmetry argument3 we can approximate the impedance

by examining the circuit of a single unit cell, which gives:

ZL,eff =

(
iωdC +

1

iωL

)−1

=
iωL

1− LdCω2
(3.4)

Again we see that the effective impedance is transformed from the ideal case, and we have

a self-resonance (this time a bit simpler to see). For a much more detailed analysis of the

parasitic inductance in a meander inductor see Ref [158]. From this we conclude that any

real circuit element will have a cutoff frequency ωc, which can be loosely approximated by

decomposing component geometry into ideal inductors and capacitors.

As we observed, the parasitic effects become more pronounced if the inherent inductance

is high (eg. from kinetic inductance) or the inherent capacitance is high (eg. a high dielectric

3. Otherwise the approximate circuit becomes much more difficult to solve
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Figure 3.2: Reactance plotted as a function of frequency for a realistic capacitor (left) and
inductor (right). Even up to microwave frequencies (10 GHz), the parasitics have little effect
and can safely be ignored, but by 100 GHz their effects become much more significant.

constant substrate), but also should become more pronouned as frequency increases, or in

other words as we approach the cutoff frequency of the device. In Figure 3.2, we plot the

effects of added parasitic elements on the reactance of an capacitor and inductor with realistic

values4. While the parasitic effects are functionally negligible at low frequency, and even

don’t make much of a difference at microwave frequencies, by millimeter-wave frequencies

we begin to see more pronounced deviations from the ideal behavior. This means that for

circuit design at 100 GHz, we need to use smaller inductors and capacitors, which are in

turn now more sensitive to parasitic corrections!

3.2 Waveguides

One of the most important things we would like to do with high frequency signals is move

them around. Turns out, this is exactly what electromagnetic waves like to do when left alone

in a vacuum, and we could shape microwave and millimeter-wave signals with dielectric lenses

4. In practice usually one encounters higher capacitances and lower inductances (unless there is kinetic
inductance), but for illustrative purposes we chose the values to be symmetric.
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[244] in a very similar way to how we work with optics. Millimeter and especially microwave

wavelengths are quite large however, so the size and scale of experiments would have to be

quite large with this free-space approach5 Instead, a much more practical method for moving

signals around is to confine them with waveguides.

3.2.1 Hollow Waveguides

Similar to how optical fibers can transmit light through total internal reflection, one simple

way to confine a signal is enclosing it in a tube with reflective walls. While in optics the

reflections are generated by a difference in dielectric constants inside and outside the fiber6,

in our case, the reflective walls are typically conductors and the middle of the tube is typically

air or vacuum, or another medium with minimal loss.

Let’s remind ourselves of how waveguides work. Inside the dielectric (or vacuum) of the

waveguide, the profile of an electromagnetic field oscillating at frequency ω will be determined

by Maxwell’s equations:

∇2H⃗ = −ω
2

µϵ
H⃗ (3.5)

The shape of the field inside the waveguide is entirely determined by the boundary condi-

tions on the waveguide walls, or in other words the shape of the boundaries (walls) of the

waveguide. The two simplest waveguide shapes, rectangular and cylindrical are shown in

Figure 3.3. Let’s consider the rectangular waveguide (since we will be using these a lot). To

make life simpler, we will skip ahead and only consider modes propagating in the ẑ direc-

tion, and specifically those that have a electric field transverse to the propagation direction

(TE). In other words, consider the z-component of a magnetic field with the separable form

5. Imagine how big a messy optics table from a typical laser experiment would be if you scaled it up until
each lens was 100 cm in diameter!

6. Actually dielectric waveguides (essentially big optical fibers) are a thing for millimeter-waves, they just
tend to be relatively lossy so aren’t very popular unless you really want your waveguide to be flexible.
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Figure 3.3: Rectangular waveguide (left) showing the electric fields of its lowest frequency
TE10 mode, and cylindrical waveguide (right) showing its lowest frequency TE11 mode.

Hz = X(x)Y (y)e−ikzz which satisfies Equation 3.5 in the z-direction by prapagating through

the waveguide with wavevector kz. The mode profile X(x)Y (y) must satisfy:

∂2xX

X
+
∂2yY

Y
= k2z −

ω2

µϵ
(3.6)

This is satisfied if X and Y are sinusoidal functions, which based on the boundaries of the

rectangular waveguide tells us the mode must have the form

HZ = H0 sin kxx sin kyye
−ikzz (3.7)

With kx = mπ/a, ky = nπ/b for integers m,n. By taking the curl of H we can also obtain

the electric field of the TE modes (which nobody usually bothers writing out):

E⃗(x, y) = x̂
E0ky

k2x + k2y
cos kxx sin kyy − ŷ

E0kx
k2x + k2y

sin kxx cos kyy (3.8)
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Satisfying Equation 3.6 yields the cutoff relations of the waveguide:

kz =
√
µϵω2 − k2x − k2y =

√
µϵω2 −

(mπ
a

)2
−
(nπ
b

)2
(3.9)

For the wave to propagate and not get exponentially attenuated, we must have a real-positive

kz, which means that the frequency must be at minimum:

ω2 >
1

µϵ

(π
a

)2
= ω2c,10 fc(TE10, vac) =

c

2a
(3.10)

Hence the first cutoff frequency for the lowest frequency mode of a rectangular waveguide:

the m = 1,n = 0 or TE10 mode (Notice we defined a as the larger dimension). We’ve listed

the cutoff frequencies for common sizes of rectangular waveguide in Table 3.1. For a while,

this will be the only mode, until we hit either the TE20 or TE11 frequencies:

ω2 <
1

µϵ

( π
2a

)2
,

1

µϵ

(π
b

)2
(3.11)

And now we understand why common rectangular waveguides have one dimension which

is half the other! In Figure 3.4 we plot the dispersion relation (Equation 3.9) for a WR10

waveguide (a=2.54 mm), which shows the frequency range where there is a single mode in

the waveguide.

For a cylindrical waveguide (shown on the right of Figure 3.3) the process is fairly similar,

except for using polar coordinates. Notably, a closer look at Figure 3.3 shows how similar the

field distributions are between the rectangular and cylindrical case: it is simple to imagine

a rectangular waveguide with rounded corners has a field distribution somewhat in between

the two. This modes for a cylindrical waveguide are Bessel function solutions [78]:

Ez(r, ϕ) = Jn

(un,mr
R

)
cosnϕ (3.12)
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Band Designation Dimensions b× a (in) TE10 fc (GHz) Nominal Range (GHz)
C WR187 1.872× 0.872 3.14 3.94 - 5.99
X WR90 0.900× 0.400 6.54 8.2 - 12.5
Ku WR62 0.622× 0.311 9.46 11.9 - 18.0
K WR42 0.420× 0.170 14.0 17.6 - 26.7
Ka WR28 0.280× 0.140 21.0 26.43 - 40.0
U WR19 0.188× 0.094 31.3 39.2 - 59.6
V WR15 0.148× 0.074 39.7 50 - 75
E WR12 0.122× 0.061 48.2 60 - 90
W WR10 0.100× 0.050 58.8 75 - 110
F WR8 0.080× 0.040 73.5 90 - 140

Table 3.1: Standard rectangular waveguide dimensions and frequency ranges, highlighting
the origin of microwave band designations. Historically the K band was split up into K-under
and K-above due to the strong water resonance at 22.24 GHz.

Which in turn yields a dispersion relation similar to the rectangular case but with Bessel

function zeroes un,m:

kz =

√
µϵω2 −

u2n,m

R2
(3.13)

In Figure 3.4 we plot the dispersion relation (Equation 3.9) for a cylindrical waveguide with

radius R=2 mm, which behaves fairly similar to the rectangular waveuguide, except the

higher modes are a bit more evenly spaced, meaning the single-moded frequency range is

reduced. Although circular waveguides are much easier to machine, historically this has

made rectangular waveguides more popular.

Now let’s highlight a neat property of hollow waveguides. Consider a waveguide (eg

rectangular or cylindrical) operating below its cutoff frquency. From the generalized form of

Equations 3.9 and 3.13 rewritten in terms of the cutoff frequency ωc:

kzc =
√
ω2 − ω2c

We see that below the cutoff frquency, the wavevector ceases to be real. This means the
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Figure 3.4: Dispersion relation of a WR10 rectangular waveguide (left) showing the cutoff
frequency, and the single-moded frequency range (59–117 GHz). The dispersion relation for
a cylindrical wavguide is shown on the right. The lowest frequency mode behaves fairly
similar to the rectangular waveguide, however since the structure is symmetric the next
highest mode cutoff is much closer.

propagating wave has a evanescent solution that decays as it propagates:

E(z) ∼ E0e
−Im[kz ]z = E0e

−z
√

ω2
c−ω2/c (3.14)

We plot the transmission through a rectangular and cylindrical waveguide in Figure 3.5, from

which we see that even a few millimeters of waveguide results in very significant attenuation!

This is particularly great because it means we can rest easy and not worry about any low

frequency signals propagating in our system- so any images, harmonics, noise etc. from our

millimeter-wave components can safely be ignored in a waveguide since it will functionally

disappear after any reasonable length of propagation.
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Figure 3.5: Transmission through a rectangular waveguide (left) and circular waveguide
(right) below their cutoff frequencies, plotted for different lengths of waveguide section,
showing the drastic attenuation resulting from the evanescent propagation.

As another benefit of this property, consider propagation through the loss-less7 circular

waveguide (very easy to machine) with radius 1 mm shown on in Figure 3.5. Suppose

we create a cavity at say 70 GHz and surround it with some of these lossless evanescent

waveguides: by just drilling a few holes we have very easily suppressed leakage out of the

cavity! This is precisely the approach we used to realize millimeter-wave resonant cavities

[217] with convenient optical access for transduction experiments [119].

Rectangular Waveguide Properties

Since we make good use of the rectangular waveguide later on, let’s quickly write down some

of their properties. The group velocity (the speed at which the energy propagates) can be

derived from the k vector:

vg =
∂ω

∂k
= c

√
1− ω2c

ω2
= c

√
1−

(
c

2af

)2

(3.15)

7. Metal waveguides already have very low loss, but superconducting waveguides even more so!
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This is what we should use for calculating the group delay. Notably unlike a coaxial cable, the

group velocity is not linear with frequency, so the phase a signal builds up after travelling

for some distance will not be a linear function of frequency! This makes calibrating to a

waveguide of known length a bit of a headache.

What about the impedance (the other important transmission line property)? Since this

is a ratio of voltage to current, turns out this is not so simple to calculate for a rectangular

waveguide, since we now need to integrate the fields. Waveguides have a separately defined

quantity called the wave impedance [184] which in free space is

Zw
0 =

√
µ0
ϵ0

(3.16)

And for the TE modes (the one we use) of our waveguide gets modified to

Zw
TE =

Zw
0√

1− ω2c/ω
2

(3.17)

Above the cutoff frequency this impedance is real (in other words energy propagates). As a

rule of thumb, throughout the operating band of a rectangular waveguide the wave impedance

is around ∼ 500 Ω. Note that this is not quite the same quantity as electrical impedance

though (hence we label it Zw).

3.3 Coaxial Lines at High Frequency

Unless you are working near or above 100 GHz hollow waveguides are quite large. Addi-

tionally, since they need walls made of conductors, waveguides are typically made up of

rigid and bulky metal pieces that need to be welded or tightly secured together. Luckily

high-frequency signals can also be carried by coaxial cables, which re the standard method

for making microwave connections due to their (literal) flexibility.

The addition of a center conductor to the hollow cylindrical waveguide greatly simplifies
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Figure 3.6: Single-moded operation range of a coaxial cable with a 50 Ω impedance, plotted
as a function of outer diameter D for different dielectric constants (For example Teflon has
ϵr = 2.02). Standard coax connector and cable dimensions are marked in gray.

the boundary conditions, and instead of TE or TM allows the geometry to support a TEM

wave, which has a cutoff frequency of zero! Meaning the TEM mode propagates even at

DC. For a coaxial cable (inner and outer diameters d and D) filled with a dielectric8 with

permittivity ϵr, the the cutoff frequency of the next mode (TE11) is approximately [184]:

fc ≈
2

π(D + d)
√
µϵ

=
2c

π(D + d)
√
µrϵr

(3.18)

This determines the operating range of a coaxial cable or connector. The ratio of the diame-

ters are usually constrained to give a fixed impedance (commonly 50 Ω) which is determined

by [184]:

Zcoax =
1

2π

√
µ

ϵ
ln

(
D

d

)
(3.19)

For teflon, which is a standard dielectric with a low ϵr = 2.02, we obtain approximately 50 Ω

8. because otherwise how would the center conductor stay in the middle and not fall down?
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when D ≈ 3d. In Figure 3.6 we plot the the cutoff frequency of the higher mode (or the

single-moded operating range) for cables adjusted to 50 Ω for different dielectric constants.

From this we see that for single-mode operation above 100 GHz or so, we need the outer

diameter D to be below 1.2 mm for vacuum or 0.9 mm for teflon. These dimensions are

small enough that the connector parts are pretty tiny (also fragile and expensive).

Figure 3.7: Photograph of a partially assembled 1 mm coaxial connector. The outer diameter
of the dielectric (white ring) is less than 1 mm, so these parts are very fragile!

Another issue we haven’t considered yet is loss. Unfortunately for us, the attenuation in

a coaxial cable increases with frequency. The attenuation from conductive losses [184] scales

with the root of frequency:

Im[kz] =
1

2πZ0

√
ωµ

2σ

(
1

d
+

1

D

)
(3.20)

This is not great news for us, especially since the frequency cutoff makes us select the tiny

1 mm cables, which also increase attenuation. This means that in the absolute best case9

cables attenuate at least 3 dB/ft [7]. Now waveguides aren’t looking so bad!

9. Silver-plated copper cables with foamed PTFE dielectric seems to be the best we’ve seen on the market.
Foamed PTFE means less garbage dielectric and more nice clean vacuum in the cable.
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3.4 Planar Transmission Lines

Stripline Coplanar Stripline Slotline Coplanar Waveguide

+

- --

-+ + - +- -

External Ground No Ground Grounded Grounded

Figure 3.8: Illustration of common types of planar transmission lines, with electric fields
labelled with dashed lines. Other than the stripline, all the surface transmission lines shown
here can be operated with a backside or external ground.

For microstructures on chips or circuit boards, cables or waveguides aren’t practical for

moving signals around. Instead we can use two dimensional metal structures patterned on a

flat dielectric surface: this could be anything from crystalline materials (sapphire or silicon),

teflon, glass fiber dielectrics or even cheese [133]! There are several metal geometries that will

do the trick: we show a few popular types in Figure 3.8. Like the coaxial cable, all of these

designs work by having two primary conductors carrying differential voltage and current,

meaning they can support a TEM mode (illustrated in Figure 3.9). This can either be a

positive conductor and a large ground plane (as in a stripline or the coplanar waveguide)

or two identical conductors (or ground planes) as in the case of the coplanar stripline or

slotline.

For any of these geometries, the two conductors are patterned in a single step from a thin

metal film deposited10 on the surface of the dielectric. Most commonly we use either high-

conductivity metals or superconductors along with low-loss dielectrics, so these structures can

be modelled as a lossless transmission line [184] shown in Figure 3.9. Neglecting dissipation

(hence no resistors) the two conductors are modelled as inductor per unit length L0 with

10. The metal can be taped to the surface in case of the cheese dielectric [133]
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capacitive coupling per unit length C0 between them.

+ +

+ +- -

- -

H
E

L0

C0Z0

L0

C0

VI

Figure 3.9: Illustration of a transmission line showing the electric and magnetic fields of its
supported TEM mode (left) along with charges and currents, and the lossless model (right)
of the transmission line made up of ideal components.

In this structure a signal will have a propagation constant β = ω
√
L0C0, so a wave will

propagate with velocity

vp =
1√
L0C0

(3.21)

It can be useful to think about the transmission line as a dielectric medium with an effective

dielectric constant ϵeff in which the wave propagates at vp = c/
√
ϵeff. The characteristic

impedance of this transmission line is simply a ratio of the inductance and capacitance (so

it is independent of how long it is) given by

Z0 =

√
L0
C0

(3.22)

This impedance determines the transmission characteristics, including how signals reflect off

of discontinuities.

In our case these transmission lines are frequently fabricated with superconductors, which

have kinetic inductance (described in Chapter 1). Previously we examined how this modifies

the inductance of a stripline. Keeping things general, we will conveniently write out the

inductance and capacitance for planar waveguide geometries including kinetic inductance

and realistic effects such as finite substrate thickness. Defining the conductor width as w
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and the gap between conductors as s, the inductance and capacitance for a coplanar stripline

(see Figure 3.8) patterned on a substrate with finite thickness h will be [259]

C0 = ϵ0
K(2k′0)
K(k0)

+
ϵr − 1

2

K(k′2)
K(k2)

where k2 =
tanh

(πs
4h

)
tanh

(
π(s+2w)

4h

) (3.23)

L0 = µ0
K(k0)

K(k′0)
+ µ0

2λ2L
ts(s+ 2w)k′0K(k′0)

(
s log

(
4w(s+ 2w)

d(s+ w)

)
+ (s+ 2w) log

(
4sw

t(s+ w)

))
(3.24)

The first terms for both expressions are the normal versions K is the elliptic integral of the

first kind, k0 = s/(s+ 2w) and k′ =
√
1− k2. λL is the London length (see Chapter 1) and

t is the superconducting metal film thickness. Similarly the inductance and capacitance for

a coplanar waveguide (CPW) with center pin width w, gap s and substrate height h will be

[246]:

C0 = ϵ0
K(k0)

K(k′0)
+
ϵr − 1

2

K(k2)

K(k′2)
where k2 =

sinh
(πw
4h

)
sinh

(
π(w+2s)

4h

) (3.25)

L0 = µ0
K(k0)

K(k′0)
+ µ0

µ0λ
2
L

2wtk20K(k0)2

(
− log

(
t

4w

)
− k0 log

(
t

4(w + 2s)

)
+

2(w + s)

w + 2s
log

(
s

w + s

))
(3.26)

Note that for a CPW, k0 is now w/(w + 2s)! These expressions have been derived in detail

using conformal mapping techniques[121]11 in Refs [246, 259]. Here I’ve just simplified the

math into unified long but useable functions useful for modelling these two common types of

waveguide in one go. Practically speaking though, especially if kinetic inductance is included

I’ve found that this analytic approach only goes so far in approximating waveguides- it is

more accurate to simulate the structure, and even more accurate to measure it directly!

11. Using these conformal mapping techniques you can actually find the capacitance or inductance of
virtually any waveguide geometry, usually as some combination of elliptic integrals.
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3.5 Resonators

For the waveguides and transmission lines we discussed earlier, the signal propagates as

eikzz or eiβl (depending on the notation used). Now consider what happens if the waveguide

arrives at a discontinuity: if we arrive at a short (a wire connecting the two ends of a

transmission line, or a conducting wall closing off a hollow waveguide) then the electric

field (or voltage) at the discontinuity must be zero, so we will have a wave reflecting with

negative polarity. Likewise if the waveguide simply ends (an open) no current can flow at

the discontinuity so a wave will reflect with the same polarity12. Now consider a length d of

waveguide or transmission line terminated on both ends by a discontinuity. You can either

think of this situation as a signal bouncing back and forth between them, or by modifying the

electric field solutions with the newly applied boundary conditions13: either way we obtain

the same result. At particular frequencies satisfying k(ω)d = nπ we will have a standing

wave solution for the electric field, which resonates inside our volume. Just like that we’ve

formed a resonator! Let’s go over them in excruciating detail.

3.5.1 Rectangular Cavity (Box) Resonator

Recall the solution from earlier (Equation 3.9) for the rectangular waveguide mode propa-

gating on the z axis. Except now we add similar boundary conditions on the z-axis:

µϵω2 −
(mπ
a

)2
−
(nπ
b

)2
= k2z =

(pπ
d

)2
(3.27)

From this we obtain discrete frequency solutions:

ωnmp = c

√(mπ
a

)2
+
(nπ
b

)2
+
(pπ
d

)2
(3.28)

12. For both cases the signal will actually radiate out a little bit: think of the boundary condition as a
radiating dipole and you can extract the power it emits into free space.

13. Think of this as a personality test: are you an optics person or a circuits person?
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Figure 3.10: Diagram of a rectangular resonance (or box mode). Did I mention it looks like
a box?

Other than the trivial solution (ω000 = 0) the boundary conditions dictate at least two of

m,n,p are nonzero, so the first few modes will be 110, 011, 101. This means the second-

smallest dimension is the one that will determine the lowest mode frequency.

To get a feeling for these modes, consider a chip or substrate: a rectangular slab of

dielectric, with relatively thin thickness d < 1 mm and horizontal dimensions a, b that are at

least ≳ 1 mm (big enough to carefully handle with tweezers). From the discrete frequency

solutions above, we can easily calculate the mode frequencies formed by this structure. We

plot the mode frequencies for a 0.1 mm-thick14 square (a = b) substrate for a few different

relative dielectric constants in Figure 3.11.

Two things are immediately apparent. First we observe that if working at microwave

frequencies (below 10 GHz), we don’t really need to worry about these substrate modes at

all for chips smaller than 5 mm! For millimeter-waves this is a different story: even for

ϵr = 1, a chip larger than 2 mm begins to have substrate modes below 100 GHz. Quartz

(commonly used for millimeter-waves because of its low dielectric constant) pushes these

modes down even further. If we select a high-dielectric constant substrate such a silicon

or sapphire (standard low-loss substrates used for superconducting quantum devices) these

14. This is quite thin as far as wafers go!
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Figure 3.11: Mode frequencies of a 100 µm-thick box made from vacuum, quartz and sapphire
respectively, assuming the other two dimensions are equal.

modes are quite dense in the millimeter-wave bands, and we have a box mode below 100 GHz

even for a tiny 1 mm chip!

Remember though, we derived these frequencies assuming conducting boundaries on all

sides of the box. So what this really means is we should be very careful when enclosing a

substrate on both sides with metal, as this will almost certainly form parallel plate modes

in the substrate15. So unless we have extremely tiny chips, we immediately rule out the

popular style of packaging [77] (where a chip with a groundplane is pressed down on a metal

surface) at millimeter-waves.

This is not the end of the world for millimeter-wave packaging though. Suppose we still

wish to use sapphire: let’s simply make the box larger (say 1 mm thick) and suspend the

sapphire chip in the center. We plot the resulting modes for varying chip thicknesses in

Figure 3.12: from which we see that if we keep the chip thickness small (100 µm thick)

we can make a reasonably size chip (2–3 mm) and only have a few discrete modes in our

15. The electric field of these modes looks a bit like pancakes in the substrate.
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Figure 3.12: Mode frequencies of a 1 mm-thick box with varying square dimensions contain-
ing a sapphire chip of varying thickness.

frequency range! Thus we have kept the millimeter-wave box mode beast at bay.

3.5.2 Transmission Line Resonator

In a very similar way to the case of the box resonance we looked at above, we can also

determine the frequencies of a length of transmission line terminated with discontinuities.

If the transmission line is shorted on both ends, the voltage on either side must be zero, so

βl = nπ for integer n. In other words the length of transmission line forms half a wavelength,

so its resonant frequency will be:

ωλ/2 =
nπ

l
√
L0C0

(3.29)

Two open circuit conditions on either end result in exactly the same frequency. However a

short circuit on one end and an open circuit on the other allows transmission line to support
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a mode with twice the wavelength:

ωλ/4 =
(2n+ 1)π

2l
√
L0C0

(3.30)

This kind of resonance is particularly useful since it requires half the space. Since one end is

a voltage node and the other is a current node, it will interact capacitively on one end and

inductively on the other.

3.5.3 Simple LCR Resonator

CZ0 L R

Figure 3.13: Circuit diagram of the simplest LCR resonator

A resonance can also be modelled by a set of ideal circuit components. For an arbitrary

load impedance ZL shunting an input line with impedance Z0 we can write the reflection as

an S matrix parameter [184]:

S11 =
ZL − Z0
ZL + Z0

(3.31)

In our case, the load impedance is that of a parallel LRC resonator (Figure 3.13). We can

write the effective impedance as:

ZL = ZR||ZL||ZC =
1

iωC + 1
iωL + 1

R

≃ R

1 + 2iQi∆
(3.32)

Where ∆ = (ω − ω0)/ω0, the resonance frequency is ω20 = 1/LC and the quality factor is

Qi = R/ω0L. From this we can evaluate the reflection, and after some algebra arrive at the
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following expression:

S11(ω) = 1− 2Qi

Qe +Qi + 2iQeQi∆
(3.33)

= 1− κ

κ+ γ

1
1
2 + iδ

(3.34)

Where we have introduced reduced detuning δ = ∆ω/(κ + γ) (a concept we are borrowing

from the quantum optics derivation of the resonator [239]) and quality factors and coupling

rates definitions can be summarized:

coupling Q = external Q : Qe =
Z0
ω0L

= ω0Z0C =
ω0
κ

(3.35)

unloaded Q = internal Q : Qi =
R

ω0L
= ω0RC =

ω0
γ

(3.36)

loaded Q = total Q :
1

QT
=

1

Qe
+

1

Qi
=
κ+ γ

ω0
(3.37)

Having abstracted its behavior using quality factors Q or linewidths κ, this simple resonator
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Figure 3.14: Complex reflection response of a resonator, plotted for various strengths of
internal losses Qi. The ambiguity of the magnitude response between under-coupled and
over-coupled cases necessitates a full measurement of both quadratures.

model is quite powerful, since it can model the behavior of a variety of different resonators,

as we will see later on. We plot the complex behavior of this function for varying values of
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coupling Qe and internal Qi in Figure 3.14. Noting the similarity in magnitude responses

between cases with Qe < Qi and Qe > Qi makes it necessary to measure the complex

response (both real and imaginary) to get fully understand what is going on.

Frequently we also want to estimate the number of photons in the resonator given a

power applied to the input port. It is important to realize that this is not just a function of

applied power, but also depends on the frequency detuning [239]. We will derive this more

carefully later for a nonlinear resonator, which in the current linear case simplifies to:

nph =
Pin
hf0

κ

(κ+ γ)2
1

1
4 + 2δ2

≤ Pin
ℏω0

4κ

(κ+ γ)2
(3.38)

3.5.4 Real Resonator Measured In Reflection

Z0 ZR𝑍! ,𝛽
𝑙

Figure 3.15: LCR resonator with multiple loss channels Ri.

In a real experimental setting resonator coupling isn’t perfect: frequently the presence

of the resonator modifies the impedance of the transmission line coupling to it, or even

more frequently the coupling method has some electrical length (eg. consider coupling to a

resonator through an evanescent waveguide we discussed earlier). Following the approach in

[250], we model this realistic case with the modified circuit shown in Figure 3.15 where the

resonator circuit from before is condensed into ZR for simplicity. The coupling to the circuit

is represented by a short section of transmission line, which scatters the signal before reaching

the resonator, and introduces a phase βl ≈ ϕ′ to the signal that reaches the resonator. The

modified reflection coefficient S11 can be derived using ABCD matrices [184] (see Appendix
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A for details), and approximated for small ϕ′ as:

S11 ≈
ZR − Z0 − iϕ′

(
Z2
0

Zc
− Zc

)
ZR + Z0 − iϕ′

(
Z2
0

Zc
− Zc

) (3.39)

Absorbing the complex term into a complex impedance Z∗
0 = |Z∗

0 |e
iϕ, and therefore based

on the definitions above we will have a modified complex coupling quality factor

Q∗
e = |Q∗

e|eiϕ (3.40)

Thus the reflection is transformed:

S11(ω, ϕ) = 1− 2Qie
−iϕ

Qe +Qie−iϕ + 2iQeQi∆
(3.41)

This makes several important changes: in the complex plane, the circle that is swept by

the reflection off the resonator in the complex plane is simultaneously rotated and the circle

diameter increases. This means that particularly if the resonator response is being used to

extract the internal and external quality factors, it is vitally important to take this rotation

into account: otherwise the internal quality factor will be overestimated, since the diameter

of the circle has been artificially increased by the mismatch rotation ϕ.

3.5.5 Side-coupled Resonator

Measuring a resonator in reflection makes for a simple experiment, however in practice this is

a very inefficient use of resources as each resonator now requires its own transmission line16.

A more efficient characterization method is to have one continuous transmission line with

16. Worse yet measuring in reflection requires a way to separate inputs and outputs, or a circulator for
every device.
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Figure 3.16: Complex asymmetric reflection response of a resonator, plotted for various
strengths of asymmetry ϕ and internal losses Qi.

many resonators coupled to it from the side (hence side-coupled)17. This can be realized

by capacitively coupling the LCR circuit in Figure 3.13 to a continues transmission line, as

shown in Figure 3.17.

C
Z0 L R

Ck

Z0

Figure 3.17: Circuit diagram for a side-coupled resonator.

We can use ABCD matrices to derive transmission and reflection parameters of this circuit

by modifying the shunt impedance to ZL = ZR + 1/iωCk (see Appendix A). Notably this

approach already produces an asymmetric response, with a resonanace and anti-resonance!

So we would be kidding ourselves if we didn’t take it into account. You can derive this

asymmetry from the circuit model directly: this is done explicitly in Refs. [106, 153]. We

17. Many people like referring to these as ’hanger’ measurements which I think is absolutely horrid.
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will instead purposefully derive the asymmetry from a directional coupling argument to an

LCR resonator so that we can conveniently take advantage of well-established physics of

resonators in reflection.

(a) (b)
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Figure 3.18: Side-coupled resonator model (a) 3 port network of an H-plane splitter coupled
to a black box resonator, showing corresponding transmission coefficients with input and
output fields labelled by port. The inset shows the equivalent circuit network. (b) Analogous
configuration for an optical cavity, adjusted for boundary conditions.

Based on the argument that a symmetrically coupled resonator will radiate equally in

both directions, we consider the the 3-port H-plane splitter. This lossless but unmatched

network [184] has symmetric ports 1-2 corresponding to the transmission line, and unmatched

port 3 leading to the single-port coupled resonator ZR as shown in Fig. 3.18(a) (For optics

nerds, this system can also be described by a network consisting of a 50-50 beamsplitter,

perfect mirror, and π/2 phase shifter as shown in Fig. 3.18(b), which yields the same key

results if we are careful to use correct boundary conditions). If we place a black-box element

on port 3, we can describe it’s input and output fields in terms of the waveguide input and

output fields:  ain(t)

aout(t)

 =
−1√
2

 ain
1 (t) + ain

2 (t)

aout
1 (t) + aout

2 (t)

 (3.42)

60



If we describe the black box with an arbitrary reflection term Γ = aout(t)/ain(t), the scat-

tering matrix of the system reduces to:

S =
1

2

 Γ− 1 Γ + 1

Γ + 1 Γ− 1

 (3.43)

We can now verify that far off-resonance, for open circuit perfect reflection Γ → 1, we

recover perfect transmission. Meanwhile substituting Equation 3.34 for Γ, we recover the

limit Ck → 0 from Appendix A:

S21 = 1− Qi

Qe +Qi + 2iQeQi∆
(3.44)

= 1− κ

κ+ γ

1

1 + 2iδ
(3.45)

This response function is plotted for various values of internal quality factors Qi in Fig-

ure 3.19. As a rule of thumb, we can look for circles in the complex response to track down

resonances, and having found one, see that the larger Qi is, the deeper the resonance will

be. This makes side-coupled resonators a great tool for quickly extracting information about

the internal loss of a resonator!
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Figure 3.19: Complex transmission response of a side-coupled resonator, plotted for various
strengths of internal losses Qi relative to the coupling Qe.
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Frequently we also want to estimate the number of photons in side-coupled resonator

given a power travelling through the transmission line. As with the reflectively-coupled

resonator, this is not just a function of applied power, but also depends on the frequency

detuning [239]. We will derive this more carefully later for a nonlinear resonator, but for

now it simplifies to:

nph =
Pin
hf0

κ

(κ+ γ)2
1

1
2 + 2δ2

≤ Pin
ℏω0

2κ

(κ+ γ)2
(3.46)

Note the maximum value is exactly half that of the reflection case!18

3.5.6 Asymmetry in Side-coupled Resonators

As with real experimental implementations of resonators measured in reflection, real side-

coupled resonators also show signs of asymmetry. While this might sound like a minor issue

and just a meaningless correction to think about, consider the following: if we use the simple

model from before to fit our asymmetric resonator (see the profiles in Figure 3.20), we might

end up wildly overestimating the quality factor [186]! For this reason it is vitally important

in this day and age to measure both quadratures of transmission (or reflection) to claim

anything about the resonator with any amount of certainty.19

Now naively one might say - didn’t we already figure out how asymmetry works for

reflection? Can’t we just substitute the modified reflection case into the reflection term on the

beamsplitter? But because that derivation made assumptions about the input impedance Z0,

this would give the wrong result. Instead, we can define this asymmetry by modifying

the beamsplitter behavior (in practice this is more frequently the physical source of the

asymmetry).

18. Many parametric amplifiers take advantage of this to squeeze extra performance out of a pump tone.

19. Even last year I’ve seen papers coming out that only measure magnitude! We really aren’t in the stone
age of RF measurement anymore...
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Figure 3.20: Complex transmission response of an asymmetric side-coupled resonator, plot-
ted for various values of asymmetry ϕ (for negative values the effect is simply flipped). Here
we have fixed Qi = 10Qe: notice however that the depth of the transmission dip increases as
asymmetry grows making it easy to overestimate Qi without taking into account the asym-
metric response.

Far off resonance, an impedance mismatch on output port 2 results in nonzero reflection

|r| = sinϕ and transmission |t| = cosϕ less than unity. To account for this while preserving

the unitarity of the S matrix, we apply transformations of the form eiϕ to each path of the

3 port network. This gives:

S =
1

2

 Γeiϕ − eiϕ Γeiϕ + e−iϕ

Γeiϕ + e−iϕ Γeiϕ − eiϕ

 (3.47)

Which in turn yields S21 = (Γeiϕ + e−iϕ)/2. Mapping the linear reflection to the modified

3 port network, we obtain the result used in the main text, which agrees with Refs. [106].

S21 = 1− κ

κ+ γ

eiϕ

cosϕ

1

1 + 2iδ
(3.48)

A similar derivation in Ref. [153] arrives at a very similar result, however the astute re-

searcher will notice that the denominators of the two respective expressions differ very
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slightly: ours and Ref. [106] has a cosϕ while the Ref. [153] has a eiϕ term 20. Keep in

mind, this difference is splitting hairs on the end of hairs: if you plot both models on top

of each other they line up for nearly any parameter combination (Note: This is not to be

confused with the ϕ-rotation method, which rotates but doesn’t rescale the circle resulting

in a very wrong result). My conclusion from this is that for any practical parameters or

measurement precision this doesn’t matter21, however maybe future context may settle the

debate.

3.6 Sources of Loss

Throughout this thesis we battle against sources of dissipation in an attempt to maximize

device coherence (in other words maximizing Qi or reducing the intrinsic resonant linewidth

or decay rate γ). Ultimately the final quantity we care most about is the single-photon loss

Qi(n̄ = 0), since this either closely models the loss of a linear or nonlinear system in the

quantum regime. However even with a single linear system there is still a good deal we can

learn about how the loss behaves, which can help us determine where the dissipation comes

from, where it goes, and thus hopefully how to get rid of it.

3.6.1 Multiple Loss Sources

Returning to the simple resonator model, consider what happens if we separate loss channels,

presumably to model the effects of different kinds of loss or decoherence. The lower the

resistance in the LCR circuit, the faster the energy decays, so Qi is lower. For a system

with several types of losses, we should expect the worst kind to dominate. In our model we

can describe this by adding several resistors in parallel, as shown in Figure 3.21. Thus, for

20. This is a great opportunity to convince yourself that Re[Q−1
e ] ̸= Re[Qe]

−1 which I think might be
where a lot of the confusion comes from.

21. What is O(ϕ2) between friends?
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CL R1 R2 R3 …

Figure 3.21: LCR resonator with multiple loss channels Ri.

several kinds of loss Ri the overall loss R will be:

R−1 = R−1
1 +R−1

2 +R−1
3 + ... (3.49)

This tells us how internal quality factors add together:

Q−1
i = Q−1

i,1 +Q−1
i,2 +Q−1

i,2 + ... =
∑
x

Q−1
x (3.50)

In this case it may be more useful to think about linewidths γ:

γ =
∑
x

γx (3.51)

Now suppose the source of the loss is from different dielectric materials in a capacitor, so

Qi,x ∝ CxRx. For a resonant system where the energy is stored in several different capacitors,

the total loss can be written as a weighted sum of the individual losses:

Qi =
∑
x

px
Rx

(3.52)

Where the weights are determined by the energy participation ratio px = Cx/Ctot = Ex/Etot.

This was a quick sketch of the process, but this method can be applied to decompose losses

in even more complicated quantum systems [155, 241].
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3.6.2 Disentangling Losses

Having just determined how loss channels in a linear system add together, we can use this as

a tool to help figure out the individual sources of loss (see Ref. [49] for a relatively thorough

modern example of how this is done for tantalum microwave resonators). As it turns out,

superconducting devices can have a significant number of different contributing loss channels.

Any high-frequency device has to contend with some undesirable leakage into its envi-

ronment [33, 235]. While we use superconductors to minimize resistivity, involving normal

metals will introduce resistive loss [19]. Luckily this can be minimized by ensuring all relevant

currents are carried by superconductors22. Furthermore any devices that include dielectric

materials (which when considering metal oxides are virtually impossible to avoid) we also

must consider classical dielectric loss [165, 176]. Since the latter is proportional to the ca-

pacitance or electric field, dielectric loss is particularly straightforward to calculate using the

participation ratio [54, 241] method outlined above given known loss tangents Q−1 = tan δ

of bulk materials.

The losses described so far are typically constant, so to determine their relative com-

position would require rigorous experiments that measure loss while adjusting the relative

participation. Some forms of loss however have far simpler control knobs. Recalling from

Chapter 2 we remember that the superconducting wires will contribute loss from quasipar-

ticles [39, 145], which given the superconductor properties, we can calculate as a function of

temperature T from the complex conductivity integrals [145]:

Qqp(T ) = α
σ2(T )

σ1(T )
(3.53)

Thus we have a loss component which is a strong function of temperature! Luckily for

temperatures below ∼ 0.1Tc, Qqp > 1012 so typically doesn’t pose a significant problem to

22. Similarly to electric field participation, one can calculate the inductive energy participation ratio in
resistive regions of the circuit.
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our superconducting devices (for now). That said, we can use the thermal dependence of Q

to extract superconducting properties!

