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CHAPTER 1

INTRODUCTION

Microbes are variable organisms in a variable natural world. Microbial taxa harbor some of

the most interesting ecological adaptations, from dispensable chromosomes in filamentous

fungi (Galazka and Freitag 2014) to a bacterial toxin that mimics a fungal exudate in order

to highjack the plant immune response (Weiler et al. 2014). The extensive phenotypic and

genetic variation characteristic of microbes has made them difficult to classify into species

(Cohan 2001; Cohan 2002). In fact, traditional attempts at microbial pathogen classification

have tended to use host phenotype rather than characteristics of the pathogen itself (Lelliott

et al. 1966).

The question of how to appropriately define microbial species has inspired a wealth of

literature but no clear solution (Lan and Reeves 2000; Cohan 2001; Fraser et al. 2007; Shapiro

et al. 2016). Ecotype theory is one useful measure for understanding ecological adaptation

of evolving lineages (Cohan 2002). An ecotype consists of the populations occupying a

particular niche, wherein genetic divergence is limited by natural selection which repeatedly

purges variation (Cohan 2002). Predictions for a stable ecotype include 1) that the group

should form a monophyletic clade, 2) that the clade should resemble a star, such that each

member of the ecotype is approximately equally related to each other, and 3) that relatedness

within the ecotype is higher than between the ecotype and other groups (Cohan 2002; Ward

et al. 2008). This concept has been invoked to describe many microbial species, including

communities of extremophiles living in natural thermal geysers (Keller et al. 2023) as well

as the opportunistic plant pathogen P. syringae (Baltrus et al. 2016; Dillon et al. 2019B).

The relationship between pathogens and their plant hosts is often likened to a molecular

‘arms race’, where microbes have arsenals of virulence factors that hosts experience counter-

selection to recognize (Bergelson et al. 2001; Stahl and Bishop 2000; Dawkins and Krebs

1979). Virulence factors can alter a host interaction indirectly by exuding toxins or other
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secondary metabolites (Bender et al. 1999), or directly by injecting effector proteins into the

cytoplasm through the Type III Secretion System (Collmer et al. 2000). Effectors are a well-

studied class of virulence factors that have been considered double-edged swords (Russell et

al. 2015) because they represent both the possibility of subverting a host immune response

and of being recognized by the host and triggering an immune response (Block and Alfano

2011). Effectors are of particular interest to any study of ecological adaptation because a

strain’s unique effector load is thought to be a key determinate of its host range (Dillon et

al. 2019).

Another class of gene that has received a lot of attention are singletons, or strain-specific

genes. Once thought to be sequencing artifacts, it now seems that many singleton genes are

of ecological relevance (Wilson et al. 2005; Fakhar et al. 2023). Theory does not predict the

maintenance of large numbers of neutral alleles (Wolf et al. 2016) at population sizes as large

as those typical of bacteria (Bobay and Ochman 2018), thus the observation of rare genetic

variants in high numbers has led to the speculation that such variants are maintained by

selection in various environments. Plants, for example, likely represent ecologically distinct

environments for their pathogens; that is, the single example we have of the same Tn-library

being grown in multiple hosts found that distinct genes were required for growth on different

hosts (Hellman et al. 2020). However, outside of this example, the extent to which there

exists a host-specific accessory genome remains to be determined.

Study system

P. syringae is ubiquitous on our planet, with a global distribution and the potential to impose

significant yearly costs related to patterns of epidemic growth on crop cultivars (Vanneste

2016; Cameron and Sarojini 2013). As a species, this Gammaproteobacteria emerged long

before land plants, approximately 1.75 Gya, and likely harbors significant adaptations to

aquatic and icy environments (Morris et al. 2013). While most P. syringae isolates are
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from diseased crop plants, an increasing number of genomes from non-crop sources have

been sequenced (Monteil et al. 2013). Traditional classification of the species was pred-

icated on plant pathogenicity phenotypes, including toxin production and plant response.

Prior to 1970, strains were grouped using the LOPAT tests: L, levan production; O, oxi-

dase production; P, pectinolitic activity; A, arginine dihydrolase production; and T, tobacco

hypersensibility (Lelliott et al. 1966). When the LOPAT group 1 strains were collapsed

into the P. syringae species, the problem of what to do with the several remaining strains

that defied LOPAT classification led to the proposal that they be classified as pathovars of

their particular host-of-isolation (Young et al. 1978). Today, P. syringae is classified into

more than 60 pathovars of various crop cultivars (Dillon et al. 2019B). However, pathovars

can grow in hosts that span multiple species (Morris et al. 2019), and attempts to incor-

porate genomic information have often found an incongruence between host association and

phylogeny (Sarkar and Guttman 2004; Baltrus et al. 2011; Baltrus et al. 2016; Dylan et

al. 2019A). Thus, classification of this species is still debated (Baltrus 2016; Gomila et al.

2017).

P. syringae is genetically variable, and contains a large number of genes important for

ecological interactions with other organisms (Dillon et al. 2019A). For example, P. syringae

has a molecular superpower; it produces a protein that nucleates ice at temperatures slightly

below freezing (Lindow 1983). The resultant ice damages plant cells, giving P. syringae a

chance to infect. In addition to ice nucleation, each strain contains an arsenal of virulence

factors that contribute to the infection success of this opportunistic pathogen. For example,

fluorescent Pseudomonads secrete coronatine, which is a jasmonic acid mimic that induces

stomatal opening and disrupts the salicylic acid immune response (Melotto et al. 2006).

Another common approach is for the pathogen to target host signaling during infection;

for example, the secreted effector HopBF1 is a protein kinase that targets the plant Hsp90

chaperone, disabling it from activating immune receptors (Lopez et al. 2019). This variety
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of virulence strategies is not surprising considering that the pathogen is generally thought to

be winning the evolutionary arms race; pathogens have shorter generation times and larger

population sizes than macroorganisms (Kaltz and Shykoff 1998). However, one important

example found maladaptation in strains of P. syringae isolated from the natural host Ara-

bidopsis thaliana, in that isolates tended to be recognized by the plant and induce a host

immune response (Kniskern et al. 2011). These results suggest that A. thaliana is winning

the arms race against P. syringae; thus, it is likely that whether the pathogen wins the arms

race is specific to the organisms being compared.

With this dissertation, I aimed to learn about ecological adaptation in P. syringae using

three approaches. The first approach was entirely computational; I leveraged the existing

genomic data for three sets of P. syringae isolates from either A. thaliana, crop, or non-host

environmental sources to answer questions about their relatedness and the overlap of traits.

I found that the core genomes of the three groups represent distinctly evolving lineages,

indicating the suitability of this selection of ecological groups. Consistent with the findings

of others, I found that host is a poor predictor of pathogen relatedness, indicating that the

genes related to host-specificity are likely found in the variable (not core) genome. I also

found that the A. thaliana group is likely to represent a stable ecotype. Though I found that

the environmental and crop isolates are more closely related to each other than either are to

the A. thaliana strains, I did detect some degree of specialization within the environmental

strains as well. The second approach I took focused on a subset of five P. syringae host-

pathogen pairs, with isolates from crops and A. thaliana. For these strains, I compared

effector repertoires and assayed growth in three in vitro and five in planta environments. I

used effector load to make predictions about the performance of strains in vitro and in planta;

I found that pathogens are demonstrably able to overcome any predicted costs associated

with high effector load in these experiments. The in vitro experiments revealed a strain-wide

preference for one media, KB, and an environment-wide advantage for one strain, NP29.
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However, the best grower for the in planta experiments was a different strain, DC3000. I

also found patterns consistent with local adaptation in two of five cases, in that growth

on the host-of-isolation was significantly higher than growth in all other hosts. In a third

approach I attempted to use TnSeq to detect a host-specific accessory genome, if one exists,

but was unable to generate the sequences required to statically test hypotheses. I summarize

attempts and lessons learned herein.

Together, these studies reflect the dynamic and somewhat unpredictable evolutionary

landscape of P. syringae. I found that effector repertoire is not always a good predictor of

growth, and that host association is not a good predictor of pathogen phylogeny. It seems

a good deal is learned from considering the relationship of P. syringae with A. thaliana;

for example, the strain NP29 exhibits growth patterns consistent with local adaptation

to A. thaliana, but also elicits host recognition immune response (Kniskern et al. 2011).