We also place particular emphasis on two level system (TLS) loss [179] from coupled two-

level systems (usually also found in dielectrics). Each of these two level systems, regardless

of the exact mechanism, can absorb a photon: collectively this process results in average

dissipation. When exposed to sufficiently high energies, the individual two level systems

saturate and do not absorb additional power: this can come from the thermal heating,

external electric or magnetic fields [130], or (conveniently) from the electric fields of the

resonator itself. To summarize:

1

QTLS
=

tanh
(

ℏω
2kT

)
QTLS,0

√
1 +

∣∣∣ E
Ecrit

∣∣∣2 (3.54)

Here QTLS,0 = FδTLS contains an effective density of two level systems, and Ecrit is the

average saturating electric field. In practice, we make the assumption that external fields are

negligible, and consider that a portion of the resonator electric field contributes to saturating

the two level systems, allowing us to write the electric field term E2 = αn̄β as an empirical

function of the resonator photon number n̄ [242]. Thus we have a relatively simple model of

the power-dependent loss:

1

QTLS(n̄, T )
=

tanh
(

ℏω
2kT

)
QTLS,0

√
1 +

(
n̄
nc

)β (3.55)

At low temperatures, the tanh term can be neglected, further simplifying the expression.

Putting everything together, we establish that the internal quality factor of our devices
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can be split up into power-dependent and thermal components:

1

Qi(n̄, T )
=

1

Qother
+

1

QTLS(n̄, T )
+

1

Qqp(T )
(3.56)

Provided the resonator electric fields are strong enough (frequently true for planar devices,

but three-dimensional structures [6] tend to have more dilute electric fields which do not

saturate TLSs with reasonable applied power), the power and temperature dependence of

Qi can help determine superconductor properties (eg. Tc) as well as the proportion of loss

coming from two level systems. Furthermore, if we understand (or simulate) the energy

distribution in the structure, the power-independent remainder of the loss Qother can be

decomposed into proportional components using the participation method:

Qother =
∑
i

pi
Qi

(3.57)

This makes linear systems a valuable tool for measuring sources of decoherence! Now we can

whittle away at sources of loss with a slightly better understanding of where it came from.
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CHAPTER 4

NONLINEAR QUANTUM SYSTEMS

Having read this far, you might say- hold on, wasn’t all this supposed to be about quantum-

mechanical behavior? Indeed. The very same LC resonators we have been discussing thus

far can be modelled as ideal quantum harmonic oscillators1, which can be described with

the Hamiltonian:

H =
Q2

2C
+

Φ2

2L
(4.1)

With conjugate operators Q and Φ (so that Φ = LQ̇) which satisfy the commutation relation

[Q,Φ] = iℏ. For more details on where this comes from and working with quantum circuits

in general, see Refs. [170, 187, 189] Similar to the mechanical quantum harmonic oscillator,

we can transform this with ladder operators:

H = ℏω0
(
a†a+

1

2

)
(4.2)

Where the collapse operator a satisfies [a, a†] = 1. This harmonic system has evenly spaced

energy levels, as shown in Figure 4.1, making them indistinguishable from each other. An

applied signal at the resonance frequency ω0 will continue to excite the harmonic oscillator

indefinitely.

The key to observing quantum phenomena is introducing photon interactions, or in other

words nonlinearity. Consider the modified LC circuit on the right of Figure 4.1, which

replaces the inductor with a nonlinear current-dependent inductance:

L(I) = L

(
1 +

I2

I2∗

)
(4.3)

The resulting Hamiltonian will gain a quartic term [99, 170, 187] and can be expressed in

1. Traditionally every thesis must include an introduction to the harmonic oscillator
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Figure 4.1: Energy levels of a harmonic oscillator (left) which are all evenly spaced, and
an anharmonic oscillator (right) whose potential isolates the energy levels making them
individually addressable.

terms of an anharmonicity, or Kerr nonlinearity K [104, 239]:

H =
Q2

2C
+

Φ2

2L
+

Φ4

4I2∗L3
(4.4)

≃ ℏω0
(
a†a+

1

2

)
+ ℏ

K

2
a†a†aa (4.5)

= ℏ(ω0 +Ka†a)
(
a†a+

1

2

)
(4.6)

We suggestively absorbed the scale of the nonlinearity into K and written out the spectrum

to show that the frequency now depends on the energy level of the system n = a†a:

ωn = ω0 +Kn (4.7)

For this nonlinear system, each energy level transition has its own individually address-

able frequency separated by the anharmonicity K, allowing us to observe and manipulate

individual quantum states!
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4.1 Resolving Single Photons
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Figure 4.2: Nonlinearity strength relative to linewidth (or loss). For large linewidths or weak
nonlinearity, individual photon levels are indistinguishable from one another and the system
is governed by classical behavior, and many photons are required to observe the nonlinear
effects. Only when the anharmonicity exceeds the linewidth can we address energy levels
individually.

Unfortunately real systems have finite linewidth κ, which blur together the delicately

separated transition frequencies of the anharmonic system. We illustrate this effect for several

cases of linewidth compared to nonlinearity in Figure 4.2. For systems with either weak

nonlinearity or wide linewidth the individual transitions are externally indistinguishable,

and the levels are not isolated, so an applied signal will continue to excite the system into

higher energy levels, like in the harmonic case in Figure 4.1.

The nonlinearity is still present however, so enough photons in the system will engage

the nonlinearity enough that the frequency will shift enough for us to observe the effect. If

71



we ensure that the anharmonicity is greater than the transition linewidth however, as is the

case in the top left of Figure 4.2, we can be sure that the first two energy levels are isolated,

enabling us to treat the anharmonic oscillator as a two-level system. Throughout this thesis,

our goal will be realizing this condition (K > κ) at millimeter-wave frequencies.

4.2 Kerr Nonlinear Resonator
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Figure 4.3: a) Circuit model of a nonlinear resonator described by coupling κ, loss γ, fre-
quency ω0 and nonlinearity K, with input and output fields. b) Optics model of the same
system where the resonator is a Kerr-nonlinear optical cavity. c) Normalized intracavity
photon number as a function of reduced pump frequency δ for reduced drive strengths ξ,
where ξcrit = −1/

√
27.

Now that we have a hamiltonian written out for a nonlinear resonator, we can use input

output formalism [239] to derive its complex response. Consider the models of the system

illustrated in Figure 4.3, similar to the direct-coupled resonator measured in reflection dis-

cussed earlier in Chapter 2, with an added nonlinear term K. Given that we will observe the

nonlinear resonator by letting it interact with photons, instead of finding solutions for the

degrees of freedom Q,Φ it is much more useful to determine the dynamics of the operator

a(t). The input and output fields2 ain(ω, t) oscillate with frequency ω, and based on the

2. Similar to the operators in a harmonic oscillator, these can be thought of as ladder operators that
create propagating photons.
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coupling strengths we write out the quantum Langevin equation of motion for a(t) in the

resonator:

∂ta = i[H, a]− κ+ γ

2
a−

√
κain (4.8)

Performing the commutator algebra with Equation 4.6 and assuming the resonator field

oscillates at the driven frequency ω, we arrive at

i(ω − ω0)a+
κ+ γ

2
a− iKa†aa† =

√
κain (4.9)

Now we make the key assumption that for weak nonlinearity or large enough excitations, the

resonator field can be linearized, allowing us to approximate the operators with a complex-

valued function [239], which simplifies the above into something we can solve for a:

i(ω − ω0)a+
κ+ γ

2
a− iK|a|2a∗ =

√
κain (4.10)

We have been careful to use the microwave convention for Fourier transforms, and nph =

|a|2 corresponds to the average number of photons in the resonator. Multiplying by the

complex conjugate, we obtain an equation governing the normalized number of photons in

the resonator n. (
1

4
+ δ2

)
n− 2δξn2 + ξ2n3 = 1 (4.11)

Where similar to Ref. [61], n, ξ and δ are defined as:

n =
|a|2

|ain
1 |2

(κ+ γ)2

κ
(4.12)

ξ =
|ain
1 |2κK

(κ+ γ)3
(4.13)

δ =
ω − ω0
κ+ γ

(4.14)

We plot n as a function of δ for varying drive strengths ξ in Fig. 4.3c, finding that n
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reaches a maximum value of 4. At the critical value ξcrit = −1/
√
27, Eq. 4.17 has 3 real

solutions, leading to the onset of bifurcation. Based on the resonator boundary conditions3

aout = ain + a
√
κ [194] and Eq. 4.10, the reflection coefficient Γ will be [61, 239, 264]

Γ = 1− κ

κ+ γ

1
1
2 + i(δ − ξn)

(4.15)
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Figure 4.4: Nonlinear reflection response of a Kerr nonlinear resonator in the complex plane
(left) and in terms of magnitude (right). We chose κ = 2γ to make the magnitude response
apparent. Notably the circle profile in the complex plane is unaffected by the nonlinearity.

We plot the nonlinear reflection response (Equation 4.15) for increasing drive strengths ξ

in Figure 4.4. Above the critical drive strength ξcrit = −1/
√
27 the transmission bifurcates

(similar to the photon number in Figure 4.3): in practice this means depending on the

frequency sweep direction we may see hysteresis in the reflection response []. In practice,

frequently the measurements are not adiabatic enough to keep the nonlinear resonator in one

branch and the response instead probabilistically switches between the solutions4 Notably

3. Note: we used microwave conventions here. If you want this to match up with Ref. [239] flip the sign.

4. If the measurement is averaged, this can look like a curved response which deviates from the model,
however really it is just averaged probability.
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the shape of the response in the complex plane does not change- this property is useful for

determining whether the nonlinear effect is actually caused by a Kerr nonlinearity, or if it is

instead a hysteretic heating effect of some sort.

4.2.1 Side-coupled Nonlinear Resonator

Having already developed a method for translating the physics from a resonator in reflection,

it is straightforward to repeat the process above for a side-coupled resonator. Since we

separated the effects of nonlinearity and asymmetry, our model can take into account both

effects. For our devices we find that this helps explain experimental data, however I will state

that the asymmetric effects are based on an approximation, and could likely use additional

scrutiny.

One convention difference between the side-coupled case and the direct-coupled reflection

case is a factor of two on the input power. This results in a slightly different linearized

equation of motion:

i(ω − ω0)a+
κ+ γ

2
a− iK|a|2a∗ =

√
κain = −

√
κ

2
ain
1 (4.16)

(
1

4
+ δ2

)
n− 2δξn2 + ξ2n3 =

1

2
(4.17)

Notably this results in a photon number a factor of two smaller than in the reflection case:

nph(ξ → 0) =
Pin
hf0

κ

(κ+ γ)2
1

1
2 + 2δ2

≤ Pin
ℏω0

2κ

(κ+ γ)2
(4.18)

Mapping Eq. 4.15 to the modified 3 port network, we obtain the full nonlinear asymmetric

model for a side-coupled resonator, which in respective limits agrees with Refs. [106] and

[219].

S21 = 1− κ

κ+ γ

eiϕ

cosϕ

1

1 + 2i(δ − ξn)
(4.19)
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Figure 4.5: Nonlinear transmission response of a side-coupled Kerr nonlinear resonator in
the complex plane (left) and in terms of magnitude (right). Here κ is chosen to be 8γ.

We plot the nonlinear transmission response of a side-coupled Kerr nonlinear resonator

(Equation 4.19) with no asymmetry (ϕ = 0) in Figure 4.5 and with significant asymmetry

(ϕ = ±0.5) in Figure 4.6. Notice from Equation 4.19 that the asymmetry will only change

the response in the complex plane, and will not nominally affect the frequency response (ie

the resonator will still trace out the same circle in the complex plane regardless of power).

This effect is particularly nice, since it means that regardless of the strange deformations5

occuring in frequency space, we can still fit the polar response of the resonator and extract

quality factors!

However since the Kerr nonlinearity changes the frequency dependence of n, this trans-

lates into a pronounced distortion of the regular frequency response. In practice this can

also result in strange bifurcation effects, where the hysteretic jump is negative (which seem

counterintuitive from a adiabatic sweep argument). Highly asymmetric and nonlinear de-

vices aren’t very common, so we look forward to applying this approach to future measured

devices to help either experimentally corroborate or further refine the model.

5. You can try fitting a model with three solutions to experimental data, but I guarantee you it will not
be a fun time!
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Figure 4.6: Nonlinear transmission response of an asymmetric side-coupled Kerr nonlinear
resonator shown for significant asymmetries ϕ = −0.5 (left) and ϕ = 0.5. Here κ is also
chosen to be 8γ.

4.3 Josephson Junctions

So far we have been a bit vague about the source of the Kerr nonlinearity in our circuit.

Conveniently, if we look back to the expression for nonlinear kinetic inductance in Chapter

1, we see that this matches the general form expression we used! However a much more

commonly used source of nonlinearity for superconducting quantum devices is the Josephson

junction [? ]

A conventional (SIS)6 Josephson junction is formed by the interface of two supercon-

ductors separated by a thin insulating barrier: for the Cooper pairs to tunnel through the

barrier, the thickness must be significantly less than the coherence length of the supercon-

ductors on either side. These barriers are typically between 1-2 nm, typically formed by

thermally oxidizing a layer of metal (such as aluminum), however they can also be explicitly

deposited (such as in the case of AlN barriers [109, 166] Recalling our brief examination of

the boundary conditions between two adjacent superconductors from Equation 2.52, we can

6. Superconductor - Insulator - Superconductor
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write the voltage and current through the Josephson junction in terms of the superconducting

phase difference φ7:

IJ (t) =
dQ

dt
= Ic sin(φ(t)) (4.20)

VJ (t) =
Φ0

2π

dφ(t)

dt
(4.21)

Notably, the current will always be below the critical value Ic. Knowing the voltage and

current, we can also evaluate the inductance:

L = VJ

(
dIJ
dt

)−1

=
LJ

cos(φ)
(4.22)

Where we have collected constants into the Josephson inductance LJ = Φ0/2πIc, related to

the critical current. For our applications, we will be only be running tiny currents through

the junction, so we can expand for small φ:

L ≃ LJ

(
1 +

φ2

2
+O(φ4)

)
(4.23)

I ≃ Icφ+O(φ3) (4.24)

And thus we recover the generic form of nonlinear inductance we used earlier:

L(I) = LJ

(
1 +

I2

2I2c
+O(I4)

)
(4.25)

This tells us that for small currents, the Josephson junction generates a Kerr nonlinearity!

7. The circuit phase used in the LC quantization is related to the superconducting phase by Φ = ℏφ/2e
[187], which can be worked out from the voltage expression.
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4.3.1 Critical Current from Superconducting Properties

The Josephson junction critical current Ic determines nearly everything about its behavior:

knowing the critical current we can directly determine the inductance LJ as well as the

Josephson energy EJ = Φ2
0/(2π)

2LJ = Φ0Ic/2π. Importantly, the critical current can be

derived from material properties of the junction. For a Josephson junction with two identical

superconductors on either side of the tunnel barrier8, the critical current [10] can be expressed

in terms of its normal resistance Rn and the superconducting energy gap ∆(T ):

Ic =
π

2e

1

Rn
∆(T ) tanh

(
∆(T )

2kT

)
(4.26)

At extremely low temperatures ∆ → ∆0 = 1.7–2kTc9, and the tanh term will approach

unity, which simplifies the relationship to

IcRn =
π∆0

2e
(4.27)

This IcRn product can be directly measured from the cryogenic current voltage relations of

a single Josephson junction (For practical experiments it helps if Rn is low and Ic is high),

but since it depends solely on bulk superconductor properties, it should be fairly constant for

junctions made with the same materials. This a very convenient property for us, since having

calibrated the IcRn product, we can predict low-temperature junction properties from the

8. For two different superconductors, the density primarily scales with the smaller energy gap of the two
along with a correction term [10]

9. Note that since we sometimes use niobium in our junctions, we should make an effort to avoid the
1.76kTc simplification.
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Figure 4.7: Josephson junction critical current and Josephson inductance as a function of
room temperature resistance for a junction made with niobium and aluminum. Note the
nearly order of magnitude difference between the two materials.

room-temperature junction resistance Rn.

LJ =
ℏ

π∆0
Rn (4.28)

EJ =
ℏ

(2e)2
π∆0

Rn
(4.29)

In Figure 4.7, we plot these parameters as a function of the junction room temperature

resistance for two common junction superconducting materials: aluminum (Tc = 1.2 K,

∆ = 1.76kTc) and niobium (Tc = 9.2 K, ∆ = 1.85kTc). This allows us to quickly estimate

of the junction properties.

The critical current of the junction Ic can also be expressed in terms of a critical current

density Jc = Ic/A, which will be independent of the specific junction area A and should be

constant for a given junction fabrication process. Usually written in kA/cm2, Jc is useful

for comparing different junction processes10, and junctions made with different gap energies.

10. As a handy conversion for practical sizes, 10 kA/cm2 = 1µA/µm2. Because who in their right mind
makes centimeter-sized junctions?
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The critical current density will depend exponentially on the barrier thickness d [224]:

Jc ≃
nsℏe
m

κ

sinh(2κd)
(4.30)

This expression can be derived from the Landau Ginzburg equations applied on the barrier,

in this case κ is the characteristic decay length of the order parameter in the insulator (similar

to ξ).
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Figure 4.8: Josephson junction critical current and Josephson inductance as a function of
junction area for varying junction critical current density Jc. Since the superconducting
properties of the junction are encoded in Jc, these relationships are agnostic to junction
materials. For the junctions used in microwave qubits, typically LJ ∼ 1–10nH.

4.3.2 Junction Capacitance

Since the SIS Josephson junction is formed with two superconducting leads separated by a

dielectric, it will also have some natural11 capacitance between the two leads, as illustrated

in Figure 4.9. As we learned before, no capacitance is too small to think about, so we will

11. Not to be confused with organic or farm-raised capacitance.
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Figure 4.9: Illustration of a generic Josephson junction, highlighting the parallel plate ca-
pacitance formed on the barrier. For this reason, junctions are modelled with a capacitance
CJ , sometimes abbreviated with a single circuit element.

model the Josephson capacitance as a parallel plate capacitor:

CJ =
ϵ0ϵrA

d
(4.31)

For Josephson junctions using aluminum oxide as a barrier (assuming amorphous aluminum

oxide, or alumina, ϵr = 9.8), the barrier thickness is typically between 1-2 nm. This results

in a specific junction capacitance between 44–86 fF/µm2, depending on the exact barrier

thickness12. Notably this capacitance scales inversely to the barrier thickness, while the

tunneling inductance will scale exponentially with the barrier thickness [10, 162, 224].

Since the inductance is exponentially sensitive to barrier thickness, we can usually treat this

independently from the capacitance.

As a particularly interesting result of this natural junction capacitance, consider the self-

resonant frequency of the junction itself (this will show up as a resonant frequency of the

12. What do you do if you barrier is lumpy like cheese? Probably throw a bit more capacitance in there
just to be safe.

82



circuit even if the junction is shunted by other impedances).

ωp =
1√
LJCJ

=

(√
Φ0

2πJc

ϵ0ϵr
d

)−1

(4.32)

This plasma frequency of the junction is entirely independent of junction area! So given
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Figure 4.10: Josephson junction plasma frequency, plotted as a function of critical current
density Jc, highlighting the need for high-Jc junctions for millimeter-wave applications. Here
we assumed that a 1 nm and 2 nm barrier result in 3 kA and 30 A/cm2 respectively:
neglecting the effects of barrier thickness on capacitance (grey dashed lines corresponding to
fixed 1 and 2 nm) still gives a pretty good estimate.

a barrier thickness (or having measured specific capacitance and specific inductance) we

can determine the self-oscillation frequency for a junction, regardless of its size! This is

particularly important for designing circuits at high frequencies, since the lowest resonant

frequency of a circuit containing at least one Josephson junction will be determined by the

junction plasma frequency13. From Figure 4.10 in which we plot the plasma frequency for

varying critical current densities, we see that ωp primarily scales with Jc, meaning that for

a high-frequency circuit around 100 GHz we will require junctions with a critical current

density above 1 kA/cm2! Thus high-Jc and high-frequency can be used interchangeably

13. Okay I suppose I can’t stop you from using higher modes of a circuit to do what you want, but I
promise you it won’t be a fun time if you’re working above the plasma frequency.
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when describing junctions (since one follows from the other).

4.4 Josephson Nonlinear Oscillator

In this section we will conveniently skip over several decades of research, however Refs.

[111, 116] can be a useful resource for details about how these superconducting quantum

systems work and how they were developed.

𝐿", 𝐶"𝐶%

Φ, 𝑄

Figure 4.11: Circuit diagram for a simple anharmonic (nonlinear) circuit consisting of a
Josephson junction shunted by a capacitance. A microscope image of one of such circuits is
shown on the right, where the shunting capacitor has a large cross shape. This particular
circuit has a frequency of 19 GHz, and a nonlinearity around 200 MHz.

For resolving quantum phenomena in our superconducting circuits, we would like a res-

onant system with a high level of nonlinearity or anharmonicity. Due to the low critical

current densities they can achieve (which sets the nonlinearity scale, as we showed in Equa-

tion 4.25), Josephson junctions are perfect for this task! So to make a single-photon-resolved

nonlinearity you will need to obtain the following components:

1. A Josephson junction

That’s it! (Check out Refs. [141, 268]). Remember that the inherent capacitance associated

with the junction means that the junction itself is an extremely nonlinear resonator already.

However most people are unhappy with just the junction resonance itself (it is frequently
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above 30 GHz, as you can see in Figure 4.10) and would also like a bit more control over the

transition frequency. To do this we can simply adjust the resonant frequency by enhancing

the Josephson junction’s natural capacitance with a shunt capacitor, as shown in Figure 4.11:

and now we have a nonlinear circuit with a controllable frequency and nonlinearity14. It is

easy to see why this qubit design[113, 178] is so popular!

Josephson junctions in particular make this situation interesting, since their critical cur-

rent density is directly tied to their inductance by fundamental constants (since LJIc =

(Φ0/2π)
2). Let’s quickly get a feel for what this means for the nonlinearity relative to the

frequency15. Consider the circuit shown in Figure 4.11. For a small current, we can ap-

proximate the resonant frequency as perturbation of an LC oscillator, with total capacitance

CΣ = CJ + CQ:

ω =
1√
LJCΣ

(4.33)

Expanding for small currents, allows us to reform a linearized frequency in terms of ω20 =

1/LJCΣ:

ω
∣∣
I→0 ≃ 1√

LJ (1 +
I2

2I2c
)CΣ

≈ ω0 −
ω0I

2

8I2c
(4.34)

We can rewrite this in terms of inductive energy E = 1
2LJI

2 and transform everything into

inductance. Making a further assumption that the nonlinearity scale is much smaller than

the resonant frequency, or En ≈ nℏω0 allows us to obtain a frequency shift per photon:

ωn ≈ ω0 −
ω0
8

(
2π

Φ0

)2

L2J
2E

LJ
(4.35)

= ω0 − LJω
2
0
e2

2ℏ
n (4.36)

= ω0 −
e2

2ℏCΣ
n (4.37)

14. As Elzar would say — “Bam!”

15. We’re going to play fast and loose with some approximations
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Thus the frequency shift per photon, or the Kerr nonlinearity strength for this circuit will

be approximately
K

2π
= − e2

2hCΣ
≡ −EC

h
(4.38)

As it turns out the anharmonicity is defined by the charging energy EC of the total circuit

capacitance.

4.4.1 Cooper Pair Box in the Transmon Limit

In deriving the nonlinear behavior of the capacitively-shunted Josephson junction, we took

a pretty quick approach. To rectify this let’s take a look at the circuit behavior with less

approximations. Written out explicitly the Hamiltonian of the circuit in Figure 4.11 will be

[113, 116, 187]:

H =
Q2

2CΣ
− EJ cosφ (4.39)

Using the charging energy EC = e2/2CΣ and defining the number of Cooper pairs on the

capacitor n = Q/2e simplifies the hamiltonian to the form:

H = 4Ecn
2 − EJ cosφ (4.40)

Realistically however, we need a method to interact with this nonlinear system. This is

𝐿", 𝐶"𝐶%

𝐶&
Vg

𝑛&

𝜑
𝑛

𝐶&

𝐶%

Figure 4.12: Circuit diagram for a cooper pair box, where the capacitively shunted Josephson
junction is capacitively coupled to a charging voltage.
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Figure 4.13: Energy levels in the transmon limit. For sufficiently large EJ ≫ Ec the energy
levels have nearly no dependence on the gate charge ng making the qubit.

practically accomplished by capacitively coupling a gate voltage Vg to the junction. This

modifies the energy spectrum with a gate charge16 ng = CgVg/2. The hamiltonian now

becomes:

H = 4Ec(n− ng)
2 − EJ cosφ (4.41)

16. Technically we couple to the qubit through a resonator, so this gate charge will be further modified to
include the resonator charge.

87



This can be solved in the φ basis, obtaining energy solutions[113] in terms of Mathieu

functions an(x):

Em(ng) = Eca2(ng+km,ng )
(−EJ/2EC) (4.42)

Here k(m,ng), which is plotted in Figure 4.14 is a sorting function to make the energy
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Figure 4.14: Left: sorting function k(m,ng) used to organize the energy solutions of the
transmon. Right: variation of each energy level ϵm with respect to the charging energy.

solutions line up. We plot the energy spectrum for varying EJ and EC in Figure 4.13. As

we increase the ratio of EJ to EC above ∼ 20 the energy levels become increasingly flat: this

is also explicitly plotted in Figure 4.14. This means that the system will be increasingly less

sensitive to charge fluctuations, which would otherwise cause dephasing of the qubit state!

In this limit, the cosine term of the Hamiltonian can be expanded out to fourth order

[113], and the full energy spectrum will be:

En ≃ −EJ +
√
8EJEC

(
m+

1

2

)
− EC

12
(6m2 + 6m+ 3) (4.43)

If we consider the difference between these energy levels, we recover the anharmonic frequen-
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cies from our approximation earlier which are separated by EC :

hfm→m+1 =
√

8EJEC − EC(m+ 1) (4.44)

fm→m+1 =
1

2π
√
LJCΣ

− EC

h
(m+ 1) (4.45)

Here we rewrote the frequencies in terms of the expected resonance frequency for convenience.

4.4.2 Energy Participation

Now that we are more confident about how this circuit behaves, consider the energy stored

in the junction17. In terms of electric field, each respective capacitance in the circuit stores

an energy proportional to Ex = 1
2CxV

2. So the proportion of energy stored by the junction

capacitance will be:

pJ =
EJ
ETot

=
CJ

CΣ
(4.46)

Interestingly enough we can write this out in terms of qubit frequency relative to the junction

plasma frequency:

pJ =
CJLJ
CΣLJ

=

(
ωq
ωp

)2

(4.47)

4.5 Experiments with a Two Level System

So we have a sufficiently anharmonic oscillator to be a qubit! This means we can treat the first

two levels as an isolated system, which in our case are separated by ℏωq =
√
8EJEC − EC .

Luckily this system has been studied very extensively (eg. see Refs. []) We can model this

as a with a spin Hamiltonian, expressed in the two level basis in terms of Pauli matrices:

Hq ≃ ℏωq
σz
2

(4.48)

17. The inductive energy gets complicated if you include parasitic inductance, so let’s not talk about that
for now.
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Figure 4.15: Illustration of the interacting cavity (or resonator) and two level system (atom
or qubit) characterized by the Jaynes Cummings hamiltonian

4.5.1 Qubit Resonator Interactions

Now instead of measuring the qubit directly, we can use concepts from cavity quantum

electrodynamics and instead couple our artificial two-level system to a cavity (a resonator in

our case) and take advantage of the dispersive interactions between them [239]. Using the

rotating wave approximation (neglecting the counter-rotating terms that oscillate at ωq+ωr

etc.) [239], this coupled system can be modelled by the Jaynes-Cummings Hamiltonian:

HJC = H0 +Hint = ℏωr
(
a†a+

1

2

)
+ ℏωq

σz
2

+ ℏg(σ+a+ σ−a†) (4.49)

In the limit of weak coupling, or g ≪ ∆ = ωq − ωr, we can transform to the interacting

frame (exp[ i
ℏ∆Hint]) and describe the system with the dispersive Hamiltonian[]

Hd ≈ ℏ(ωr + χσz)

(
a†a+

1

2

)
+ ℏωq

σz
2

(4.50)

From this we observe that the readout resonator will shift by 2χ depending on the state

of the qubit. This property is especially useful for reading out the qubit state! Since the

qubit and resonator interact, the resonator state will also impact the qubit, especially if we
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regroup the Hamiltonian in a suggestive way:

Hd ≈ ℏωr
(
a†a+

1

2

)
+

ℏ
2

(
ωq + 2χa†a+ χ

)
σz (4.51)

If the anharmonic nature of the qubit is taken into account (ie the next highest levels, which

are separated by K), the dispersive shift will really be:

χ = −g
2

∆

(
1

1 + ∆/K

)
(4.52)

With this state-dependent dispersive shift we can use weak measurements of the readout

resonator to non-destructively measure the qubit state [113, 200].

Microwave signals applied on the system allow us to control the qubit state [168], adding

an interaction similar to the electric dipole interactions used to control a spin.

H ≈ ℏ(ωr + χσz)

(
a†a+

1

2

)
+

ℏωq
2
σz + ℏΩ02σx (4.53)

If we weak drive the system Ω0 ≪ K with a low detuning ∆Ω = ω − ωq (ie close to the

ground state transition ∆Ω ≪ K) we can simplify the system in the drive frame [168] and

only consider the qubit

HΩ ≈ ℏ∆Ω

2
σz + ℏ

ℏΩ0

2
σx (4.54)

This produces new dressed eigenstates with energies

E± = −ℏΩ0

2
± ℏ

2

√
Ω2
0 +∆2

Ω (4.55)

On resonance ∆Ω → 0, this effect is well described by an oscillation18 between the ground

and excited states of the qubit at the Rabi frequency Ω0. This process gives us coherent

18. Also sometimes called Rabi flopping.
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control over the qubit state.

4.5.2 Rabi Oscillations

As it is simpler to deal with static hamiltonians, experimental Rabi oscillations can be

described by evolving the qubit driven by a continuous weak applied drive signal, as described

above. In this way, we can approximate the final state of the qubit after a pulse of a particular

length t by the driven qubit state at time t.
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Figure 4.16: Excited state population after being driven by a signal with amplitude Ω
detuned from the qubit by ∆ for some time t. a) Amplitude-freqency Rabi oscillations
increase in frequency off-resonance while also changing in contrast as a function of amplitude,
resulting in a WiFi pattern. b) The most popular chevron pattern appears from time-
frequency Rabi oscillations, for which contrast is a fixed function of detuning. c) At ∆ = 0,
the oscillation rate can be expressed as a function of pulse area Ωt, so we observe constant
population fringes for curves of constant Ωt.

For a continuous signal detuned from the qubit transition by ∆, the excited state prob-

ability of the qubit after starting in its ground state would be given by [26]

Pe(t) =
Ω2

Ω2 +∆2
sin2

(
ΩT

2
t

)
(4.56)

We have dropped a few subscripts for simplicity and used the effective Rabi rate Ω2
T = Ω2+

∆2. From this expression we observe that on-resonance (∆ = 0) the behavior is oscillatory
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Figure 4.17: Rabi oscillations, shown by plotting the excited state population as a function
of drive amplitude Ω (in MHz), detuning from the qubit ∆ (in MHz), and time t (in ns).
Section cuts from respective axes yield the plots in Figure 4.16.

with respect to the pulse area Ωt. Off-resonance, the oscillations become a function of pulse

amplitude Ω and time t, while still achieving maximum population when ΩT t = mπ for odd

integer m. We summarize the behavior of the oscillations (Equation 4.56) in Figure 4.16 and

Figure 4.17, which shows different fringes with respect to each variable. While the frequency

(or detuning) dependence varies whether amplitude or time is being swept, either will result

in oscillatory behavior.

Since a square pulse isn’t perfectly sharp in practice 19 and has quite a wide Fourier

transform, we frequently instead use more rounded pulses which have narrower bandwidth.

Thus in experiments we instead explore Rabi oscillation dynamics by applying fixed-length

Gaussian pulses near the qubit frequency. These have the following pulse envelope function:

Ω(t) = Ω0 exp

[
− t2

2σ2

]
, −nσ < t < nσ (4.57)

For practical purposes, the pulse length is finite, which is achieved by truncating the Gaussian

19. Real pulses have curves!
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envelope at ±nσ. The finite Gaussian nature of the pulse we use complicates the qubit

evolution however, since the Rabi evolution rate is non-uniform during the pulse [67] and

the truncated pulse edges introduce non-adiabaticity in the qubit state evolution [24]. For a

truncated Gaussian pulse described in Eq. 4.57, the excited state population can be modelled

by [26, 67]:

Pe =
Ω2e−n2

Ω2e−n2 +∆2
sin2

(
σ

2

∫ n

−n
∂τ

√
Ω2e−τ2 +∆2

)
(4.58)

On resonance (∆ = 0) we recover the familiar expression Pe = sin2 (πσΩ). However off reso-

nance the expected power-broadening of the Rabi oscillations in frequency space is reduced,

as shown in Figure 4.18.
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Figure 4.18: Excited state population following a finite-length Gaussian pulse terminated at
±nσ, shown for different values of n. For smaller n the pulse shape is closer to a square pulse,
and the fringes exhibit significant power broadening. As more of the Gaussian envelope is
used the fringe bandwidth is reduced, limiting the power broadening effect. Here the pulse
lengths σ have been adjusted to yield similar oscillation rates at ∆ = 0.

For small n the behavior is similar to that of a square pulse [26], however as we include

more of the Gaussian profile by increasing the cutoff length n, the bandwidth of the os-

cillations decreases while the frequency scaling of the oscillations remains constant. While

this model neglects bandwidth effects on the pulse envelope reaching the qubit, the behavior

shown in Figure 4.18 qualitatively matches experimental behavior (see Chapter 8).
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4.6 Dissipation for a Two-Level System

Whether from incident noise or from energy decay, real quantum systems couple to their

environment to some degree, resulting in decoherence. To describe the quantum dynamics of

a qubit taking into account sources of loss we use collapse operators Ck. The density matrix

of the system ρ will be governed by the Liouville equation:

∂ρ

∂t
= − i

ℏ
[H, ρ] +

∑
k

(
2CkρC

†
k − ρC

†
kCk − C

†
kCkρ

)
(4.59)

Let’s first consider energy relaxation. Modelling the qubit as a two-level system (and ne-

glecting the physical temperature of the coupled bath), the collapse operator will be

C1 =
√
γ1σ− =

 0 0

√
γ1 0

 (4.60)

In terms of the density matrix elements ρij , the equation of motion for the two level system

becomes:

∂ρ

∂t
=

 −γ1ρ11 −iωq − γ1
2 ρ12

iωq − γ1
2 ρ21 γ1ρ11

 (4.61)

Suppose we begin in the excited state ρ = |1⟩⟨1|. Then the two level system will exponentially

decay into its ground state over time, with ρ11 = e−γ1t. This characteristic decay rate γ1

corresponds the energy relaxation time T1 = 1/γ1. Now suppose we begin in a superposition

state: the off-diagonal terms would be nonzero, but decay at a rate of γ1/2. Thus relaxation

also results in decay of phase information, or in other words dephasing!

Consider the addition of a pure dephasing operator:

C2 =

√
γϕ
2
σz =

√
γϕ
2

1 0

0 −1

 (4.62)
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The equation of motion gains a term of the form γϕ
2 (σzρσz − ρ), which results in modified

off-diagonal terms:

∂ρ

∂t
=

 −γ1ρ11 −iωq − (γ12 + γϕ)ρ12

iωq − (γ12 + γϕ)ρ21 γ1ρ11

 (4.63)

The off diagonal terms decay at a rate of γϕ + γ1/2. Thus we can describe the dephasing of

the two-level system quantum state in terms of a pure dephasing rate γϕ = 1/Tϕ:

1

T2
=

1

2T1
+

1

Tϕ
(4.64)

As a result, the dephasing rate of the two-level system is limited by its relaxation rate, or

T2 ≤ 2T1. We can experimentally extract the pure dephasing rate Tϕ by measuring both

T1 as well as T2! As a final note, suppose the qubit frequency ωq isn’t constant: the jitter

introduced in the off-diagonal terms appears as additional dephasing when averaged.
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CHAPTER 5

MILLIMETER-WAVE FOUR-WAVE MIXING

Recent interest in next-generation communication devices [29, 171] has led to important

advances in sensitive millimeter-wave measurement technology around 100 GHz. Realizing

quantum systems at these frequencies however requires both the demonstration of low-loss

components — device materials with low absorption rates [34, 41, 265] and resonators with

long photon lifetimes [62, 71, 85, 114, 118, 205] — and most importantly, elements provid-

ing nonlinear interactions, which for circuit quantum optics can be realized with four-wave

mixing Kerr terms in the Hamiltonian. One approach commonly used at microwave frequen-

cies relies on aluminum Josephson junctions [32], which yield necessary four-wave mixing at

low powers. However to avoid breaking Cooper pairs with high-frequency photons, devices

at millimeter-wave frequencies are limited to materials with higher superconducting critical

temperatures (Tc). Higher Tc junctions have been implemented as high-frequency mixers

for millimeter-wave detection [103, 151, 230], and ongoing efforts are improving losses for

quantum applications [79, 175].

Kinetic inductance (KI) offers a promising alternative source of Kerr nonlinearity arising

from the inertia of Cooper pairs in a superconductor, gaining recent interest for microwave

quantum applications [196, 204], and has also been successfully used for millimeter-wave

detection [83, 172]. Niobium Nitride (NbN) is an ideal material for KI, as it has a high

intrinsic sheet inductance [22, 93, 101], a relatively high Tc between 14-18 K [22, 93, 101,

210] making it suitable for high-frequency applications [265], and has good microwave loss

properties [169]. Among deposition methods, atomic layer deposition (ALD) offers conformal

growth of NbN [210] and promising avenues for realizing repeatable high KI devices on a

wafer-scale [204].

In this chapter, we explore kinetic inductance as a nonlinear element for quantum de-

vices at millimeter-wave frequencies using high KI resonators in the W-Band (75-110GHz)
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fabricated from thin films of NbN deposited via ALD. We study potential loss mechanisms

at powers ranging down to single photon occupations. Using the power dependent frequency

shift, we characterize the nonlinearity arising from KI, the strength of which varies with

wire width and material properties. With two tone spectroscopy, we observe degenerate

four-wave mixing near single photon powers. These measurements demonstrate the neces-

sary core components for millimeter-wave circuit quantum optics, paving the way for a new

generation of high-frequency high-temperature experiments.

5.1 High-KI Niobium Nitride Films

Sapphire

TBTDEN

Sapphire

TBTDEN

Sapphire

Ar PlasmaN2 H2

Sapphire

Ar PlasmaN2 H2

Figure 5.1: Illustration of the plasma-enhanced atomic layer deposition process (PEALD or
ALD for short). After an atomic monolayer of the precursor (TBTDEN) coats the surface,
a nitrogen and hydrogen plasma reacts with the TBTDEN ligand and incorporates nitrogen
into the niobium matrix.