Considering that this strain, like many isolated from A. thaliana, carries a minimal effector

repertoire, it seems quite likely that the plant has the advantage in the arms race. However,

outside of A. thaliana, host is only minimally (if at all) associated with pathogen phylogeny,

a trend which appears to be universal in core genome trees of this species. The finding of

three out of five infections not exhibiting patterns of local adaptation reflects that patterns

of local adaptation should not be assumed, as is implied by the use of a pathovar system. For

this reason, I believe it makes sense to use a species delineator that is fully sequence based

(Baltrus 2016). Ultimately it will take a more detailed understanding of the evolutionary

history and interactions between hosts and their pathogens to be able to predict the outcome

of infection.
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CHAPTER 2

COMPARATIVE GENETICS OF PSEUDOMONAS SYRINGAE

FROM CROPS, THE ENVIRONMENT, AND THE NATURAL

HOST ARABIDOPSIS THALIANA

2.1 Abstract

The plant-pathogen P. syringae has a wide host range that includes a large number of plant

hosts (Berge et al. 2014). It has been found on multiple occasions that host association is not

a good predictor of pathogen phylogeny (Baltrus et al. 2011; Baltrus et al. 2016; Dillon et

al. 2019B); what, then, makes for an appropriate ecological grouping? I answer this question

using a balanced but non-random subset of strains from each of three sources: crop hosts, the

natural host A. thaliana, and non-host environmental reservoirs. I find evidence that these

three groups are appropriate to compare, in that they show evidence of evolving distinctly

according to the core genome phylogeny. As predicted, I never find that host association is

a good predictor of pathogen phylogeny, which indicates that host-specific adaptations are

more likely to be present in the variable than core genomes. Another central finding based

on several points of evidence is that the A. thaliana-derived isolates are likely to represent

a stable ecotype. Finally, I describe the overlapping vs. group-specific functions, effectors,

virulence factors, and antibiotic resistance genes. I find that effectors delineate by group:

there were few effectors in the A. thaliana-derived group, but a large number shared by

the crop and environmental groups. This was not the case for general virulence factors and

antibiotic resistance genes, which tended to be shared by all groups. These results inform

our understanding of ecological adaptation and gene content evolution in P. syringae.
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2.2 Introduction

P. syringae is an opportunist: a highly adaptable (Spiers et al. 2000) phytopathogen that

maintains a large accessory genome which is still increasing as new isolates are sequenced

(Dillon et al. 2019B). The species has a wide host range that includes many of the crop plants

that we eat, as well as natural, weedy hosts like the model plant A. thaliana. Attempts

to classify stains based on host-association have generally found that one is not a good

predictor of the other. In one example, Sarkar and Guttman (2004) found less than 20% of

genetic variation in the core phylogeny was explained by host association. More recently,

Dillon et al. published the largest pangenome analysis to date of P. syringae (2019A), which

demonstrated little congruence of host association with pathogen phylogeny using the largest

sample possible. Thus, it may be that the host is only one of a large number of ecological

forces driving pathogen evolution, rather than a central driver.

One attempt to categorize genetically similar microbial species with shared ecology is

ecotype theory (Cohan 2002; Ward et al. 2008). An aim of ecotype theory is to allow

for systematic avoidance of grouping ecologically distinct populations into the same species

(Cohan 2006). An ecotype consists of the genotypes adapted to a particular niche (Cohan

2002). Ecotypes should delineate based on true ecological differences, thus the source of

strains informs what comprises an appropriate grouping. For example, P. syringae has a

long evolutionary history of survival in a plant-free world (Morris et al. 2013) but at times

acts as an opportunistic phytopathogen. It has been found that some environmental isolates

are closely related, and in fact in the same phylogroup as those isolated from crop hosts

(Monteil et al. 2013). Thus, it appears unlikely that strains from environmental sources

are ecologically distinct from plant pathogens. I do expect some differences; as they must

survive in a stochastic natural environment, I predict that environmental strains should be

specifically enriched for functions related to stress from harsh conditions. Additionally, envi-

ronmental strains have not necessarily had to contend with a host immune response, which
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includes two phases of defensive action that exerts a strong selective pressure in planta (Jones

and Dangl 2006). Survival in a host environment is thus likely to require virulence factors,

defined as any molecular product that is useful in establishing or promoting a host infection

or microbe-microbe interaction (Barrett et al. 2009). These include structural proteins lo-

cated in the cell membrane that are responsible for host recognition and secreted secondary

metabolites, like toxins. For example, the toxin Coronatine is a mimic of a plant stress

hormone, methyl-jasmonate, and has been shown to modulate virulence in some isolates of

P. syringae (Bender et al. 1999). Since virulence factors can also drive microbe-microbe

interactions, either directly (reviewed in Trunk et al. 2019; Snelders et al.2020) or indi-

rectly by altering the local environment (Barrett et al. 2009), they are likely not limited to

host-associated strains.

Secreted effectors in particular are a well-studied type of virulence factor, the compli-

ment of which can determine host range of a particular pathogen (Dillon et al. 2019A). A

recent study gathered sequences from all known Type III P. syringae effectors (Dillon et al.

2019A), identifying 14,613 sequences spanning 70 gene families and 523 alleles (the PsyTec

Compendium), and asked whether each allele was recognized by A. thaliana ecotype Col-0,

a standard genotype that is considered representative of the species. They found that a

majority of effector alleles (more than 70%) were recognized by A. thaliana, suggesting the

presence of a selective force within the A. thaliana environment on P. syringae for the loss

of effectors. In fact, it is known that A. thaliana-derived strains of P. syringae contain few

effectors relative to those derived from crop hosts (Karasov et al. 2017). Still, a few secreted

effectors are conserved species-wide as part of the core genome of P. syringae (Dillon et al.

2019B), indicating the historical importance of effectors for survival of this species.

Herein I explore a balanced, non-random subset of P. syringae strains isolated from (i)

environmental sources, (ii) the natural host A. thaliana, and (iii) crop hosts, all from the

same geographic region, and explore the characteristics of the core- and pan-genomes, ev-
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idence of selection in select virulence factors, and the functions that are enriched amongst

isolates from different environments. Given previous findings of 1) close relatedness between

crop and environmentally-derived isolates (Monteil et al. 2013), and 2) lower singleton load

for A. thaliana-derived than crop-derived isolates (Karasov et a. 2017), I expect the crop

and environmental groups to be more similar to each other than either group is to the A.

thaliana-derived isolates, and that the crop and A. thaliana-derived isolates represent dis-

tinct ecological groupings, such that there should be marked differences in gene content

between the two plant-associated groups. Since virulence factors can be useful for microbe-

microbe interactions, which are likely to be important for all P. syringae isolates, I do not

predict the same differences in presence of virulence factors. Similarly, I expect antibiotic re-

sistance genes should be useful for all life histories and do not expect a signature of ecological

differentiation in antibiotic resistance genes.

2.3 Methods

2.3.1 Genome selection and quality control

The vast majority of strains with published genomes from environmental sources were iso-

lated in France, so I chose to limit this analysis to strains isolated from France to avoid

biases introduced by disparate localities. In order to cover a breadth of strain sources, I

chose three groups of isolates: a crop set comprised of 24 isolates from various crop cultivars,

an Arabidopsis-derived set (Bergelson and Roux; unpublished data) of 25 isolates from the

natural, weedy host, and an environmental set (Monteil et al. 2013) of 25 isolates derived

from non-host sources (Table 2.1). These are herein referred to as ‘crop’, ‘At’, and ‘env’,

respectively. It is important to note that these groups do not represent true random samples;

the crop and env groups were chosen based on covering a range of sources while spanning

multiple phylogroups, whereas the At group was isolated from a single host species and only
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represents phylogroup seven. To my knowledge this is the first pangenome analysis based

on comparing P. syringae genomes from these groups.

Genomes used in this study were initially in various stages of completion; the crop and

At-derived genomes were generally already high-quality assemblies, but many of the envi-

ronmental genomes were available only as Sequencing Read Archive files that needed to

be assembled. I downloaded the SRAs from NCBI; if there were multiple sequencing runs

available, I concatenated those reads prior to assembly. I checked initial quality of the reads

using multiqc (Ewels et al. 2016); all samples had adapter contamination, so I used bbduk

(Bushnell 2014) to remove adapters and confirmed success of the trimming with multiqc. I

performed de novo assembly with SPAdes (Bankevich et al. 2012), with standard settings

and the flag “–phredoffset -33”. I performed final quality control with QUAST (Gurevich

et al. 2013) to confirm that, for strains from At and crops, the quality of these assemblies

was comparable to the previously assembled genomes. All genomes had greater than 98%

completion and less than 5% redundancy, and were reannotated as part of my pipeline for

consistency. Genome sizes ranged from 5.7 Mbp to 6.4 Mbp, with the number of genes

ranging from 5053 to 6230, consistent with P. syringae genomes used in published studies

(Monteil et al. 2016; Karasov et al. 2017).

2.3.2 Pangenome analysis with anvi’o

To process FASTA files for each of the 54 assemblies and perform a pangenome analysis,

I used anvi’o v.7.1. (Eren et al. 2015). For all analyses, I filtered out contigs with less

than 1000 bp. My pipeline was, in brief: (1) simplify FASTA definition lines, (2) generate

anvi’o contig databases for each genome, (3) identify open reading frames using Prodigal

(Hyatt et al. 2010) v2.60X, (4) annotate genes with functions using the NCBI’s Clusters

of Orthologous Groups (COG) (Tatusov et al. 1997), (5) identify single copy core genes

using HMMER v3.2.1X (Eddy 2008) and an included collection of HMM profiles spanning
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Table 2.1: Strains used in this study

Source Group Strain Length GC Genes Gene clusters Singletons

At At BACCB1 5956328 0.5934181 5256 5066 33

At At BELLA1 6131582 0.5917228 5440 5201 0

At At BULAA1 6095915 0.5933493 5412 5184 71

At At CARLA2 5958805 0.5934361 5280 5074 57

At At CASTIA1 6109650 0.5918044 5443 5214 55

At At CERNB2 5933176 0.5936613 5280 5069 36

At At JACOC2 6085767 0.5931229 5410 5198 122

At At LABAA1 5963389 0.5933328 5297 5069 39

At At LABAC2 6205186 0.5911724 5527 5297 108

At At LABASB1 5983879 0.5923683 5291 5087 80

At At LACRC1 6224453 0.5921640 5502 5207 50

At At LANTC1 5979876 0.5932215 5315 5106 67

At At LANTC2 6052562 0.5925558 5387 5174 59

At At LAUZA1 6054542 0.5926389 5407 5182 76

At At LUZEE6 6135905 0.5925885 5433 5218 86

At At MAZAA1 5917839 0.5926844 5275 5052 46

At At MERVA2 6106471 0.5901238 5453 5231 110

At At PREIA1 6054887 0.5921972 5363 5170 53

At At RAYRB2 6013490 0.5931921 5307 5096 43

At At RAYRB3 6157987 0.5921425 5541 5267 95

At At REALA1 6130861 0.5917210 5442 5202 1

At At SAUBA1 6199415 0.5908778 5506 5238 59

At At SAUBA2 6042794 0.5925673 5394 5204 69

At At SIMOA1 5975575 0.5925974 5287 5088 60

At At VILLEMA1 6008606 0.5927132 5316 5095 55

apricot crop 41a 5983849 0.5911207 5140 4965 79

beet crop ICMP11935 5984734 0.5874234 6230 5311 249

cantaloupe crop CC440 5933410 0.5903929 5086 4911 104

cantaloupe crop CC457 5979293 0.5899748 5125 4912 11

cantaloupe crop CC94 6149858 0.5925856 5696 5136 121

celery crop ICMP11947 5826748 0.5936028 5075 4865 87

kidney bean crop CFBP13578 6147017 0.5917576 5510 5270 124

kidney bean crop CFBP8160 6099296 0.5875884 5436 5108 106

kidney bean crop CFBP8779 6140205 0.6210577 5566 5314 167

kidney bean crop CFPB8161 6245039 0.5872357 5552 5227 21

kiwifruit crop CFBP3846 6229862 0.5864898 6027 5220 136

kiwifruit crop CFBP8180 6261671 0.5868877 5592 5252 40

kiwifruit crop ICMP13102 5954747 0.5932086 5239 4972 68

leek crop ICMP8960 6065267 0.5762752 5719 5275 95

leek crop ICMP8961 5827909 0.5776667 5522 5083 47

lemon crop ICMP4917 5928691 0.5918071 5366 5067 126

oleander crop ICMP16944 5801705 0.5814913 5517 5109 87

polyanthus crop ICMP18417 6358112 0.5860426 5801 5337 214

pumpkin crop P12832 5909338 0.5906652 5094 4918 18

pumpkin crop P77 6133764 0.5914094 5345 5122 19

pumpkin crop P89 6222478 0.5908248 5474 5238 57

radish crop CFBP13571 6026070 0.6223839 5421 5186 96

radish crop CFBP13572 6020391 0.5915216 5374 5162 63

soybean crop ICMP5027 5926573 0.5792360 5873 5324 372

epilithic biofilm env SZB0006 5676844 0.5887377 5252 4911 59

epilithic biofilm env SZB0065 5741751 0.5881180 5444 4986 56

irrigation water env CMW0021 5772452 0.5880607 5540 5039 55

irrigation water env GAW0231 5840762 0.5878986 5377 5091 64

lake water env CC1543 5716914 0.5920264 5205 4925 87

lake water env CC1544 5858806 0.5908691 5281 5052 122

leaf litter env CCV0502 5921468 0.5864232 5398 5129 73

rain env CST0002 5900870 0.5853555 5605 5152 47

rain env CST0009 5853848 0.5873849 5342 5099 68

rain env CST0076 5807499 0.5865578 5310 5037 39

rain env CST0094 5862602 0.5860812 5345 5105 36

rain env LYR0002 6051922 0.5805665 5767 5232 122

river water env CMW0036 5700152 0.5894355 5137 4918 60

river water env UB246 6088488 0.5711407 5585 5387 193

river water env UB303 6141482 0.5918656 5318 5043 78

snow env CC1557 5758024 0.5855686 5053 4792 218

snow env CC1559 5842720 0.5886823 5289 5017 115

snowpack env CCV0450 5885620 0.5876735 5319 5095 97

snowpack env CCV0611 5733670 0.5885114 5163 4949 52

snowpack env CSZ0137 6298766 0.5700948 5617 5416 157

snowpack env CSZ0279 5754966 0.5885847 5217 4986 46

snowpack env CSZ0324 6389627 0.5704835 5722 5505 159

snowpack env CSZ0720 5746602 0.5891179 5197 4972 34

stream water env CCE0118 6223941 0.5705909 5606 5386 217

stream water env CSZ0259 5767871 0.5886453 5517 5024 92
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bacteria and archaea, (6) build an anvi’o genomes storage database, and finally (7) build

the pangenome. Additional anvi’o scripts were used for particular analyses: I estimated

completion of the genomes using the script anvi-estimate-genome-completeness. I obtained

statistics on contig quality using the script anvi-display-contigs-stats. I generated a summary

file of the pangenome in order to extract gene frequencies using the script anvi-summarize. I

employed fastANI (Jain et al. 2018) to calculate Average Nucleotide Identity (ANI) for each

group of genomes using the script anvi-compute-genome-similarity. ANI is a calculation of

the average nucleotide identity of all orthologous genes common to any two genomes (Jain et

al. 2018). I estimated functional enrichment for each group based on COG annotations using

the script anvi-compute-functional-enrichment-in-pan. This script works by finding the COG

functional annotations that appear most frequently in a gene cluster, then fitting a logistic

regression to the occurrence of each function using group as the explanatory variable (Shaiber

et al. 2020). The equality of proportions across group affiliation is tested using a Rao score

test, which provides an enrichment score (test statistic) and p-value, which is then converted

to a q-value to account for multiple testing (Shaiber et al. 2020). Finally, I extracted

sequences for accessory, single copy core, and singleton genomes using the script anvi-get-

sequences-for-gene-clusters. I chose to use a hard cut-off when defining core (found in all)

vs. accessory (found in some) genomes in order to make the comparisons as straightforward

as possible, since core genes are more likely to represent vertically inherited genes than the

accessory genome (Lan and Reeves 2000).