In order to understand the quality of the NbN films grown by ALD and accurately predict

resonant frequencies, we characterize material properties with DC electrical measurements.

The niobium nitride devices are deposited on sapphire with a process based on Ref. [210],

and etched with a fluorine based inductively coupled plasma.

DC film characterization measurements were performed in a Quantum Design Physical

Property Measurement System (PPMS) with a base temperature of 1.8 K. Test structures

consisting of a 1.5 mm×40 µm wire were patterned on 7×7 mm chips going through the pro-

cess described above along with device wafers, then wirebonded for four-wire measurements.
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Finished structures were kept in a low ∼ 500 mTorr vacuum1 in an effort to minimize oxide

growth prior to measurement, as we observed decreases up to 1 K in critical temperatures

for samples aged several days in atmosphere, likely a result of oxide growth [152] reducing

the superconducting film thickness.

20 100 200 300

t (nm)
7.5

13.2
18.7
24.3
27.9
48.2

5 10 15
0

2

4

6

8

10

T (K)

ρ
(Ω

cm
)












100 300 450 750
0

20

40

60

Deposition Cycles

t(
nm
)

(a) (b)
×10 -412

Figure 5.2: Film measurements (a) Measured resistivity as a function of temperature show-
ing decreasing resistivity with increasing temperature above the superconducting transition
characteristic for NbN. (b) Thicknesses measured by profilometry as a function of deposition
cycles, with a linear fit overlaid in red. We extract a growth rate of 0.63 Å per cycle.

After cooling the samples to 10 K (3 K in the case of the 8 nm film) in ambient magnetic

fields, we verified that the residual resistance of the film dropped below the instrument noise

floor of around 5× 10−3Ω. After thermalizing for one hour, the samples were warmed up to

20 K at a rate of 0.1 K/min, then warmed to 300 K at a rate of 1 K/min. In Fig. 5.2(a)

we plot measured resistivity as a function of temperature for the films in this chapter, which

we use to extract TC , ρn and calculate R□ and L□ for the films. Similar to previous studies

[169], resistivity decreases with temperature above the superconducting transition, which is

typical for strongly disordered materials [159, 169].

1. This vacuum was pumped out by hand!
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Figure 5.3: Superconducting critical temperature (Tc) and sheet inductance (L□) of de-
posited NbN as a function of film thickness (t). Bars denote temperatures corresponding to
90% and 10% reductions from maximum resistivity. The inset shows the dependence of tTc
on R□ with a fit (red) to tTc = AR−B

□ ; A = 6487± 1607,B = 0.647± 0.05

We measure resistivity at ambient magnetic fields as a function of temperature, which we

use to extract Tc for a range of film thicknesses [See Figure 5.3]. The inset also shows that our

films follow a universal relation observed for thin superconducting films [93] linking Tc, film

thickness t, and sheet resistance R□: we find that our results are similar to NbN deposited

with other methods [22, 93]. For thicker films, Tc appears to saturate at 13.8-13.9 K which

is comparable to other materials studies [93, 101, 210], while decreasing to 8.7 K for the

thinnest film (t=7 nm), which can be attributed to disorder enhanced Coulomb repulsions

[58, 208]. We also find that the superconducting transition width increases significantly for

the thinner films, which can in turn be attributed to disorder broadened density of states

[58] or reduced vortex-antivortex pairing energies at the transition [160, 169].

From the resistivity and critical temperature, we determine the sheet inductance L□ =

ℏR□/π∆0, where the normal sheet resistance R□ = ρn/t is taken as the maximum value

of normal resistivity ρn, occurring just above Tc, and ∆0 = 2.08Tc is the superconducting

energy gap predicted by BCS theory for NbN [101, 169]. We observe a monotonic increase
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in L□ for thinner films, achieving a maximum L□ = 212 pH/□, comparable to similar high

KI films [159, 204].

5.2 Quantum Measurements at Millimeter-wave Frequencies

As we established early on, millimeter-wave systems will remain in their ground state (in

the quantum regime) and will be largely unaffected by thermal photons at 1–2 K. Taking

advantage of this, we flex the strengths of millimeter-wave circuits and use a custom built

4He adsorption refrigerator to cool all of our millimeter-wave experiments. The adsorption

refrigerator, which relies on helium-4 evaporation [183], has a base temperature of 0.86 K,

and a cycle duration of approximately 3 hours2. We generate millimeter-wave signals (75-

115 GHz) at room temperature by sending microwave signals (12-19 GHz) into a frequency

multiplier. We convert the generated waveguide TE10 mode to a 1 mm diameter stainless

steel and beryllium copper coaxial cable, which carries the signal to the 1 K stage of the

fridge, thermalizing mechanically at each intermediate stage, then convert back to a WR-10

waveguide which leads to the device under test. The cables and waveguide-cable converters

have a combined frequency-dependent loss ranging from 55.6 dB to 75.8 dB in the W-Band,

which is dominated by the cable loss. We confirm the attenuation and incident device power

at room temperature with a calibrated power meter3 (Agilent W8486A) and a referenced

measurement with a VNAx805 receiver, however cryogenic shifts in cable transmission and

minute shifts in waveguide alignment likely result in small variations in transmitted power.

We are able to further confirm the applied power by measuring the lowest observed bifurca-

tion point, and find that most bifurcation powers agree with predictions, yielding a maximum

combined power uncertainty of approximately ±5 dBm, which sets the uncertainty in our

2. This cycle time is actually a complete nightmare to work around since it breaks up any long experiments
you may want to do.

3. We borrowed the power meter from a CMB astronomy lab! Thank you whoever agreed to this - every
single one of our millimeter-wave calibrations can be traced back to this one day of calibration.
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Figure 5.4: Schematic of millimeter-wave measurement setup for single and two-tone con-
figurations. Colored tabs show temperature stages inside the 4He adsorption refrigerator.
A photograph on the right highlights relevant hardware inside the fridge. The bottom left
shows a photograph of the sample with top waveguide removed.
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photon number measurements4.

The sample is isolated from both millimeter-wave and thermal radiation from the 4 K

plate with two stainless steel waveguides 2 inches long and a faraday isolator. Using a resistive

heater and a standard curve Ruthenium oxide thermometer we can perform temperature

sweeps on the sample without significantly affecting the fridge stage temperatures. A low-

noise amplifier (TN ∼ 28 K) amplifies the signal before passing through another faraday

isolator, which further blocks any leaking signals. The signal then passes to a cryogenic

mixer, which converts the signal to radio-wave (100-300 MHz) which we filter, amplify and

measure at room temperature with a network analyzer. We control signal power by varying

input attenuation and multiplier input power, confirming with room temperature calibrations

as described above. For two-tone measurements, we move the signal path to the 20 dB port of

the input directional coupler, and add an additional frequency multiplier fed by a reference-

locked microwave signal generator. For single-tone measurements, the 20 dB port is capped

with a short to minimize incident stray radiation.

5.3 Exploring loss with Millimeter-wave Loss with Resonators

We investigate properties of millimeter-wave high KI resonators in the quantum regime (at

temperatures of 1 K) in a Helium-4 adsorption refrigerator. Using a frequency multiplier,

cryogenic mixer and low noise amplifier, we measure the complex transmission response as

shown in Figure 5.5a. Input attenuation reduces thermal noise reaching the sample, en-

abling transmission measurements in the single photon limit set by the thermal background.

Rectangular waveguides couple the signal in and out of a 200 µm deep slot, the dimensions

of which are carefully selected to shift spurious lossy resonances out of the W-band. To

reduce potential conductivity losses, the waveguide and slot are coated with 200 nm of evap-

4. Much much later on we performed an AC stark shift calibration, which agreed with our calibration
standard to within 3dB! So this calibration was actually pretty decent.
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Figure 5.5: Device characterization and design. (a) Six-fold frequency multipliers convert
microwave to millimeter-wave signals (green), which are demodulated with a cryogenic mixer.
A cutaway shows copper WR-10 rectangular waveguides coupling the signal in and out
of a Nb coated slot, into which we mount a chip patterned with 6 resonators. (b) Top
down composite micrograph showing a mounted chip with the top waveguide removed. (c)
Scanning Electron Micrograph of a typical resonator used in this chapter, with wire width
w = 4 µm and film thickness t = 27.8 nm (NbN false colored yellow). Dipole coupling
antennas extend on the left of the quarter-wave resonator. Measurements can be described
with input and loss couplings Qe and Qi using the circuit model in (d), which takes into
account the impedance mismatch between waveguide Z0 and slot with sapphire chip Z∗.

orated Niobium. Below 9 K, this helps shield the sample from stray magnetic fields; however

devices with higher Tc are not shielded from magnetic fields while cooling through their

superconducting transition. We use indium to mount a chip patterned with 6 resonators in

the slot, as shown in Figure 5.5b. Devices are patterned on 100 µm thick sapphire, which

has low dielectric loss and minimizes spurious substrate resonances in the frequency band of

interest. The planar resonator geometry shown in Figure 5.5c consists of a shorted quarter

wave section of a balanced mode coplanar stripline waveguide (CPS), which couples directly

to the TE10 waveguide through dipole radiation, which we enhance with dipole antennas.

We find that this design is well described by the analytic model presented in Ref. [259]

which takes into account the thin film linear kinetic inductance. For very thin or narrow

wire widths, the total inductance is dominantly kinetic, making the resonators extremely
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sensitive to superconducting film properties.
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Figure 5.6: (a) Power dependence of the internal quality factor for a resonator with Q∗
e =

2.759×104 patterned on a 27.9nm thick NbN film, measured at 1 K. White triangles are fits
to a nonlinear response model near and above the bifurcation power (dashed line). The red
line is a fit to a model including power-dependent loss from two-level systems, and power-
independent loss. Insets show lineshape and fits at average photon occupation n̄ph ≈ 1.2.
(b) Internal quality factors for resonators in this chapter, grouped by film thickness. The top
and bottom of the colored bars correspond to fitted low and high power saturation values,
while points correspond to two-level system induced Qi with high power loss subtracted.

By characterizing complex transmission spectra of resonators fabricated on a range of

film thicknesses, we explore loss mechanisms at millimeter-wave frequencies. The sheet

inductance, thickness, and Tc measured for a given film are used to adjust the resonator

design length. This spreads resonances out in frequency from 80 to 110 GHz, while varying

antenna lengths allows us to adjust coupling strengths. A typical normalized transmission

spectrum taken at single photon occupation powers (n̄ph ≈ 1.2) is shown in the inset of

Figure 5.6a. On resonance, we observe a dip in magnitude, which at low powers is described

well by [106]:

S21 = 1− Q

Q∗
e

eiϕ

1 + 2iQω−ω0
ω0

(5.1)

where Q−1 = Q−1
i +Re[Q−1

e ] [106] and the coupling quality factor Qe = Q∗
ee

−iϕ has under-
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gone a complex rotation ϕ due to an impedance mismatch [106, 153], likely induced by the

sapphire chip and slot altering waveguide geometry. Plotting fitted internal quality factors

with respect to photon occupation in Figure 5.6a shows that Qi increases with power. This

can be described by a power dependent saturation mechanism [195, 242], likely originating

from two-level systems (TLS) in the slow-growing amorphous surface oxide [152]. At high

powers, Qi approaches a limit, indicating that another power-independent loss mechanism

such as dielectric or radiative loss is dominant in this regime. For some samples, this limit

is obscured by the early onset of nonlinear effects (discussed below).

Figure 5.7: Complex transmission along with fits for a nonlinear resonator at powers near
and above the bifurcation power (blue line) demonstrating how the quality factors can still
be extracted from a bifurcated response, albeit with increasingly less certainty.

To study effects of film thickness on Qi, we repeat measurements summarized in Fig-

ure 5.6a for devices varying in thickness from 19.5 nm to 48.8 nm and show the results in

Figure 5.6b. We plot the low and high power limits of Qi as well as a lower bound for the TLS

induced Qi for devices from six separate chips grouped by film thickness. For films thicker

than 20 nm, we consistently find Qi > 104, with TLS limiting Qi around 105. We find a

weak correlation of Qi with film thickness, which could be explained by several additional

potential sources of loss. Thinner films exhibiting higher disorder have also been connected

with a nonlinear resistance [264], resulting in loss mechanisms proportional to kinetic in-

ductance (See Appendix 5.4.1). Additionally, since devices are unshielded from ambient

magnetic fields at the superconducting transition, vortices trapped in the thin films may

cause additional dissipation [110, 160, 169, 174] dependent on film thickness. Resonances

patterned from thinner films proved experimentally difficult to distinguish from background

106



fluctuations, possibly indicating low values of Qi or frequencies outside the measurement

bandwidth.

5.3.1 Thermal Losses from Complex Conductivity
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Figure 5.8: Temperature dependence of BCS conductivity. (a) High power Qi as a function of
normalized temperature for four resonators of different film thickness. Solid lines correspond
to a BCS model with Tc and kinetic inductance fraction α as fit parameters. (b) Extracted
Tc from fitting to BCS model (red dots), compared to Tc from DC resistivity measurements.
(c) Normalized frequency shift of the same resonators as a function of temperature, with
overlaid predictions from the Mattis-Bardeen equations for σ2/σn with parameters taken
from fits in (a).

Due to the large kinetic inductance fraction α, or magnetic field participation ratio of

the thin film resonators, we expect higher sensitivity to loss from complex conductivity,

which in turn is sensitive to temperature. In Figure 5.8a we show the quality factor decrease

as a function of temperature for resonators with four different thicknesses, with solid lines

corresponding to a model of the form

Qi(T )
−1 = Q−1

i,max +Qσ(T )
−1 (5.2)

where Qi,max is a temperature independent upper bound arising from other sources of loss,
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and the conduction loss Qσ is given by [189]:

Qσ(T ) =
1

α

σ2(T, Tc)

σ1(T, Tc)
(5.3)

where σ1 and σ2 are the real and imaginary parts respectively of the complex surface

impedance, calculated by numerically integrating the Mattis-Bardeen equations for σ1/σn

and σ2/σn [145, 189, 224]. We use α and Tc as fit parameters in the model. Below 2 K

( T/Tc ∼ 0.15), Qi saturates, which indicates that conduction loss does not limit Qi for

these devices. We note minor deviations from theory at higher temperatures, which may be

a result of physical deviations from the standard curve calibrations used for the ruthenium

oxide thermometer. Since these resonators were fabricated with Qe > 104 measuring res-

onators at higher temperatures where Qi is below 103 proved experimentally challenging. In

Figure 5.8b we plot the fitted Tc values against those obtained with DC measurements and

find reasonable agreement for higher thickness films, however note that the uncertainty in

temperature calibration combined with the relatively low saturation values result in fitted

Tc uncertainties around 0.4 K.

Bardeen-Cooper-Schrieffer theory also predicts a shift in London length as a function of

temperature, which in the dirty (high disorder) limit is given by [87, 224]:

λ(T )

λ(0)
=

1√
∆(T )
∆0

tanh
(

∆0
2kbT

) (5.4)

We can measure this by tracking the resonant frequency shift. For sufficiently large kinetic

inductance fractions, or Lk ≫ Lg, the kinetic inductance will dominate the total inductance,

so the normalized frequency shift will be [87]

f0(T )

f0(0)
=

√
∆(T )

∆0
tanh

(
∆0

2kbT

)
(5.5)
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Figure 5.8c shows the normalized frequency shift as a function of normalized temperature

and predictions from Eq. 5.5 with parameters α and Tc taken from fits to Qi(T ) above.

Notably, we find significant deviation from the BCS theory for lower thicknesses, which has

been previously observed for high-disorder films [22, 87, 204].

5.4 Single-Tone Kerr Nonlinear Dynamics
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Figure 5.9: Measuring Kerr nonlinearity (a) Frequency shift versus average resonator photon
number n̄ph in linear and log-scale (n̄ph accurate within a factor of ∼ 10). (b) Extracted
self-Kerr coefficients versus wire width w for resonators fabricated from a 29 nm thick film.
Predicted w−2 dependence is shown in red. We find no significant impact of w on Qi.

A key aspect of high KI resonators is their fourth-order nonlinearity: an important

component for realizing quantum devices, and similar to the nonlinearity term found in

Josephson junctions for low powers. Nonlinear kinetic inductance takes the general form

L = Lk + ∆LkI
2/I2c , where Lk is the linear kinetic inductance, ∆Lk the nonlinear kinetic

inductance, and Ic the critical current which sets the nonlinearity scale [108, 264]. This adds

nonlinear terms of the form ℏ
2K(a†a)2 to the Hamiltonian, with K ∝ ω20∆Lk/I

2
c , shifting

the fundamental frequency ω0 by the self-Kerr constant K for each photon added. To

characterize the strength of the resonator nonlinearity, we measure the resonance frequency

shift 5 as a function of photon number [138]. A linear fit for a resonator (t = 29 nm, w =

5. The point diametrically opposite S21 = 1
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0.5 µm) yielding K/2π = 1.21 kHz is shown in Figure 5.9a. Although the statistical errors

of the fits are small, we note this value has a multiplicative uncertainty of 10±0.4: despite

careful calibration, systematic variations in received power across the chip and between

separate experiments limit best estimates of photon number to within a factor of ∼10. By

writing the self-Kerr coefficient in terms of a current density Ic = Jcwt, we expect K to

scale as w−2, so in Figure 5.9b we plot the self-Kerr coefficients of devices (and error relative

to each other) with respect to their wire width. These results are comparable to self-Kerr

strengths of granular aluminum nanowires [138] or weakly nonlinear Josephson junctions

[61].
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Figure 5.10: Transmission of a typical resonance at a range of powers near and above bifur-
cation showing good agreement with a Kerr nonlinear response. The inset shows overlaid
data and fits in the complex plane just below and above the bifurcation point.

A hallmark of Kerr nonlinearity is the distortion of the transmission line-shape in fre-

quency space at high powers, ultimately leading to a multi-valued response above the bi-

furcation power. Re-writing γ = ω0/Qi and κ = ω0/Re[Qe], the steady-state nonlinear

response takes the form derived from Refs. [219, 264] (See Chapter 4):

S21 = 1− κ

κ+ γ

1 + i tanϕ

1 + 2i(δ − ξn)
(5.6)
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where the frequency detuning is written in reduced form δ = ω−ω0
κ+γ , and n = nph/ñin is a

function of frequency and reduced circulating power ξ = K κ
hf(κ+γ)3

Pin. We plot steady-

state transmission data taken near the bifurcation power in Figure 5.10 along with fits to

Eq. 5.6, with system parameters κ, ϕ and ω0 constrained to low power values and find the

model in good agreement with measurements.

5.4.1 Controlling nonlinearity in the presence of additional losses
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Figure 5.11: (a) Self-Kerr constant |K00| as a function of parameters in Eq. 5.7, with a
linear fit overlaid as a solid line. Solid bars correspond to value ranges for groups of similar
film thicknesses and wire widths, with error bars marking systematic uncertainty. (b) Qi as
a function of ω20/|K00| which corresponds to the loss Q3 associated with kinetic inductance.
Points correspond to low and high power limits of Qi. Note that devices with varying wire
width (empty circles) do not appear to be correlated with Q3. (c) Transmission as a function
of frequency for a 18.7 nm thick device at 95.15 GHz taken at increasing powers ξ, with the
inset highlighting decreasing Qi near the bifurcation power ξcrit (dashed blue line) deviating
from two level system loss model (red line). Triangles correspond to nonlinear model fits,
with traces shown in main panel marked in blue.

From Ref. [264], we expect the self-Kerr nonlinearity originating from kinetic inductance

of a λ/4 resonator to be

K = −
ℏω20
I2c

∫ l

0
dxu40∆L ∝ −

ℏω20Lk
J2cw

2t2
(5.7)

where in our case the nonlinear kinetic inductance ∆L is constant along the transmission
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line, so integrating over the fundamental mode profile u0 yields a constant. We have also

transformed the critical current Ic into a critical current density Jc, and used the assump-

tion that the nonlinear kinetic inductance is proportional to the linear kinetic inductance

[108, 219]. Figure 5.11a expands on Figure 5.9b, showing measured self-Kerr constants for

all resonators in this chapter (grouped into points by film thickness and wire width) as a

function the parameters in Eq. 5.7, with the solid line corresponding to a linear fit. We have

also added data from identical resonators fabricated from 30nm electron-beam evaporated

niobium to extend the parameter range. We find reasonable agreement with dependence on

the parameters in Eq. 5.7, however note that the dependence is much less clear than that

on wire width w.

Nonlinear kinetic inductance is also associated with a nonlinear resistance of the same

form R = R0+∆RI2/I2c . Based on Ref. [264], and assuming the nonlinear resistance scales

with kinetic inductance, losses associated with nonlinear resistance will be

γ3 =
ω0
Q3

=
3ℏω0
8I2c

∫ l

0
dxu40∆R ∝ ℏω0Lk

J2cw
2t2

∼ −K
ω0

(5.8)

This indicates that upper bounds on nonlinear losses should scale as Q3 ∼ ω2
0

|K| . In Fig-

ure 5.11b we plot low and high power limits of Qi devices in this chapter with the addition

of 30 nm Niobium devices described above, and find that for resonators with fixed wire

widths w = 4 µm, there appears to be a potential correlation of Qi with Q3 indicating

nonlinear resistance may be a potential loss mechanism.

In our analysis, we have also neglected to take into account higher harmonics of the

resonator, which will be coupled to the fundamental mode by cross-Kerr interactions χmn,

which for evenly spaced harmonics scale as [264]

χmn = −3ℏωmωn
I2c

∫ l

0
dxu2mu

2
n∆L ∝ K (5.9)
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Given the proportionality to K, the correlation described above may also potentially be

a result of cross-Kerr effects. For line-widths large enough to cover any deviations from

evenly spaced higher harmonics, we anticipate see power dependent conversion processes:

in particular for a Kerr nonlinear system with harmonics spaced at ω0 and 3ω0, at powers

approaching the critical power we would expect increased conversion efficiency from the

fundamental to third harmonic [86], which in our experiment would be observed as increased

resonator loss at higher powers.

In Figure 5.11c we show the atypical transmission spectra of a 18.7 nm thick, 4 µm

wide device with a particularly large line-width showing decreasing Qi near the bifurcation

power (above nph ∼ 105), departing from the two-level system model described in the main

text. This additional power-dependent loss may be the result of the nonlinear mechanisms

described above, but may also be a result of circulating currents exceeding the thin film

critical current density, which is lowered by the increased London lengths of the thinner

films [220, 229]. However since the loss could also simply be a result of frequency dependent

dissipation, the source remains unclear.

In Figure 5.11b, we also observe that resonators achieving higher nonlinearities by reduc-

ing wire width do not appear to be affected by the nonlinear loss rate described above. We

also find that these devices do not showcase obvious signs of high power loss shown in Fig-

ure 5.11c. While this may be a result of the difference in fabrication methods (see Appendix

B), the thinner wires may have higher vortex critical fields [211] leading to reduced vortex

formation, and thus lower loss associated with vortex dissipation. Additionally, the thinner

wires at the shorted end of the quarter wave section of the resonator further shift the higher

harmonics, potentially resulting in lower cross-Kerr conversion loss.
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5.5 Degenerate Four-wave mixing

We further explore nonlinear dynamics by stimulating degenerate four-wave mixing with the

addition of a continuous wave classical pump (see Fig. 5.4). When a high power pump tone

at ωp is on resonance with the down-shifted resonance frequency, and a low power signal at

ωs is at a frequency detuning ∆ from the pump, we expect to observe the net conversion of

two pump photons into a signal photon and an idler photon at their sum-average frequency

[Figure 5.12a inset]. This effect is most pronounced when all frequencies are within the

resonant bandwidth, and the pump power ξ approaches the bifurcation point ξcrit, but is

limited by the loss fraction γ/κ.

Inspired by Refs. [70, 146] we can decompose a side-coupled resonator into a linear

network containing a one-sided cavity, which is very well understood in the language of

input-output theory used in quantum optics [239]. This allows us to map well-modelled

dynamics of a Kerr nonlinear cavity driven in reflection [61, 264] to a side-coupled resonator

measured in transmission, obtaining results in agreement with Ref. [219], which uses a

more direct approach. We follow a similar approach to obtain expressions for parametric

conversion gain using the derived input-output relations to map the key results from Ref. [61]

to the waveguide inputs and outputs. Using microwave conventions for Fourier transforms,

the one-port gain of a signal detuned from the pump by +∆ =
ωs−ωp
κ+γ is given by:

gs =
aout
∆

ain
∆

= 1− κ

κ+ γ

1
2 − i(δ − 2ξn−∆)

(i∆+ λ+)(i∆+ λ−)
(5.10)

With λ± = 1
2±
√

(ξn)2 − (δ − 2ξn)2. Using the 3 port network transformations above yields

the normalized forward (in direction of propagation) signal gain:

g+s =
aout
2,∆

ain
1,∆

= 1− κ

κ+ γ

eiϕ

cosϕ

1
2 − i(δ − 2ξn−∆)

2(i∆+ λ+)(i∆+ λ−)
(5.11)
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We measure the pump-signal conversion efficiency of a high-bandwidth, high-K device in

(a) (b)
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Figure 5.12: Four-wave mixing. (b-c) Parametric conversion gain with a 95.1 GHz device
with the same film thickness as 5.10 as a function of reduced pump frequency δ for a fixed
signal detuning ∆ of +450 kHz, taken at increasing pump powers. Solid lines correspond
to theoretical response. The initial forward de-amplification is better understood when the
response is viewed in the complex plane (c), where we observe smooth parametric deformation
from the single tone response.

the propagation direction as a function of reduced pump frequency δ for increasing pump

powers ξ, and a fixed signal power corresponding to n̄ph ≃ 9 in Fig. 5.12. We find that this

behavior is accurately captured with the model described above, and overlay the results. For

increasing pump powers, we observe smooth parametric deformation from the single tone

response in the complex plane. For higher powers, we observe increasing gain with decreasing

linewidth similar to Refs. [61, 222], up to a maximum measured forward efficiency of +16 dB.

The slight curvature in the complex plane is a result of the finite pump-signal detuning ∆.
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5.6 Conclusion

The demonstration of degenerate four-wave mixing realizes an important milestone for the

development of quantum devices at millimeter-wave frequencies and temperatures above 1 K.

For NbN films thicker than 25 nm, we measured millimeter-wave resonators with internal

quality factors exceeding 2 × 104 at single photon powers, and by reducing wire width

to 500 nm achieved self-Kerr nonlinearities up to 1.21 kHz for linewidths ranging from 1-

200 MHz. With some modification the devices in this chapter could easily be redesigned

as parametric amplifiers, which at microwave frequencies have been shown to achieve near

quantum-limited noise figures and quadrature squeezing [64, 164, 222, 222, 263]. While

insufficient for implementing a millimeter-wave artificial atom, the Kerr nonlinearity we

measure arising from high KI thin films can further be used for superinductors [23, 169],

photon frequency conversion [181], parametric mode cooling [107, 267], phase slip junctions

[17, 161], and mode squeezing [222] realized at millimeter-wave frequencies. This opens the

door to a new generation of high-frequency quantum experiments at temperatures above

1 K.

5.6.1 Nonlinearity Relative to Linewidth

Since our goal is to realize a strong single-photon-resolved nonlinearity, a useful metric to

examine is the nonlinearity strength K relative to the total device linewidth γT = κ + γ.

In Figure 5.13 we plot the nonlinearity with respect to linewidth for all the millimeter-

wave NbN resonators described above, grouped by wire width, which we showed is inversely

proportional to the nonlinearity strength. For these devices we find that we achieve a max-

imum nonlinearity of nearly 0.1 percent of the device linewidth, suggesting that a stronger

nonlinearity is desirable...
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Figure 5.13: Nonlinearity (K) plotted as a function of total linewidth (γT ) for all of the
millimeter-wave CPS resonators made with NbN, grouped by wire width.
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CHAPTER 6

IMPEDANCE-ENHANCED KERR NONLINEARITY

For an anharmonic superconducting system useful for quantum experiments, we would like a

single-photon resolved nonlinearity. For microwave devices, this is frequently achieved with

aluminum Josephson junction [111]. However at millimeter-wave frequencies, using an alu-

minum Josephson junction isn’t practical, since millimeter-wave photons (which have energy

above 2∆Al) will directly generate quasiparticles, suppressing superconductivity and increas-

ing sources of dissipation [47, 144]. Additionally, since we would ultimately like to operate

near 1 K in an environment cooled with Helium-4, we would like a superconductor with a

higher transition temperature (Tc) to avoid thermal decoherence from excess quasiparticles

[145].

Kinetic inductance on the other hand offers an alternate source of the desired Kerr non-

linearity, arising from a current-dependent inductance in thin superconducting wires. In the

previous chapter, we demonstrated that the kinetic inductance in thin Niobium Nitride films

is a useful source of nonlinearity at millimeter-wave frequencies, and could show parametric

oscillation and amplification. However a much more useful goal would be to realize a system

where the self-Kerr is comparable to its linewidth1. Thin film kinetic inductance has also

been proposed as a method to provide sufficient nonlinearity for realizing a millimeter-wave

qubit [65]. Recently this concept was demonstrated at microwave frequencies and dilution

temperatures (<50 mK) using granular aluminum [199, 252], which has a strong inherent

nonlinearity arising from weak coupling between aluminum grains [137]. Similar to alu-

minum2 however granular aluminum has a relatively low critical temperature, making it

unsuitable for operating at elevated temperatures.

1. Here I will disagree with Ref.[99] and say that the total linewidth is the one that the nonlinearity
should be compared to, not just the intrinsic linewidth (loss).

2. Actually granular aluminum has a slightly increased critical temperature (closer to 2 K) arising from
disorder, which is somewhat counter intuitive.
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Thin films of niobium nitride (NbN), and titanium nitride (TiN) have been shown to

have very low microwave loss [82, 169, 204] while sustaining high levels of kinetic inductance.

Kinetic inductance has also successfully been used as a three wave mixing nonlinearity: useful

for decoupled parametric amplification [140] and frequency tunable “Ouroboros” resonators3

[255].

However the nonlinearity strengths found in thin disordered films are still relatively weak

when compared to the device linewidths, and typically lower than those seen in granular

aluminum. Luckily it has recently been shown that even a weak source of Kerr nonlinearity

can still be used to isolate the first two states of the weakly nonlinear system [92, 128],

forming the desired artificial atom. As a result, we will attempt to maximize the inherent

self-nonlinearity of a resonator with the goal of making a highly nonlinear resonator with an

anharmonicity nearly that of the linewidth, which could then be used to create an adressable

quantum system using a photon blockade such as proposed in Ref. [128].

In practice while our devices did achieve K/κ = 0.17, we found that

6.1 Increasing Nonlinearity from Kinetic Inductance

κ K, ω0

γ

Lk

Lp

C0

Figure 6.1: Nonlinear resonator consisting of a nonlinear inductor shunted by a single ca-
pacitance C0. The parasitic inductance of the capacitor in this case reduces the self-Kerr
strength so cannot be neglected.

Earlier on, we established that kinetic inductance can be expressed as a nonlinear induc-

3. I actually think they unfortunately got bullied out of using “Ouroboros” in their publication...
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tance [70, 269]:

L(I) = Lk

(
1 +

I2

I2∗

)
(6.1)

Consider a simple circuit formed by shunting this nonlinear (kinetic) inductor Lk with a single

capacitor C0 (this can be the sum of several capacitances, so long as each has its voltage

nodes shunting the nolinear inductor). Of course any real capacitor will have some associated

parasitic inductance Lp ≪ Lk that contributes to the total inductance L = Lk + Lp. The

power dependent resonant frequency of the circuit can be approximated for small currents

(since we care about the zero and single photon separation)

ω(n) =
1√

C0(Lk + Lp + LkI
2/I2∗ )

≈ ω0

(
1− 1

2

Lk
Lk + Lp

I2

I2∗

)
(6.2)

Labelling the kinetic inductance fraction α = Lk/L we can extract the frequency-shift per

photon in terms of the zero point fluctuation current I2ZPF = ℏω0/L. This means that the

self-Kerr nonlinearity of the circuit will be:

K = −ω0
α

2

I2

I2∗

1

nℏ
= −α

ℏω20
LI2∗

(6.3)

Now using the convenient fact that inductance can be written as L = Z0/ω0 in terms of the

circuit impedance Z0 =
√
L/C0, the Kerr nonlinearity can be simplified to

K = −
αℏω30
Z0I

2∗
(6.4)

From Chapter 1 we found the critical current I∗ can be expressed in terms of a material-

dependent critical current density along with the wire cross section area A

I∗ = J∗A ≈ A

√
π

ℏ
σnN(0)∆(0)3 (6.5)
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Putting all of this together:

K = − α

Z0A2

ℏω30
J2∗

(6.6)

So given a nonlinear resonator at frequency ω0, we can maximize the nonlinearity by maxi-

mizing the kinetic inductance fraction α, decreasing the wire cross section area A. However

from Equation 6.6 we see that the circuit nonlinearity can also be increased by reducing the

circuit impedance Z0.

Counterintuitively, this means for a highly nonlinear circuit we want a very small induc-

tance and very large capacitance! Since we need to keep the kinetic inductance fraction α

high however, we need to ensure the capacitor has minimal parasitic inductance Lp.

6.2 Parasitic Inductance in a Finger Capacitor

To simplify the fabrication process we would like to make a microwave structure with high

capacitance using the same on-chip thin films that will form the high-kinetic-inductance

nanowire. We could make this by placing two metal pads next to each other (as shown on the

left of 6.2). However to achieve a practical capacitance4 above a few hundred femtoFarads,

this would require gigantic structures on the order of millimeters, which isn’t very tractable

for compact microwave circuits5. Since the capacitance of the two pads scales effectively

scales with the length of their adjacent surfaces [78], a practical solution is to meander this

surface: folding the overlapping region back and forth on itself quickly increases the overlap

length while taking up the same area. This process is illustrated in Figure 6.2 and results a

structure referred to as a finger capacitor (see Ref. [19] for a very nice model for estimating

its capacitance).

Finger capacitors are quite popular in microwave design, particularly in superconducting

designs [19, 77, 113], since they can be patterned in a single fabrication step, and don’t

4. For millimeter-waves, ∼ 10 fF is practical already so we don’t usually need to worry about this!

5. Or maybe not? In some cases[99] they didn’t mind and made gigantic capacitors anyways.
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Figure 6.2: Illustration of a finger capacitor with increasing number of fingers N , along with
the equivalent parasitic circuit network (the circuit is symmetric, so is shown for a single
finger pair).

involve additional lossy dielectrics. However consider a capacitor that needs to be mode-free

at millimeter-wave frequencies (such as for the circuit outlined in Ref. [181]), or a capacitor

made from a high-kinetic inductance material [99]: in both of these cases the parasitic

contributions to the finger capacitor will be significant and shouldn’t be ignored. Following

the same procedure outlined above for the simple example capacitor, we can break down

the finger capacitor into subdivided capacitance and inductance networks, as outlined in

Figure 6.2. As we increase the number of fingers and the amount of detail (or subdivisions)

the effective parasitic circuit quickly becomes a messy grid of reactive components, as shown

in Figure 6.2 (where we actually only show the circuit for a single finger for brevity).

Let’s take a more reasonable approach to solving this problem, and simplify it with the

assumption that the two ends of the finger capacitor (A and B) are electrically large, so

we can neglect the effects of lateral parasitics. We are working with metal films that have
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Figure 6.3: Subdivision of a finger capacitor. (a) We begin with a simple two-finger capacitor
and split up the fingers into squares, each with sheet inductance L□ and a fraction of
capacitance on their edges. This circuit is drawn out explicitly in (b), showing the parasitic
network. The capacitances all still add up to the original capacitance C. (c) The parasitic
network is drawn out for a four-finger capacitor. Assuming both ends of the capacitor A
and B are well connected, we can use a symmetry argument to locate equivalent points on
the finger capacitor and fold it up into the simplified circuit shown in (c). This process
can be repeated for any number of fingers, which will only change the coefficients, but the
equivalent circuit will look stay the same. This circuit only changes depending on how many
squares we divide each finger into.

sheet inductance (eg. kinetic inductance), which is commonly defined as an inductance per
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square6. So we will break the fingers down into squares, as shown in Figure 6.3a. Each unit

cell will contribute a sheet inductance L□ (or L for short), and each interface between the

unit cells will contribute some fraction of the total capacitance C/N , where the sum of all

the sub-capacitors should sum up to the total capacitance C. The resulting circuit for a

finger capacitor consisting of two fingers is shown in Figure 6.3b. From a tiling argument,

we have put the capacitors in the middle of the unit cell, and split the unit cell inductance

into two parts (L/2) on either side of a node.

A two finger capacitor is rather small though- higher capacitance density can be easily

achieved by increasing the number of fingers [19]. In Figure 6.3c, we double the number

of fingers, and simultaneously increase the number of subdivisions for better detail7. This

produces the messy grid of inductors and capacitors which we touched on in Figure 6.2.

However if we ignore lateral fluctuations (having assumed well-connected leads on either side

of the finger capacitor, the voltage on either ends will at least start laterally homogenous),

we can assume the voltage along each pair of fingers will be identical, allowing us to fold the

fingers into a single pair. The resulting circuit is shown in Figure 6.3d, and is much more

similar to the situation in Figure 6.3a-b, except with different weights on the sub-capacitors.