2.3.3 ANI of A. thaliana-derived isolates from France and the Midwest USA

Midwest strains used for this comparison were sequenced by Karasov et al. (2017). These

genomes are P. syringae isolated from A. thaliana growing in agricultural fields in Indiana

and Michigan between 2000 and 2014 and are publicly available. I prepared the genome

FASTA files using the anvi’o pipeline described above, and used fastANI to calculate ANI
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with the script anvi-compute-genome-similarity. I parsed the results with custom R scripts.

2.3.4 Additional genomic analyses

Computational analyses were done in R v.4.2.2 (R Core Team 2022). Identification of viru-

lence factors and antibiotic resistance genes were done using ABRicate version 0.8.13 (See-

mann 2023) with databases VFDB (Chen et al. 2016) and MEGAres (Bonnin et al. 2023) for

virulence factor and antibiotic resistance gene detection, respectively. Identification of Type

III secreted effectors required rebuilding the PsyTec database (LaFlamme et al. 2020), which

is published as a supplementary file to the original paper. With Blast+ for the command line

(Camacho et al. 2009), I used the commands makeblastdb to rebuild the published sequence

database and blastn to blast my genomes against it. I parsed the output with custom R

scripts, and limited my analyses to matches with at least a 99% identity over 90% of the

query sequence. To generate phylogenies, I first used trimAl (Capella-Gutierrez et al. 2009)

to remove nucleotide positions that were gap characters in more than half of the sequences.

I then used IQ-TREE (Nguyen et al. 2015) with the general matrix model ‘WAG’ to infer

a maximum likelihood tree with 1,000 bootstraps. Trees were annotated and formatted in

iTOL (Letunic et al. 2021). For selection analyses, DNA sequences were extracted from the

pangenome using the anvi’o script anvi-summarize and then aligned with muscle v. 3.8.1551

(Edgar 2004). Alignments were deduplicated using the bbmap script dedupe.sh (Bushnell

2014). GC content was calculated using SeqKit (Shen et al. 2016), and Tajima’s D and was

calculated using the R package pegas (Paradis 2010).
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2.4 Results

2.4.1 Relatedness of the experimental system

In order to explore the evolutionary relationships in my experimental system, I generated

a phylogeny using the 1,471 single copy core genes found in all isolates (Fig. 2.1). I found

that there was general agreement between my tree and previous representations of the P.

syringae phylogeny (e.g., Dillon et al. 2019B); canonical phylogroups 1-4, 7, 10, and 13 are

represented (Fig. 2.1). One cluster of two crop isolates (CFBP8779 and CFBP13571) form

a monophyletic clade that likely corresponds to an early-branching, secondary phylogroup

(8, 9, or 11), but I was unable to identify which as the representative genomes are currently

unavailable on NCBI. Another cluster of four env isolates (CCE0118, CSZ0137, XCS0324,

and UB246) represent phylogroup 13, and fifteen env isolates clustered together with crop

isolate CFBP3846 to form a monophyletic group representing phylogroup 1A. The remain-

ing genomes from the env group are mixed with the crop group and distributed between

phylogroups 2 and 3c.

There were two central results from Fig. 2.1. One is that the At group was the most

completely delineated, with all isolates clustered together in a clade representing phylogroup

7 that also contains two crop isolates (CFBP13572 and CFBP13578). In fact, the At group

appears as a ‘star’ clade with a single ancestral node, such that members of this group

are approximately equally related to each other (Cohan 2002). These results agree with

my predictions that the At group would have the greatest within-group similarity, whereas

the env and crop clades would share a greater degree of similarity to each other. But it is

important to note that even the most congruous cluster contained two isolates from different

crops (Fig. 2.1). Phylogroup 1A is the second most congruous grouping: 56% (14/25) of the

env isolates cluster together while mostly excluding crop isolates. This indicates that while

some crop and env isolates are close relatives, consistent with predictions based on previous
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Figure 2.1: Single copy gene tree. Maximum likelihood phylogeny built with 10,000
bootstraps. Colors of the nodes and strain names correspond to phylogroup. Rings show

group and source as indicated in the legend.
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findings (Monteil et al. 2013), there is another group of environmental isolates more closely

related to each other than to crop isolates. Thus, though the env and crop groups overlap in

some cases, there is still some signal of within-group separation for the env isolates, which

is not something I had predicted.

The other central result from Fig. 2.1. is that, though it is tempting to speculate that

strain relatedness should resolve in a pattern consistent with host association, this is generally

not what I see. Instead, each phylogroup tends to contain strains from more than one source

(Fig. 2.1). For example, isolates from rain are found in phylogroups 1A and 3, and isolates

from pumpkin are found in phylogroups 2A and 2B. One exception is phylogroup 4 which

is represented only by two isolates from leek (Fig. 2.1). This finding generally agrees with

the results of others (Dillon et al. 2019B; Baltrus et al. 2011), and suggests that genes

that are responsible for host-specific adaptations are not in the core genome, but instead are

members of the variable genome.

2.4.2 Comparisons of ANI

To estimate sequence similarity directly, I compared ANI within and between groups (Table

2.2). Consistent with all At isolates being from a single clade (Fig. 2.1), the At group had

the highest within-group ANI (0.97). In contrast, the crop and env groups both had within-

group ANI close to 0.90 (Table 2.2). This is relatively low for strains of the same species, as

exemplified by a 2004 work with Escherichia coli that found ANI > 94% was a species-level

cut-off determined by both DNA-DNA reassociation and by their own empirical comparisons

of 9 genomes (Konstantinidis and Tiedje 2004). The At group ANI was so much higher than

either the env or crop groups’ that I reasoned it may be more similar to other, allopatric

At-derived groups. Therefore, I re-calculated ANI of the original 25 French A. thaliana-

derived isolates when combined with another group of 16 A. thaliana-derived isolates from

the Midwest United States (Karasov et al. 2017). I first checked the within group ANI of

16



Table 2.2: ANI within and between groups

Comparison ANI
At 0.973
crop 0.885
env 0.911
At & crop 0.849
Crop & env 0.872
At & env 0.837
Michigan At 0.955
At & Michigan At 0.966

1

the Midwest isolates, which was 0.955, similar to the French At group. I next found that

the two groups together had an average ANI of 0.966, such that the French A. thaliana-

derived group had a more similar nucleotide complement to isolates from an allopatric A.

thaliana population than to either group of crop- or environmentally-derived strains used in

this study.

2.4.3 Characteristics of the core and variable genomes

The pangenome of 74 genomes consisted of 400,532 genes divided into 20,454 gene clusters.

Of these, 2,743 (13.4%) gene clusters were core, shared by all isolates, leaving 17,711 (86.6%)

variable gene clusters and 6,383 (31.2%) singletons, found in only a single isolate. I found

that, on average, nearly 50% of a strain’s gene clusters were variable (At: 2417/ 5160 =

46.8%; env: 2347/5090 = 46.1%; and crop: 2394/5137 = 46.6%). This is similar to a

previous estimate obtained by 19 pathotype genomes from various crop hosts (43%: Baltrus

et al. 2011). The similarity of this percentage across groups reveals that the number of

variable genes was consistent despite differences in habitat.

However, there were significant differences in the numbers of singletons per strain from

a given group. Though all groups displayed an enrichment of rare and singleton genes (Fig.

2A), the crop and env groups had significantly more singletons per strain than the At group

(Fig. 2B; Welch two sample t-tests, p < 0.0002 in both cases). This is consistent with the
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findings of Karasov et al. (2017), who detected a significant enrichment of singletons in

strains derived from crop hosts compared to strains derived from A. thaliana isolated in the

midwestern United States. There was no difference in the number of singletons per strain

for the crop and env groups (Welch two sample t-test, p > 0.05), revealing a similarity in

their genome compositions.

The core genomes of strains derived from At (N = 4438 core genes) was larger than

that from env strains (N = 3255 core genes), which was larger than the core genome from

strains derived from crops (N = 2947 core genes). These estimates are in agreeance with

the patterns of clustering seen in Fig. 2.1 and of ANI in Table 2.2, such that the At-derived

strains are the most similar within a group and thus had the greatest amount of overlap in

gene content. Additionally, I sought to explore the genes essential for survival by comparing

the identity of the core genomes for each group to the core genome of the whole pangenome.

I found that 40-60% of each group’s core genome was conserved in the core of the entire

pangenome (39% for the At group, 54% for the env group, and 59% for the crop group).

This is also reflective of greater relative divergence of the At group in that less than half of

the gene clusters in the At core are present in the whole pangenome core. In contrast, for

the env and crop groups, a majority of within-group core genes are conserved in the whole

pangenome’s core genome.

2.4.4 Selection in the pangenome

Elevated AT (relative to GC) nucleotide content, which comes from a mutational bias toward

AT-rich sequences (Hershberg and Petrov 2010), is believed to be a signature of reduced pu-

rifying selection. In fact, the GC content of the core (59.9%) is significantly greater than

the GC content of the singletons (50.7%) as well as the entire accessory genome considered

together (57.6%; Welch two-sample t-tests each with p < 2.2e-16), consistent with the ex-

pectation of greater purifying selection on the core. These findings are consistent with the
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results of Bohlin et al. (2017) who compared the GC content of core and accessory genomes

for an array of organisms, including P. aeruginosa, and found that the accessory genomes

had significantly lower GC content than the core genes. Further evidence of purifying se-

lection acting on the core genome comes from my observation that GC content in the core

genomes of the three groups are approximately the same (61% for the At and env group and

60% for the crop group).

To further examine the action of selection, I calculated Tajima’s D for a subset of genes

in the core and accessory genomes (Tajima 1989). Tajima’s D is a test of neutral evolution

that compares the number of pairwise differences and segregating sites; Tajima’s D equals

zero in cases of fully neutral evolution, whereas values significantly above zero are consistent

with balancing selection, and values below zero are consistent with a selective sweep. Note,

however that demographic processes can also impact Tajima’s D, with high values consistent

with population contraction and low values consistent with population expansion. For this

exploration, I chose a set of 20 genes that are well-represented in all three groups of isolates,

five with housekeeping functions and 15 with virulence functions (Table 2.3). Half of the 20

genes revealed evidence of non-neutral evolution (with significant p-values after Bonferroni

correction for multiple comparisons); in all of these cases, Tajima’s D was less than zero

(Table 2.3) and thus consistent with either recent selective sweeps having removed diversity

from the population or a population expansion. Two of the genes with significant Tajima’s D

were housekeeping genes GapA and GyrB, plus three core and five variable virulence factors

(Table 2.3).

For the same set of 20 genes I consider whether the At, core, and env groups represent

statistically significant ecological groups using unweighted Unifrac distance. Unifrac is a

phylogenetic method by which to measure differences in communities as the fraction of

the branch length of the tree that leads to one environment or the other (Lozupone and

Knight 2005). I performed this analysis for the SCG core genome first, and found that the
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Table 2.3: Tajima’s D for a subset of 20 genes
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three groups represent distinct communities according to Unifrac (Table 2.4). This finding

provides confidence that I have chosen appropriate ecological groupings for my strains. In

fact, the three groups represented significantly different communities for the majority of

genes compared (Table 2.4).

Two representative virulence factors that had significantly negative Tajima’s D value

(that is, they exhibit evidence of evolving under purifying selection) were Hcp and Tra5. For

Hcp, the results of the Unifrac tests indicated that the At, crop, and env groups represented

distinct communities. This was not the case for Tra5, for which the results of the Unifrac

test indicated that the three groups were not evolving distinctly. Hcp is found in all isolates,

Tra5 is found in only 56 of the 74 genomes, which is another indication of the differential

effects of horizontal gene transfer and/or selection on these two genes. The individual gene

trees reflect different evolutionary histories than the core gene tree; for example, the At

group is not a monophyletic group in either single gene tree (Fig. 2.2). Additionally, no

tree displays a perfect delineation between environmental and crop clusters; instead I see

consistent overlap between a portion of crop and environmental strains. For example, in

the Hcp tree, there is a group of environmentally-derived isolates that clusters with the At

phylogroup seven isolates (CC1559, CSZ0279, and CCV0502), and in the Tra5 tree, there

are five At group isolates (LABASB1, MAZAA1, BELLA1, REALA1, LUZEE6) that cluster

with the majority of crop and env group genomes (Fig. 2.2). Thus, in these examples of the

evolutionary histories of genes in this system I find imperfect phylogenetic delineation of the

env and crop groups. Additionally, I found evidence of lateral transfer and selection among

the three groups, such that in both the Hcp and Tra5 trees, at least some At-derived genes

cluster with the crop and env groups as opposed to within a larger At group (Fig 2.2).

Additionally, for both trees I again find that host association does not resolve in patterns

congruent with strain relatedness; rather, host association appears random with respect to

placement on either the Hcp or Tra5 trees (Fig. 2.2). This is similar to what I found for the
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Figure 2.2: Maximum likelihood phylogenies for Hcp and Tra5.

single copy core gene tree (Fig. 2.1), indicating a true failing of host association to predict

genetic relatedness. Thus, in these examples of the evolutionary histories of genes in this

system I find some phylogenetic delineation of the env and crop groups, despite predicting

that they would overlap. Additionally, I found evidence of lateral transfer and selection

among the three groups, such that in both the Hcp and Tra5 trees, at least some At-derived

genes cluster with the crop and env groups as opposed to within a larger At group (Fig 2.2).

I also again find that host association is an overall poor predictor of genetic relatedness, as

it does not resolve in patterns similar to the genetic delineations found in any of the three

trees examined.
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2.4.5 Functional categories significantly enriched per each group

Having considered the relatedness of the At, crop, and env groups, I next asked what genes are

significantly enriched across groups. Those enriched in all groups should be related to general

housekeeping, cell viability, and ecological interactions, whereas those enriched in specific

groups are more likely to reflect adaptation to source environments. For example, multidrug

resistance genes are likely important for most P. syringae life histories, but functions related

to pathogenicity are more likely to play a role in host environments. My phylogenetic

analysis indicated that the env and crop groups are not ecologically distinct, thus I expect

that they share more gene content than either does with the At group. This means that at

least some genes useful for host interactions will be enriched in the env group, though those

isolates have not necessarily been selected in planta. The At group is the relative outlier

in that it has fewer singletons than the other groups (Fig. 2.3.B), so I expect that it is

unlikely to contain a wealth of effectors. Below I examine the COG functional categories

of genes significantly enriched across groups, and then I focus on the presence of known

virulence factors, secreted effectors, and antibiotic resistance genes across groups. I focus

on the categories or genes shared by all and specific to the individual groups, rather than

pairwise comparisons between groups, in the hopes of identifying ecological adaptations to

the particular source environments.

In addition to genes in the unknown or predicted functional categories, the categories

enriched in all groups were G: carbohydrate transport and metabolism, I: lipid transport

and metabolism, Q: secondary metabolite biosynthesis, T: Signal transduction mechanisms,

and V: defense mechanisms. Several of these genes were components of the Type II (PulJ

and PulK) and Type IV (PilP, PilY, and PilZ) secretion systems, and one, CheC, is known

to regulate the cell motion via a flagellar switch (Park et al. 2004). Aside from those shared

across groups, there were two categories of genes specific to the crop group; F: nucleotide

transport and metabolism and X: Mobilome: prophages, transposons (Fig. 2.4). Category
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Figure 2.3: A. Frequency of genes in the pangenome. B. Median singletons per genome.