The only fundamentally different thing about the new circuit comes from the number of

squares we included. Going a step further we can use the same lateral symmetry argument

the circuit of a n-fingered capacitor with m subdivisions into an equivalent two-fingers circuit

with modified weights:

Couter = C
n/2

m(n− 1) + n
Cinner = C

(n− 1)

m(n− 1) + n
(6.7)

Louter =
L

n
Linner =

L

2n
(6.8)

6. We defined this explicitly for kinetic inductance in Chapter 1

7. This is actually a relic from where we were designing a capacitor that would have a fixed aspect ratio
(I don’t remember why)
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With the finger-number scaling established, we can solve for the effective impedance of

the two-finger equivalent circuit. Consider the circuit with four subdivisions, as shown

in Figure 6.4. Unfortunately since this circuit has loops, we can’t use simple algebra for

determining the impedance. Instead, we consider a current I0 flowing from A→ B, and use

Kirchoff’s law to establish a network of dependent equations for the currents on each branch

I1, I3 and I4 with respect to the impedances of the circuit (ZC and ZL are impedances of

the center capacitor and inductor pieces, while ZR = iωLouter+1/iωCouter). We won’t write

out the equations, but there are enough of them that we can find a solution for VA. Setting

VB = 0 for simplicity, the effective impedance of the finger capacitor can then be calculated

from Ohm’s law Zeff = VA/I0. Wow you’re actually reading this? You deserve a beer. With

that, we can skip the math (it gets gnarly) we can summarize the results for m = 2–4:

Zm=2
Cap =

Zc(3ZL + ZR) + 2ZL(ZL + 3ZR)

2(ZC + ZL + ZR)
(6.9)

Zm=3
Cap =

3Z4
CZL + Z4

C(ZC + ZL)

3Z3
C(ZC + ZL) + Z3

C(2ZC + ZL)
(6.10)

Zm=4
Cap =

Z2
C(7ZL + ZR) + 8ZCZL(5ZL + 3ZR) + 8Z2

L(3ZL + 5ZR)

2(Z2
C + 4ZL(ZL + ZR) + 2ZC(3ZL + ZR))

(6.11)

And so on and so forth (the higher order expressions started not fitting on the page). From

ZR

2ZL

A

B
ZL

ZC ZC

ZR

2ZLZL

I1
I3 I4

I0

I0

VA VL1 VL2

VU1 VU2 VB

Figure 6.4: Simplified parasitic circuit for fingers divided into two squares. Since the circuit
has loops we must use Kirchoff’s theorem and solve for the effective impedance given an
applied current I0 and voltage VA − VB .
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the expressions above, we can substitute the respective weights found earlier. As it turns

out, for all of these, we can extract a single inductive correction term proportional to L□

(remember our simple model from the previous section?) and write the following:

ZCap(n,m) =
1

iωC0
+ iω

m

n
L□
(
1 + Em,n[C0, L0]

)
(6.12)

Here, we have bunched the remaining correction terms into a function Em,n which has a
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Figure 6.5: Effective reactance of a large (2 pF) finger capacitor, assuming a sheet inductance
of 30 pH/□. For square aspect ratios (n = m shown on left), the parasitics are largely
described by adding a series inductor. Higher order subdivisions add small corrections to
this, which are largely captured by m = 8 subdivisions. Since the added inductance depends
on the aspect ratio of the capacitor multiplied by the sheet inductance, increasing finger
number for a fixed finger length reduces the parasitic inductance as shown on the right.

small magnitude. From this expression we see that the capacitor impedance will be ap-

proximately modified by a series inductance, which can be calculated by multiplying the

sheet inductance L□ by the aspect ratio of the capacitor m/n. In Figure 6.5, we plot the

impedance of a finger capacitor based on the expressions we calculated (and higher subdivi-
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sions) for varying subdivisions and finger numbers. We find that for a square aspect ratio,

the parasitic corrections are largely summarized by a inductive term L□ in series with the

capacitor impedance. Increasing the number of subdivisions reveals the small additional

effects of the correction function Em,n, however we can get pretty good approximations with

the m = 4 or m = 8 expressions. Using the fairly accurate impedance expression Zm=8,

we can explore what happens to the capacitor as we adjust the aspect ratio by keeping a

fixed sheet inductance and varying the number of fingers. As we expect, longer and thinner

narrower capacitors (such as the n = 2 finger case) behave more like wires and have more

and more significant parasitic effects.

For the finger capacitor to successfully save space, we would like the aspect ratio to be as

close to square as possible. From Figure 6.5 we see that unless we keep the finger capacitor

aspect ratio low (which would mean it takes up a lot of room, just in the wide dimension),

our capacitor will inherently have inductive effects associated with it. So the moral of the

story8 is be wary of finger capacitors made from metals with high sheet inductance! This

decomposition method can help figure out how geometry will actually behave, but nowadays

it’s much nicer to let a computer simulation do the work.

6.3 High Capacitance Density with Fractals

Evidently finger capacitors, which are the traditional method used for increasing capacitance

in a small footprint, have an inescapable amount of parasitic sheet inductance. The downfall

of this design is in the inherent inductance of the fingers, throughout which the charge must

flow. A simple solution which effectively reduces each finger length while also increasing

their total number is achieved by instead sequentially branching each finger. This sequential

branching forms a fractal pattern!

For our capacitor design, we use a modified square Sierpinski curve [50, 207]. The two-

8. The real parasitics were the friends we made along the way?
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Figure 6.6: Parasitic networks for capacitors whose edges are defined by a Sierpinski fractal
curve, shown for the first three fractal iterations.
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dimensional fractal curve defines the gap between the capacitor electrode and the ground

plane: since the Sierpinski curve is space-filling, each iteration of the fractal will significantly

increase the capacitance density. The resulting geometry is shown in Figure 6.6. The first

order fractal9 is also the fractal generator: for each subsequent fractal iteration, each node

is replaced by a copy of the generator. The resulting shapes are illustrated for the first three

iterations in Figure 6.6.

Each node will contribute some capacitance, and the connections between nodes will

contribute approximately one square of sheet inductance. Thus the equivalent parasitic

circuit model can be described by a tree of successive capacitive and inductive elements, as

shown in Figure 6.6. Notably each iteraction of fractal will have 4n nodes, meaning that each

node contributes a capacitance of C/4n, and each node connection contributes one square

of sheet inductance L□. The effective impedance of each iteration can be expressed in terms

of the inductive impedance ZL = iωL□ and capacitive impedance ZC = 4n/iωC0 of each

node:

Zn=1 =
1

4
(ZL + ZC) ZC1 = 4ZC,0 (6.13)

Zn=2 =
1

4

ZL +

(
1

ZC
+

1

ZL + 1
3(ZL + ZC)

)−1
 ZC2 = 42ZC,0 (6.14)

And so on. The effective impedances for the first three fractal iterations shown in Figure 6.6

can be summarized as follows:

Zn=1 =
ZL + ZC1

4
(6.15)

Zn=2 =
Z2
C2 + 8ZC2ZL + 4ZL

16(ZC2 + ZL)
(6.16)

Zn=3 =
Z4
C3 + 64Z3

C3ZL + 288Z2
C3Z

2
L + 256ZC3Z

3
L + 64Z4

L

64(ZC3 + ZL)(Z
2
C3 + 8ZC3ZL + 4Z2

L)
(6.17)

9. It looks like the old Cingulair logo!
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The impedance can be written out for higher fractal iterations as well, however even n = 3

fractal iterations already results in significant capacitance density for our purposes.
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Figure 6.7: Effective impedance of a fractal capacitor with parasitic inductance taken into
account, for the first three fractal iterations. Ideal capacitor model (dashed red) and equiv-
alent footprint square finger capacitor (dashed gray) are also shown for comparison.

We compare the effective impedances for the first three iterationons of this fractal in

Figure 6.7 for two large capacitances (2 pF and 3 pF) fabricated with a film with sheet

inductance L□ = 30 pH/□, which is typical for a high kinetic indutance material such as

titanium nitride [204]. For the first three iterations, we see that each fractal capacitor still

has lower parasitic inductance than finger capacitors with the same square profile10. This

suggests that the Sierpinski fractal curve is an efficient method of introducing geometric com-

plexity into the capacitor geometry while minimizing contributions of parasitic inductance

(achieved by maximally branching the connections between capacitor nodes).

Indeed by the same logic a high-density capacitor with low parasitics could be created

10. This argument gets a lot more complex if we consider different aspect ratios of finger capacitors. For
example you could reduce the parasitic inductance of a finger capacitor if you split it up into four finger
capacitors each with lower aspect ratio on each side of a square center island. Equivalently you could choose
a shape with more arms as the generator for the fractal (instead of a square snowflake it would become a
hexagonal snowflake), while still applying the same fractal rules- while less space-efficient, this could help
reduce the parasitic contributions.
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with several other types of space-filling curves (such as the Peano curve [180], Hilbert Curve

[88] or the flowsnake curve [142]). However, care must be taken to ensure that the fractal

generator has second-order curvature (ie it should double back on itself), since otherwise the

resulting capacitor island will not branch and the parasitic problem will become even worse.
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Figure 6.8: Generator and first three iterations of the square Sierpinski curve, on which our
fractal is based, along with effective curve length relative to the overall width L = Lcurve/W
for fractals along with an equivalent square finger capacitor with n fingers. The curve length
grows faster per iteration compared to the curve length of meander in a finger capacitor.

In the limit of infinite iterations, a space-filling fractal curve will completely fill its bound-

ing area [50, 142], or in other words, the length of the curve will become infinite. This is a

convenient property for us, since the capacitance between two islands separated by a curved

gap will scale with the gap length: thus a fractal is an excellent way to maximize capacitance

density. Consider the ideal square Sierpinski curve shown in Figure 6.8 (our design is based

on this shape with the corners rounded). If we explicitly calculate the normalized fractal

curve length L (defined as the curve length relative to the overall footprint width), we expect

that the capacitance (proportional to L) will scale exponentially with the number of fractal
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iterations, as shown in Figure 6.8 The curve length (and thus capacitance) of a square as-

pect ratio finger capacitor scales with the number of fingers L = 2 + (n − 1) resulting in a

power-law scaling which is slightly slower given a similar narrowest width. Combined with

the reduced parasitic contribution to the capacitor, this makes fractals an ideal solution for

increasing capacitance density in both high-frequency applications (such as for millimeter-

wave circuits [65] or for hybrid microwave and millimeter-wave circuits [181]) as well as in

cases where parasitic contributions reduce performance [99, 128].

6.4 Microwave Titanium Nitride Fractal Resonators

50 um

50 nm

Si

TiN

Figure 6.9: Scanning electron micrograph of a titanium nitride fractal capacitor (second
order) shunted by a 50 nm wide nanowire. The circuit is patterned in one step on a crystalline
silicon substrate.

We may have alluded to this already, but to make it absolutely clear, the devices we

are discussing in this chapter are microwave-frequency (4-8 GHz) nonlinear resonators.

Capitalizing on this well-established measurement platform, we can test out the impedance

enhancement of low-impedance high-kinetic-inductance resonators (and potentially compo-
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nents of the photon blockade) at microwave frequencies, with the idea that this can act as a

model system for potentially similar applications at millimeter-wave frequencies [65].
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Figure 6.10: Transmission of a nonlinear resonator plotted for increasing powers. The fre-
quency of the transmission dip shifts down as the circulating power in the resonator increases.
By fitting the frequency of the transmission minimum can be used to extract the frequency
shift, which is linear in resonator photon number, and can used to extract the Kerr nonlinear-
ity. Above the bifurcation point, the transmission minima are determined by the bifurcation
point instead of the resonant frequency (green dashed line).

We realize these nonlinear microwave resonators by patterning the fractal capacitor ge-

ometry described above, shunted by a narrow wire, as shown for a second-order Sierpnski

fractal geomtry shown in Figure 6.9. The geometry is fabricated by first depositing titanium

nitride using 300 cycles of atomic layer deposition (see Appendix B.2) on a crystalline sil-

icon11 susbstrate that has been cleaned and etched immediately prior to deposition. The

capacitor geometry along with the impedance-optimized12 coplanar waveguide (CPW) trans-

mission line are patterned in a single exposure using electron-beam lithography, and the thin

titanium nitride film is patterned by a chlorine reactive ion etch (see Appendix B.4). A

rinse in deionized water helps dilute adsorbed chlorine. A finished resonator along with the

11. The wafer surface is the Si-111 orientation, since this is found to grow slightly nicer titanium nitride
films [204].

12. See Chapter 2 for how kinetic inductance impacts coplanar waveguide impedance.
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nonlinear nanowire is shown in Figure 6.9.

Using microwave spectroscopy, we characterize the resonators by measuring transmission

through the central feedline. On resonance, we see a dip in transmission, which can be fitted

to extract the resonator frequency and linewidth. As explored in Chapter 4, the frequency of

a Kerr nonlinear resonator will shift as the applied power increases. We confirm this effect in

Figure 6.10a. By measuring the fitted resonance frequency as a function of average resonator

photon number (determined by the applied drive power) we can extract the nonlinearity

per photon or the self-Kerr strength, as shown in Figure 6.10b. These measurements are

particularly sensitive to the exact microwave power incident on the resonators, so a careful

calibration experiment to verify the exact microwave attenuation is essential.

6.5 Nonlinearity Relative to Linewidth

As we discussed earlier, the quantity of interest is the nonlinearity strength relative to the

total device linewidth K/κ. Having verified the nonlinearity of these high-kinetic inductance

resonators using power-dependent microwave spectroscopy, we can investigate this in context

of their linewidth. We summarize resonator nonlinearity relative to total device linewidth

in Figure 6.11, grouped by the nanowire width w. Along with the low impedance fractal

capacitor resonator designs, we have also included regular high impedance Jellyfish resonator

designs (similar to those used in Ref. [204]). Consistent with Equation 6.6, we observe that

thinner wires demonstrate higher nonlinearity strengths.

The effect of resonator impedance Z0 is made clear in Figure 6.11b, where we plot res-

onator nonlinearity as a function of Z0. We find that the nonlinearity indeed scales with

impedance consistent with Equation 6.6, confirming that low-impedance resonators provide

higher nonlinearity. For the highest fractal iterations with the narrowest 50 nm wide wires,

we find a nonlinearity as high as 6.7 percent of the total device linewidth, which is sub-

stantial! The nonlinearity ratios in our devices are just under those measured in Ref. [99],
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Figure 6.11: Left: Measured nonlinearity strength K for the titanium nitride devices in this
chapter plotted as a function of total device linewidth γTot, which is the combined internal
and coupling linewidth. Right: Measured nonlinearity strength K for the titanium nitride
devices in this chapter plotted as a function of device impedance, grouped by wire geometry.
Dashed lines are the expected scaling from Equation 6.6, which takes into account wire
geometry.

however accomplish this in a significantly smaller footprint13.

We note that Figure 6.11 also portrays the same worrying trend for devices with high

kinetic inductance explored in Chapter 5, where increased nonlinearity also results in in-

creased linewidth arising from decoherence. It is likely that this is a manifestation of the

same nonlinear resistance [264]. However this could also be the macroscopic result of inco-

herent phase slips in the nonlinear nanowire, which is suggested as a dissipation mechanism

limiting the devices in Ref. [99]. While it is likely possible to push the inherent nonlinearity

of kinetic inductance further, doing so in a coherent fashion will require careful attention to

material purity.

13. What can fractals do for you?
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6.6 Nonlinear Decay of a Coherent State

These high-kinetic inductance resonators do not have sufficiently high nonliearity to resolve

individual energy transitions as done in [199]. However based on the nonlinearity strengths

measured above, which puts us in an intermediate regime, we can investigate the classical

or quantum mechanical nature of these devices.
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Figure 6.12: Top: Direct measurement of the ringdown chirp emitted by a decaying Kerr
nonlinear resonator prepared in an initial coherent state α. The microwave ringdown was
measured directly using an oscilloscope. Short incremental sections of the ringdown response
can be fitted to a sinusoid function, which lets us track output frequency with respect to
the instantaneous power of the emitted signal. For a weakly nonlinear system measured
here, the resulting frequency is proportional to the emitted power, as expected for a Kerr
nonlinearity.

With the blockade scheme from Ref. [128] in mind, consider our strongly nonlinear

resonator prepared in a large coherent state |α0⟩. The resonator photon number can be
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expressed as n = ⟨α(t)|α(t)⟩ = |α(t)|2. From a purely linear classical argument, we expect

the resonator state to exponentially decay on a time scale set by the resonator linewidth

α(t) = α0e
−t/γ . Based on the linearized argument, we expect the frequency of the resonator

to depend on the resonator photon number ω = ω0 − |K|n. Thus as the coherent state

decays exponentially, so too should the resonator frequency. In other words, the resonator

will emit a “chirp” as it decays, where the frequency of the signal changes over time.

In Figure 6.12 we prepare a resonator with fairly weak nonlinearity in a coherent state

using a long microwave pulse with large amplitude, then directly record the signal emmitted

by the resonator using a microwave oscilloscope. As expected, the emitted signal is indeed

a chirp, with a time-dependent frequency. In agreement with the approximate classical

argument used above, we find that the instantaneous frequency of the emitted pulse is

consistent with the pulse amplitude.

Assuming the nonlinearity is relatively weak, we can use the mean field approximation

[239] to solve for the system dynamics.

ȧ = [a,H]− γ

2
a (6.18)

For a Kerr-nonlinear Hamiltonian without a drive term, this simplifies to

ȧ = iω0a− iKa†aa− γ

2
a (6.19)

For sufficiently weak nonlinearity we can linearize a(t) ≈ α(t) and thus approximate the

nonlinear term as a†aa ≈ |α|2α, which turns this into a simple differential equation, with

the solution:

α(t) = α0e
−γ

2 te
i

(
ω0−K

α20
γ (e−γt−1)

)
t

(6.20)

Here α0 is the initial state.

137



6.6.1 Heterodyne Measurements
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Figure 6.13: Heterodyne measurement of the ringdown chirp emitted by a decaying Kerr
nonlinear resonator prepared in a coherent state α.

We now examine this behavior using more strongly nonlinear resonators. While directly

measuring the emitted chirp was possible for the weakly nonlinear system, this proves exper-

imentally challenging for high chirp frequencies, or fast chirp decays which rapidly change

frequency. To remedy this, we perform a heterodyne measurement and measure the chirped

response in the reference frame of the initial excitation pulse 14. To maximize the initial

coherent state (and thus initial detuning) the excitation pulse is chosen to be below the

bare resonance frequency15 The transformed chirp is shown in Figure 6.13. Initially, the

resonator is excited, and its frequency starts below the reference frame frequency, so the

initial signal oscillates. As the resonator decays, the chirp frequency returns toward its the

bare resonant freuqency ω0. As the frequency passes the refernce frequency, we observe the

signal oscillations slow, then reverse their ferquency.

14. Technically there are two heterodyne steps: one to down-mix to an idler frequency and a second
heterodyne experiment to determine the quadratures of the chirp

15. What is the optimal frequency for exciting the maximal coherent state? If we choose the bare resonant
frequency the resonator will shift down, preventing power from building up. If we choose too low of a
frequency we won’t be able to pick up the resonator from its ground state! Really what we want is a chirp.
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Figure 6.14: Ringdown Measurement of a highly nonlinear resonator prepared in a coherent
state α. The amplitude decays much faster than expected from classical theory!

From these measurements we can extract the instantaneous frequency16 and magnitude

of the emitted chirp, and thus model the instantaneous resonator state and its frequency.

The results are shown in Figure 6.14, with the classical solution (Equation 6.20) derived from

mean field theory. Interestingly enough we find that while the classical theory describes the

frequency of the chirp relatively well, the magnitude of the chirp decays significantly faster!

Evidently we must use quantum mechanics to describe the nonlinear decay dynamics. The

full solution (assuming a zero temperature bath) can be derived from Ref. [149]:

α(t) = α0e
−γ

2 teiω0t exp

[
−|α|2K

(
K + iγ

K2 + γ2

)
(1− e−(γ+iK)t)

]
(6.21)

As we see in Figure 6.14, the full solution does a much better job of describing the oscillator

decay!
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Figure 6.15: a) Regular millimeter-wave CPS resonator made from NbN on sapphire, with a
standard 4 µm wire width. b) A similar CPS resonator with a 500 nm wide wire. The rest
of the geometry is largely similar, so the impedance is not significantly changed from the
standard design. c) A low-impedance millimeter-wave resonator, inspired by the titanium
nitride fractal resonators. The required capacitance at 90 GHz is significantly smaller so
only a zeroth-order fractal (in other words not a fractal at all) is required. Similar to the
microwave design, a relatively thin wire shorts the capacitor to ground. However since this
design is fabricated with optical lithography, the nanowires are between 1–2 µm wide.

6.7 Impedance Enhanced Kerr at 100 GHz

Having successfully demonstrated at microwave frequencies that lowering the resonator

impedance increases the single-photon nonlinearity strength of the resonator, we attempt

to replicate this at millimeter wave frequencies. Whereas our previous millimeter-wave res-

onator designs have used relatively long wires (even for the thinner case) as shown in 6.15a-b,

we apply the low impedance methods by modifying the microwave fractal resonators for use

at millimeter-wave frequencies, as shown in 6.15c.

Fabricating resonators with this geometry using similar niobium nitride films, we measure

the nonlinearity of these devices, and compare them to the results from Chapter 4, as shown

in Figure 6.16. We find that this results in a minor increase in nonlinearity. However

the increase is less than a factor of 10, likely since the original millimeter-wave resonators

already had relatively low impedance. Nevertheless by continuing to push in this direction,

we could forseeably improve the millimeter-wave nonlinearity by a factor of 100 or 1000.

Unfortunately due to the relatively large linewidths of the millimeter-wave devices caused

16. Doing this actually takes some thought, as the signal envelope also has a time derivative.
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Figure 6.16: Nonlinearity (K) plotted as a function of total linewidth (γT ) for the microwave
titanium nitride resonators, the millimeter-wave NbN coplanar stripline resonators from last
chapter, as well as millimeter-wave resonators with reduced impedance (highlighted by the
dashed circle), all grouped by wire width. Notably the reduced impedance does help increase
the self-nonlinearity of the millimeter-wave resonators. However this increase is less than one
order of magnitude, likely since the original millimeter-wave resonators already had relatively
low impedance.

by decoherence, this would probably still leave us in the same boat as the microwave devices

in terms nonlinearity with respect to linewidth.
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CHAPTER 7

NIOBIUM TRILAYER JUNCTIONS

Evidently kinetic inductance only goes so far. In the previous chapters we saw that kinetic

inductance is an excellent tool for achieving weak nonlinearity: this property makes it a

perfect choice for realizing nonlinear parametric amplifiers with very high compression powers

[140]. However even with nonlinearity increasing techniques, using kinetic inductance to

realize a single-photon-resolved nonlinearity appears to be a challenging task. So instead we

turn to the workhorse of superconducting quantum devices: the Josephson junctions.

These superconducting circuit elements have enabled a wide variety of superconduct-

ing devices, with applications ranging from quantum-limited amplification and metrology

[31, 95, 238] to digital logic [127, 226, 237] and they are an attractive platform for scalable

quantum computing architectures due to their design flexibility and wide range of coupling

strengths. Increasingly complex and robust quantum circuits have been demonstrated with

aluminum junctions [111], however niobium is a tantalizing alternative superconductor due

to its larger energy gap (and thus higher critical temperature and pair-breaking photon

frequency) [66]. Taking advantage of this wider operating regime, niobium trilayer Joseph-

son junctions became standard for single-flux-quantum circuits operating at liquid helium

temperatures [127, 226, 237]. Employing these well-established fabrication processes, some

early implementations of superconducting qubits were developed with niobium junctions

[60, 100, 129, 143, 177, 247, 261, 262]. However, these initial niobium qubits only retained

quantum state coherence for less than 400 ns, diminished by coupling to sources of dephasing

and dissipation in the junction and the qubit environment.

Minimizing these loss sources is crucial in all sensitive quantum systems, but particu-

larly for qubits, which must remain coherent over the duration of many gate operations.

Significant effort has since been dedicated to investigating and reducing sources of decoher-

ence [148], demanding either adjustments of circuit geometry to limit or dilute coupling to
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spurious channels, or reducing the use of lossy amorphous dielectric materials. The need

for insulated wiring contacts in these niobium trilayer junctions required growing passivat-

ing amorphous dielectric material in direct contact with the junction barrier, which likely

degraded early qubit coherence [236], and limited their use in quantum devices. Higher

temperature junctions with low loss promise a transformative source of strong nonlinearity

for high-frequency quantum devices [12], and have since seen renewed interest from efforts

to integrate digital and quantum logic [126, 131, 147], and the exploration of tunnel bar-

rier materials beyond the limitations of aluminum [166, 260, 268]. Notably, by removing

amorphous insulating scaffolding and increasing the circuit volume to reduce junction par-

ticipation, qubits with epitaxially grown NbN junctions with crystalline AlN barriers have

increased coherence times to 16 µs [109]. We will apply similar improvements to traditional

Nb/Al/AlOx processes, which are attractive due to the simpler deposition methods required.

In this chapter, we use an improved fabrication method to revisit niobium trilayer junc-

tions as the core component of transmon qubits and explore their coherence properties.

We describe a method to form a temporary self-aligned sidewall-passivating spacer struc-

ture based on Ref. [81], which limits the amorphous spacer material to the smallest nec-

essary region, and can later be chemically removed to further reduce dielectric loss. We

find that high-temperature spacer growth methods greatly reduce the critical current den-

sity of the junction barrier, allowing us to utilize exclusively optical lithography to fabricate

high-nonlinearity junctions for microwave qubits. We find that our all-niobium qubits have

lifetimes as high as 62 µs with an average qubit quality factor of 2.57 × 105: much closer

to state-of-the-art qubits than past Nb/Al/AlOx devices [60, 100, 129, 143, 177, 247]. We

further observe that the higher superconducting gap energy results in reduced sensitivity

to quasiparticles, particularly above 160mK, where conventional aluminum-junction qubit

performance deteriorates [47, 178, 189]. These results demonstrate the reemergent relevance

of niobium junctions for pushing the boundaries of superconducting devices.
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7.1 Trilayer Fabrication

Sapphire

SiO2

Nb

250 nm

AlOx

Nb

Al

Al

Nb

a. b. c. d.

e. f. g. h.

Figure 7.1: Junction fabrication process. (a) Trilayer is deposited and oxidized in-situ. (b)
First layer is etched with a chlorine RIE. (c) SiO2 is grown isotropically. (d) Sidewall spacer
is formed by anisotropic etching with fluorine chemistry. (e) Surface oxides are cleaned in
vacuum and wiring layer (purple) is deposited. (f) Second junction finger (and other circuit
elements) are defined by a fluorine plasma etch selective against Al. (g) Final devices undergo
a wet etch to further remove SiO2, exposed Al and some NbOx . (h) Color-enhanced electron
micrograph of a finished trilayer junction with an area of ∼ (500 nm)2.

Despite niobium’s attractive electrical properties, in thin layers its oxides are imperfect

insulators with high dielectric loss [236], resulting in very poor natural tunnel junction bar-

riers. Aluminum, on the other hand, forms a thin self-terminating oxide with low leakage

and loss, but has a low critical temperature. The trilayer method leverages the strengths

of both of these materials by using a thin layer of oxidized aluminum as the tunnel barrier

and encapsulating it with niobium: through the proximity effect the Josephson junction

inherits desired electrical properties and a clean tunnel barrier. This trilayer structure is

typically grown on a wafer-scale as the first step in fabrication, enabling excellent uniformity

[37, 228] and high purity growth methods. The junction fabrication process is illustrated in

Figure 7.1. But you probably came here for the details right?
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Before Anneal After Anneal

Figure 7.2: Atomic-force microscopy measurements of the C-plane sapphire surface. As
received (left), the surface is still fairly rough after the epitaxial surface polish, however after
a 1.5 hour anneal at 1250 ◦C in air (right) atomic terraces are visible, meaning the surface
is extremely flat. Annealing in nitrogen instead results in oxygen depletion on the sapphire
surface, creating a coral-like surface. Data courtesy of F. Zhao.

7.1.1 Wafer Preparation and Trilayer deposition

Similar to methods using sputtering, our trilayer is formed in a shadow-evaporation-compatible

electron-beam system. High-purity single-crystal C-Plane sapphire wafers that have been an-

nealed (See Figure 7.2) and chemically etched to remove surface damage are ultrasonically

cleaned, then etched in a 40 ◦C piranha solution. Immediately following, the wafers are

loaded into a Plassys MEB550S electron-beam evaporation system, where they are baked by

heating the stage to >200 ◦C under vacuum for an hour to help remove water and volatiles.

When a sufficiently low pressure is reached (< 5 × 10−8mbar), titanium is electron-beam

evaporated to bring the load lock pressure down even further. We then form the trilayer by

depositing 80 nm of Nb (at >0.5 nm/s) then 8 nm of Al. The deposition rate is kept high

to maximize film quality (see section 7.3). To reduce defects and promote aluminum oxide

formation [30], the aluminum is first ion milled then oxidized with an O2-Ar mixture. To

prevent oxygen diffusion into the Nb layer and the formation of lossy NbOx [227, 236], the

oxidized Al surface is protected by a thin (3 nm) capping layer of Al. The aluminum is lightly
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etched with a 400V Ar+ beam for 10 s, then oxidized with a mixture of 15% O2:Ar at a

static pressure between 2–50 mBar for 1.5–40 min. After pumping to below (< 10−7mbar),

titanium is again used to bring the vacuum pressure down to the low 10−8mbar range. We

note that the pressure for the remainder of the trilayer deposition is higher than for the first

Nb layer. The second 3 nm layer of Al is evaporated vertically while rotating the substrate

to minimize void formation in the following layer. A (150 nm) thick counter electrode is then

deposited on top, forming the trilayer in-situ, without breaking vacuum. The substrate is

allowed to cool in vacuum for several minutes, and we attempt to form a thin protective

coating of pure Nb2O5 by briefly oxidizing the top surface at 3mbar for 30 s. This layer is

deposited while rotating the substrate at an angle for complete coverage while keeping it

thin enough to avoid affecting junction properties.

7.1.2 Trilayer Etch 1

After mounting on a silicon handle wafer with photoresist, the trilayer is patterned with

I-line (375 nm laser) photolithography and the entire trilayer structure is plasma-etched in

one step with Cl2, BCl3 and Ar to define the bottom electrode (Etch 1 in Table 7.1). The

plasma conditions are optimized to be in the ballistic ion regime, which gives high etch rates

with minimal re-deposition. Immediately after exposure to air, the wafer is quenched in DI

water: this helps prevent excess lateral aluminum etching by quickly diluting any surface HCl

(formed by adsorbed Cl reacting with water vapor in the air). The remaining photoresist is

thoroughly dissolved in a mixture of 80 ◦C n-methyl-2-pyrrolidone with a small addition of

surfactants, which also removes the substrate from the handle wafer.

7.1.3 Spacer Growth

As it is necessary to make contact to the counter electrode without touching the base elec-

trode, we then form an insulating sidewall-passivating spacer structure [81]. Amorphous
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500 nm 500 nm

HDPCVD PECVD

Figure 7.3: Spacer Growth, imaged in cleaved samples from HDPCVD growth methods and
PECVD growth methods. Note the superior conformality of PECVD, while HDPCVD has
two phases and a breadloaf cross section.

SiO2 is grown isotropically (Figure 7.3) by either plasma-enhanced chemical vapor deposi-

tion (PECVD) which heats the wafer to 300 ◦C for 16min or high density plasma-enhanced

chemical vapor deposition (HDPCVD) (90 ◦C). For PECVD, SiH4 and N2O are reacted in a

100W plasma with the chamber at 300 ◦C. The complete process (including chamber clean-

ing pumping and purging steps) takes approximately 15 minutes. For HDPCVD, the wafer

is mounted on a silicon handle wafer using Crystalbond 509 adhesive softened at 135 ◦C,

then the spacer is deposited with a SiH4 O2 and Ar plasma, with the substrate heated to

90 ◦C.

7.1.4 Spacer Etch 2

The SiO2 is now etched anisotropically with a highly directional CF4, CHF3 and Ar plasma

(Etch 2 in Table 7.1), which forms the spacer structure when the bulk material has been

etched away (Figure 7.1d). This etch is optimized to be directional but in the diffusive

regime to promote chemical selectivity while enabling the formation of the spacer structure.
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500 nm 500 nm

HDPCVD PECVD

seat

Figure 7.4: Sidewall-passivating spacer after etching, imaged in cleaved samples from HD-
PCVD growth methods and PECVD growth methods. The smooth conformal PECVD
growth translates to a smooth spacer profile, while the HDPCVD results in a chair-like
structure, with potentially lossy discontinuities in the seat area.

The etch is terminated using visual endpoint detection1

At this point minimizing oxide formation is crucial since the top surface of the trilayer is

exposed and will need to form a good contact to the wiring layer, so immediately following

the completion of the etch, wafers are separated from the handle wafer by heating2 to

135 ◦C, ultrasonically cleaned of remaining adhesive in 40 ◦C acetone and isopropanol, then

immediately placed under vacuum in the deposition chamber, where they are gently heated

to 50 ◦C for 30 min to remove remaining volatiles.

7.1.5 Wiring Layer Deposition

The contaminated and oxidized top surface of the counter electrode is etched with a 400V

Ar+ beam for 5min, which is sufficient to remove any residual resistance from the contact

(see Section 7.3). After pumping to below (< 10−7mbar), titanium is used to bring the

vacuum pressure down to the low 10−8mbar range. The wiring layer is now formed by

1. In other words I determined when to stop by looking at the color!

2. This heating step can affect the junction barrier!
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500 nm

Figure 7.5: When cleaving a wafer I got lucky and a fault line ran right through a junction,
allowing us to see what the trilayer stack looks like after the wiring layer is deposited. The
spacer is still intact here, and you can see no interface between the wiring and counterelec-
trode indicating good contact.

evaporating 160 nm of Nb at > 0.5 nm/s. The substrate is allowed to cool in vacuum for

several minutes, and the wiring layer is briefly oxidized with 15% O2:Ar at 3mbar for 30 s

to promote a thin protective coating of pure Nb2O5.

7.1.6 Wiring Etch 3

The wiring layer is patterned and a selective SF6, CHF3, O2 and Ar plasma etch removes

the wiring layer and the counter electrode, defining the perpendicular top junction electrode

(Figure 7.1f). This etch is carefully optimized to minimize the formation of lossy fluorocarbon

polymers [45] (see Appendix 7.4) while preserving chemical selectivity: and although the

plasma etches the Al layers far slower than Nb, the etch is still timed to finish a few seconds

after the counter electrode is fully removed to limit excessive polymer deposition.

This step proves to be highly problematic as it easily forms inert residues, and needs

to be highly chemically selective in order to avoid etching through the aluminum, so the

plasma is operated in a low-density ballistic regime with the addition of O2 which helps

passivate exposed aluminum and increase selectivity. The etch time is calculated for each

wafer based on visual confirmation when the bare wiring layer is etched through. In some

cases we attempt to remove crosslinked polymers from the photoresist surface with a mild

180W room temperature oxygen plasma that minimally oxidizes the exposed Nb (though
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find this is not very effective).

Etch T(◦C) Pressure ICP/Bias Power Cl2 BCl3 Ar CF4 CHF3 SF6 O2
1 20± 0.1 5 mT 400W / 50W 30 30 10 - - - -
2 20± 0.1 30 mT 500W / 60W - - 10 30 20 - -
3 20± 0.1 5 mT 400W / 60W - - 7 - 20 40 4

Etch etch time etch rate
1 50-60 s ∼ 4.5 nm/s
2 120-140 s s ∼ 2 nm/s
3 65-90 s ∼ 4.5 nm/s

Table 7.1: Plasma etch parameters used in the ICP-RIE etches described in the process.
Etches are performed in an Apex SLR ICP etcher. Gas flows are listed in sccm.

7.1.7 Spacer removal

After dicing into 7mm chips, the qubits are cleaned in 80 ◦C n-methyl-2-pyrrolidone with

surfactants (we find this can also help remove stubborn organic residues from previous steps).

Finally, to further remove the lossy amorphous materials present in the junction, a solution

of NH4F and acetic acid 3 are used to dissolve the remaining SiO2 then carefully dried from

isopropanol to preserve the now partially suspended wiring layer. This process additionally

removes any exposed Al and a small amount of surface NbOx (Figure 7.1g). As this step can

dissolve aluminum in the junction as well, etch times are kept below 15 s. This final treatment

could likely be improved with a HF vapor etch, which has shown good results forming similar

contact structures [59]. However we found this vapor process difficult to optimize, since liquid

frequently builds up on surfaces and begins to etch niobium, particularly around corners.

The finished chips are packaged and cooled down within a couple hours from this final

etch to minimize any NbOx regrowth from air exposure.

3. Transene AlPAD Etch 639
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7.2 Junction DC Properties
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Figure 7.6: Junction properties. (a) Current-voltage relations for an un-shunted junction at
860mK with Ic = 38 µA and an energy gap 2∆ = 2.89meV. Bulk resistivity measurements
(inset) give a critical temperature of Tc = 9.28K. Above 4mV, a linear fit (red dashed
line) gives Rn = 39Ω, and a fit to the sub-gap region (blue dashed line), estimates sub-gap
resistance Rs > 8 kΩ. (b) Critical current density Jc (found by fitting room-temperature
junction resistance as a function of junction area) as a function of oxygen exposure E mea-
sured for various wafers made with two deposition processes. The expected empirical E−1/2

relationships are plotted as guides to the eye.

We verify the expected Josephson junction behavior [214] in our devices by measuring

their hysteretic current-voltage curves in Figure 7.6a. When cooled to 860mK, the un-

shunted junction shows a zero-resistance superconducting branch up to the critical current

Ic, and an energy gap 2∆ = 2.89meV. By comparing this value with critical temperature

measured with resistivity, we find a relationship 2∆/kBTc = 3.61: slightly lower than re-

ported values for pure Nb [173, 231]. Measuring the asymptotic normal state resistance Rn

above the energy gap we find a IcRn product of 1.5mV, similar to values reported previously

for Nb trilayer junctions [37, 81, 162, 225, 228]. Although measurements of the subgap region

were limited by the experiment hardware, no excessive subgap leakage currents are observed.

Using the IcRn product found above, we can use room-temperature junction resistances
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to predict low-temperature properties [10, 76]. Fitting the measured resistance for junctions

of varying areas with two free parameters, specific resistivity and junction critical dimension

bias (see Appendix 7.5), we obtain the effective junction areas and the specific critical current

density Jc for each wafer. This method allows us to easily investigate effects of the fabrication

process on junction electrical parameters. For Nb trilayers, the critical current density is

sensitive to temperature [162] as well as oxygen exposure E, the product of oxygen partial

pressure and oxidation time: this relationship has been empirically found to match Jc ∝

E−0.5 [81, 112, 162, 216, 248]. In Figure 7.6b we plot Jc as a function of E for wafers with

trilayers grown using various oxidation parameters and fabricated with two spacer deposition

methods. For the HDPCVD junctions, we find critical current densities in the kA cm−2

range, comparable with other methods [11, 81, 162, 225], and observe reasonable agreement

with the oxygen exposure dependence described above. The effect of process temperature is

readily apparent when we examine junctions with high-temperature-grown PECVD spacers:

compared to HDPCVD junctions, we observe nearly a factor of 50 reduction in Jc. We find

this temperature-annealing effect activates above 200 ◦C (see Appendix 7.6), in agreement

with [162], and is likely the result of reduced barrier transparency [202] from diffusion.