F was represented by a single gene, GDA1, which is a nucleoside diphosphatase conserved

across plant-pathogenic microbes (Studholme et al. 2005). Category X was represented

by two phage-related genes: AlpA, which has been shown to regulate prophage excision

and pathogenicity in P. putida (Petitjean et al. 2017), and a hypothetical phage repressor

protein. Finally, there were four categories of genes enriched only in the At group, including

A: RNA processing and modification, J: Translation, M: Cell membrane biogenesis, and O:

Posttranslational modification (Fig. 2.4). Two of these are related to Type I (aprE and

a second serine protease) and two to Type II (PulL and PulM) secretion structure and

function. Additionally, the At group contained CapA, a gene that guards against cold stress

(Craig et al. 2021), and yidD, a component of a multi-gene system (Oxa1/YidC/SpoIIIJ)

that inserts proteins into microbial and host cells (Yi and Dalbey 2009). The fact that these

genes are present only in the A. thaliana-derived isolates indicates the specificity of their

adaptive benefit; I expect that they are either directly beneficial in A. thaliana infections,
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such as perhaps YidD, or benefit interactions with the A. thaliana microbiome, like those

involved in Type II secretion.

2.4.6 Presence of virulence factors

Having considered COG categories enriched per group, I focus next specifically on the pres-

ence of virulence factors, the subset of genes known to benefit host infections or microbe-

microbe interactions. I found that 21 virulence factors were present in at least one isolate in

all groups (Fig. 2.5). These fall into five categories: 1) flagellar and 2) pili genes related to

cell motility, 3) genes involved in the type VI secretion system (T6SS), and genes involved

in the synthesis of 4) alginate and 5) pyoverdine. The eight (38%) genes involved in flagellar

synthesis include several genes that encode for structural proteins, including FlgG which

encodes for a distal rod protein (Bouteiller et al. 2021), FlgH and FlgI which encode for L-

and D- ring proteins respectively, FliP which encodes an export gate protein (Bouteiller et

al. 2021), and FliI and FliM which encode for formation of the flagellar motor and switch

(Dasgupta et al. 2000). The gene fleN regulates flagella number (Dasgupta et al. 2000). Ad-

ditionally, four (19%) virulence factors shared by all groups were involved in T6SS structure

and function. These include Hcp1, an extracellular component of the T6SS (Haapalainen et

al. 2012), and ClpV1, which is an adenosine triphosphatase that provides essential energy

for secretion of the Hcp1 protein (Mougous et al. 2006). In P. aeruginosa, it has been shown

that HsiB1/VipA and hsiC1/vipB form a stable complex together, making a tail-like sheath

that contracts to push the tube and spike of the T6SS through the bacterial envelope (Lossi

et al. 2013). There were also three (14%) genes involved in alginate synthesis, AlgA, Alg8,

and AlgU. Alg8 is an alginate polymerase (Oglesby et al. 2008) and AlgU is a regulator

of alginate synthesis that has been shown to regulate other pathogenesis genes in DC3000

(Markel et al. 2016). Another three (14%) genes, MbtH-like, PvdH, and PvdS, are each

required for expression of pyoverdine synthesis (Lamont and Martin 2003; Vandenende et
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Figure 2.4: Significantly enriched functional categories (A) Venn diagram showing overlap
of categories. (B) Categories per group.
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al. 2004; Drake et al. 2007). Pyoverdine is a siderophore that has been shown to contribute

to virulence of P. syringae in tobacco (Taguchi et al. 2010). Finally, three (14%) genes are

related to the type IV pilus, including PilG which is involved in pilus production (Darzins

1994), PilH which is involved in twitching motility (Darzins 1994), and PilT which encodes

for the cytoplasmic motor complex (Tammam et al. 2013). These virulence factors reflect

functions conserved across ecological sources and which are likely to be important for P.

syringae with potentially divergent life histories.

The remaining virulence factors were either only present in the crop group or shared

with the crop group (Fig. 2.5). Neither the At nor the env group had any specific virulence

factors, but I found five virulence factors whose presence was specific to the crop group:

AlgR, DotUI, FlhA, HsiG1, and WaaF. AlgR has been shown to be a response regulator

of alginate synthesis (Peñaloza-Vázquez et al. 2004). WaaF is a known glycosyltransferase

(Kievit and Lam 1997) found on the outer core of the cell-surface lipopolysaccharide (Lam

et al. 2011). FlhA is a component of the flagellum assembly apparatus that is required for

cell motility in P. aeruginosa (Fleiszig et al. 2001). DotU1 and HsiG1 both encode T3SS-

associated proteins; in P. aeruginosa, dotU1 is involved in forming a cell envelope platform

and HsiG1 is part of a complex that forms a bacteriophage-like tail (Lossi et al. 2013).

Interestingly, each of these virulence factors is localized to the cell membrane, suggesting a

role for ecological interactions in shaping their selective environment.

2.4.7 Presence of effectors

Next, I focused on the presence of secreted effectors, which are a key component of in planta

infection. I found a ‘core’ group of eight secreted effectors present in at least one strain

in all groups, including AvrE, AvrPto, HopA, HopAG, HopAH, HopB, HopM, and HopO

(Fig. 2.6). In fact, AvrE and HopB are part of the larger P. syringae core genome (Dillon

et al. 2019B). HopA appears to be recently acquired by P. syringae (Baltrus et al. 2011)
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Figure 2.5: Presence of general virulence factors. (A.) Venn diagram showing overlap of
virulence factors. (B.) Virulence factor repertoires.
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Figure 2.6: Presence of secreted effectors. (A) Venn diagram showing overlap of categories.
(B) Categories per group.

and has been shown to suppress PTI in many plant species (Dahale et al. 2021). HopAG is

disrupted by a transposon in DC3000 (Vinatzer et al. 2005) and has been convergently lost

in at least 3 pathovar lachrymans strains, suggesting it is recognized by cucumber (Baltrus

et al. 2011). HopB is part of the conserved exchangeable effector locus (Xin et al. 2018)

which contains effectors that contribute to virulence on many plants including tobacco and

A. thaliana (Alfano et al. 2000). Thus, a number of secreted effectors are present in strains

derived from both host and non-host environments.

One striking result was that the At group demonstrated a relative dearth of effectors,

having only the core set shared by all groups, and none shared only with either the crop
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or env isolates. One of two secreted effectors found only in the three isolates from aquatic

sources (rain and snow), HopU (Fig. 2.6), has been shown to target several plant proteins

(Nicaise et al. 2013). Thus, the environmentally-derived isolates contain genes representing

functions that determine infection, even though these isolates were not from plant sources.

The remainder of effectors detected were shared by the crop and env isolates, which shared

more secreted effectors than were found in either group alone (Fig 2.5). These are numerous

(39), and many have been shown to interact with plant hosts. For example, AvrRpm,

HopAA, HopB, HopBA, HopF, HopO, and HopZ have been shown to elicit Effector Triggered

Immunity (ETI) in A. thaliana (Laflamme et al. 2020), in addition to HopAS (McAtee et

al. 2018). Evidence of extensive ETI in A. thaliana is in accordance with my finding of few

effectors in genomes from that source, in that host recognition and an ETI response selects

against the presence of the effector.

Finally, I consider the presence of antibiotic resistance genes across group of isolates. Of

the five antibiotic resistance genes identified with MEGAres (Fig. 2.7), the three shared

by all groups are associated with multi-drug resistance. Efflux pumps are a key part of

bacterial defense against harmful chemicals often encountered in the environment (Tian et

al. 2010). Resistance-nodulation-division (RNDs) systems are efflux pumps that are typically

associated with resistance to multiple antimicrobial compounds, and have been shown to be

involved in regulation of the T3SS in P. aeruginosa (Linares et al. 2005). The multidrug

resistance loci MexE and MexF are part of a multidrug efflux pump transporter complex

that regulates quorum-sensing molecules (Sawada et al. 2018). Finally, EmhC is part of

a RND system that confers resistance to tetracycline among other antibiotics (Tian et al.

2010), which is a common component of agricultural soil (Zheng et al. 2020). The remaining

two antibiotic resistance genes were shared by the env and crop groups. TtgB is part of

a RND system; one example of an antibiotic it confers resistance to is toluene, an organic

solvent emitted by plants under stressed conditions (Heiden et al. 1999). The other gene,
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CpxAR, encodes a pair of proteins involved in resistance to multiple bactericidal antibiotics

(Tian et al. 2016). Thus, the structure of the accessory genomes provides an indication of

the selective pressures at play in the different groups.