7.3 Junction Superconductor Properties

Josephson junction properties are largely determined by the characteristics of the two su-

perconductors and the insulating oxide barrier that separates them, so the initial formation

of the trilayer materials is crucial for the device quality. As niobium sets the limit of super-

conducting properties and losses in our junctions and qubits, it is crucial to begin with a

high-quality and thus high-purity material. Maintaining material purity presents a challenge

for any thin film deposition technique, made difficult in particular by the incorporation of

contaminants into the film during growth. This contamination can be addressed with two

main approaches: first by reducing the flux of contaminants (achieved by reducing the vac-
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Figure 7.7: Superconductor material quality. (a) Niobium superconducting critical temper-
ature TC extracted from resistivity measurements as a function of metal deposition rate. At
rates above 0.6 nm/s, TC approaches bulk value (dashed line). The inset shows deviations
from bulk ∆TC = Tbulk

C −TC are correlated with the residual resistivity ratio, implying high
deposition rates result in high-quality films. (b) Sheet kinetic inductance Lk and observed
London penetration depth λL plotted as a function of deposition rate suggesting that films
deposited at higher rates are closer to the clean superconductor limit. (c) Specific junction
resistance RJ = R/N obtained by measuring the resistance R of a chain of N = 12 junctions
as a function of temperature. A sharp drop in resistance is observed above 9K as the nio-
bium electrodes begin to superconduct. As the temperature decreases, the junction critical
currents increase above the excitation current (10 µA), and below 5K the measured resis-
tance drops to zero as the excitation is confined to the superconducting branch, indicating
proximitization of the aluminum and superconducting contact between the counterelectrode
and wiring layers.

uum pressure during the deposition process), but also by reducing the duration of exposure,

which can be controlled by the deposition rate.

For electron beam evaporation (the deposition technique used here) vacuum pressures are

reduced as low as possible during deposition, however are limited to the 10−8mbar range by

the hardware. With the contaminant flux fixed by the deposition system vacuum pressure,

we explore the effect of deposition rate on Nb purity. By measuring the resistivity of a film

with a known geometry at varying temperatures, we obtain a wealth of information about

the film properties. In Figure 7.7a we plot the superconducting transition temperature

TC (proportional to the superconducting gap ∆0) as a function of metal deposition rate.

We observe that higher rates yield increased transition temperatures, which approach those

found in bulk high-purity Nb [251], indicating that the films are increasingly pure. Indeed,
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we can also correlate the residual resistivity ratio RRR = ρ(300K)/ρ(TC), an indicator

of superconductor quality, with deviations of measured critical temperature the bulk value

Tbulk
C , supporting the notion that higher deposition rates yield higher-quality films. Due

to the extreme local temperatures required, practical considerations and stability concerns

put a limit on feasible deposition rates. Nonetheless, despite variations induced by vacuum

conditions, we find that rates above 0.6 nm/s are required to deposit a film with high purity.

We can go further to examine the degree of disorder in the superconductor by probing

the kinetic sheet inductance LK = ℏR□/π∆0 where R□ = ρ0/t is extracted from the

film thickness t, and the resistivity just above the superconducting transition. The sheet

inductance also yields the London magnetic penetration depth λ2L = tLK/µ0. In Figure 7.7b

we find that both LK and λL are also reduced with films deposited at higher rates. Lower

kinetic inductance and shorter London lengths indicate a lower degree of disorder in the

superconductor, suggesting that increased deposition rates bring the material further away

from the disordered dirty superconductor limit (λL ≫ ξ) [134].

We verify the superconducting contact quality between the wiring layer and the counter-

electrode, as well as the junction tunnel barrier transparency by measuring the voltage

accross a chain of 12 junctions in series, through which we send a fixed excitation current of

10 µA. In Figure 7.7c we plot the per-junction specific resistance RJ as a function of tempera-

ture, showing the immediately apparent superconducting transition above 9K. Immediately

below the transition, the superconducting gap is still relatively low, and the junction crit-

ical currents fall below the excitation current, so a small resistance is observed. However

as we decrease the temperature, we find that the resistance shrinks by several orders of

magnitude (below the noise floor of the instrument). This indicates that the sum of any re-

maining resistance channels in a single junction is likely well below the mΩ range, suggesting

a superconducting contact between the Nb wiring layer and the Nb counter-electrode.

In a superconductor the residual resistivity ratio is also correlated with grain size in the
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Figure 7.8: Superconductor grain size. (a) In a tilted scanning electron microscope image
of a junction, microscopic grains are observed on the metal surface. In regions of the wiring
layer that lie directly on the sapphire substrate, the columnar grain growth is uninterrupted,
and the grain pattern is transferred to the top surface of the metal. (b) A top down high-
resolution scanning electron micrograph reveals the hexagonal arrangement of the grains.
The grain size can be estimated by measuring the narrow dimension of a grain, marked d.
(c) A histogram of repeated measurements of grain width are fitted to a normal distribution
which suggests an average grain width of 16.386 nm.

film [27, 28, 185]. For a junction wiring layer deposited at 0.9 nm/s we observe a RRR of

4.45, indicating good quality relative to the films we produce (see Figure 7.7a). From the

scanning electron microscope image shown in Figure 7.8a we observe a short-range ordered

microscopic grain structure in the regions where the wiring layer is deposited directly on the

exposed sapphire substrate. A high-resolution top-down SEM image shown in Figure 7.8b

reveals a network of thin grains with a visible hexagonal arrangement. Interestingly since the

crystal structure within niobium grains is expected to be cubic [27] this suggests the long-

range hexagonal order is a reflection of the C-plane sapphire substrate surface. The individual

grains (distinctly larger than the 1-4 nm grains of the Pt and Pd film used to reduce charging

in the image) are significantly elongated in one dimension. To get a sense of the grain size,

we measure the short dimension of a grain (as shown in Figure 7.8b) for a number of grains

visible in the image, and summarize the results in Figure 7.8c. By fitting to a normal

distribution, we find an average grain width of 16.386 nm, with some skew towards longer

widths. Notably we do not see the expected Tc reduction from this grain size [27, 28] since we

find the measured Tc for this film is relatively close to the bulk value [66, 251]. This suggests
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that the shortest dimension of the grains does not limit superconductor performance. We can

instead extract an average grain area of d×l ≃ 163.8 nm2 for our film, which corresponds to a

effective grain size of deff =
√
ld ≃ 40.47 nm, from which we expect properties similar to bulk

[27, 28]. Further investigation using X-ray diffraction or transmission electron microscopy

[28, 185, 236] could reveal even more details about the microscopic properties of the niobium.

7.4 Lossy Plasma Etch Residues and Treatment

F Nb Al O

F

Nb Al

O

500 nm 500 nm

a. b.

Figure 7.9: Etch residue chemical analysis. (a) Scanning electron micrograph of a plasma
etch residue located on the wiring layer near a junction. (b) Composite Energy Dispersive
Spectroscopy (EDS) image overlaid on the image in (a) showing normalized element density
regions for F, Nb, Al, and O, with individual element density maps shown in their respective
color on the right. Along with clear Nb and sapphire (Al2O3) regions, a high concentration
of fluorine relative to the background is found in the residue region, suggesting the residue
is composed of fluorinated polymers.

By virtue of size, the electric field concentration in a junction is orders of magnitude

higher than in the qubit capacitor (or any planar structure such as the resonator capacitor),

meaning the participation ratio [241] of the junction side surfaces will also be much higher. As

such, our junction loss is likely still limited by the presence of lossy dielectrics formed on the

sides of the junction, which for our design are primarily either spacer material, metal oxides,

or residues left by the reactive ion etching process. As we cannot use more aggressive spacer

[59] or oxide removal methods [236] without further risking the integrity of the aluminum

junction barrier, we instead study the etch residues and discuss mitigation strategies.
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Alongside the desired chemical and mechanical processes that remove niobium, reactive

ion etching hosts a variety of simultaneous mechanisms that can grow material: etched

material can either be re-deposited by sputtering, low-energy reaction products can re-adsorb

onto exposed surfaces, and components in the plasma can react with exposed material [45].

The products of all of these mechanisms tend to be much more difficult to remove, so end up

staying behind after the photoresist is dissolved, particularly on vertical walls not directly

exposed to plasma bombardment during the etch. While the deposited material passivates

the walls of the etched region during the etch and can produce high-aspect ratio features, for

our junctions its critical to reduce any excess dielectrics, so we explore ways to understand

and mitigate these residues in order to reduce loss.

In Figure 7.9a we show an example of a dielectric residue located on the side of a junc-

tion, which has not been removed throughout the entire fabrication process. This material

must be formed during the third dry etch (Figure 7.1f) since it covers and extends off the

sides of the Nb wiring and counterelectrode layers. The residues appear to be present on

all vertical surfaces exposed by the etch, visible as striations on the junction sides. To de-

termine the deposition mechanism for this residue, we probe the chemical composition of

the residue using energy dispersive spectroscopy (EDS). A composite map of normalized

element composition is overlaid on the same image of the residue in Figure 7.9b, with indi-

vidual normalized element concentration maps shown to the right. As expected, we observe

high Nb concentrations in the metal regions, and high aluminum and oxygen concentrations

in the sapphire region, but more importantly we observe a significant concentration of fluo-

rine in the residue (carbon is also observed in this region as well, but cannot be quantified

due to high background carbon levels). This heavily suggests the residue is some kind of

fluorocarbon polymer.
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7.4.1 Optimizing Etch Conditions to Reduce Residue Formation

Regardless, the best way to remove the residues is to not form them in the first place, which is

achieved by optimizing the etch plasma conditions. First, we remove obvious residue sources

by ensuring the plasma chamber is thoroughly cleaned with oxygen, and no fluorinated

vacuum oils are present in the system. We find that using gas constituents with low hydrogen

and carbon content (eg. SF6 or CF4) significantly reduces the residue growth: in particular

we find CHF3 and C4F8 readily polymerize. However, we note that using too much SF6 can

lead to the incorporation of sulfur [223] into any exposed SiO2, which forms an even more

inert residue and should be avoided at all costs, as it presents an even greater source of loss

than the fluorocarbon residues.

500 nm500 nm

Nb1

Sapphire

a. b. Spacer residue

SiO2 removed

Spacer 
residue

Figure 7.10: Lossy silicon oxide spacer residue, which is insoluble in HF of NH4F.

The addition of O2 in the plasma can also help increase the carbon-fluorine ratio of the

plasma [157], but also increases resist etch rate [75] and may passivate exposed metal [197],

which affects the etch profile. Using a low density plasma with a long mean free path for

the radicals is key to increasing the etch rate and reducing re-deposition, as it increases the

effective reactant and product temperature. Residue formation is also particularly sensitive

to substrate temperature. With the substrate too cold, the reaction product temperature be-

comes low enough to allow recondensing, leading to increased fluorocarbon deposition. If the

substrate is too hot, reactivity of the photoresist polymers is increased, promoting crosslink-

ing, polymerization, and fluorination: thus good thermal contact between the substrate and
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the carrier wafer is essential, as the high temperature plasma can otherwise significantly heat

the substrate. Finally, we observe the residue formation accelerates when the insulating sub-

strate is exposed (likely a result of screening charges focusing the plasma towards remaining

metal), so we ensure the etch is stopped within 15 s of completion.

We find that the between samples, etch conditions can fluctuate significantly however.

This is partially a result of our photoresist mounting method, which yields inconsistent

thermalization to the carrier wafer (which is backside cooled with helium). As a result,

inevitably and unpredictably the fluorocarbon residues can still form even under more ideal

plasma conditions. To this end, it is vital to find another way to remove these fluorocarbon

resides: in combination with an optimized etch, this should give a safeguard to fluctuating

process parameters and ultimately provide the best surface conditions with consistency.

7.4.2 Residue Defluorination with Sodium and Potassium

500 nm 500 nm1 µm 500 nm

Nb
Wiring

Sapphire

Nb
Wiring

Sapphire

a. b.
Untreated After NaK exposure

c.

Figure 7.11: Etch residue NaK reactivity. (a) Scanning electron micrograph of a plasma
etch residue on the edges of the wiring layer. A closer inspection of the bottom left reveals
that the residue extends to cover the sides of the metal, even where the top crust has been
mechanically removed. (b-c) The wiring layer and a junction from the same wafer imaged
after a 15 min exposure to sodium-potassium amalgam (NaK) showing nearly complete
removal of the etch residue.

Fluorocarbons are chemically inert and robust against most standard solvents, acids, or

oxygen plasma, and the residues remain largely unaffected by these conditions. However,

fluorocarbon polymers are susceptible to defluorination by strong alkali reductants such
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as sodium-potassium amalgam (NaK) [46, 221]. In Figure 7.11a we show a device with

particularly extensive residues covering and extending off the sides of the wiring layer. In

an oxygen-free dry nitrogen glovebox, we immerse the sample surface in a sodium-potassium

amalgam (NaK) for 15min, rinse with tetrahydrofuran, move the sample into air, finish

rinsing with acetone and isopropanol, then image the residues. In Figure 7.11b-c we observe

that the residue material is largely removed: the overhanging features have been removed,

as well as the material on metal sides, with the original extent of the residue (about 30 nm)

apparent by the indentation left on the sapphire by the residue during the etch. This

corroborates the hypothesis that these residues are composed of fluorocarbons, since the

material could be removed upon treatment with NaK, wherein the amalgam cleaves the

problematic C-F bonds and allows the remaining residues to become soluble in organic

solvents.

200 nm 200 nm

Niobium (Wiring)

Sapphire substrate

a. b.

Sapphire

Residue

Residue

Figure 7.12: Residue treatment with potassium napthalenide K[Nap]. (a) Scanning electron
micrograph of a wiring layer residue after immersion in a room temperature K[Nap] solution
for 15 minutes. The residue remains, however is thinner and slightly damaged. (b) A junction
from the same sample shows residue damage visible as vertical striations especially near the
junction. While the residues are partially attacked by the K[Nap] solution, this treatment is
not sufficient for full lossy residue removal.

While this NaK treatment appears promising on the microscopic scale, in practice the

amalgam is difficult to keep clean, and leaves behind significant quantities of dust and salt

deposits on the chip surface. A more practical method to post-clean any residues left behind

by the etch might be to instead use a liquid solution with a high reducing potential such as
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sodium napthalenide [46], commonly used as a surface treatment for PTFE. This method

could preserve the microscopic cleanliness of the

7.4.3 Dissolving Fluorinated Organometallic Compounds

Ultimately we land on a commercially-available cleaning solution (Dupont EKC 265) specif-

ically optimized to remove organometallic compounds. This alkanolamine solution consists

of a polar solvent (H2O), hydroxylamine, 2-(2-aminoethylamine)-ethanol (AEEA), and cat-

echol [122, 123]. The etch mechanism for this mixture begins with the reduction of any

organometallic compounds by the hydroxylamine, allowing the compounds to become more

soluble in the water and alkanolamine solution [122, 123]. This also reduces any exposed

metal oxides, which conveniently also removes contaminated surface metal oxides, which are

significant sources of loss [185, 236]. It is unclear how this reactivity translates to silicon

oxide in residual spacer material (or spacer residues).

The catechol, primarily a chelating agent or ligand, allows the now-soluble metal ions

to form complexes and avoid precipitating out of solution. The hydroxylamine can also

serve as a ligand in solution. Catechol also assists in metal protection and metal oxide

solubilization as it can have a reducing potential4 at neutral pH levels. The alkanolamine

of choice, AEEA, is an alcohol amine with a relatively high boiling point, high flash point,

and nearly nonexistent metal or substrate etch rates under standard process conditions. The

two-carbon linkage is key towards reducing attack on metals and alloyed substrates while

enhancing reactivity with organic and organometallic residues. Importantly, this mixture is

only moderately acidic, with amines with hydroxyl groups both enhancing solubility and not

increasing acidity greatly. This has the added benefit of reducing surface hydrogen content,

which helps limit niobium hydride precipitation at cryogenic temperatures [69], which is

known to adversely affect niobium superconducting properties [98] and coherence properties

4. At pH 7, catechol has a redox potential between 1.0 V to -2.0 V relative to the standard hydrogen
electrode.
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Figure 7.13: Residue treatment with EKC. (a-b) Finished junction treated with the EKC
mixture nearly 20 degrees above the target etching temperature, showing significant metal
attack (nearly 60 nm). Notably no sign of the fluorocarbon residues on the edges of the
Nb wiring layer remain. Traces of material remains on the spacer-niobium interface, which
warrants further study. (c-d) When treated between 70–75 ◦C, the metal etch rate is reduced
to a reasonable level, while the organometallic residue is still efficiently removed. This leaves
incredibly smooth and virtually residue-free surfaces on the junction.

[69].

As shown in Figure 7.13 the mixture is effective at efficiently removing fluorocarbon

residue. At elevated temperatures (approaching the boiling point) the metal etch rate is

increased, removing nearly 60 nm of niobium as shown in Figure 7.13a-b. In practice this

consumes too much of the junction, leaving behind very little of the first niobium layer. At

high temperatures the etch rates are less homogeneous, and the etch leaves behind ridges

and pillars, producing a rougher surface. Interestingly enough while the niobium surface

is significantly affected, the aluminum barrier appears to have a lower etch rate, visible

in Figure 7.13b as some aluminum remaining in the junction extends out past the etched

niobium. This may be useful for selectively etching away residues while preserving delicate
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aluminum structures. We also note that a thin layer of material remains at the niobium-

spacer interface: this may suggest that the spacer is either not completely removed by the

ammonium fluoride wet etch, or perhaps forms an interfacial Nb-Si alloy [9] with different

etch chemistry (and loss characteristics).

Reducing the etch temperature to 70–75 ◦C yields much more reasonable etch rates and

surface profiles, as shown in Figure 7.13c-d. Only about 10 nm of niobium is consumed in the

process, while the etch demonstrates selectivity towards the oranometallic residue materials

(which can be up to 30 nm thick). These etch conditions completely remove the fluorocarbon

residues, and leave a very smooth and lightly etched finish on the junction metal surfaces.

Additionally, the mild surface etch ensures lossy surface interfaces and oxides [185, 241] are

removed, which should improve surface loss characteristics.

7.5 Junction Area Dependence, Variation and Stability
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Figure 7.14: (a) Room temperature junction resistance and junction inductance plotted
as a function of junction area (corrected for lithographic reduction). Original un-treated
junction resistances are shown in red, and etched junctions in teal, with fits to an inverse
relationship to area (dashed lines) yielding the original critical current density Jc and an
etch dimension reduction of approximately 160 nm. (b) Junction resistances as a function of
the final junction area with a inverse fit (dashed line) which gives the critical current density.
For illustrative purposes we have shown PECVD junctions in (a) and HDPCVD junctions in
(b). (c) To estimate reproducibility, spectroscopically measured qubit frequencies are plotted
as a function of design junction area, labelled by wafer and cooldown. Expected values for
the two different qubit capacitor designs (120 and 160 fF) are shown with dashed lines.

163



Having verified the relationship between the normal state resistance Rn, the critical

current and the gap energy [10] (see Figure 7.6), we can use room temperature resistance

measurements to efficiently predict cryogenic junction properties. In Figure 7.14a, we show

room temperature junction resistance and junction inductance (calculated from resistance

using the IcRN product), plotted as a function of junction area (corrected for lithographic

reduction). The original un-treated (see Figure 7.1f) junction resistances are in good agree-

ment with the expected inverse dependence on junction area, enabling us to fit the original

critical current density. After etching the spacer (see Figure 7.1g) some of the aluminum

is removed as well, and the resistance increases since the effective junction dimensions have

shrunk. By fitting the etched junctions, we extract a dimension reduction of approximately

160 nm, which corresponds to about 80 nm of aluminum that gets removed by the etch. We

note that this sets a practical limit on how small the junction can be before etch effects

become more significant than lithographic definition of junction area.

Fitting junction resistances as a function of the final junction area (taking into account

the dimension reductions) yields the true critical current density for the final junctions

(Figure 7.14b). We repeat these measurements for wafers with different processing conditions

to populate Figure 7.6b. A spread (typically between 5-10%) is noticeable in our junction

resistance for a given junction area. While higher than typical niobium trilayer junction

non-uniformity [37, 228], our junction variance can primarily be attributed to relatively large

geometric deviations due to the limits of our lithographic resolution, which is compounded by

fluctuations in the etch dynamics that determine the final junction area. This implies that

our junction parameter spread could likely be reduced with higher resolution lithography

methods and a more selective spacer removal technique. We test the functional limits of our

junction reproducibility by measuring deviations of qubit frequencies across different chips

from different wafers. In Figure 7.14c, we show spectroscopically measured qubit frequencies

(determined by junction inductance) as a function of design qubit junction area for devices
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with two different qubit capacitor designs. After determining the qubit capacitance and

applying the estimated junction area reductions, we find the measured frequencies are self-

consistent within 10 percent or so, even across separate wafers.
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Figure 7.15: (a) Average junction critical current density on an individual chip measured
across several chips across a wafer, with deviations from nominal values (2.088 kA/cm2)
highlighted with color. (b) Junction area measured with optical microscopy relative to the
expected design area, highlighting the distribution of deviations resulting from lithography.
(c) Long term stability of junctions measured by the relative change in Josephson inductance
for 5 month old junctions relative to their original values. Notably the change in high
temperature PECVD junctions is much lower than HDPCVD junctions.

We can investigate the variation of junction properties in more detail by repeating the

measurements in Figure 7.14b for chips in different physical locations across a wafer. We plot

the results by their original position in the wafer and summarize the results in Figure 7.15a.

We find that the fitted critical current density fluctuates from chip to chip, consistent with

the typical 5-10% junction variation observed in Figure 7.14b. Additionally, we observe a

wafer-scale radial dependence in extracted critical current density, with noticeably lower

values near the edge of the wafer. This is likely caused by a combination of dimension

deviations from optical lithography and RIE etch rates, both of which have a wafer-scale

radial dependence in our process. To estimate this lithographic dimension variation, we

examine the statistics of measured junction area within a single chip relative to the expected

area (with critical dimension bias taken into account), summarized in Figure 7.15b. Notably

the measured areas are distributed with a standard deviation of 13.53% relative to the
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expected area: when accounting for the 5% accuracy of the area measurement, the remaining

spread accounts for a significant amount of the fluctuations observed in junction parameters.

Thus we estimate that the dominant source of junction parameter variation is a result of

dimension variation from optical lithography along with further dimension variation from

fluctuation in etch dynamics. Process uniformity and lithographic dimension conformity

are extensively studied topics [37, 162, 228], so we believe that applying these techniques

or moving to higher-resolution lithography (stepper or electron-beam) [37, 109] could help

decrease junction parameter variation.

Josephson junctions are known to change with age [162], so it is also important to in-

vestigate the long-term stability of junction parameters, particularly for our design which

leaves the junction barrier exposed from the side. To this end, we re-measure junctions after

5 months of storage in air. In Figure 7.15c we show the relative change in calculated junction

inductance

7.6 Junction Annealing Mechanism

The effect of process temperature is readily apparent when comparing the resulting crit-

ical current densities of junctions with PECVD spacers (deposited at 300 ◦C) and those

with HDPCVD-grown spacers (90 ◦C). In Figure 7.6b, for the high temperature PECVD

junctions, we observed an approximately 97.7% reduction in Jc. We investigate this ef-

fect in more detail by annealing finished low temperature (HDPCVD) junctions with initial

Jc0 ∼ 3 kA cm−2 in a dry Ar atmosphere, then re-measuring their critical current density.

In Figure 7.17a, we plot the annealed Jc as a percentage of the untreated Jc0, and confirm

that the annealing effect activates above 200 ◦C, in agreement with [162]. In Figure 7.17b we

show the critical current density of junctions annealed at 300 ◦C for various lengths of time.

After about 20min (the approximate time wafers spend at 300 ◦C during PECVD) we find

that the current density reduction approaches the measured ratio between the PECVD and
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Figure 7.16: (a) HDPCVD Junction critical current density reduction after annealing for 5
min plotted as a function of anneal temperature showing activation at 250 ◦C. (b) Critical
current density reduction as a function of anneal time at 300 ◦C, which approaches the
factor of 50 reduction observed in the main text (red lines). The purple line represents an
exponential fit saturating at the observed reduction factor.

HDPCVD junctions. This suggests the high-temperature process dynamically anneals the

junction barrier, likely increasing mobility and in the oxide barrier which enables diffusion

and reduces pinhole density [202]. Qualitatively, this process appears to be exponential in

time, so we overlay a saturating exponential fit of the form Jc/J
0
c = (1−α)e−t/τ +α, where

α is the observed reduction factor, and obtain a critical time τ ≈ 4min. The observed

annealing effect is consistent with the critical current densities measured in Ref. [81] which

do not exceed 190 ◦C during the fabrication process.

7.6.1 High Jc with Low Temperature PECVD

With this in mind, our PECVD process could be modified to produce high critical current

density junctions by either reducing the deposition temperature below 200 ◦C or to a lesser

extent by limiting the time spent at elevated temperatures. This would allow for improved

process stability by providing control over a wide range of critical current densities in a uni-

fied process, eliminating the need for switching between PECVD and HDPCVD deposition

methods.
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Figure 7.17: Low temperature PECVD junctions (primarily used in Chapter 8). (a) Junc-
tion critical density as a function of oxygen exposure (same as 7.6b) with the addition of low
temperature PECVD junctions, which still have high critical current density. (b) Critical
current density reduction as a function of anneal temperature, with the addition of the low-
temperature PECVD junctions, which are only mildly annealed. The HDPCVD junctions
were annealed for 5 minutes, while the junctions that went through PECVD spent approxi-
mately 15 minutes at the temperature.

7.7 Qubit Geometry and Experimental Setup

The qubit, readout resonator and other structures are formed in the same steps as the

junction. We base our design on a qubit geometry [21] popular for its reduced radiation

profile, a result of the cross-shaped coplanar qubit capacitor whose local electric dipole

moments act to cancel each other out far away. In our case, the cross shape (typically used

to implement qubit-qubit coupling or additional charge drives) isn’t strictly necessary and a

coplanar capacitor composed of any two-dimensional shape would work as well. We also make

an effort to minimize coupling to lossy two-level systems in surface dielectrics by rounding

sharp corners where possible in the geometry. This reduces electric field concentration at

specific points in the capacitor, leaving a weaker and more homogenous electric field which

should couple less strongly to individual two-level systems.

An example of our qubit geometry is shown in a composite microscope image on the

top right of Figure 7.18, imaged after Etch 3 (Figure 7.1f). The niobium and un-etched
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Figure 7.18: Schematic of the microwave measurement setup used for qubit characteriza-
tion. Colored tabs show temperature stages inside the dilution refrigerator. A composite
microscope image (top right) shows a single qubit and its readout resonator, coupled to
a waveguide for measurement. A photograph (bottom right) shows the chip containing 6
qubits mounted in its copper circuit board.
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aluminum have visibly different colors, allowing us to distinguish between the wiring layer

and the base electrode. In our geometry, the qubit capacitor is formed with both layers,

while the rest of the circuit and the majority of the chip (ground plane, readout resonator

and coupling waveguides) is formed with just one layer. We find that the wiring layer readout

resonators exhibit lower loss (See Appendix 7.8.2), so typically pick the wiring layer for the

ground plane. However having measured devices with both configurations (majority wiring

layer and majority base electrode), we don’t find extreme differences in qubit properties,

where the fields participate in both layers regardless of orientation. As an example, compare

base-electrode ground plane wafer D with wiring ground plane wafer A in Figure 7.19a,

whose qubit quality factors are similar.

The qubits are capacitvely coupled to a meandered quarter wave coplanar waveguide

resonator, which is in turn inductively coupled to a transmission line for readout. For

simplicity, we couple directly to the readout resonator without additional purcell filtering.

Chips containing up to 6 qubits and resonators are mounted in a copper circuit board shown

in the bottom right of Figure 7.18, which is in turn bolted to a copper post thermalizing the

assembly to the base temperature of an Oxford Triton 200 dilution refrigerator with minimum

mixing chamber temperatures between 45–95mK. The mounted assembly is encased in two

layers of Mu-metal magnetic shielding to reduce decoherence from stray magnetic fields,

the qubits are isolated from microwave noise through an Eccosorb CR-110 high-frequency

absorbing filter as 60 dB of cryogenic attenuation which keep the input noise close to the

mixing chamber temperature. Transmitted microwave signals pass through two wideband

circulators (isolating the qubits from microwave noise from the output side) into a low-loss

superconducting NbTi coaxial cable, then are amplified by a low noise cryogenic amplifier

followed by additional room temperature amplification.

Resonators and qubit transitions are characterized with single and two-tone spectroscopy

using a Agilent E5071C network analyzer. For pulsed qubit measurements, we use a Quan-
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tum Instrument Control Kit [213] based on the Xilinx RFSoC ZCU111 FPGA. Qubit pulses

are directly synthesized by the FPGA, while measurement pulses are generated with a het-

erodyne conversion setup, as shown in Figure 7.18. With the spectral layout of each device

determined, we select filter networks to minimize unwanted images and harmonics from the

FPGA for both the qubit and readout pulses, with a broadband example configuration shown

in Figure 7.18. The FPGA and carrier signal generator are clocked to a 10 MHz rubidium

source for frequency stability.

7.8 Microwave Qubits
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Figure 7.19: Qubit Properties. (a) Average qubit decay time T1 extracted by fitting the
exponential decay of excited state population in (b) plotted as a function of qubit frequency,
grouped by wafer. Lines indicate qubit quality factor Q1 = ωqT1. We find an overall mean
Q1 of 2.57× 105 with some wafer to wafer variation. (c) Ramsey dephasing time T ∗

2 (filled
points) and Hahn-echo dephasing time T2 (hollow points) extracted by fitting the exponential
decay of oscillations in (d) as a function of qubit frequency. We find an overall average T ∗

2
and T2 of 6.643 µs and 12.916 µs respectively. (e) Qubit quality factors as a function of their
junction participation ratio plotted for devices in this chapter (reds) and in literature (blue,
black, green). Lines and shaded confidence regions show Q−1

1 = pJ/QJ + p0/Q0 as a guide
to the eye.
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With access to wide ranges of Jc, we can use PECVD-annealed junctions to realize qubit

junctions with areas between 0.16–1.1 µm2, which are large enough for optical lithography.

We fabricate microwave transmon qubits [21, 113] with an otherwise standard geometry (see

Appendix 7.7) capacitively coupled to a coplanar waveguide resonator for dispersive readout.

The qubit capacitor, ground plane and readout resonator are defined on either the base

electrode or wiring layer, so no additional fabrication steps are needed. Chips with several

qubits and their readout resonators sharing a common microwave feedline are characterized

at the base stage of a dilution refrigerator (45–95mK). Using microwave spectroscopy [113]

we verify our qubits have anharmonicities around 140MHz, and couple to their readout

resonators with a bare coupling strength g = 30–60 MHz.

7.8.1 Measuring Losses with Qubit Coherence

For superconducting qubits, the relaxation time and dephasing time are parameters of par-

ticular interest, as they dictate qubit limitations and act as sensitive probes for loss channels.

We measure relaxation time by placing each qubit in its excited state and measuring it after

time t: fitting the exponential decay gives the characteristic time T1. We perform these

measurements for each qubit and show averaged results as a function of qubit frequency

in Figure 7.19a, finding T1 = 62.4 µs for our best device. To probe loss channels in detail

we use the frequency-independent qubit quality factor Q1 = ωqT1, which we find for our

devices is on average above 105: within an order of magnitude of recent aluminum qubits

[111, 141, 182, 185, 198] and similar to readout resonator quality factors (see Appendix 7.8.2).

We also perform a Ramsey experiment to measure the dephasing time T ∗
2 , and a Hahn-echo

experiment to characterize the spin-echo dephasing time T2. We find that T ∗
2 is within a

factor of 2 of T1, and particularly limited at lower qubit frequencies, where the environment

two level system (TLS) temperature is higher and system 1/f noise is higher. The T2 values,

which decouple low frequency noise are noticeably higher, demonstrated in particular by the
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qubits below 2GHz from wafer B, which experience significant frequency drifts as they are

in the charge sensitive regime [203].
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Figure 7.20: Qubit quality factors as a function of their junction participation ratio plotted
for our trilayer qubits (reds) aluminum junction qubits from our lab (purple) and selected
qubits in literature (blue, black, green). Lines and shaded confidence regions show Q−1

1 =
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Our qubits have relatively large junctions compared to typical qubits [141, 182, 185, 198]

making them more sensitive to junction coherence properties. This allows us to study the

junction loss contributions independent of other sources: in Figure 7.19c we use the junction

participation ratio pj = cj/CΣ [141, 241] of our devices to examine the effects on Q1. For

our devices (red), we estimate an effective junction quality factor of 105: approximately 100

times greater than previous Nb/Al/AlOx qubits (blue) [60, 100, 129, 143, 177, 247, 261, 262],

and much closer to epitaxial NbN junctions (black) [109, 166, 260] and modern aluminum-

junction qubits (green) [141, 182, 185, 198]. Extrapolating to lower pj values, we find our

device loss is largely not limited by the junction, indicating that material refinements and
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device engineering could further improve qubit performance.

7.8.2 Material Loss Probed by Resonator Quality Factor
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Figure 7.21: (a) Power dependence of the internal quality factor for a readout resonator
(Qe = 2.6 × 105) with no qubit present. The red line is a fit to a model including loss
from two-level systems (TLS). The insets show the lineshape and fits at an average photon
occupation n̄ph ≈ 0.96. (b) Internal quality factor of resonators without qubits measured as
a function of temperature. Solid lines are fits to a model including TLS loss and quasiparticle
loss. The three red resonators are formed from the wiring layer, and the blue resonators from
the base electrode. Measurements are taken at n̄ph ≈ 104 so some TLS loss is saturated. (c)
Qubit quality factors Q1 plotted as a function of their readout resonator quality factors Qi
(measured at nph < 1). A grey line indicates a 1:1 relationship.

To compare qubit loss contributions from material sources with contributions from the

junction itself, we measure quality factors for readout resonators subject to the same fabri-

cation conditions, but with no qubits attached. A typical normalized transmission spectrum

of a resonator taken at a low average photon number (n̄ph ≈ 0.96) is shown in the inset of

Figure 7.21a. On resonance, we observe a dip in magnitude, which at low powers is described

well by [106]:

S21 = 1− Q

Q∗
e

eiϕ

1 + 2iQω−ω0
ω0

(7.1)

where Q−1 = Q−1
i + Re[Q−1

e ] and the coupling quality factor Qe = Q∗
ee

−iϕ has undergone

a complex rotation ϕ due to minor impedance mismatches. We plot fitted internal quality

factors in Figure 7.21a, finding that Qi increases with power. This behavior is entirely
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captured by a power dependent saturation mechanism [242], suggesting the dominant loss

mechanism in the resonators arises from coupling to two-level systems.

We futher investigate limits on the resonator loss by using increased temperatures to

further saturate the two-level systems. In Figure 7.21b we plot Qi measured at n̄ph ≈ 104

as a function of temperature (grouped by fabrication layer), with solid lines corresponding

to a model of the form

Qi(T )
−1 = Q−1

other +QTLS(T )
−1 +Qσ(T )

−1 (7.2)

where QTLS is the saturating loss mechanism from two-level systems [242], Qother is a tem-

perature independent upper bound arising from other sources of loss, and the conduction

loss Qσ is given by [145]:

Qσ(T ) =
1

α

σ2(T, Tc)

σ1(T, Tc)
(7.3)

where σ1 and σ2 are the real and imaginary parts respectively of the complex surface

impedance, calculated by numerically integrating the Mattis-Bardeen equations for σ1/σn

and σ2/σn [145]. Tc is constrained to the values measured in Appendix 7.3, and α is used

as a fit parameter.

Comparing resonators formed during different steps in the fabrication process, we observe

that resonators made from the wiring layer exhibit consistently higher quality factors, while

resonators from the base layer are lossier and much more variable. Since the sides of the base

layer have been exposed to more fabrication steps than the wiring layer, the surface niobium

of this layer has a much longer chance to oxidize, and has the additional potential to host

lossy dielectrics from un-removed spacer material. Thus, while we have improved losses in

the wiring layer to about QTLS ∼ 0.9× 106 by reducing fluorocarbon formation, our devices

are still loss-limited to approximately 2×105 by two-level systems in the surfaces of the base

electrode.

175



To investigate the relationship between qubit and readout resonator decoherence, we also

measure quality factors of the readout resonator for each qubit. At single-photon powers,

the readout resonator is maximally susceptible to material-based loss from two-level systems

in its surface, but due to the hybridization of its electric field with the qubit mode will also

interact with the materials in the qubit. In Figure 7.21c we compare qubit quality factors

Q1 with the single-photon readout quality factor Qi for each of the devices from Figure 7.19.

On average, we observe that the two quality factors are close to a one to one relationship (as

indicated by the grey line), with device variations within a factor of 3 or so. While a direct

correlation between the two cannot be extracted from this data, this is to be expected for

loss dominated by inhomogeneous material defect distributions between the resonator and

qubit. Nevertheless, the similarity of the two quality factors leads us to conclude the qubit

and resonator are likely limited by similar decoherence mechanisms.

7.8.3 Detailed Model of Junction Losses
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Figure 7.22: Junction loss regions (a) Cartoon showing regions defined for a resonator made
with the first layer, with dimensions exaggerated. Niobium oxide (metal-air interface) is
separated into top oxide (Tox) and side oxide (Sox) regions. For a wiring layer resonator,
the dirty substrate region (DMS) is merged with the substrate layer. (b) Cartoon showing
regions for a junction, which adds the junction barrier region (Jox) and the spacer region
(SiOx). (c) Three dimensional rendering of the junction with realistic dimensions. Simulated
regions are colored in the same way as in parts (a-b). (d) Transparent rendering of the
junction visualizing the spacer remaining percentage PS relative to the junction width jw.

In the main text along with Appendix 7.8.2 we established that our junction quality

factor (QJ ≈ 105) is similar to the single-photon quality factors of bare resonators, for which
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we measured an average of 2.6× 105 for base layer and 1.04× 106 for the wiring layer. The

fact that these loss rates are comparable suggest that some part of the qubit decoherence

arises from same material losses probed by the resonators. To investigate the origins of these

loss channels in more detail and elucidate important pathways for further improvement, we

use finite element method simulations (Ansys HFSS) to examine the energy participation

ratios [241] of different regions and interfaces in the junction.
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Figure 7.23: Junction losses by region. (a) Participation ratios of the primary lossy materials
in the junction, plotted as a function of niobium oxide thickness tNbOx

. As expected the
niobium oxide participation ratio increases as the layer gets thicker. (b) Junction loss tangent
expressed as visual sum of losses from various materials in the junction with assumed loss
tangents, plotted as a function of niobium oxide thickness. For thicker oxide layers (eg. those
used in anodization processes) niobium oxide loss dominates the junction loss. The junction
loss calculated from Fig. 7.19c is shown in black dashed lines. (c) We can also solve for the
barrier quality factor based on the junction quality factor and the calculated participation
ratios for varying material quality factors. Solid and dashed lines correspond to a SiO2
loss tangent of tan δ = 2.7 × 10−3 and 2.9 × 10−3 respectively. In (d-f) we repeat parts
(a-c) but measure the effect of partially un-removed spacer material expressed as a fraction
PS of the junction width. We find that residual spacer material contributes a significant
amount of loss. For both sets of simulations, the unswept variable is set to nominal values
of tNbOx = 2 nm and PS = 0.2.
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Figure 7.22 illustrates the material regions studied. Similar to other surface participation

studies [54, 241, 242] we consider the metal-substrate interface regions, which we further sub-

divide into the metal-substrate interface (MS) and the dirty metal-substrate region (DMS)

which may contain some remaining spacer material. As the etched sapphire surface and

bulk loss are both expected to be minimal [188] we combine the substrate-air (SA) interface

with the substrate region for participation calculations. Based on the electric field density

we choose the thickness of the surface regions of the substrate to be 30 nm: adjusting this

thickness will simply rescale the effective participation and loss of the metal substrate re-

gions. The bulk of the loss is expected to lie in the amorphous oxide dielectric regions of the

junction. These can be separated into the aluminum oxide comprising the junction barrier

(Jox) which we expect to be 1–2 nm [162], and the niobium oxide, which we further sepa-

rate into a top oxide layer (NbTox) and side oxide (NbSox): the latter of these should be

substantially lossier since it may contain fluorocarbons after exposure to the fluorine plasma

(see Appendix 7.4). Finally we also consider the possibility of incomplete spacer removal

and also include a portion of SiO2 to model the spacer, as shown in Fig. 7.22d. With our

imaging methods, we are unable to determine the amount or layout of the residual spacer

material, so for simplicity we approximate the region as a uniform percentage of the original

spacer volume PS ≤ 1.

Integrating the simulated electric fields in the junction geometry determines the partic-

ipation ratios in each dielectric region [241]. The surface niobium oxide thickness tNbOx

typically ranges between 1–5 nm [9, 236] but can vary to a greater depending on process

conditions, so in Fig. 7.23a we study the participation ratios as a function of tNbOx
. From

this we conclude that most of the energy is stored in the junction barrier, followed by

the sapphire regions, with the niobium oxide and spacer regions contributing less than one

percent. As expected, the niobium oxide participation increases with tNbOx
, however im-

portantly the energy participation is dominated by the side oxide (pSox ≫ pTox), especially
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for thinner values of tNbOx
. In the same manner, we can also simulate the participation

ratios of a section of coplanar waveguide (the cross section of which will be the same as

that shown in Fig. 7.23a). Comparing resonators fabricated from the first and wiring layer

effectively amounts to the presence of the dirty substrate region (DMS) in our model. For

the resonator geometry, we find this region has an average participation pDMS = 0.366%,

largely independent of oxide thickness (for which pNbOx
∼ 0.005%, similar to Ref. [236]).

Based on the single-photon resonator quality factors from both layers in Appendix 7.8.2,

we solve for the material quality factors as a function of the niobium oxide quality fac-

tor, which is typically QNbOx
= 1/ tan δNbOx

≃ 100 [9, 236]. From this we conclude that

QDMS ≃ 1.4 × 103 and QSapphire ≃ 1.8 × 106, which is reasonably consistent for averaged

bulk and surface measurements of sapphire loss [188] and closer to the loss values found in

silicon oxide (tan δSiO2
≃ 2.8× 10−3[176]) in the DMS region.

Combining the expected material losses with the calculated participation ratios, we can

express the junction quality factor as a sum of loss contributions from each region to identify

dominant sources of decoherence.

tan δJ =
1

QJ
=
∑
x

px
Qx

=
∑
x

px tan δx (7.4)

We summarize the contributions for each material as a function of tNbOx
= 2 nm in Fig.

7.23b along with the average junction quality factors measured in the main text. Despite the

high barrier participation, we find the dominant loss contribution is from the niobium oxide:

specifically that on the sides of the metal (NbSOx) which is also more likely to be impacted

by the plasma etch chemistry. For simplicity, we have determined the junction barrier quality

factor from the average junction quality factor QJ by assuming that tNbOx
= 2 nm [236]

and conservatively estimating PS = 0.2: this yields a junction barrier oxide quality factor

of QJox ≃ 4.7 × 105. We can repeat this calculation with varying conditions to estimate

the effective barrier quality, as shown in Fig. 7.23c which suggests that the barrier Q may
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exceed our estimate if the oxide thickness is thicker than 2 nm, or may be lower if the niobium

oxide quality factor is in fact higher than expected. As the predicted junction loss cannot

exceed the measured value, assuming standard oxide loss QNbOx
= 100 [9, 236] implies

tNbOx
< 5 nm, which helps validate the previous assumptions.

We can also perform a similar set of calculations for the remaining spacer amount PS ,

summarized in Fig. 7.23d-f. As expected we observe the silicon participation ratio pSiO2

increases with larger spacer volume. When more than half of the spacer remains, we estimate

that the silicon oxide comprises the dominant source of loss in the junction. Similar to the

niobium oxide thickness, the spacer percentage also affects the estimated junction barrier Q

as shown in Fig. 7.23f. This also suggests an upper bound for the residual spacer percentage

PS ≲ 0.5, indicating the final wet etch is at least somewhat successful in removing spacer

material under the wiring layer.

Thus we have identified several key areas where junction loss could be further improved.

As discussed in the main text, reducing the amount of lossy dielectrics (particularly the

spacer material and niobium oxide) is key to increasing junction loss, as highlighted in Fig.

7.23b,e. While we have taken steps to reduce the volume of both niobium oxides and spacer

material, further improvements on both these fronts could help improve junction quality.

Further reduction of junction loss may require addressing losses in the dirty substrate region

with improved cleaning methods. However from Fig. 7.23a,c we conclude the junction is

most sensitive to the quality of the barrier dielectric. In this regard, atomically uniform

barriers such as AlN deposited with molecular beam epitaxy in NbN junctions [109, 260]

may provide even better performance.

7.8.4 Temperature dependence of decoherence

Next we investigate our qubits at increased operating temperatures, shown in Figure 7.24.

We observe a mild decrease in T1 with temperature above 160 mK, consistent with heat-
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Figure 7.24: Qubit quality factors from wafers B, D as a function of temperature. A mild
decrease is observed at higher temperatures consistent with the system bath temperature
Qbath, however lifetimes are virtually unaffected by quasiparticles Qqp (red lines). We also
plot quality factors of an Al junction qubit, whose performance is noticeably limited by
quasiparticles above 160mK (green lines), whereas the Nb junction wouldn’t see an effect
until 1.6K.

ing from the environment bath [129], but importantly don’t see the drastic temperature

dependence expected for quasiparticle-induced loss [39, 40, 145], in line with expectations

for niobium. The advantage of higher-temperature junctions is apparent when comparing

our qubit performance to an aluminum counterpart: above 160mK, the aluminum qubit

is quickly overwhelmed with quasiparticle-induced decoherence, whereas our devices largely

retain their properties.

7.9 Conclusion

We have described a Nb/Al/AlOx/Al/Nb trilayer fabrication method demonstrating a 100-

fold improvement in junction loss at the single-photon level. By removing lossy dielectric

materials wherever possible, we use our low current density junction process to fabricate mi-

crowave transmon qubits using I-line photolithography demonstrating qubit quality factors

within an order of magnitude of recent aluminum devices. Our qubits have relatively high
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junction participation ratios, which could either be reduced to improve coherence through

material optimization [236], or exploited further to significantly reduce qubit size [141, 268].

Together with this device footprint flexibility, our all-optical qubit process opens the door

to large-scale direct integration of scalable quantum processors with digital superconducting

logic [126, 131, 147]. Niobium’s higher energy gap significantly reduces sensitivity to quasi-

particles for our junctions compared to aluminum analogues, allowing operation at much

higher frequencies, and resulting in far less decoherence above 160mK where conventional

qubit properties deteriorate. Combined with their low loss, these properties make our tri-

layer junctions a promising candidate for quantum architectures with lower cooling power

requirements, hybrid qubit systems requiring elevated temperatures, and enable new possi-

bilities for nonlinear elements at millimeter-wave frequencies [12, 119], paving the way for

higher temperature, higher frequency quantum devices.
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CHAPTER 8

K BAND QUBITS

In the previous chapter we explored how niobium trilayer junction qubits had reduced sen-

sitivity to quasiparticles. Increasing qubit operating temperature requires a two-pronged

approach addressing both quasiparticle loss [144], which is determined by the superconduct-

ing transition temperature of the materials that form the qubit, as well as decoherence from

thermal photons. As we verified previously, Niobium’s higher superconducting energy gap

compared with aluminum’s significantly increases the energy required to generate quasipar-

ticles, making it a promising material for higher temperature qubits.

Addressing increased environment noise at higher temperature presents two challenges.

First, thermal photons at the qubit frequency result in qubit heating, which requires active

reset [84, 135] or extensive dissipation engineering [233, 245] to artificially cool the qubit to its

ground state before experiments begin. Second, thermal photons at the readout resonator

frequency, which cannot be easily cooled, increase qubit dephasing [43]. Increasing the

system frequencies addresses both of these issues, reducing sensitivity to thermal fluctuations.

Newly developed components for high-speed communications [89] enable us to directly scale

traditional microwave transmon design to the K band (18-26 GHz), and explore coherence

properties in a new regime.

8.1 K Band Qubit Design

8.1.1 High Frequency Trilayer Junction

The key element at the heart of our transmon qubit is a niobium trilayer Josephson junc-

tion with high critical current density (Jc), shown in Figure 8.1a. We use the self-aligned

fabrication process desribed in Chapter 7 to form a Nb/Al/AlOx/Al/Nb Josephson junction
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Figure 8.1: Qubit geometry. a) A scanning electron micrograph of a low-loss niobium trilayer
junction at the core of the qubit. b) A micrograph of the qubit and readout resonator
geometry, with the junction location marked at the top. c) Equivalent circuit of the qubit
and readout resonator coupled inductively to a transmission line. d) Photograph of a chip
containing six qubits mounted in a low-loss K band circuit board.

on a C-plane sapphire substrate1, with two main changes from Ref. [13]. First, we use

low-temperature PECVD for spacer growth [81]: keeping the wafer below 230 ◦C during the

oxide growth creates a spacer oxide with lower loss than other methods, such as high-density

PECVD[13] and preserves a high Jc density, needed for higher-frequency junctions.

1. HEMEX sapphire grown by heat-exchange method: this is actually very important
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8.1.2 Post Fabrication Residue Removal

The second major improvement is a etch specifically targeting the fluorocarbon residues,

investigated in detail in Chapter 7. Immediately prior to measurement we use a 72 ◦C

solution of polar solvent (H2O), hydroxylamine, 2-(2-aminoethylamine)-ethanol (AEEA),

and catechol 2 to remove lossy plasma etch residues along with a thin layer of the oxidized

niobium surface, known to contain lossy oxides [185, 236]. The etching mechanism for this

mixture is believed to begin with the reduction of any organometallic compounds or metal

oxides by the hydroxylamine to first become more soluble in the water and alkanolamine

solution [122, 123]. The catechol, primarily a chelating agent (or ligand), allows the dissolved

metal ions to form complexes and not precipitate out of solution. The hydroxylamine can also

serve as a ligand in solution. Catechol also assists in metal/alloy protection and metal oxide

solubilization due to its redox potential3. The alkanolamine (AEEA), is an alcohol amine

with a relatively high boiling point, high flash point, and a relatively low (or non-existent)

etch rate under standard process conditions for metallic substrates or layers. The two-carbon

linkage is key towards reducing attack on metals and alloyed substrates and enhances residue

attack. Importantly, the etch mixture is only moderately acidic, with amines with hydroxyl

groups both enhancing solubility without greatly increasing acidity greatly4. In summary,

this treatment leaves a smooth metal surface with minimal defects and residues, visible in

the smooth details of the junction in Figure 8.1a.

8.1.3 Qubit Circuit Design

For these PECVD junctions, we measure a Jc density between 2.19–2.57 kA/cm2 (see Chap-

ter 7). This is much higher than aluminum junctions (typically 0.3 kA/cm2), allowing us

2. The solution is commerically available as Dupont EKC 265

3. The strong redox potential may actually reduce exposed surface niobium as well.

4. This has been shown to be beneficial for reducing niobium hydride precipitation, which is known to
induce microwave losses.
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to design qubits in the K frequency band using junction finger dimensions between 0.4-

0.8 µm, realizable with optical lithography. Our qubit geometry, shown in Figure 8.1b, is

qualitatively similar to conventional microwave transmon qubits [21, 113], with the primary

difference that every feature is slightly smaller. The rounded cross-shaped qubit capacitor

CQ is capacitively coupled to a short quarter-wave coplanar waveguide resonator used for dis-

persive measurements. The other end of the resonator is inductively coupled (κ =2-9 MHz)

to a common feedline. The system can be modelled by the circuit in Figure 8.1c, where the

qubit frequency is determined by the Josephson inductance LJ and total shunt capacitance

CΣ. The qubit capacitor, ground plane and readout resonator are defined along with the

junction, so no additional fabrication steps are needed.

8.2 K Band Packaging

PCB Chip

Indium Pocket

Self-Aligning
Geometry

PCB Alignment
Pin

Figure 8.2: Cross section view of the K band packaging, showing the chip (blue) secured to
the high-frequency circuit board (gold) by the copper enclosure.

Chips with several qubits and their readout resonators sharing a common microwave feed-

line are mounted in a K-band package (shown in Figure 8.1d), which is carefully engineered

for low-loss operation up to 30 GHz. Inspired by microwave solutions [90], the package

aims to shield the qubits from decoherence from external fields, thermalize the sapphire

chip containing the qubits, while adding minimal unwanted resonant modes, and efficiently

routing signals to and from the chip with minimal dissipation and reflection . We accom-
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Figure 8.3: Mode-free K Band packaging. Three copper pieces align the chip containing
qubits with the low-loss printed circuit board.

plish this with a copper-clad ceramic-filled PTFE dielectric 5 circuit board patterned with

via-fenced [19] coplanar waveguides for signal routing. Using compressed indium wire, the

sapphire substrate is aligned and clamped to the circuit board on each of its four corners

by a high-purity copper enclosure, as shown in Figure 8.2. This enclosure, is composed of

three precision machined pieces, illustrated in Figure 8.3, which also serve to thermalize and

mechanically secure the sample, as well as prevent leakage by fully enclosing the chip on all

sides. The enclosure is designed to naturally align the chip with the circuit board. This

suspends the sapphire so that the surface qubits are well separated from the lossy copper

5. Rogers 3003

187



surfaces [90], with the resulting dimensions optimized such that the nearest package mode

lies above 27 GHz. The signal is coupled on and off the sapphire substrate with wirebonds.

Since each of these has a high inherent inductance of about 1 nH/mm [249], which is in-

creasingly problematic at higher frequencies, we use sets of 3 wirebonds for each connection:

their location and profile is optimized in conjunction with on-chip signal launch geometry for

better than 0.2 dB insertion loss from 0-30 GHz. The optimized geometry is shown in Fig-

ure 8.4. The assembly is thermalized to the base stage of a dilution refrigerator (65-95 mK),

where transmission measurements through the central feedline can be used to characterize

resonators and qubits [113, 201].

Figure 8.4: Optimized launcher geometry and wirebond configuration which achieves max-
imal transmission up to 27 GHz. Using a manual wirebonder, we attempt to replicate this
wirebond shape, however in practice the circuit board dimensions requires slightly longer
bonds.

8.3 Qubit Characterization

While monitoring transmission through the system at the low-power readout resonator fre-

quency, simultaneously applying a second probe pulse reveals the energy spectrum of the

qubit, as shown in Figure 8.5a. At low powers, we observe a deflection in transmission at the
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Figure 8.5: Qubit dynamics. a) Deflection of the readout resonator transmission signal
as a function of applied qubit pulse frequency, shown for increasing qubit pulse power.
At low powers (blue) a single peak is observed when the pulse is resonant with the qubit
frequency (fge = 18.474 GHz). As power increases, the linewidth of this transition increases,
and additional peaks appear from excitations into higher qubit levels through many-photon
excitations (fgf/2 etc). These features have a spacing of α/2 = (fge− fef )/2. b) Measured
excited state probability shows Rabi oscillations when a fixed-length pulse with varying
amplitude is applied at the qubit frequency. The red line is a fit to the expected sinusoidal
behavior. c) Rabi oscillations are measured for frequencies near fge, with brighter colors
corresponding to higher excited state probabilities. Away from the transition frequency,
the Rabi frequency increases while the oscillation amplitude decreases and becomes power
dependent. d) Rabi oscillations as a function of pulse amplitude and length σ, with brighter
colors corresponding to higher excited state probabilities. Dashed red lines mark contours
of integer π pulses where σΩ = mπ.

bare qubit frequency fge as the qubit is excited, resulting in a dispersive shift of the resonator

frequency. Increasing the power of the probe pulse reveals the higher energy states of the
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qubit through two-photon processes fgf/2 = (fge+ fef )/2 and excited state transitions fef .

This allows us to measure the anharmonicity α ≡ fef − fge, which for our qubits is typically

near 200 MHz. Notably, this level spacing (which sets an upper bound on qubit gate speed)

is similar to many conventional microwave qubits [21, 113, 178], but could easily be adjusted

in our design by picking a different junction Jc density or capacitor size.

An applied signal on-resonance with fge will result in Rabi oscillations between the

ground and excited state at a Rabi frequency Ω proportional to its amplitude. We explore

this behavior by applying fixed-length (σ = 25 ns) Gaussian pulses at the qubit frequency

with varying amplitude (over which we have much finer control than time) as shown in

Figure 8.5b. This behavior is captured by a sinusoidal model which oscillates with pulse

amplitude and length. We repeat this measurement with σ = 60 ns while varying pulse

detuning from the transition ∆ = f − fge, and summarize the results in Figure 8.5c, where

brighter colors indicate the system in the excited state. At the qubit frequency, we observe a

series of bright fringes; however as the detuning from the transition increases, the oscillation

rate increases, while the oscillation amplitude is quickly suppressed. The bandwidth of the

fringes is further reduced by the finite nature of the pulse [24, 26, 67].

To verify the time-dependence of the Rabi oscillations, we also repeat this measurement

at ∆ = 0 while varying σ and plot the results in Figure 8.5d. Consistent with an amplitude

dependnt oscillation rate, the observed fringes are evenly spaced for fixed amplitude (ver-

tical slice) or fixed length (horizontal). Fitting the contours of the fringes to the periodic

conditions σΩ = mπ allows us to extract the Rabi rate (as high as 100 MHz), and also serves

as a good method for calibrating a qubit π control pulse.

8.3.1 Number Splitting

As touched on in Chapter 4, the dispersive shift χ used to measure the qubit state also

work in reverse. When higher powers are used to measure the qubit readout resonator, the
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Figure 8.6: Number splitting. a) Deflection of the readout resonator transmission signal as
a function of applied qubit probe frequency shown for increasing powers. We observe the
level transitions separated by anharmonicity α/2 similar to Figure 8.5a, however on closer
inspection each peak is split into smaller features. b) With non-negligible readout resonator
population, the sub-peaks for each transition are split by the dispersive shift 2χ.

resonator photon population shifts the qubit level transitions, as shown in Figure 8.6. In

this case we are lucky to have a transition linewidth smaller than the dispersive shift χ so

are able to resolve the individual transitions! This allows us to measure the state of the

resonator, which in this case is likely a thermal coherent state at elevated readout powers.

8.4 Qubit Coherence Properties

We can now study qubit relaxation time and dephasing time, which dictate qubit limitations

and act as sensitive probes of loss channels. We measure relaxation time by placing each

qubit in its excited state and measuring it after time t: fitting the exponential decay gives the

characteristic time T1. We perform these measurements for each qubit and show averaged

results as a function of qubit frequency in Figure 8.7c, finding T1 = 1.6 µs for our best

device. The highest-frequency qubits (for example Wafer C) are likely affected by Purcell

loss, as their transitions are above their readout resonator frequencies (∼ 22 GHz). To probe

loss channels in detail we use the frequency-independent qubit quality factor Q1 = 2πfqT1,
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Figure 8.7: Qubit Properties. a) Average qubit decay time T1 extracted by fitting the
exponential decay of excited state population. b) T1 plotted as a function of qubit frequency,
grouped by wafer. Lines indicate qubit quality factor Q1 = ωqT1. We find an overall mean
Q1 of 0.792× 105 with some wafer to wafer variation. c) Ramsey dephasing time T ∗

2 (filled
points) and Hahn-echo dephasing time T2 (hollow points) extracted by fitting the exponential
decay of oscillations in (d) as a function of qubit frequency. Lines indicate dephasing quality
factor. We find an average T ∗

2 and T2 of 1.124 µs and 1.357 µs respectively.

which we find for our devices is just below 105. When rescaled to equivalent values for

conventional microwave qubits, the coherence properties of our K-band qubits are comparable

to transmons made with a similar junction process, which measure an average Q1 = 2.5×105

[13]. The slight decrease in our average Q1 could be attributed to slightly higher junction

and surface participation [241] arising from our smaller qubit capacitor size relative to the

junction area. Quantum decoherence and material properties in this frequency range are still

relatively unexplored, warranting further investigation into the nature and sources of loss.
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We also perform a Ramsey experiment to measure the dephasing time T ∗
2 , and a Hahn-

echo experiment to characterize the spin-echo dephasing time T2 (Figure 8.7b). We find

that T ∗
2 is consistently higher than T1, nearing the dissipation limit 2T1. This suggests that

pure dephasing rates are relatively low, which is expected from the low photon occupation

of the higher-frequency readout resonators. The T2 values, which add an additional π pulse

to decouple the qubit from low frequency noise, are not significantly different from T ∗
2 . This

is likely a result of the qubit decaying during the added spin-echo pulse, which is relatively

long (120–240 ns) to compensate for low output power from our upconversion hardware.

Since the bandwidth of these pulses is still smaller than the level spacing, our single-qubit

gate speeds could be optimized to be significantly shorter [191].

8.5 Thermal Dependence of Decoherence

A key benefit of these high-frequency qubits is their thermal resilience to quasiparticles and

thermal photons, so we investigate our qubits at increased operating temperatures, shown in

Figure 8.8a. We observe a small decrease in T1 with temperature above 300 mK, consistent

with qubit heating from its environment [129], but importantly we don’t see the drastic

temperature dependence seen at these temperatures in qubits with aluminum junctions due

to quasiparticle-induced loss [39, 40, 74], in line with expectations for niobium. More im-

portantly, the measured Ramsey dephasing time shown in Figure 8.8b doesn’t significantly

decrease until 200 mK or so, due to the increased frequency of readout resonators in these

devices compared with conventional qubits. We are able to capture this behavior with the

following parameter-free model for dephasing from thermal photons in the readout resonator

[43, 189]:

T−1
ϕ = Γϕ =

γ

2
Re

√(1 + 2iχ

γ

)2

+
8iχ

γ
nth − 1

 (8.1)
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Figure 8.8: Thermal decoherence and dephasing. a) Decoherence time T1 of three represen-
tative qubits measured as a function of temperature. A mild decrease is observed at higher
temperature, consistent with a model including loss from increased system bath temperature
(solid lines). b) Ramsey dephasing time T ∗

2 as a function of temperature. The behavior is
largely captured by a parameter-free thermal dephasing model assuming a fixed T1 (solid
lines). c) Pure dephasing rate Γϕ which has dephasing from relaxation subtracted, resulting
in better agreement with the model.

Where χ is the dispersive coupling, γ is the decay rate of the readout resonator, and nth =

1/(ehfR/kT−1) is the resonator thermal population, set by resonator’s fundamental frequency

fr. The measured dephasing rate is then given by T−1
2 = T−1

ϕ + T−1
2,0 + 1/(2T1), where T1

and T2,0 are measured by averaging the low-temperature values. The model, which contains
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only independently-measured quantities, is overlaid for each qubit in Figure 8.8b, showing

relatively good agreement. We can also go further by using the measured values of T1 to solve

for Γϕ directly, as shown in Figure 8.8c, and overlay the theoretical model, which results in

even better agreement. Thus, unhindered by quasiparticle loss, we have been able to probe

dephasing and decoherence up to 1 K from purely thermal sources.

8.6 Conclusion

Using high-temperature niobium trilayer Josephson junctions fabricated using improved fab-

rication methods, we have realized transmon qubits operating as high as 24 GHz, which

demonstrates good coherence properties in these high-critical-current junctions. Our qubits

show comparable coherence properties to typical microwave qubits when frequency is ac-

counted for, likely still limited by decoherence channels in fabrication defects. With our

qubit decoherence unaffected by quasiparticles up to 1 K, we are able to explore the thermal

dependence of dephasing in superconducting qubits, and find that our qubits can operate

up to approximately 250 mK while maintaining similar performance. Our devices open the

door to new opportunities for quantum experiments at elevated temperatures and paves the

way to even higher frequency, higher temperature qubits.
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CHAPTER 9

IMPROVED MILLIMETER-WAVE MEASUREMENTS

Extending superconducting quantum device functionality to millimeter-wave frequencies

(near 100 GHz) offers new opportunities for detection and transduction[181] and access

to large coupling strengths for hybrid experiments [44, 254]. Most importantly, the reduced

sensitivity to thermal noise of higher-energy mm-wave photons could enable quantum exper-

iments at liquid-helium-4 temperatures, which significantly reduces cooling complexity and

power dissipation constraints, enabling new pathways for scaling up quantum computing

platforms, and could facilitate direct integration with high-speed superconducting digital

logic. In order to establish more robust quantum information systems, it is vital to un-

derstand and minimize decoherence in superconducting devices. Significant effort has gone

towards investigating and reducing sources of loss at microwave frequencies [148], estab-

lishing that a significant remaining contribution to decoherence at the single photon level

comes from two-level-systems (TLS) found in amorphous dielectric materials. However, since

probing individual decoherence mechanisms requires reducing other sources of loss, the na-

ture and limits of TLS loss contributions and their frequency dependence when scaled to

millimeter-wave frequencies remain relatively unexplored.

When measured at single-photon energies, the internal quality factor (Qi) of an on-chip

resonant circuit provides insight into the maximum coherence of a quantum system formed

by adding a source of nonlinearity (such as kinetic inductance [12, 215] or a high-frequency

Josephson junction [13, 109]). Significant progress has been made in improving millimeter-

wave resonators [12, 62, 71, 205, 215, 232], but their single-photon quality factors remain

below 2-4 × 104: significantly lower than those measured in microwave circuits [150]. This

can largely be attributed to two primary factors: first, millimeter-wave resonators frequently

use substrates with low dielectric constants (such as SiO2) to simplify high-frequency circuit

design, despite their poor dielectric loss characteristics compared to crystalline silicon or
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sapphire. Second, many existing millimeter-wave resonators rely on coplanar stripline or

microstrip transmission line components, both of which have relatively high radiation profiles

resulting in increased radiative losses, particularly at high frequencies [235].

Taking inspiration from low-loss microwave devices, a ground-shielded circuit design min-

imizing radiative loss offers an attractive method for increasing millimeter-wave quality fac-

tors, and better control over on-chip signal propagation and coupling. Whereas low-frequency

signals can be routed to an on-chip waveguide directly through wire bonds, grounded circuits

present additional design challenges in millimeter-wave bands, where signals are primarily

transmitted by hollow waveguides, so require a method to efficiently direct the waveguide

electromagnetic fields onto the chip. This proves to be a challenging problem, and as a result,

a variety of transition structures coupling waveguides with on-chip transmission lines have

been developed [94]; however, with no universal solution, transitions for specific applications

are still actively studied and improved.

In this chapter, we use a transition specifically designed to measure ground-shielded

millimeter-wave resonant circuits with improved control. We characterize a tapered coupling

structure that efficiently confines the signal fields to an on-chip slotline waveguide, finding an

insertion loss better than 0.5 dB over 14 GHz of bandwidth. We study niobium resonators

patterned near the slotline and show that resonator coupling can be controlled independently

without increasing radiation loss. With this novel resonator design combined with fabrication

procedure, we improve on existing planar millimeter-wave devices and achieve high internal

quality factors (Qi) consistently exceeding 105 at single photon powers. This allows us to

study the effects of oxide growth and removal on remaining loss contributions to Qi from

millimeter-wave two-level systems (TLS), and show that limits from TLS can be increased

as high as 106.
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Figure 9.1: Cutaway diagram showing assembled back-to-back waveguide to on-chip slotline
transition structures, with signal propagation marked in red. In the slotline region the
waveguide geometry is constricted to prevent spurious propagating modes. On the chip
corners, rounded channels allow indium wire (yellow) to deform, which secures the chip in
place.

9.1 Tapered Waveguide Transition Design

When designing a millimeter-wave circuit to minimize loss, additional constraints apply to

its coupling structure. Crystalline sapphire is an ideal substrate choice as it yields much

lower dissipation than most dielectrics, but is more difficult to machine which imposes de-

sign limitations. As a result, transition designs requiring abnormally cut non-rectangular

substrates [97, 234, 256], micromachining [124] or drilled holes [8] are impractical. Sapphire

also presents additional challenges for high frequency circuit design due to its relatively high

dielectric constant, which leads to more pronounced impedance mismatches caused by the

presence of substrate in the waveguide [258]. Ensuring currents are carried by superconduct-

ing materials minimizes conduction loss. To achieve this, on-chip superconducting layers

should be well separated from both waveguide and housing metal [90]: this consideration

makes transitions with stripline geometries, which needs an external ground plane [253], less
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ideal. While potentially offering low radiation loss, coplanar waveguide transitions [124, 163]

are typically more complex, requiring multiple stages and more physical space. Finline tran-

sitions, on the other hand, consist of a single taper [72, 97, 256], making them more compact,

and transform the signal into a differential mode localized on the chip surface.
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Figure 9.2: Side and top section views of the transition structure geometry, with reference
planes and relevant dimensions marked. Un-metallized sections of the chip are shown in
blue. The rounded corner channels are completely filled by indium.

Our transition is defined by a superconducting niobium film patterned on the top surface

of a rectangular crystalline sapphire substrate centered in a rectangular waveguide. Inspired

by Refs. [8, 72, 256], the geometry consists of a differential unilateral finline that tapers from

the waveguide width down to a narrow slotline. A cutaway diagram of the complete structure

is shown in Figure 9.1, with two transitions coupled back-to-back by a length of on-chip
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Table 9.1: Optimized dimensions used for the tapered finline waveguide-slotline transition
(in mm).

H0 L1 L2 L3 T0 H1 D1 D2

2.54 3.45 2.27 1.66 0.1 0.4 0.2 0.412
W0 W1 W2 S1 A1 D0 D3

1.27 2.29 2.11 0.04 0.895 0.55 0.8

slotline useful for coupling to resonators. Where the transition terminates, the waveguide

height is reduced to increase the cutoff frequency of unwanted higher-order propagating

modes, while the waveguide width is broadened to increase the usable area of the chip:

this allows the device area to remain suspended away from metal surfaces, which minimizes

conduction loss [90]. The only direct contact with the copper enclosure occurs where the

chip is clamped at its corners.
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Figure 9.3: a) Simulated electric field distribution (log scale) viewed from the top for a wave
traveling through the structure. Notably, a much greater dynamic range of electric field
strengths is achieved as the signal is compressed into the slotline, as compared to just the
waveguide field. b) Photograph of a mounted chip with back to back transition structures,
with top copper block removed. The indium, visible on the corners of the chip, deforms and
fully fills the designated channels, thermalizing and securing the chip.

Due to the pronounced impedance discontinuity between the sapphire chip and the waveg-

uide [258], a broadband matching structure is difficult to achieve with an exponential or

cosine Vivaldi taper contour as is typically used in finline transitions [8, 72]. Instead, we

find that a curved taper shape with a nearly linear waveguide entrance can compensate for
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the mismatch and can be optimized to give good performance over a section of waveguide

bandwidth. The optimized contour is described by the function:

y(x) =

(
W0 − S1

2

)
x

A1

√
2−

(
x

A1

)2

(9.1)

where W0 is the smaller waveguide dimension, S1 is the slotline width, and A1 is the tran-

sition length. The geometry of the transition is detailed in Figure 9.2. Using finite element

method simulation software1, the above contour function and parameterized geometry di-

mensions are optimized for maximal transmission in the 90-100 GHz band. The resulting

optimal dimensions are listed in Table 9.1. Notably, by relaxing the bandwidth optimization

constraint, we achieve a taper structure less than 0.9 mm long: much smaller than the λ/2

value predicted with analytical functions [258] and more compact than many other transition

structures in literature [8, 72, 91, 97, 256].

The benefit of coupling to resonant devices through an intermediate on-chip slotline

transmission line is apparent when examining the magnitude of the electric field of a wave

propagating through the structure, shown in Figure 9.3a. Whereas some previous implemen-

tations of millimeter-wave resonators [12, 215] interact with a uniform waveguide electric field

(visible on the left and right ends of Figure 9.3a) and rely on varying resonator dipole mo-

ments to adjust coupling, our method compresses the signal to a 40 µm slotline resulting

in over 50 dB of dynamic range in electric field strength across the usable area of the chip.

Consequently, the dipole coupling strength for each resonator can be set by its location on

the chip, without needing to adjust the resonator’s dipole moment, leaving more freedom to

optimize the resonator performance.

1. Ansys HFSS
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9.2 Cryogenic Measurements and Calibration

The taper geometry described above is defined by chlorine reactive ion etching a 100 nm thick

film of high-purity electron-beam-deposited niobium grown on a 100µm thick crystalline C-

plane sapphire substrate (see Appendix A for detailed procedure). Short sections of indium

wire are used to secure and thermalize the chip to the copper waveguide enclosure, visible

in a photograph of the mounted chip shown in Figure 9.3b. The edges of the on-chip taper

structure match the waveguide dimensions, which enables visual alignment during mounting

(necessary to maximize coupling).

The assembled structure is then measured at 0.86 K in a helium-4 cryostat: using a

vector network analyzer with millimeter-wave extension modules and a cryogenic low noise

amplifier, we measure the complex response in transmission and reflection. Input attenuation

and cryogenic isolators reduce thermal noise reaching the sample, enabling measurements in

the single photon limit. These methods are detailed below.

9.2.1 Experimental Measurement Setup

All millimeter-wave characterization was performed in a custom built 4He adsorption refrig-

erator, with a base temperature of 0.86 K, and a cycle duration of 3 hours. We generate

millimeter-wave signals (75-115 GHz) at room temperature by sending microwave signals

(12-19 GHz) into a frequency multiplier. The upconverted signal is sampled to establish a

phase reference measurement. We convert the generated waveguide TE10 mode to a 1 mm

diameter stainless steel and beryllium copper coaxial cable, which carries the signal to the

1 K stage of the fridge, thermalizing mechanically at each intermediate stage, then convert

back to a WR-10 waveguide which leads to the device under test. The cables and waveguide-

cable converters have a combined frequency-dependent loss ranging from 38.6 dB to 49.8 dB

in the W-Band, dominated by the cable loss. In the case of a transmission measurement,

the signal is further thermalized to 1 K by a cryogenic 20 dB attenuator, and in the case
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of a reflection measurement, this thermalization is accomplished with a 20 dB cryogenic

directional coupler with a copper body. The sample is thermally isolated from the 1 K stage

of the refrigerator to allow local heating for temperature sweeps.

Wideband cryogenic millimeter-wave circulators are currently not commercially available,

so instead a cryogenic directional coupler allows enables reflection measurements by allowing

nearly all of the reflected and transmitted signal to pass through to a low noise amplifier.

Cryogenic faraday isolators minimize retro-reflections and prevent thermal radiation from

leaking in on the output side, while still allowing good transmission. Having passed out-

side the cryostat through custom-built hermetic adapters, the signal is downconverted and

amplified for measurement. The entire setup is summarized in Figure 9.4a-b.

9.2.2 Cryogenic Calibration

The cryogenic measurements described above introduce a complex network between the

sample and the measurement equipment, a calibration must be performed to obtain ac-

curate estimates of network parameters. The necessity of attenuating components as well

as active components with gain in the measurement chain make cryogenic calibrations a

complex problem [38, 243, 257]. Without access to a cryogenic millimeter-wave switch that

can instantly select a calibration standard in-situ, we instead rely on a standard TRL-type

calibration [184] with carefully controlled sequential cooldowns with each standard. The

cryogenic measurement network can summarized with a partial network of error adapters in

Figure 9.4c.

The input paths a0 and a1 both have significant attenuation (ϵ10 and ϵ23) to prevent room

temperature noise from reaching the sample. Because of this, signals directly reflecting off the

samples (which are doubly attenuated) are too faint to measure, especially when overlaid on

the imperfect return loss on some of the millimeter-wave components in the chain. Instead,

we use two separate input paths in order to characterize the response of the sample: when
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combined, this yields an error adapter network similar to the familiar two-port TRL network

[184].

Aside from attenuating terms (ϵ10 and ϵ23) and the output amplification (ϵ32) which

suffice for a simple correction, we must take into account several non-ideal terms in our

error network. As a consequence of highly attenuating inputs is that when normalized, the

directivity terms (ϵ30 and ϵ33) are significantly more pronounced. Additionally, the cryogenic

attenuators and absorbers in our system appear have non-ideal return loss characteristics,

resulting in non-negligible source match ϵ11 and even more pronounced directivity ϵ33. Since

we measure good return loss in the cryogenic faraday isolators used on the output line (see

Figure 9.4a), the load match term ϵ22 should be significantly less pronounced.

As a result, we can simplify the procedure by neglecting ϵ22, and make a further assump-

tion that our sample structure is symmetric (in practice this can be checked by reversing

the sample direction). These simplifications leave some unresolved frequency ripples on the

measured spectrum (visible in Figure 5). The measured transmission and reflection response

is now simply:

SM
21 =

b2
a0

= ϵ30 +
ϵ10ϵ32S21
1− ϵ11S22

(9.2)

SM
22 =

b2
a1

= ϵ33 +

(
S22 +

ϵ11S
2
21

1− ϵ11S22

)
ϵ23ϵ32 (9.3)

By performing measurements of through, reflect, and line standards which have known S-

parameters [184] we can solve this system of equations for relationship the error terms.

Combining this with direct measurements of each input line yields true values for each error

term. With the system now characterized, we can extract sample S-parameters from the

transmission and reflection measurements above, giving a much more accurate picture. Since

each measurement now relies on a number of calibration experiments, this imparts a linear

error (with typical vector magnitude between 0.03−0.09) on the final complex S-parameter.

As the amount of measurement uncertainty now depends on the measurements themselves
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(defined by the relationships in Equation B.1 - B.2), this results in S-parameter uncertainty

that increases as the S-parameter decreases, apparent in the significantly higher uncertainty

on our reflection measurements.

9.3 Waveguide Transition Characterization
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Figure 9.5: De-embedded insertion loss for two back-to-back transitions along with simulated
values. In the band of interest (highlighted), we find an insertion loss better than 0.46 dB,
limited by de-embedding calibration uncertainty (∼ 0.3 dB).