2.5 Discussion

The genotypic and phenotypic variability of microbes, including P. syringae, has made them

difficult to categorize them into distinct species (Gomila et al. 2017; Baltrus 2016; Berge et

al. 2014). To what extent do groups of strains from different sources represent selection in

different ecologies? I examined gene content variation among groups of P. syringae isolated

from crop hosts, A. thaliana, and environmental sources in an attempt to uncover patterns

of ecological distinction.

My single copy core gene phylogeny yielded two main results; one was that host associa-

tion did not sync with pathogen phylogeny. This was not unexpected based on the previous

findings of others (Dillon et al. 2019B; Baltrus et al. 2011; Sarkar and Guttman 2004), but

indicated that the genes with host-specific functions are largely absent from the core genome,

which suggests they are members of the variable genome. The second main result from Fig.

2.1 was that the A. thaliana-derived isolates formed a monophyletic group. In fact, I found

that P. syringae isolated from A. thaliana are likely to represent an ecotype, as described by

Cohan 2002. In particular, the At group meets each of 3 expectations for forming a stable

ecotype (Cohan 2002; Ward et al. 2008). First, the core gene phylogeny (Fig. 2.1) shows

that the At-derived strains fall into a single monophyletic clade. Second, Fig. 2.1 shows

isolates sharing similar branch lengths, consistent with a star-phylogeny. Third, calculations

of ANI revealed that the At group was more similar to itself than to either the env or crop

groups, and in fact was more similar to an allopatric sample of P. syringae isolated from

A. thaliana in North America than to either the env or crop groups from France. These

findings reflect that in planta environments represented by crop vs. natural hosts impose
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Figure 2.7: Venn diagram showing overlap of categories of antibiotic resistance genes.
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fundamentally different selective pressures, such that many genes conserved and likely to be

generally useful in planta (e.g. the Hop family of effector genes) are absent in the At group.

Previous studies have identified similar patterns in A. thaliana-isolated P. syringae from

other locations. In a comparison of 18 P. syringae genomes from A. thaliana in the Midwest

USA to 22 isolates from various crop hosts, the A. thaliana isolates had significantly fewer

singletons than the crop-derived isolates (Karasov et al. 2017). Not only did I see the same

pattern in in my comparison of French P. syringae isolates from crops vs. A. thaliana, I

found that isolates from environmental sources also had significantly more singletons than

the A. thaliana-derived isolates, in fact, to the same extent as did crop isolates. This was

somewhat expected as closely related crop and environmental isolates have been identified

previously (Bartoli et al. 2015; Monteil et al. 2013). Furthermore, some virulence factors

underlie microbe-microbe interactions (Snelders et al. 2021), so it seems that at least some

effectors should be present in the genomes of environmental isolates. Why these effectors

are not present in At-derived isolates, however, is unclear. Karasov et al. (2017) found rela-

tively few effectors were encoded by American A. thaliana-derived isolates and I found zero

effectors specific to the French A. thaliana isolates in my comparisons. Interestingly, there

is some evidence of a European ecotype amongst A. thaliana-derived isolates of P. syringae.

Specifically, a large-scale study of such strains isolated across Germany found that a single,

dominant Operational Taxonomic Unit within phylogroup 7 infects A. thaliana(Karasov et

al. 2018). These strains are likely P. viridiflava (Karasov et al. 2018), and in fact the P.

viridiflava reference genome, when included in the single-copy core gene phylogeny, clusters

within the French At group (data not shown). Previous research has revealed the existence

of two P. viridiflava phylogroups, 7 and 8 (Goss et al. 2005; Bartoli et al. 2014). Since the

American P. syringae isolates from A. thaliana fall within phylogroup 2, it is possible that

they are not P. viridiflava, or that P. viridiflava is more genetically diverse than previously

thought.
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Unlike to the At group, the environmental and crop isolates were not particular to any

one phylogenetic cluster (Fig. 2.1). One group of environmental genomes corresponded to

phylogroup 13, whereas many genomes from the env group were spread across phylogroups

1-3. Similarly, the crop group contains genomes that span phylogroups 1-4 and 7, plus a

group of two genomes that form an early-branching, secondary phylogroup (Fig. 2.1). In

addition to the core genome phylogeny, every individual gene trees built also fail to resolve

the crop and environmental groups into their own clusters (Fig. 2.2). However, there is a

clear delineation of environmental isolates that comprise phylogroup 1A in many trees, and

the Unifrac distances of the crop-env comparisons often indicated that these lineages were

distinctly evolving (Table 2.4). While the crop and env groups are too similar to represent

distinct ecotypes, and discussion of these groups has focused on the fact that environmental

and crop strains are found in the same phylogroup (Monteil et al. 2013), my analyses have

revealed that there is ecological distinction between genes evolving in these two groups.

I predicted that strain-specific genes should be in the variable genome, and found evi-

dence of selection (significant Tajima’s D; Table 2.3) in the majority of variable genes that

I checked. The variable genes also tended to have significant Unifrac values, indicating that

they represented distinct lineages per each group (Table 2.4). This indicates that a good

source of adaptive potential is the variable genome, even excluding singletons. Previous

explorations of the variable genome have often focused on the adaptive potential of the sin-

gleton genome specifically (Fakhar et al. 2023; Wolf et al. 2016; Tautz et al. 2011; Wilson et

al. 2005), which means that less is known about the variable content that is shared amongst

isolates. My exploration of a few of these genes revealed some examples that show evidence

of selection, many of which also had phylogenetic patterns consistent with distinct patterns

of evolution for ‘group’ (At, core, or env). I focused specifically on virulence functions, but

my analysis is far from exhaustive. Future work interested in the adaptive potential of the

accessory genome should focus on elucidating the functions of those genes which are shared
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Table 2.4: Unweighted Unifrac distances for a selection of 20 genes.
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but not universal.

This work informed our understanding of the adaptive patterns of P. syringae. My

results indicate that A. thaliana-derived isolates of P. syringae are likely to function as a

stable ecotype (Cohan 2001). This was not the case for isolates from crop and environmental

sources, which exhibited a less rigid delineation from each other than either did from the

At group. Nonetheless, the env and crop groups frequently exhibited evidence of evolving

in distinct patterns per group, even though they share phylogroups. My results are largely

consistent with previous findings but provide the first direct comparison of P. syringae

isolates from A. thaliana, crops, and environmental sources.
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CHAPTER 3

COSTS OF LOCAL ADAPTATION IN PSEUDOMONAS

SYRINGAE

3.1 Abstract

Are pathovars truly adapted to their hosts-of-isolation? To answer this question, I performed

a series of controlled infections of five plant-pathogens in their own, and in each other’s, host-

of-isolation. I first compared the effector repertoire of the pathogens, and predicted that for

in vitro experiments, DC3000 would have a fitness cost relative to NP29, since DC3000

contained the most effectors and NP29 contained the fewest. Instead, I find that while NP29

does have an advantage across all environments, DC3000 does not demonstrate a cost. I thus

predict that in planta, DC3000 will have an advantage due to its wealth of effectors, but I do

not predict a reciprocal cost for NP29, since it appears from the in vitro experiments that

pathogens have methods to mitigate costs of effectors. My predictions are in accordance with

my results; I find that DC3000 is the best in planta grower overall, though NP29 did not

demonstrate a cost relative to other pathogens. I also detected evidence of local adaptation

in two of five host-pathogen pairs, in that they grew to significantly higher carrying capacity

on the host-of-isolation vs. all other hosts. These results demonstrate that effector load is not

the only determining factor for infection success; e.g., host ecology does make a difference.

These results also demonstrate that pathovars are not necessarily adapted to their hosts-of-

isolation, which suggests it would be wise to divorce strain classification from host phenotype

altogether.
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3.2 Introduction

Plant pathogens are often classified into pathovar systems based on their host range (Bull

and Koike 2015). For example, the well-characterized Xanthomonas genus comprises several

species that are further divided into pathovars with intra-specific race designations to de-

scribe the host ranges of groups of isolates (Jacques et al. 2019). Pathovar systems assume

adaptation of the pathogen to its host-of-isolation, but this assumption typically remains

untested. That host-of-isolation is an indicator of local adaptation, in which an isolate per-

forms better on that host relative to others, should not be assumed. After all, where a

microbe is found indicates how well it does relative to other microbes on that host rather

than how well it does on a focal host relative to other hosts (Read and Taylor 2001).