The effectiveness of the taper transitions is tested by using transitions to convert a waveg-

uide signal to a slotline and back, and monitoring the cryogenic transmission and reflection

of the structure. With the calibration procedure described above, the effects of additional

hardware on the input and output lines are removed, and de-embedded scattering parame-

ters of the sample are recovered from cryogenic network measurements. The measurement

results are summarized in Figure 9.5 and Figure 9.6. We find the transition performs best

between 87.6− 102.4 GHz, exceeding the designed range, and define this 14.8 GHz wide fre-

quency range as the useful operating band. Within the operating band, we find a maximum

insertion loss of approximately 0.46 ± 0.35 dB (or 94.8% transmission), corresponding to a

coupling efficiency of ∼ 0.23 dB for a single taper structure. However these values are likely
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Figure 9.6: Wideband de-embedded scattering matrix parameter measurements (solid lines)
for two transitions back-to-back along with respective simulations (dashed lines) showing
good agreement. In the operating band marked in gray, we find a total insertion loss better
than 0.5 dB, and return loss less than -13 dB.

dominated by errors introduced by calibration methods (which do not enforce passivity).

Across the W band, we find that the de-embedded transmission and reflection of the struc-

ture are in fairly good agreement with simulations, with the exception of the region near

110 GHz: in this region unwanted resonances occur in the substrate and indium mounting

regions, which are difficult to predict. In the operating band, we find the return loss exceeds

13.1± 8.6 dB, which slightly deviates from simulation, but could be attributed to the signif-
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icantly increased calibration uncertainty due to the high transparency of the structure and

increased sensitivity to error terms. Combined, these measurements demonstrate a transi-

tion structure in good agreement with simulation, which in the operating band couples a

signal on and off a chip with high efficiency.

9.3.1 Leakage Bypassing the Transition
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Figure 9.7: Simulated transmission parameters for: a single transition terminated by an on-
chip short, a sapphire chip with no metallization, and the structure with the chip removed.
The operating band is highlighted in gray.

We have thus far treated the system of two back-to-back taper transitions as a single

unified network described by a set of S-parameters. However to verify the effectiveness of

the transition with even greater precision, the transitions themselves could be de-embedded

by defining an error sub-network inside the grey box in Figure 9.4c. This could help with

getting more accurate measurements of more complex on-chip devices, but in particular

the isolation term of this sub-network (equivalent to ϵ30 in Figure 9.4c) could shed some

light on how much signal passes through the slotline and reaches the resonators as opposed

to bypassing the chip entirely. With our measurement precision, the correction method
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described earlier already gives fairly high uncertainty without introducing these extra error

parameters, so we are unable to directly measure this leakage with good accuracy.

However, we can use simulations (which show fairly good agreement with the measured

responses) to estimate the relative magnitude of the leakage. In Figure 9.7, the solid blue

line shows the simulated transmission of a chip with a tapered transition on one side, and

entirely covered by uniform ground plane on the other. This measurement corresponds to

the Reflect standard used in the TRL calibration [184], and directly measures the isolation

error term. Thus we find that in the band of interest for our system (highlighted in Fig-

ure 9.7), the simulated leakage is below approximately 38 dB: this value results in a total

reduction between 0.05 and 0.1 dB on our measured insertion loss: significantly lower than

the uncertainty from calibration discussed in the previous section.

This leakage term is small enough to ignore for resonator measurements, however sheds

light on imperfections in this design. To estimate the leakage origin, we also simulate trans-

mission of the geometry with a bare sapphire chip containing no metal, as well as transmis-

sion without the chip entirely, shown with dashed lines in Figure 9.7. From this we conclude

that the bare sapphire chip supports modes which help transmit significantly more signal

than just the copper enclosure geometry itself. While these spurious modes are suppressed

by the surface metal (demonstrated by reduced transmission of the short) a more careful

examination could help further improve the transition design.

9.4 Ground-Shielded Resonator Design

Having demonstrated a coupling structure capable of efficiently transforming a rectangular

waveguide signal to and from a localized on-chip slotline, we can now design resonators

decoupled from their environment while only considering local interactions. Away from the

centered slotline, the chip surface is entirely covered by superconducting material acting as

a ground plane, so a resonant structure patterned in this region will have its long-range
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Figure 9.8: Electron micrograph of resonator geometry and coupling arrangement relative
to feedline. This structure can be approximated by a simplified circuit diagram (top-right).

electric dipole interactions reduced. Our millimeter-wave resonator design is composed of a

discrete capacitor island connected to the ground plane by a 2 µm-wide meandered inductor,

shown in Figure 9.8. Every resonator is designed with an identical capacitor island, and its

resonant frequency ω0 is adjusted by changing the inductor length while keeping its width

constant. The entire resonator has a rectangular footprint around 100 − 200 µm per side,

which is not insignificant compared to signal wavelength in the slotline (∼ 1 mm): in this

limit, the ground plane edges contribute significant reactive corrections. On each chip, five to

six resonators are placed near the central slotline to allow interaction with the propagating

signal. This differential geometry can be modelled by the single-ended LC circuit shown

in Figure 9.8 including asymmetric coupling (CC and M) [106]. This accounts for reactive

contributions and impedance mismatches induced by the resonator presence.

For this resonator geometry, coupling strength can be controlled by adjusting its sepa-

ration from the slotline. The interaction decreases exponentially with distance, which we

demonstrate by simulating the coupling quality factor Qe as a function of resonator sepa-
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Figure 9.9: Simulated (red) resonator coupling Qe as a function of separation from the
slotline with an empirical fit (red line) used for predictions. Experimental measurements of
Qe (blue) are in reasonable agreement.

ration, plotted in red in Figure 9.9. The coupling quality factor can also be approximated

empirically as a function of only the separation d by log10Qe = 0.06491+0.0390d/µm, shown

as a dashed line in Figure 9.9. We find that experimental measurements of Qe (described in

the next section) follow this approximation reasonably well.

9.5 Millimeter-wave Resonator Measurements

Characterizing the complex transmission spectra of these resonators at low temperatures

(T = 0.86 K) allows us to explore losses at millimeter-wave frequencies. Typical normalized

measurements at low average photon number (n̄ ≈ 10) are shown in Figure 9.10a. On

resonance, we observe a dip in transmission as the resonance sweeps through a circle in the

complex plane. This behavior is captured well by [106]:

S21 = 1− Q

Q∗
e

eiϕ

1 + 2iQω−ω0
ω0

(9.4)
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Figure 9.10: a-b) Complex transmission spectrum of a typical resonator, and power depen-
dence of its internal quality factor along with fits to a model including TLS and independent
loss (red). Here, Qi is primarily limited by non-TLS loss (Qother). c) Temperature depen-
dence of Qi for resonators from chip D. The black dashed line corresponds to a Bardeen-
Cooper-Schrieffer (BCS) model of conductivity loss, and solid lines are respective fits to a
model including conductivity and TLS loss. d-e) Complex transmission spectrum and Qi
power dependence of the best resonator measured in this study. For this device, QTLS is
the dominant loss source. f) Internal quality factors for resonators in this study, grouped
by etching conditions and elapsed time after fabrication. The top and bottom of the colored
bars correspond to measured low-power and high-power limits of Qi, and the points corre-
spond to TLS induced loss QTLS,0 with averages for each chip denoted by a dashed line.

where Q−1 = Q−1
i + Re[Q−1

e ] [106] and the coupling quality factor Qe is rotated in the

complex plane by Qe = Q∗
ee

−iϕ due to asymmetric coupling to the slotline as described in

the previous section. Measuring both quadratures of the transmission spectrum to capture

this asymmetry is particularly important for extracting an accurate estimate of Qi, which is

sensitive to ϕ [186].

Repeating these measurements at varying powers shows that Qi increases with power, as
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shown in Figure 9.10b. This increase can be explained by a power-dependent loss mechanism

from saturating TLSs [70, 179, 195, 242] described by:

QTLS(n̄, T ) =
QTLS,0

tanh ℏω
kT

√
1 +

(
n̄

nc

)β

tanh
ℏω
kT

(9.5)

Here QTLS,0 is the inverse linear absorption from TLSs, ω is the resonant frequency, and

β and nc are parameters characterizing TLS saturation [70, 195]. Nonlinear effects (from

kinetic inductance) [12] limit the power range where linear measurements can be performed,

however at high powers we observe that Qi begins to saturate, indicating the presence of

other loss mechanisms.

By examining the power and temperature dependence of Qi, we can further distinguish

between sources of loss. The full behavior is captured with a model that includes TLS loss

(QTLS) [70, 179, 195, 242], equilibrium quasiparticle loss (Qσ) [145, 190, 224] and other loss

mechanisms that are power and temperature-independent (Qother):

1

Qi(T, n̄)
=

1

QTLS(n̄, T )
+

1

Qσ(T )
+

1

Qother
(9.6)

The quasiparticle loss term is parameterized by:

Qσ(T ) = Qσ0
σ2(T, Tc)

σ1(T, Tc)
(9.7)

where σ1 and σ2 respectively are the real and imaginary parts of the complex surface con-

ductance, calculated by numerically integrating the Mattis-Bardeen equations for σ1/σn and

σ2/σn, and σn is the normal conductance. [145, 190, 224].

To investigate the effects of quasiparticle loss, we measure Qi of several representative

resonators as a function of temperature and show the results in Figure 9.10c along with

Qσ(T ) and fits to the full model described above. Below approximately 1.5 K we find that
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Qi is almost unaffected by Qσ and is nearly temperature independent for most devices. As

the temperature approaches a significant fraction of niobium’s critical temperature (9.2 K),

Qσ rapidly becomes dominant. However, at the low temperatures relevant for quantum

experiments, Qσ exceeds measured values of Qi by several orders of magnitude, suggesting

that quasiparticle loss contributions are negligible in this regime.

Having determined that the dominant loss contributions come from power-independent

loss Qother and QTLS, we can neglect thermal contributions to Qi at low temperatures.

Upon inspection of the power dependence of a typical resonator in Figure 9.10b, we find the

increase of Qi from TLS saturation is relatively small, unlike what is seen in many microwave

loss studies [49, 236]. Using the model above, we find QTLS,0 = 0.953× 106 while Qother =

1.17 × 105, indicating that TLSs are not the dominant source of loss. Repeating these

measurements for the highest-Q resonator in this study, we find in Figure 9.10d that Equation

9.4 is able to accurately capture Qi from the response, but unlike the other resonators, the

power dependence shown in Figure 9.10e is much more pronounced. For this device, we

find single-photon Qi = 0.827 × 106, which is comparable to state-of-the-art microwave

resonators [49, 236], and the loss sources can be disentangled into QTLS,0 = 1.03× 106 and

Qother = 4.18 × 106. Unlike the device above, this independent loss limit is significantly

higher and the resonator loss primarily arises from QTLS, giving us a better insight into

millimeter-wave TLS loss.

9.5.1 Reducing Losses With Surface Oxide Etch

When exposed to air, niobium is known to slowly evolve a lossy amorphous surface oxide

layer containing dissipative sub-oxides [41] and TLSs [236]. Surface treatments are commonly

used to remove this surface layer in microwave resonators to reduce loss [236]. Although

TLS density has not yet been investigated in the W-band, losses from niobium sub-oxides

are believed to be more pronounced at higher frequencies [41]. To study the effect of surface
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Figure 9.11: Resonator loss (internal Q) for single-photon (red) and high-powers (blue) as
a function of coupling Q, showing no correlation and confirming coupling does not increase
loss.

processing on Qi, we repeat the measurements summarized in Fig. 9.10a-b for devices that

underwent different aging times and etch conditions. In Fig. 9.10f, we plot the low and

high power limits of measured Qi as well as the fitted value of QTLS,0 for devices from five

separate chips.

Between samples A and B we observe that 5 days of aging reduces both QTLS,0 and

Qother, leading to lower quality factors for resonators exposed to air for several days, which

is consistent with niobium oxide regrowth that has been shown to increase loss in microwave

devices [236]. This can be mitigated by selectively removing the surface layer of niobium

oxide after fabrication using a buffered solution of hydrogen fluoride (BHF) [236], which we

achieve by immersing samples C, D and E in a 5% BHF solution for 40 min immediately

prior to mounting and measurement.

We observe that this BHF treatment can reverse the effects of air exposure in Sample C,

which despite experiencing a longer air exposure of 8 days, has higher average QTLS,0 and

Qother than Sample B after the BHF treatment. Applying this surface treatment to samples

D and E, which experienced reduced initial air exposure yield consistently lower losses than
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samples A-C, including the highest-Q resonator in this study described above. Combining

minimal air exposure with surface oxide removal using BHF in sample E, we are able to

consistently obtain resonators with single photon internal quality factors above 1.4 × 105,

and an average QTLS,0 = 1.04×106: significantly higher than previously measured for planar

millimeter-wave devices [12, 63, 71, 205, 215, 232].

While these values of loss are much closer to those reported for microwave devices [236],

in the power-dependent measurements above we observe that our millimeter-wave resonators

are on average limited by power and temperature-independent loss Qother to a much greater

extent than TLS loss, which limits microwave devices [49, 236]. This loss could come from

a variety of sources, including remnants of conduction loss from the copper enclosure [90],

seam loss from an imperfect seal between the halves of the enclosure [33], radiation loss [39]

or additional power-independent microscopic relaxation channels such as conductive loss in

the niobium sub-oxides [236]. To estimate the impact of radiation losses, we can verify that

our ground-shielded resonator design protects the resonance from radiative loss induced by

coupling. In Figure 9.11 we plot Qi for single-photon and high-power limits (Qother) as

a function of Qe, and observe no correlation with either. Thus we can design a resonant

circuit with a wide range of coupling strengths without affecting coupling to lossy or radiative

channels. As a final note, an examination of all the devices in Figure 9.10f, shows that on

average QTLS,0 and Qother scale similarly relative to each other when affected by aging and

surface treatment. This is highly suggestive that the remaining millimeter-wave source of

loss is still tied to materials-induced decoherence in the superconductor surface, and warrants

further studies.

9.6 Conclusion

We have demonstrated an on-chip millimeter-wave resonator design with a ten-fold im-

provement in loss over previous work, and leveraged this platform to investigate sources
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of single-photon decoherence in the W band. Using a specifically-designed waveguide to

slotline transition based on a finline taper, we present a new platform for probing on-chip

devices at high frequencies. With this novel packaging design, we have improved on dipole

coupling techniques previously used to address millimeter-wave resonators, and show that

our coupling can be adjusted over a wide range without impacting circuit losses. Having

shown that planar millimeter-wave resonators compatible with fabrication techniques can

achieve performance comparable to microwave quantum circuits [49, 236], we pave the way

for a millimeter-wave artificial atom that could be formed by introducing a high-frequency

nonlinearity [12, 13, 109] into our design. This opens the door to a new generation of high-

frequency quantum tools compatible with higher operating temperatures.
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CHAPTER 10

MILLIMETER-WAVE QUBITS

The time has come to finally unite the various separate pieces we developed, and realize

our overall goal of a millimeter-wave superconducting atom. In Chapter 7 we developed

a high-temperature trilayer Josephson junction: a strong source of low-loss single-photon

nonlinearity capable of operating at high temperatures and frequencies. We took a small

step towards higher operating frequencies in Chapter 8 by scaling up our trilayer qubit design

to the K band. Finally in Chapter 9 we demonstrate a millimeter-wave coupling method and

ground-shielded resonator design which improves over our previous measurements described

in Chapter 5. The logical next step is to combine the now proven high-frequency junctions

with the upgraded millimeter-wave package.

10.1 The Millimeter Wave Qubit

After going through several iterations, our final millimeter-wave qubit design is pictured

in Figure 10.1. Five to six resonators are coupled to the central slotline region from the

tapered finline coupling structure described in Chapter 9. The design freedom afforded by

the location-dependent coupling (provided by compressing the signal in the center of the

chip) allows us to ensure that the resonators are strongly coupled to the slotline (Qe ∼ 103)

while the qubits aren’t directly coupled (we estimate the residual coupling is above Qe > 106,

which as we will see later does not limit qubit performance). Notably, unlike in Chapter 9,

the qubit resonators are inductively coupled, as opposed to capacitively coupled1. For this

“jellyfish” resonator design, inductive coupling scales with the overlap of current distributions

between the resonant mode and the propagating slotline mode, which results in about ten

times stronger coupling for the same slotline separation. This also has the benefit of making

1. Switching the dominant coupling type is achieved by simply rotating the design by 180◦
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Figure 10.1: Millimeter-wave qubit geometry. a) Photograph of several qubits and readout
resonators coupled to the tapered finline transmission structure used for measurement (see
previous Chapter 9 for details). b) Scanning electron micrograph of a readout resonator
(top) which is capacitively coupled to the qubit capacitor (bottom) c) A close up image
of the niobium trilayer Josephson junction at the heart of the qubit. d) Equivalent circuit
representation of the experiment along with the refrigeration mechanism shown in e

the capacitive end of the resonator available for coupling to the qubit capacitor.

For circuits, high frequencies are achieved primarily by reducing capacitance and in-

ductance2 The resulting qubit capacitor, expected to provide 38 fF (from simulations), is

relatively small compared to conventional qubits (or even K band qubits). The capacitor

island is simply shaped like a jellybean (or hotdog). While the electric field is nominally

2. Frequently either capacitance or inductance can be kept somewhat larger at the expense of the other,
but as a rule of thumb both will need to decrease.
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Figure 10.2: Simulated resonator coupling Qe as a function of separation from the slotline
with a empirical fits (dashed lines) used for predictions. Resonators coupled capacitively
(blue) similar to those measured in Chapter 9 have orders of magnitude weaker coupling
which is a strong function of separation, while inductively-coupled (red) resonators (flipped
by 180◦) couple much more strongly.

distributed around the ground plane, the junction (shown in Figure 10.1c) is located on the

opposite side of the resonator, as illustrated in Figure 10.1b. This helps promote capacitive

coupling by moving inductive contributions of the ground plane away from the resonator.

The entire system can be described by the circuit illustrated in Figure 10.1d. This circuit is

essentially identical to the lumped-element description of the microwave and K-band qubits

measured in Chapters 7 and 8.

10.1.1 Helium-4 Experiment Refrigeration

Other than the millimeter-wave frequencies and mounting method, the primary difference

of this experiment is the cryogenic cooling method. Whereas the lower frequency experi-

ments described thus far have been cooled with dilution refrigerators, the millimeter-wave

experiments are all cooled by a custom-built helium-4 adsorption refrigerator, whose oper-
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ating principle is summarized in Figure 10.1e. At a base temperature of 0.87 K, evaporating

helium-4 provides approximately 1 mW of cooling power– which is significantly higher than

a dilution refrigerator [183], and one of the major strengths of this high-frequency supercon-

ducting platform.

Figure 10.3: Experiment temperature during a helium cycle. For maximum stability, data
is taken below 0.868 K of the lowest temperature.

The evaporation is sustained by adsorbing the helium vapor on the extremely high sur-

face area of activated charcoal, which is thermalized at 4 K. This cryogenic setup has a

significant advantage in its design and construction simplicity. However we note that a sig-

nificant drawback of this refrigeration method is the limited hold time, which in our system

is approximately three hours: after this time the condensed helium fully evaporates, and the

system must be reset by heating the charcoal, which warms the experiment up to 4 K. The

experiment temperature during one of these cycles is shown in Figure 10.3. Because of this,

any millimeter-wave data acquisition is only performed during one of the 3 hour cycles. We

verify this by checking whether the experiment temperature is within 10 mK of the lowest

temperature before saving data. Notably this does not prevent averaged experiments longer

than 3 hours so long as each individual experiment can be executed within the cycle duration.

10.2 Continuous Wave Measurements

As described earlier, several qubit–readout structures are patterned on a chip. To investigate

the system, we first use single-tone millimeter-wave spectroscopy (see Chapter 9 and 5) to
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Figure 10.4: Power dependence of the readout resonator. (a) Transmission measurement of
the readout resonator, taken at low power. At the resonant frequency (which is modified
by the coupled qubit), we observe a dip in transmission. (b) Since the readout resonator
is coupled to a highly nonlinear qubit, it will inherit some nonlinearity as well. Because of
this, the readout resonator shifts down in frequency as power is increased. At sufficiently
high powers, the readout resonator returns to its rest frequency. Measuring the frequency
difference between these low and high power resonant frequencies (green dashed lines) allows
us to determine the qubit-readout coupling g2/∆.

measure the complex transmission spectrum through the central slotline. Near the readout

resonator resonance frequency this results in a dip in transmission as shown in Figure 10.4a,

which we can fit to the side-coupled asymmetric3 model described in Chapter 3. At low

powers, the readout resonator frequency is dressed by its interactions with the qubit [25, 113,

192]. Because the readout resonator interacts with the highly nonlinear qubit, it will inherit4

a small amount of nonlinearity itself [192]. In Figure 10.4b we plot transmission through the

slotline near the resonator frequency as a function of signal power. For increasing powers,

we observe the characteristic frequency shift of a Kerr-nonlinear system, confirming the

resonator is coupled to something nonlinear. At sufficiently high drive strengths, sufficiently

3. Luckily the improved coupling method results in less asymmetry, however to capture the full pciture
it is best to use the asymmetric model anyways.

4. As another way to think about this, the junction participates to varying degrees in every mode of the
circuit [155]. Modes with higher participation will have stronger nonlinearity.
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high powers in the qubit decouple it from the readout resonator, which returns5 to its bare

resonant frequency [25, 178, 192]. The frequency difference between the dressed and bare

resonant frequencies is determined by the bare coupling qubit–resonator strength g [25]:

δω =
g2

∆
=

g2

ωq − ωRR
(10.1)

This is a particularly useful measurement since it helps us determine the sign of the qubit-

resonator detuning6. Furthermore, once the qubit transition frequency ωq is known, we

can use the frequency shift δω to determine the raw qubit–resonator coupling strength g.

For this coupling design, we typically find coupling strengths between 400–1500 MHz. This

coupling strength is set by the coupling capacitance Cc, which depends strongly on the

physical separation of the qubit and resonator capacitor islands (see Figure 10.1b).

10.2.1 Identifying Qubits with Two Tone Spectroscopy

While monitoring transmission through the system at the low-power readout resonator fre-

quency fR, simultaneously applying a second probe signal fS should reveal the excitation

spectrum of the coupled qubit. In practice, since the readout resonator has inherited non-

linearity [192], and there is non-negligible cross-coupling between neighboring resonators,

we find that the system can be excited through several additional pathways, leading to a

relatively complicated spectrum as shown in Figure 10.6. This spectrum is also complicated

by our use of harmonic multipliers to generate both the readout signal fR and probe signal

fS .

Because our heterodyne measurement setup uses a harmonically multiplied local oscillator

(LO) signal, the down-mixed readout measurement is sensitive to several millimeter-wave

5. We call this a “snap”.

6. As we will see in a bit, demystifying every transition for millimeter-waves is a challenge. In an earlier
sample, the positive snap from a qubit above its readout resonator frequency helped us determine with
certainty which features were from the qubit as opposed to harmonics.
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Figure 10.5: Frequency breakdown of the signals used to measure the qubit with continuous-
wave spectroscopy. Microwave input signals are harmonically multiplied to the millimeter-
wave band. The blue regions are down-mixed to the idler frequency measurement window
(purple).

frequencies fMeas, all of which can down-mix to the same idler frequency (IF) as illustrated

in Figure 10.5.

f
n,m
Meas =

n

6
fRLO ±mfIF (10.2)

Luckily for us however, the mixer is highly power-dependent, so is predominantly sensitive

the fundamental m = 1,n = 6 frequency. Additionally, since the readout signal and local

oscillator signal are phase locked7, simply averaging a few measurements together will remove

most of the interference from a spurious signal getting down-mixed into the measurement

band, which will inherently have a random relative phase.

The probe signal fS also generates harmonics (n) from the multiplication process, which

will have the freuqencies

fS,n =
n

6
fS (10.3)

Many of the lower frequency harmonics are suppressed by the natural cutoff frequency of

the rectangular waveguide (see Chapter 3), however depending on the probe frequency the

n = 4, 5, 7, 8, 9 harmonics can be prominent. As a result, when monitoring transmission

through a readout resonator, we will see a deflection signal when any harmonic of the probe

7. They are actually generated from different combinations of the same 10 MHZ signal supplied by a
rubidium clock, so they have the same fundamental phase. This relative phase stability is very important
since it lets us average coherently.

224



Harmonics Readout ResonatorsQubit

6
7 𝑓!"

6
7 𝑓#$

6
8 𝑓!"

𝑓%&

𝑓!" 𝑓!&

Harmonics Readout ResonatorsQubit Harmonics

6
7 𝑓!"

6
8 𝑓!#

6
8 𝑓!"

𝑓%&

𝑓!" 𝑓!#

Figure 10.6: Two tone spectroscopic identification of qubit transitions. For each readout res-
onator, we measure transmission at its low-power resonance, while simultaneously applying
a second probe signal at varying frequency and power. Here we are showing linear deflection
from the idle state (lighter colors are larger deflection). When the fundamental harmonic or
any other harmonic is resonant with a qubit or resonator the readout resonator measured
will shift, registering a deflection. By measuring all resonators (two examples shown here) we
can identify which features are harmonic excitations, and which are fundamental excitations,
which locates the qubit transitions.

signal matches either the resonator frequency or the coupled qubit frequency:

fS =


6
nfRRi

6
nfQj

(10.4)
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Allowing for cross-coupling, when measuring a given readout resonator we could also

expect signals from its neighboring readout resonators RRi, and potentially even neighboring

qubitsQj (though in practice cross-coupling i ̸= j between mismatched qubits and resonators

is significantly weaker).

With these rules established, the complicated two tone spectrum shown in Figure 10.6 be-

comes a simple logical puzzle, and each individual transition can be identified. Importantly,

with the resonant and harmonic excitations eliminated, we can deduce the fundamental qubit

transition frequency. Combined with the detuning measurement measured in Figure 10.4,

this also identifies the bare qubit–readout resonator coupling strength g.

10.2.2 Resolved Qubit Transitions
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Figure 10.7: Resolved level transitions of the millimeter-wave qubit. a) Deflection of the
readout resonator transmission signal as a function of applied qubit pulse frequency, shown
for increasing qubit pulse power. Line cuts for indicative qubit drive powers are shown in
b). At low powers (blue) a single peak is observed when the pulse is resonant with the qubit
frequency (fge = 72.1 GHz). With higher probe powers, the linewidth of this transition in-
creases, and additional peaks appear corresponding to higher energy level transitions through
many-photon excitations (fgf/2 etc). These features have a spacing of α/2 = (fge− fef )/2.

Having identified the approximate qubit frequencies, we can focus on the fundamental
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transitions of a promising 72 GHz qubit for which the transition linewidth appears to be

lower than the transition spacing. For added sensivity we make sure to consider the vector

transmission displacement |δS21|, which takes advantage of both quadratures of the measured

readout transmission signal

|δS21| =
∣∣S⃗21(ns)− S⃗21(0)

∣∣ (10.5)

We show the measured deflection magnitude for probe frequencies near the qubit transitions,

measured at increasing probe powers in Figure 10.7. At low powers, we observe a deflection

signal when the probe matches the bare qubit frequency fge: exciting the qubit from its rest

state induces a dispersive shift in the readout resonator frequency. Increasing the power of

the probe pulse reveals the higher energy states of the qubit through two-photon processes

fgf/2 = (fge + fef )/2 and excited state transitions fef . This allows us to measure the

anharmonicity α ≡ fef − fge, which for the millimeter-wave qubit is 227 MHz. As we will

see later on, this anharmonicity is the Achilles foot of this qubit. Notably, this level spacing

(which sets an upper bound on qubit gate speed) is still similar to our K band qubit, and

many conventional microwave qubits [21, 178]. This is interesting, since the qubit capacitor

in this case is significantly smaller than the K band qubit, which is in turn smaller than most

microwave qubits. This is a result of the relatively large Josephson junction used in the qubit

(see Figure 10.1c) which evidently contributes CJ = 57 fF of additional capacitance.

From this measurement of anharmonicity we also conclude that our qubits have quite

high junction participation ratios pj ≈ 0.6. Recalling from Chapter 4 that the participation

ratio is determined by the qubit frequency, this in turn confirms that the junction plasma

frequency is approximately 120 GHz. With a slightly smaller sized qubit capacitor and

Josephson junction, we could achieve qubit anharmonicity up to 500–1000 MHz while still

keeping the Josephson junction size large enough to define using optical lithography.
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Figure 10.8: AC Stark shift. a)Deflection of the readout resonator transmission signal as a
function of applied probe frequency, shown for increasing readout power (in dBm). Due to
the resonator-qubit interactions, the qubit transition frequency shifts as the average readout
resonator photon number increases. b) The qubit frequency shift is shown to be linear with
respect to readout drive power. Since the frequency shift per photon can be calculated
from qubit parameters, this allows us to obtain an accurate calibration for readout resonator
photon number, and by extension the qubit photon number.

10.2.3 Drive Power Calibration via AC Stark Shift

We can still learn more from the dynamics of the two-tone qubit transition spectroscopy

measured in Figure 10.7. In preparation, we will need an accurate estimate of the incident

power arriving at the qubit. Luckily, the qubit itself provides an excellent method for

calibrating power. Since we have established the qubit frequency, bare coupling strength, and

resonator detuning, along with the resonator properties (linewidth, frequency), we can take

advantage of the dispersive shift between them [113, 200], recalling that the qubit frequency

is ac Stark shifted by the number of photons in the readout resonator:

fge(nr) = fge,0 − χnr (10.6)
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To investigate this, we repeat the two-tone experiment as a function of probe frequency, for a

low probe power (-18 dBm with respect8 to the powers in Figure 10.7). The results are sum-

marized in Figure 10.8. As expected, we observe that as the readout power increases the qubit

transition fge decreases. Transforming the readout power into resonator photon number we

verify that the freuqency shift is linear, and based on the dispersive shift calculated from

known values, we can solve for the effective signal attenuation. Interestingly, the effective

attenuation calculated with this method agrees with the values calculated using transmission

measurements calibrated with a power meter9. With the exact shift calculated, we arrive at

Figure 10.8b, in which the incident power and readout photon number are calibrated based

on the qubit response. From this measurement combined with the frequency-dependent ex-

pression for photon number (see Chapter 3) we can also easily establish the number of qubit

photons ns for a particular probe drive strength.

10.2.4 Qubit Properties From Transition Linewidth

The probe signal used in Figure 10.7 to excite the qubit also induces dephasing dependent on

the power of the applied power. The induced dephasing rate can be found by measuring the

linewidth of the transition [201], which has an approximately gaussian profile at low powers.

In Figure 10.9 we show the measured qubit transitions for two probe powers, along with

gaussian fits capturing the linewidth of the transition σ. For higher probe powers, we also

incorporate higher order transitions10 to ensure the model accurately captures the linewidth

of the first transition fge.

The linewidth of the transition is expected to scale with applied power [201] which is

proportional to nsω2vac. The vacuum Rabi frequency is simply g, so the linewidth will have

8. The exact probe power doesn’t mean much since it goes through several manual attenuators.

9. The calculated and calibrated attenuation is much higher than we designed! I blame the stainless steel
coaxial input line. Stay tuned for ScoobyDoo and the mystery of where the extra attenuation comes from!

10. The linewidth of the two-photon transition can also be modelled in a similar fashion, however will be
half that of single-photon transitions.
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Figure 10.9: The feature corresponding to the ground–excited state transition in the readout
resonator deflection measurements has a gaussian profile, allowing us to fit the linewidth of
the transition. Measurements on the left and right are shown for drive strengths correspond-
ing to 2.12× 10−4 and 3.02× 10−5 qubit photons respectively. For sufficiently high powers,
the edges of the transition overlap with the next two-photon transition, so the model includes
both of these transitions.

the following power dependence:

2πσ =
1

T ′
2

=

√
1

T 2
2

+ nsg2
T1
T2

(10.7)

In this expression, T2 is the dephasing rate of the qubit and T1 is its relaxation rate. In

Figure 10.10 we plot σ2 as a function of the calibrated qubit photon number ns, finding

that the linewidth has the expected linear relationship. The intercept and slope allow us to

estimate a dephasing rate of T2 = 20.89 ns and relaxation time of T1 = 47.32 ns respectively.

It’s worth mentioning that with this method, the dephasing time is only calculated from

fitting the linewidth, however the relaxation time requires a sequence of additional measure-

ments, making the relaxation time estimate significantly less accurate. As we will see soon,

there are more reliable methods of measuring dephasing and relaxation times. So as not to

overestimate the qubit performance, we will save the discussion of coherence properties till

then.
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Figure 10.10: The fitted g–e transition linewidths σ are plotted as a function of drive pho-
ton number. The square of the linewidth is determined by the qubit dephasing time, and
increases linearly with drive power, with a rate set by the qubit decoherence time. Having
calibrated the photon number relative to drive power, a linear fit can extract a dephasing
time of 21 ns and with lesser accuracy a decoherence time of 47 ns.

Table 10.1: Parameter summary for the millimeter-wave qubit (in MHz)

fRR γT g2/∆ fge ∆ α g χ
91,151.3 84.281 -19.44 72,137 -19,014.3 -228 607.979 -0.230342

10.3 Pulsed Qubit Characterization

We now turn to the time domain to demonstrate coherent control of the millimeter-wave

qubit, and to obtain more accurate measurements of its coherent properties. Having esti-

mated qubit decoherence times on the order of 20 ns using two-tone spectroscopy, we are

presented with the challenge of generating sufficiently fast pulses to measure the qubit before

it decoheres.

10.3.1 Sub Nanosecond Pulse Measurements

In order to take advantage of the phase-referenced quadrature measurements we have been

using to measure the continuous-wave complex-valued transmission transmission through the

fridge, we would like to largely keep readout measurement method the same. At the same
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time, measuring the qubit state with a continuous signal will induce additional dephasing

during state preparation and measurement operations. To address this we instead perform

short duration pulsed measurements of the readout resonator dispersive shift, while only

making minor modifications to the measurement hardware (namely the network analyzer,

which can generate several phase-locked signals with different frequencies). This is accom-

plished with the addition of a microwave switch11 to the microwave readout signal (F1)

prior to multiplication, as shown in Figure 10.11. This effectively chops the millimeter-wave

readout signal depending on a TTL signal, which can be generated from the same phase

reference as the pulse frequency: as a result we will obtain a millimeter-wave pulse12 with

a consistent global phase. In practice, the pulse timing resolution of the network analyzer

(10 ns) and the rise time of the pin diode microwave switch (around 6 ns) means that we can

practically generate 20 ns readout pulses (which are shortened to a full-width half-maximum

of approximately 14 ns). While sufficient to be able to resolve qubit dynamics, this pulse

length is unfortunately comparable to the qubit dephasing time, so this measurement method

is a good place for future improvement.

The upconverted readout pulse is sampled13 internally in the VNAx Tx module using

a copy of the same LO signal (F2) used for down-mixing the amplified measurement signal

that comes out of the fridge. By measuring the relative phase of the signal that passed

through the fridge with respect to the measured referenced signal, we are able to remove the

effects of global phase drift and fluctuations.

Millimeter-wave multipliers and mixers are inherently nonlinear devices [184] so while the

output power can be controlled by varying the input power, this scaling is nonlinear, and

11. Based on the Hatridge lab design

12. You can convince yourself that taking the 6th power of a square pulse produces a square-ish 6th
harmonic.

13. The directional coupler orientation is portrayed accurately: since the reference port mixer in our module
was not functioning correctly, we are technically sampling the reflected signal from the voltage controlled
attenuator, which is significant.
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Figure 10.11: Millimeter-wave pulsed measurement setup. Double lines indicate waveguide
regions. Red and blue regions highlight they cryogenic sections of the experiment. Compo-
nents highlighted in green, red and orange are millimeter-wave components.

affects the harmonic power in a different way, making the resulting noise power generated by

the system unpredictable. A much more reliable method is to use fixed input powers while

varying attenuation on the millimeter-wave side, which should give more consistent results.

To achieve the large dynamic range of powers needed for our experiments with some degree

of automation, we use a combination of manual vane attenuators, input power and voltage-

controlled attenuators to adjust the millimeter-wave power. To minimize noise added to the

signal entering the fridge, fixed or manual attenuators are placed last in the chain.

The qubit pulse is generated in a heterodyne fashion, similar to typical microwave exper-

iments14. Triggered by a phase-locked trigger signal from the network analyzer, a 65 GS/s

analog waveform generator (AWG Tektronix 70001a)15 generates a microwave pulse with

14. See heterodyne pulse generation, for example the readout channel in Chapter 7

15. This device is typically used to generate all of the pulses in a microwave qubit experiment, but we are
just using it to generate the pulse image for upconversion!
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Figure 10.12: Frequency breakdown of the signals used for pulsed qubit measurements.

sub-ns resolution, which is mixed with a secondary LO (not phase-locked with the read-

out signals)16 to generate a millimeter-wave pulse. The millimeter-wave mixer has limited

conversion efficiency, so the qubit pulses are further amplified with a low-noise amplifier.

Unfortunately this amplifier has a fairly low gain-compression point, so as a result the AWG

amplitude does not directly translate to the millimeter-wave pulse amplitude. A vane atten-

uator and filter help block LO leakage and image signals, which help reduce the noise seen

by the qubit to a small extent, however more filtering is likely necessary.

The addition of the heterodyne qubit pulse generation to the millimeter-wave input in-

creases the number of frequencies at play, which complicates the frequency spectrum in our

experiments. We summarize the frequencies used for pulse generation and readout, along

with the bandwidth and frequencies of the qubit and readout resonator in Figure 10.12.

Since the Fourier bandwidth of short millimeter-wave pulses can get quite high, and each

multiplied signal generates additional images, it is important to consider the frequencies at

play in the millimeter-wave system in order to avoid frequency collisions.

16. Since the qubit frequency is different than the readout frequency and we aren’t doing fancy qubit–
resonator operations it is okay to have random relative phase.
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10.3.2 Pulse Timing

Having determined the qubit frequency with continuous-wave two-tone spectroscopy, we re-

verify the qubit transitions by upconverting a continuous signal instead of a pulse at the qubit

frequency using the measurement setup described above, described in C. This process helps

verify that sufficient power is available17 at the qubit frequency, and helps avoid unwanted

frequency collisions.

T = 200 ns

Readout
20 nsQubit

Pulse
Qubit
Pulse

Qubit
Pulse

Figure 10.13: Millimeter-wave pulse timing.

With frequencies established, we can begin to explore the time domain with pulsed ex-

periments. Since the millimeter-wave qubit coherence times are below 50 ns18 we do not

need to wait for long for the qubit to reset in between experiments. We choose an experiment

repetition rate of 200 ns, with timings summarized in Figure 10.13. A timing calibration19

synchronizes the qubit pulse region (orange) with the readout pulse (nominally 20 ns long).

Within the synchronized qubit pulse region (typically 120 ns left available), we can program

in the exact timings of qubit control pulses. The data acquisition, which is relatively slow,

takes place for nearly 200 µs: during this time, the readout measurements of each individual

experiment are integrated coherently (along with noise in between readout pulses). For this

reason, we make sure to minimize the overall experiment repetition rate, since this directly

increases measurement fidelity.

17. This helped us realize that we needed an amplifier on the qubit pulse side.

18. :(

19. Accomplished by matching the qubit frequencies with the readout frequencies, and measuring the
downmixed output with an oscilloscope.
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Figure 10.14: Time breakdown of a millimeter-wave experiment (not to scale). Most of the
time is spent processing data and communicating with instruments.

The timing breakdown of an example pulse experiment consisting of a sweep of 87 points

is shown in Figure 10.14. During the acquisition window, approximately 1000 experiments

are integrated20. In descending order of speed, 500 point averages and 30 sweep averages

are performed on the network analyzer. Including two start-to-finish averages (which help

decouple slow fluctuations), each point has effectively been averaged 50 million times. The

reason for this high number of averages is the extremely low dispersive shift relative to the

resonator linewidth, which results in very low fidelity for an individual experiment.

10.3.3 Flat Top Pulse Envelope

τ
σ

n σ

Figure 10.15: Millimeter-wave pulse envelope shape.

For qubit gate operations, we select a flat top pulse with gaussian edges, as illustrated in

20. Due to the dead time in acquisition, each experiment acquisition has a fidelity below 10 percent.

236



Figure 10.15: this pulse shape compromises between the constant rabi rotation rate during

the flat part of the pulse (length τ) while reducing the Fourier bandwidth of the pulse with

Gaussian edges (with Gaussian width σ). For keep the overall pulse length practical, the

pulse envelope is truncated after n Gaussian widths, making the total pulse length

tpulse = τ + 2nσ (10.8)

For most of the pulses in the experiments that follow, we will use σ = 1.5 ns and n = 2.5,

resulting in overall pulse times of τ + 7.5 ns. While this means that even a τ = 0 pulse will

take a significant percentage of the qubit coherence time, the qubit anharmonicity limits

how fast the qubit control pulses can be, as we will see later on.

10.3.4 Frequency Dependence of Rabi Oscillations

When a fixed-length pulse, the qubit will also oscillate between the ground and excited state

depending on the pulse amplitude: this Rabi oscillation rate Ω decreases to a minimum as

the pulse is brought on resonance with the qubit transition frequency fge. In Figure 10.16,

we measure the readout signal as a function of AWG pulse amplitude21, for varying pulse

frequencies. At the qubit frequency, we observe a series of dark fringes; however as the

detuning from the transition increases, the oscillation rate increases, while the oscillation

contrast is quickly suppressed. The bandwidth of the fringes is affected by the finite nature

of the pulse [24, 26, 67], as well as mild variation in pulse amplitude at varying frequency.

From Figure 10.16a we observe that the expected fringe behavior is only resolvable above

fge. Similarly to how higher level transitions appear at frequencies evenly spaced by α/2 in

Figure 10.7, we observe Rabi oscillations driven between higher levels at lower frequencies.

These oscillations require much more power than oscillations between the ground and excited

21. The actual millimeter-wave pulse amplitude is gain-compressed.
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Figure 10.16: Frequency dependence of Rabi oscillation experiments. a) Inverse deflection of
the readout signal with relative to its rest state with respect to original pulse amplitude, for
varying pulse frequencies. Darker colors are higher deflection magnitudes corresponding to
the excited states of the qubit. Near the qubit resonance (72.1 GHz) the oscillation fringes
slow and increase in contrast. Below the qubit frequency, oscillations between higher order
transitions (g–f and e–f) are also visible, complicating the spectrum. Horizontal stripes
are a result of interleaved experiments with different averaging conditions. b The same
experiment is repeated with shorter pulses (τ = 0) less attenuation, which increases the
overall oscillation rate. This broadens the features in the frequency domain, causing the
various transition oscillations to overlap and interfere. Because the qubit is now oscillating
between superpositions of the first four energy levels the initial fringe contrast is reduced.

states, however complicate the frequency spectrum of the Rabi fringes.

Increasing the amplitude (achieved by reducing the attenuation with the manual vane

attenuator) allows for shorter qubit pulses, which broadens the fringe pattern so much that

the fringes interfere with the higher level qubit transitions, as observed in Figure 10.16b.

Interestingly enough in both of these cases, the center of the fringes is located below the

fundamental qubit frequency measured with two-tone spectroscopy. This suggests that the

pulse measurement setup may be populating the readout resonator with unwanted noise.

Fixed-length pulses with non-uniform pulse envelopes result in a nontrivial final qubit

state, since the adiabiticity of the qubit evolution varies during the pulse duration [24, 26, 67].
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Figure 10.17: a) Rabi oscillations as a function of pulse length and pulse frequency for a
large amplitude pulse. As the pulse detuning increases, the Rabi oscillation frequency should
increase. However in this experiment the pulse amplitude is high enough such that the Rabi
fringes for higher level transitions interfere with each other, resulting in fringes that merge
as the frequency drops below the qubit frequency. b) A master equation simulation of the
qubit shows qualitative similarity in fringe patterns.

The behavior is still sinusoidal with respect to pulse length and amplitude Ω, and can be

written explicitly for a finite gaussian pulse truncated at ±nσ:

Pe =
Ω2e−n2

Ω2e−n2 +∆2
sin2

(
σ

2

∫ n

−n
∂τ

√
Ω2e−τ2 +∆2

)
(10.9)
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Where ∆ is the detuning from the transition frequency. On resonance (∆ = 0) we recover

the familiar expression

Pe = sin2 (πσΩ) (10.10)

From this behavior we conclude that the bandwidth of Rabi oscillations is reduced for real

pulse envelopes. To remedy this, we can instead more closely emulate the ideal Rabi behavior

by keeping the pulse amplitude (and thus Rabi rate) constant while adjusting the evolution

with the pulse length, which should help increase the bandwidth of the fringes. To reduce the

impact on pulse bandwidth the gaussian width of the pulse edges is held constant while the

pulse flat length τ is swept. However since the qubit is expected to dephase for long pulses,

we attempt to compensate by increasing the Rabi rate with high pulse amplitudes. The

resulting experiments are shown in Figure 10.17. While the fringe bandwidth has increased,

we find that this results in interference between higher qubit energy levels. A simulation of

the master equation can qualitatively describe the behavior, but this ultimately proves that

the qubit pulses are fundamentally limited by the qubit anharmonicity.

10.3.5 Optimized Rabi Oscillations
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Figure 10.18: Rabi oscillations. When a pulse is applied at the qubit frequency, we expect
it to oscillate between its ground and excited states. The readout resonator transmission is
measured for various applied qubit pulse lengths τ . Here the pulse edges have a gaussian
profile with σ = 1.5 ns. The red line is a fit to a decaying sinusoid, yielding a Rabi frequency
of 208.6 MHz.
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Having established a maximum Rabi rate, we select an attenuation which results in Rabi

oscillations just below the anharmonicity: while off-resonance this still may still results in

some interference with higher-level transitions, at and above fge we can still expect relatively

well understood interactions that don’t involve the higher energy levels. In 10.18 we show an

optimized experiment chosen for an optimal frequency on-resonance with the qubit, where

the qubit oscillates between its ground and excited state as a function of the pulse flat length

τ . Due to the finite length of the pulse edges, τ = 0 already corresponds to nonzero qubit

rotation. For longer pulses we observe that the oscillations decay towards the ground state

of the qubit, which is consistent with qubit decoherence during the length of the pulse, which

are comparable to the expected qubit coherence times.
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Figure 10.19: The final qubit state following a resonant pulse should depend on the product of
pulse length and pulse amplitude. To verify this we perform a sequence of Rabi experiments
while varying pulse length τ and pulse amplitude. To limit the effects of pulse bandwidth,
the gaussian edges of the pulse are kept to σ = 1.5 ns. The raw data for this experiment is
shown on the left, where qualitatively we observe that as pulse amplitude increases, so does
the Rabi oscillation rate, evidenced by the reduced vertical fringe spacing. Since the pulse
gain is compressed by an amplifier, it is more useful to examine this data in terms of the
calibrated millimeter-wave pulse amplitude seen by the qubit, as shown on the right. From
this we can overlay the expected contours where the qubit is in its excited state.
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To verify the behavior of the Rabi oscillations, we also repeat this measurement while

varying pulse amplitude and plot the results in Figure 10.19. Consistent with Equation

10.10, the observed fringes are evenly spaced for fixed amplitude (vertical slice) or fixed

length (horizontal) when the pulse amplitude is corrected for gain compression. Fitting the

contours of the fringes to the periodic conditions σΩ = mπ allows us to extract the Rabi

rate (as high as 208 MHz), and also serves as a good method for calibrating a qubit π control

pulse.

10.3.6 Millimeter-wave Qubit Coherence in the Time Domain
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Figure 10.20: Qubit coherence properties. A relaxation experiment (illustrated in the inset)
measuring qubit decay time T1 by fitting the exponential decay of excited state population
following a time delay t after a π pulse. The same data is shown on a logarithmic scale on
the right, confirming the exponential decay. From this measurement we find T1 = 15.849 ns.

Using the Rabi experiment above as a calibration, we select parameters for a relatively

short (τ = 2 ns) π pulse. Finally with control over the qubit, we can study the millimeter-

wave qubit relaxation and dephasing in the time domain, which are the best method for

benchmarking the qubit performance. We measure relaxation time by placing each qubit in

its excited state with the aforementioned π pulse and measuring it after time t. Performing

this experiment with negative t allows us to calibrate the exact pulse timing. The results

are shown in Figure 10.20: fitting the exponential decay gives the characteristic relaxation
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Figure 10.21: Ramsey experiment (illustrated in inset) measuring qubit dephasing time T2
by fitting the decay of oscillations. The second π/2 pulse has its phase advanced by 320 MHz.
We extract a Ramsey dephasing time of 17.466 ns.

time T1. By checking the results on a logarithmic scale, we verify that the decay is indeed

exponential.

By reducing its amplitude while keeping the pulse envelope fixed, we obtain a π/2 pulse

corresponding to a half-rotation between the ground and excited state. We perform a Ramsey

experiment22 by measuring the qubit state after applying two π/2 pulses separated by time

t. The phase of the second π/2 pulse is advanced at a fixed frequency detuning (320 MHz):

sweeping through phase simultaneously measures both the coherence of the qubit as well

as its frequency. The results in an oscillation between the ground and excited state, at the

detuned frequency in the qubit frame, which decays with the characteristic qubit dephasing

time T2. From this we extract a oscillation frequency of 359 MHz, indicating the qubit

frequency is 39 MHz away (which sounds high but is fairly close considering how wide the

control pulses are), and a dephasing time of 17.466 ns. Notably due to the length of a single

pulse, this oscillation begins with reduced contrast, since the qubit has already partially

decayed, consistent with the length of control pulses relative to the coherence time.

22. Due to our terrible readout fidelity, this experiment took more than a day of data acquisition!
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Table 10.2: Millimeter-wave Qubit Coherence Properties

T1 T2 Q1 Q2

15.849 ns 17.466 ns 7.183× 103 7.916× 103

10.4 Qubit Performance Properties in Context

The qubit coherence properties measured with time-domain spectroscopy are summarized in

Table 10.2. The coherence properties are lower in the time domain than previously estimated:

the measured dephasing time is consistent but slightly lower than the estimated value from

continuous wave linewidth experiments, while the relaxation time is signifcantly lower than

the linewidth estimate. This highlights the limited accuracy of the linewidth method for

estimating coherence times in an enivronment like ours where incident noise is not well

controlled. Interestingly enough this qubit’s quality factors are relatively low compared to

the microwave or K band devices.

In hindsight23 our qubit performance is primarily limited in two ways. First, from sub-

sequent24 measurements of failed HDPCVD K-Band qubits, we now know that the junction

preparation method used to make the millimeter-wave qubits (which also relies on HDPCVD

spacer deposition) generates a significant source of loss, consistent with junction quality fac-

tors between 103–104. Luckily, this will be an easy future fix, since we have now demonstrated

a low-loss junction fabrication method with the K-Band qubits. Second, we have repeatedly

seen that the millimeter-wave qubit is limited by its low anharmonicity. Since this is mainly

a design decision, a future iteration of this device utilizing smaller capacitors could easily

provide anharmonicities above 500 MHz with no changes to the fabrication process25. With

23. Hindsight is 20-20!

24. The millimeter-wave qubits were fabricated months before we figured out how to optimize the high-JC
PECVD junction process.

25. We actually measured qubits with anharmonicities as high as 560 MHz, however they were incredibly
lossy due to a bad batch of junction residues.
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higher resolution junction lithography (such as electron beam lithography) we could achieve

higher precision junction areas and increase the anharmonicity limit even further.

Importantly, this suggests that we are not seeing fundamental limits of coherence at

millimeter-waves but rather have only begun optimizing these quantum systems in a previ-

ously unexplored regime. On a positive note, for the first time we have realized an artificial

supercoducting atom operating at liquid helium-4 temperatures. Our demonstration, akin

to a proof of concept device, has provided us with the knowledge about superconducting

quantum devices in a new freuqency range, putting us in a perfect place to begin translating

the many microwave quantum experiments to the millimeter-wave range.
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CHAPTER 11

CONCLUSIONS AND OUTLOOK

Through a circuitous journey exploring many aspects of superconducting quantum devices,

we have taken a few first steps in scaling up microwave qubits to the millimeter-wave range.

Throughout all of our devices, we see a repeated theme of increasing qubit resilience against

its environment, reinforcing the benefits of higher frequencies. Our niobium trilayer mi-

crowave qubits were unhindered by quasiparticles above 160 mK, which currently limit

state-of-the-art aluminum microwave qubits. Furthermore we showed that these qubits were

capable of operating in the presence of significantly stronger magnetic fields than possible

with aluminum junctions. Scaled up to the K band, we saw qubits able to operate as high as

250 mK while maintaining their low temperature coherence properties. Finally we demon-

strated coherent control over a millimeter-wave 72 GHz qubit capable of operating at 0.87 K,

which is high enough to utilize a significantly less complex refrigeration mechanism. Aside

from the order of magnitude increase in maximum possible operation speed, the cooling

method alone has huge implications for scaling up quantum systems or integrating with

more complex experiments.

11.1 Coherence Properties

For each round of qubits operating at increasing ferquencies, we explored their coherence

properties in depth. Taking a step back, we can take a moment to compare their performance

across the various technologies. In Figure 11.1 we combine all qubit relaxation times for the

devices discussed here, grouped by frequency range and by wafer type. We see that qubit

quality factor Q1 = ωqT1 is an invaluable tool for comparing qubits with vastly different

frequencies. Likewise in Figure 11.2 we combine all qubit dephasing times, grouped by

frequency range and by wafer type.
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Figure 11.1: Qubit relaxation times T1 summarized as a function of qubit frequency for the
niobium trilayer devices studied in this work. Lines indicate qubit quality factor Q1 = ωqT1.

For all of our devices, we frequently find that as with early iterations of microwave qubits

[148], an uphill battle must be fought against losses and decoherence. Given the depth of

existing background, one might be tempted to conclude that the higher-frequency devices we

explored may be inherently more lossy- however we note that the higher frequency devices we

began to explore are the first of their kind, and have not yet experienced decades of refinement

and investigation. Indeed this is an exciting development for the quantum community as a

whole, as these high frequency devices offer a new lens through which decoherence channels

can be investigated.

In particular we found that a potentially useful tool for disentangling loss channels in any

247



Microwave
A

B

C

D

E

F

K Band
A

B

C
W Band

A

1 2 5 10 20 50 100

0.01

0.1

1

10

100

0.05

0.5

5

50

Qubit Frequency (GHz)

T
2*
,T

2
(μ
s)

Q2 =

107

106

105

104

Figure 11.2: Ramsey dephasing time T ∗
2 (filled points) and Hahn-echo dephasing time T2

(hollow points) summarized as a function of qubit frequency for the niobium trilayer devices
studied in this work. Lines indicate quality factor Q2 = ωqT2.

kind of Josephson junction-based qubits is the junction participation pj , a measure of how

much energy is stored in the junction oxide relative to the rest of the circuit. In Figure 11.3

we compare the qubit quality factors for all of the devices discussed in this work along with

conventional qubit examples from literature and from our lab. In fact, this has illustrated

the source of some improvements in conventional microwave devices, which have achieved

extremely long coherence times by diluting the stored energy away from the junction, and

into the rest of the circuit, which has in parallel seen significant materials optimization to

further reduce loss1. However this brings to light a potential avenue for further microwave

1. In the past seven years we have seen the gold standard for quality factor increase from 106 to 107!
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1 = pJ/QJ + p0/Q0 as a guide to the eye.

qubit improvements focusing on losses specifically in the junction.

In our case, we find that the relatively low-loss operation of our high-temperature and

high-frequency qubits is made possible by the improvements made to the standard niobium

trilayer Josephson junction. Evidently by taking steps to reduce the presence of lossy ma-

terials we have been able to increase the junction quality factor by a factor of 10 to 100!

And by no means are these junctions ideal- we still have a long way to go even to improve

niobium trilayer junctions, and many avenues available to explore the properties of other

high-temperature Josephson junctions.
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11.2 Applications

Having investigated how microwave qubits can be scaled up to higher frequencies we can’t

directly conclude that higher-frequencies are a direct upgrade over the microwave bands for

realizing quantum information bits. Aside from being a challenge to realize experimentally,

we have seen evidence that fighting sources of loss is an uphill battle with respect to device

frequency, and unfortunately decoherence channels don’t appear to go away. (This frequency

dependence in and of itself may be an interesting phenomenon to investigate- for example

perhaps we can use this new qubit platform to interrogate the frequency-dependence of

material-based two level system density). It is our hope however that these first attempts

at higher frequency devices will pave the way for subsequent improvements which will only

help improve their usefulness for quantum operations specifically.

That said, these novel qubits have demonstrated their strength in terms of environmental

resilience. This in particular makes these qubits an attractive platform for experiments mak-

ing use of qubits in challenging experimental environments [44]. In particular more resilient

qubits could be beneficial for quantum detection experiments [56] and could be directly in-

tegrated for high-frequency quantum detection experiments in particular [41], which would

be revolutionary for millimeter-wave astronomy.

11.3 Future Directions

We have done the first few steps in characterizing these high-frequency qubits, and while it

would be very useful to improve their performance, there are already a number of experiments

that would be interesting to replicate on this high-frequency platform. We have mentioned

previously that frequency is a kind of orthogonal upgrade that could be applied to any

microwave qubit design. To this end it would be particularly interesting to scale up promising

microwave designs, such as Kerr cat qubits [80] (or any bosonic qubit encoding really), or
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fluxonium qubits [209, 266], which have recently proven to simultaneously support fast gate

operations and long coherence times. It follows that the circuit parameters for these devices

could be scaled up directly, which could potentially make them an attractive qubit platform

to investigate.

It would be fascinating to realize a coupled microwave–millimeter-wave system proposed

in Ref. [181]: whether with kinetic inductance or with a niobium trilayer Josephson junction,

this could be useful for transduction experiments (whether millimeter or optical). However

a more fun application might be to use this coupled system to artificially cool a microwave

mode (Similar perhaps to the bath engineering done in Ref. [233]).

A particularly exciting direction would be to directly integrate our millimeter-wave qubit

with Rydberg neutral atoms [119], which have atomic transitions in the millimeter-wave

range. As the millimeter-wave and optical energy difference is significantly reduced, this

could be a promising platform for realizing long distance communication [244] or for demon-

strating optical readout of a millimeter-wave qubit [156, 240]. Regardless we look forward

to the future of higher-frequency2 superconducting quantum devices.

2. Hopefully more millimeter-waves!
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APPENDIX A

DERIVATION OF RESONATOR RESPONSES

Direct coupling here refers to a direct connection from the LRC resonator to the transmission

lines.

A.1 1-Port Shunt Resonator

Here we will calculate the complex S11 parameters for a simple parallel LRC resonator,

following the derivation in [184], and ending up with an abstraction of the Rank-1 S matrix

in terms of internal quality factor (Unloaded Q) Qi, external quality factor (coupling Q) Qe,

and resonant frequency ω0.

A.1.1 Derivation

For an arbitrary load impedance ZL shunting an input line with impedance Z0 [184] we can

write:

S11 =
ZL − Z0
ZL + Z0

(A.1)

In our case, the load impedance is that of a parallel LRC resonator (Figure 3.13). We can

write the effective impedance as:

ZL = ZR||ZL||ZC =
1

iωC + 1
iωL + 1

R

(A.2)

Expanding about the resonance frequency, we set ω = ω0+∆ω, where the resonant frequency

is ω20 = 1/LC. For small ∆ω ≪ ω0 we can write:

1

ω
=

1

ω0 +∆ω
=

1/ω0

1 + ∆ω
ω0

≃ 1

ω0

(
1− ∆ω

ω0

)
(A.3)
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Using this, we transform the load impedance as follows:

ZL =
1

1
R + i(ω0 +∆ω)C + 1

iω0L
(1− ∆ω

ω0
)

(A.4)

=
1

1
R + iω0C + i∆ωC − i

ω0L
+ i∆ω

ω2
0L

(A.5)

=
1

1
R + i

√
C
L + i∆ωC − i

√
C
L + i∆ωLC

L

(A.6)

=
1

1
R + 2i∆ωC

(A.7)

=
R

1 + 2i∆ωRC
(A.8)

We now introduce the Quality factors. For a parallel LRC circuit [184]:

coupling Q : Qe =
Z0
ω0L

= ω0Z0C =
ω0
κ

(A.9)

internal Q : Qi =
R

ω0L
= ω0RC =

ω0
γ

(A.10)

Using this definition, we can re-write:

ZL =
R

1 + 2iQi
∆ω
ω0

=
R

1 + 2iQi∆
(A.11)

Where we have used shorthand ∆ = ∆ω/ω0 for reduced frequency detuning. Substituting

into the expression for S11 gives:

S11(ω) =
R− Z0(1 + 2iQi∆)

R + Z0(1 + 2iQi∆)
(A.12)

=
ω0LQi −Qeω0L(1 + 2iQi∆)

ω0LQi +Qeω0L(1 + 2iQi∆)
(A.13)

S11(ω) =
2Qi

Qe +Qi + 2iQeQi∆
− 1 (A.14)
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Which is the familiar result. We can get an even neater expression if we transform Q’s into

κ’s:

S11(ω) =
2/γ

κ+γ
κγ + 2iω0κγ∆

− 1 (A.15)

=
κ

κ+ γ

1
1
2 + iδ

− 1 (A.16)

Where we have introduced reduced detuning δ = ∆ω/(κ+ γ)

Summary and Variations

S11(ω) =
2Qi

Qe +Qi + 2iQeQi∆
− 1 (A.17)

=
κ

κ+ γ

1
1
2 + iδ

− 1 (A.18)

coupling Q = external Q : Qe =
Z0
ω0L

= ω0Z0C =
ω0
κ

(A.19)

unloaded Q = internal Q : Qi =
R

ω0L
= ω0RC =

ω0
γ

(A.20)

loaded Q = total Q :
1

QT
=

1

Qe
+

1

Qi
=
κ+ γ

ω0
(A.21)

Asymmetry

The coupling to the circuit is represented by a short section of transmission line, which

scatters the signal before reaching the resonator, and introduces a phase βl ≈ ϕ′ to the

signal that reaches the resonator. The modified reflection coefficient S11 can be derived
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using ABCD matrices [184] (see Appendix A for details), and approximated for small ϕ′ as:

S11 =
ZR +

−iZ0Zc cosϕ
′+Z2

c sinϕ
′

−iZc cosϕ′−Z0 sinϕ′

ZR +
−iZ0Zc cosϕ′+Z2

c sinϕ
′

−iZc cosϕ′+Z0 sinϕ′

(A.22)

=

ZR − Z0 + iϕ′
(

Z2
0

Zc
− Zc

)
ZR + Z0 + iϕ′

(
Z2
0

Zc
+ Zc

) (A.23)

Here we have done a first-order approximation of the numerator and denominator for small

ϕ′. Making the replacement

Z0 + iϕ′ → Z∗
0 = |Z∗

0 |e
−iϕ (A.24)

We obtain an equation similar to Equation A.12:

S11 =
R− Z∗

0(1 + 2iQi∆)

R + Z∗
0(1 + 2iQi∆)

(A.25)

From this point we can proceed as before, except we define the complex coupling quality

factor

Q∗
e = |Q∗

e|eiϕ (A.26)

A.1.2 2-Port Shunt Resonator

Using the results from the previous derivation, we can extend the results for a 2 port network.

Z0 Z Z0

Figure A.1: Impedance network for a shunt impedance in between two transmission lines.
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Derivation 1

For a shunting impedance ZL (Fig. A.1) we have the general 2 port ABCD matrix [pozar]:

A B

C D

 =

 1 0

1/ZL 1

 (A.27)

From which we can directly obtain the relevant S matrix parameters:

S11 =
A+B/Z0 − CZ0 −D

A+B/Z0 + CZ0 +D
(A.28)

S21 =
2

A+B/Z0 + CZ0 +D
(A.29)

(Note that while ABCD matrices can be exponentiated to get an ABCD matrix for a more

complex system, this is not possible with S matrices!) Substituting values from the ABCD

matrix into the expressions above gives:

S11 =
−Z0/ZL
2 + Z0/ZL

(A.30)

S21 =
2

2 + Z0/ZL
(A.31)

Substituting ZL from Eqn. A.11, and setting Z0 = 2Qeω0L (since the LRC sees two loads

Z0 in parallel now), and R = Qiω0L we get:

S11 = − Z0(1 + 2iQi∆)

2R + Z0(1 + 2iQi∆)
(A.32)

= − 2Qeω0L(1 + 2iQi∆)

2Qiω0L+ 2Qeω0L(1 + 2iQi∆)
(A.33)

= − Qe + 2iQeQi∆

Qi +Qe + 2iQeQi∆
(A.34)

=
κ

κ+ γ

1

1 + 2iδ
− 1 (A.35)
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S21 =
2R

2R + Z0(1 + 2iQi∆)
(A.36)

=
2Qiω0L

2Qiω0L+ 2Qeω0L(1 + 2iQi∆)
(A.37)

=
Qi

Qi +Qe + 2iQeQi∆
(A.38)

=
κ

κ+ γ

1

1 + 2iδ
(A.39)

And, as a sanity check, we can verify that S21 + S11 = 1.

Derivation 2

We can alternatively start with direct expressions forS21 and S11 given a shunting impedance

ZL:

S11 =
Z0||ZL − Z0
Z0||ZL + Z0

=
−Z0

2ZL + Z0
(A.40)

S21 =
2Z0||ZL

Z0||ZL + Z0
=

ZL
2ZL + Z0

(A.41)

Which reduce to the expressions in Eqn. A.31, from which we can procede in the same way

as the previous section.

Summary and Variations

S11(ω) = − Qe + 2iQeQi∆

Qi +Qe + 2iQeQi∆
=

κ

κ+ γ

1

1 + 2iδ
− 1 (A.42)

S21(ω) =
Qi

Qi +Qe + 2iQeQi∆
=

κ

κ+ γ

1

1 + 2iδ
(A.43)

Qe =
Z0

2ω0L
= ω0CZ0/2 (A.44)
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A.2 Side Coupled LRC Resonator

More often than not, direct coupling is undesirable due to the lack of control over the

coupling Q. It is common to couple the resonator mode to the transmission line mode using

a capacitor.

A.2.1 2-Port Transmission

The circuit network in question is identical to Fig. A.1, with the addition of a capacitor Ck

in series with the LRC circuit. This gives us an additional term in the impedance from the

previous section (Eqn. A.11):

ZL =
1

iωCk
+

R

1 + 2iQi∆
(A.45)

where ∆ = (ω−ω0)/ω0. The addition of the capacitor will redefine our definition of Qe, but

also split the resonant frequency into a resonance and anti-resonance. These frequencies are

simply the solution of ℑ(ZL) = 0. Rewriting ZL in a suggestive form:

ZL =
−i
ωCk

+
R(1− 2iQi∆)

1 + 4Q2
i∆

2
(A.46)

we can solve:

0 =
−1

ωCk
− 2RQi∆

1 + 4Q2
i∆

2
(A.47)

Solving and substituting our definition for internal loss R = ω0LQi (which is unchanged),

we get:

ω′0 =

ω0

(
Q2
i (−4 + CkLω

2
0)±Qi

√
−4 + LCkω

2
0(2 + LCkQ

2
iω

2
0)

)
2Q2

i (−2 + LCkω
2
0)

(A.48)
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Taking Qi ≫ 1, we get:

ω′0 =
ω0(−4 + LCkω

2
0 ± LCkω

2
0)

−4 + 2LCkω
2
0

(A.49)

=


2

2−LCkω
2
0

ω0

(A.50)

The frequency of interest is the one shifted lower, which is a resonance, while the unchanged

frequency ω0 is an anti-resonance.

Extreme low coupling limit

Generally we expect to have a very weak coupling (and thus high coupling Q) which should

recover a symmetric resonator response. If we make the assumtion that the coupling capacitor

is small, and thus the shift is small (ie. LCkω
2
0 ≪ 1), we can rewrite the frequency shift as

∆ω0 = ω′0 − ω0 = −
LCkω

3
0

2− LCkω
2
0

≃ −
LCkω

3
0

2
(A.51)

We can now expand the load impedance ZL about frequencies close to the resonance ω′0.

(note that since Ck is small, ∆ω0 is also small, but expanding about ω0 gives a different

result). Since at ω′0, ℑ(ZL) = 0, then ZL(ω′0) = ℜ(ZL(ω′0)). Thus,

ZL

∣∣∣∣
ω′
0

≃ ℜ(ZL)
∣∣∣∣
ω′
0

+ (ω − ω′0)
∂ZL
∂ω

∣∣∣∣
ω′
0

(A.52)

ℜ(ZL)
∣∣∣∣
ω′
0

=
LQiω0

1 + (2Qi
ω−ω0
ω0

)
≃ LQiω0

1 + (2Qi
LCkω

2
0

2 )2
(A.53)
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APPENDIX B

FABRICATION RECIPES

In our field, nobody is ever quite sure exactly which parts of fabrication matter so these

types of sections typically get relegated supplemental materials. Since we go into quite a bit

of detail about junction fabrication, I’ll instead try to organize the leftover processes into

recipe steps.

B.1 Substrate Preparation

A low loss dielectric is imperative for developing low-loss superconducting devices. The

optimal choices so far (primarily for microwave devices, however we assume this translates

to millimeter-wave frequencies as well) are either single-crystal silicon [153] or single-crystal

sapphire (Al2O3)[176, 188? ]. Although other crystals (MgO, SiO2) are also sometimes

used, silicon and sapphire yield superior properties 1. In both cases, since the electric fields

are typically concentrated within a few microns of the surface the surface dielectric losses

play a significant role [188]. To remedy this, we do our best to clean and prepare as pristine

of a surface as possible before starting further fabrication steps.

All devices are fabricated on C-plane (0001) Sapphire wafers with a diameter of 50.8 mm.

The thickness of the wafer depends on the device frequency: for microwave devices, we use

430 µm-thick sapphire, for K-band 330 µm-thick, and for W-band 100 µm-thick (these

are significantly more fragile!). Wafers are cleaned with organic solvents (toluene, acetone,

Methanol, isopropanol, and DI water) in an ultrasonic bath to remove organic contamination.

As received, the wafer surface has typically undergone cutting and polishing, which leaves

behind a surface which while smooth is fairly damaged. To fix this, the wafers are annealed

1. We empirically determined this since our early W band resonators fabricated on quartz had internal
quality factors consistently below 104
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at 1250◦C in air2 for 1.5 Hours: this helps heal the crystal lattice near the surface and

as an added benefit burns off contaminants. Prior to film deposition, wafers undergo a

second clean with organic solvents (toluene, acetone, methanol, isopropanol, and DI water)

in an unltrasonic bath, which helps remove dust and additional organic contaminants that

acuumulated during and after the anneal. Following this, the wafers undergo a 2 minute

clean in 50◦C Nano-Strip™ etch (sulfuric acid and hydrogen peroxide) which helps further

remove some damaged and contaminated surface layers of the sapphire. Finished wafers are

rinsed with high purity DI water, leaving a clean surface.

B.2 Atomic Layer Deposition

Atomic layer deposition is a conformal process, so I do not recommend it for use on chips,

since the deposition method also coats an exponentially thin layer of the partially exposed

bottom edge of the substrate (something something gas and plasma diffusion has a char-

acteristic length). For a chip this means the backside of the device now has a thin (and

extremely lossy) film of metal! No good. But on a wafer we typically throw away the edge

chips anyways! So performing the deposiiton on wafer-scale nearly always gives good results.

B.2.1 Niobium Nitride

Wafers are loaded into an Ultratech Fiji G2 plasma enhanced atomic layer deposition tool for

metallization, where they first undergo a 1 hour bake at 300◦C under vacuum continuously

purged with 5 sccm of argon gas. Chamber walls should match the substrate temperature,

at least up to 300 degrees C. The deposition parameters and machine configuration are

adapted from Ref. [210]. (t-butylimido)tris(diethylamido)-niobium(V) (TBTDEN) is used

as the niobium precursor, which is kept at 100◦C and delivered by a precursor Boost™ system,

2. We tried annealing wafers in nitrogen and this ends up damaging the surface further as oxygen leaves
the crystal

286



which introduces argon gas into the precursor cylinder to promote material transfer of the

low vapor pressure precursor to the wafer [210]. The deposition cycle consists of three 0.5

second pulses of boosted TBTDEN followed by 40 seconds of 300 W plasma consisting of

80 sccm hydrogen and 5 sccm nitrogen. A flow of 5 sccm of nitrogen and 10 sccm of argon

is maintained throughout the deposition process. After deposition the wafer is allowed to

passively cool to 250◦C under vacuum (in the chamber).

B.2.2 Titanium Nitride

See Ref. [204] for more details and microwave TiN characterization. Wafers are also loaded

into an Ultratech Fiji G2 plasma enhanced atomic layer deposition system, where they

are first baked at 270◦C under vacuum continuously purged with 5 sccm of argon gas.

Tetrakis(diethylamido)titanium(IV) (TDMAT) is used as the titanium precursor, and is

delivered in 0.5 second pulses along with argon, followed by a 300 W nitrogen-argon plasma.

The wafer is maintained at 270◦C during and after the deposition until unloading.

B.3 Lithography

Following deposition, wafers (or chips) undergo a brief dehydration bake at > 90◦C in atmo-

sphere for a minute or so before spinning resist. For optical lithography, to avoid defocusing

from wafer deformation, wafers are mounted to a Silicon handle wafer with AZ MiR 703 (or

thicker AZ MiR 1518) photoresist cured at 115◦C. Wafers are then coated with ∼ 1 µm of

positive I-line photoresist AZ MiR 703, and raster exposed with a 375 nm laser Heidleberg

MLA150 Direct Writer. Defocus and dose are optimized for best resolution, typically relying

on lower dose values to ensure small features are not blurred away. If necessary, the wafer is

realigned until rotation is less than 5 mRad to ensure the best resolution grid.

For electron Beam lithography, wafers are first coated with ∼ 200 nm of negative resist

ARN 7520, followed by 40 nm of conductive resist ‘Elektra’ AR PC 5090. This stack leads to
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significant crosslinking and thick residues after plasma etching however. APR 6200(a ZEP

equivalent) is better suited for etching, and useful for resolving sub 100 nm scale features

(such as the nanowires used in the fractal work). This resist is hydrophobic however, so we

instead use a 5–10 nm conductive layer of thermally evaporated gold.

The spun wafers are exposed with a Raith EBPG5000 Plus E-Beam Writer. The con-

ductive coating is removed by either a 60 second DI water quench (for elektra) or with an

acqueous iodine etch in the case of gold. Both optical and negative E-Beam resists are baked

at 110◦C to further harden the resist, and then developed for 60 seconds in AZ MIF 300,

followed by a 60 second quench in DI water. ARP 6200 is developed with amyl acetate,

followed by a quench in IPA.

B.4 Reactive Ion Etching

Metal films are etched in a Plasma-Therm inductively coupled plasma reactive ion etcher.

Etch chemistry, substrate etch depth and etch time have been shown to affect planar res-

onator quality factors [132], in particular due to the formation of cross-linked polymers at

the metal-resist interface after the bulk metal is etched away (see Chapter 7 for details).

For this reason we scale sample etch times to metal thickness, with a fixed over-etch time

of between 10 and 30 seconds to ensure complete metal removal. As a general process for

etching niobium or tantalum-containing films, we use a low-pressure fluorine based ICP etch

chemistry with a plasma consisting of 15 sccm SF6, 40 sccm CHF3, and 10 sccm Ar. ICP

and bias powers are kept at 100 W, and the substrate is maintained at a temperature of

20◦C. However as discussed in detail in Chapter 7 we find that different etch chemistries

yield better results.
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B.5 Resist Removal and Dicing

Following etching, the resist is stripped in 80◦C Remover PG (N-Methyl-2-Pyrrolidone),

which contains a small percentage of surfactant: this assists in mechanically removing un-

dissolved resist chunks. This step also releases the wafer from the Silicon carrier wafer

(though freuqently requires additional coaxing with extensive sonication).

The wafers are then cleaned with organic solvents (acetone, isopropanol, and sometimes

DI water), coated with a ∼ 2 µm protective layer of photoresist, and diced into chips with a

diamond blade. This process can be fairly destructive for thin wafers and small chips, so we

use slow blade travel speeds of 0.5 mm/sThese are stripped of protective resist with 80◦C

Remover PG, cleaned with organic solvents (acetone, isopropanol, and DI water), dried either

on an unpolished Sapphire carrier wafer in atmosphere at 80◦C, or directly with nitrogen

(though this can easily blow away the chips!). Finally the finished chips are mounted with

indium (in various fashions) described in the text.
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APPENDIX C

DISENTANGLING HETERODYNE QUBIT IMAGES

The heterodyne method of generating the millimeter-wave qubit pulse described in Chap-

ter 10 generates a number of signals, making it difficult to determine which pulse image is

exciting the real qubit transition. We show a particularly complex example in Figure C.1

to C.3. By sweeping qubit LO frequency and qubit IF frequency and organizing the results

as a function of lower and upper sideband frequencies as well as the LO frequency allows us

to determine which feature is caused by which signal. Features that remain constant from a

particular sweep suggest the feature is excited by that paticular image.

Figure C.1: Continuous-wave spectroscopy using the millimeter-wave heterodyne qubit pulse
measurement setup, plotted with respect to the qubit upper sideband frequency for increasing
qubit IF pulse frequencies.
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Figure C.2: Continuous-wave spectroscopy using the millimeter-wave heterodyne qubit pulse
measurement setup, plotted with respect to the qubit LO frequency.

Figure C.3: Continuous-wave spectroscopy using the millimeter-wave heterodyne qubit pulse
measurement setup, plotted with respect to the qubit lower sideband frequency for increasing
qubit IF pulse frequencies.
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