The agriculturally important bacterium, P. syringae, is an opportunistic pathogen with a

broad host range that includes crop plants, natural weeds such as A. thaliana, and non-host

environments (Baltrus et al. 2016; Xin and He 2018). The species complex is divided into

more than 60 pathovars (Dillon et al. 2019B), although design of a suitable classification

system has proven difficult (Gomila et al. 2017; Baltrus et al. 2016; Bull and Koike 2015).

First, there are several examples of pathovars infecting alternative hosts. For example,

pathovar P. syringae tomato caused a recent outbreak of bacterial leaf spot disease on kale

(Koike et al. 2017). P. syringae pathovar tabaci, rather than coffee pathovar P. syringae

garcae, was found to be the causal agent of infections on coffee (Destefano et al. 2010) and,

in 2012, the crucifer pathovar, P. syringae pathovar alisalensis, was first reported on Avena

storigosa (bristle oat; Ishiyama et al. 2013). Second, pathogenic varieties of P. syringae

have been isolated from several non-host sources including snow, rain, and irrigation waters

(Monteil et al. 2013). Third, individual strains vary in their host breadth, with some strains

appearing to be generalists (Morris et al. 2019). Finally, host association explains only a

small portion of P. syringae core genome variation (Sarkar and Guttman 2004), indicating an

incongruence between host range and phylogeny, and revealing a conflict between phenotypic
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and genomic methods of classification. It thus remains an open question whether P. syringae

strains are adapted to their hosts-of-isolation.

One way to test for local adaptation is through artificial selection experiments. Here the

expectation is that selection on one host would lead to reduced performance on other hosts

due to fitness tradeoffs (Bell and Reboud 1997; Jasmin and Kassen 2007). For example,

Gould (1979) evolved populations of mites on cucumber and discovered a decline in fitness

on lima bean (Gould 1979). Similarly, Fry (1990) evolved populations of mites on lima

bean and found that as fitness on lima beans increased, fitness on tomato declined (Fry

1990). However, counterexamples exist. In particular, Meaden and Koskella (2017) evolved

P. syringae pathovar tomato on both A. thaliana and tomato and found that selection on

A. thaliana created generalists with higher relative fitness on both plants. Even in a highly

simplistic, non-host environment, the response of E. coli to selection in a glucose-limited

environment was positively correlated across replicate populations in 5 out of 6 environments

(Ostrowski et al. 2005). That said, in the 6th (melibiose-limited) environment, a few mutants

exhibited a trade-off in fitness, indicating context-dependent antagonistic pleiotropy as one

molecular mechanism at play. Taken together, it appears that fitness tradeoffs are often, but

not necessarily, present in adaptation to novel hosts. One common example of genes incurring

fitness trade-offs are pathogen effectors, a type of secreted virulence factor that benefits the

pathogen by influencing the microbes or hosts surrounding the cell (Barrett et al. 2009). The

plant microbiome is dynamic, and ecological interactions between microbes can alter survival

probability and the outcome of infection (Read and Taylor 2001). Plants and pathogens

interact through a system in which hosts recognize secreted effector proteins, introducing

the possibility of arms race dynamics in which pathogens evolve to escape recognition and

hosts counter-adapt to again recognize the pathogen and trigger a resistance response (Boller

and He 2009; Jones and Dangl 2006; Dangl and Jones 2001). Since binding to host factors

represents the potential for infection success and for host recognition with an ensuing immune
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response, pathogen effector genes can be considered ‘double edged swords’ (Russell et al.

2015). Still, conventional wisdom is that the pathogen should be winning the evolutionary

arms race, due to its shorter generation times and larger population sizes (Kaltz and Shykoff

1998). Thus, one expects that locally adapted pathogens will achieve a higher, sustained

titer within their preferred hosts.

Herein, I use a suite of hosts that include four crops and the model weed A. thaliana to

test to what extent strains are specialized to their hosts-of-isolation vs. capable of thriving in

multiple hosts. To generate hypotheses about the relative performance of strains, I performed

an initial comparison of their effector repertoires. On the logic that effectors come with two

inherent risks: (1) a risk of host recognition (Block and Alfano 2011) and (2) a metabolic

cost of maintaining a gene that is only advantageous in some environments (Morris et al.

2012), I predict that the strain with the highest effector load should incur a relative cost

when growing in vitro, while the strain with the lowest effector load should have a relative

advantage. I make predictions about the outcome of the in planta experiments based on the

outcome of the in vitro experiments.

I focus on carrying capacity K achieved by each isolate in the designated condition,

because this is a direct, calculable proxy for fitness. I first evaluate the patterns of growth

of each strain in three abiotic (host-free) environments. I use three lab media, LB, KB, and

a media constructed in-house that consists of macerated A. thaliana plants in sterile water

(Arabidopsis Broth, or AB). I expect the pathovars to perform relatively consistently, with

all strains performing better on KB, which is a selective media for Pseudomonads, than LB,

which is typically used to cultivate E. coli (discussed in detail in Methods). I furthermore

expect that NP29, the strain collected from A. thaliana, will outperform the others in the

AB media.

I then perform controlled infections of each strain on each of five host plants, including

their host-of-isolation. Here, I specifically address whether each pathogen performs best

40



on its host-of-isolation relative to the other hosts. This naïve expectation assumes local

adaptation of the strains to their host-of-isolation, which I test with an ANCOVA with hosts

as fixed effect and plate as covariate, followed by planned contrasts for host-of-isolation

versus all other hosts. I also ask whether there is a ‘best’ pathogen that outperforms all

others across associations, which I test with post-hoc contrasts. Finally, I consider infection

trajectories in light of evolutionary theory. I expect to see a crash in pathogen population

size if the host is winning the arms race or if the pathogen overexploits the host. If the

pathogen is tolerating or has successfully evaded the host immune response, I expect to see

the absence of such a crash, i.e., the ‘maintenance’ of a high pathogen titer in planta. I

interpret the maintenance of prolonged infection as evidence of adaptation of the pathogen.

3.3 Methods

Strain and environment selection I selected virulent strains for which high-quality genomes

were already publicly available, including pathovars of bean (1448A), radish (ES4326) and

tomato (DC3000 and A9), plus a strain isolated from the weedy species, A. thaliana (NP29).

1448A was isolated from bean in Ethiopia in 1985 (Joardar et al. 2005). ES4326 is a

streptomycin-resistant strain of PSM4326, isolated from diseased radish in Wisconsin in

1965 (Sarris et al. 2013). DC3000 was isolated from tomato in 1960 in Guernsey Island,

UK (Buell et al. 2003). A9 was isolated from tomato in Yolo County, California in 1996

(Kunkeaw et al. 2010), and NP29 was isolated from A. thaliana in Michigan in 2002 (Barrett

et al. 2011). Isolates were obtained by kind donations from colleagues.

I chose to use two abiotic environments that our strains would likely encounter during

cultivation in the lab, Lysogeny Broth (LB) and King’s Medium B (KB), plus one novel

media created in-house. LB is a standard nutrient-rich medium containing the carbon sources

tryptone, yeast, and salt. Yeast provides organic compounds while tryptone provides amino

acids. KB is commonly used to culture Pseudomonads as it allows visual confirmation of
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the fluorescent coronatine phenotype (Hwang et al. 2005). KB contains proteose peptone,

glycerol, and salt. The proteose peptone in KB provides amino acids from bovine milk,

while glycerol provides a carbon source. Finally, I made Arabidopsis Broth (AB) in-house

from a collection of mixed A. thaliana plants collected from various sites in the Midwest,

USA. Plants were washed with sterile water and ethanol to remove particulate and loosely

associated microbes before maceration and filtering through a mesh of 0.2 microns using RO

water. The resulting broth was then autoclaved twice for 60 minutes to ensure sterility and

stored at 4°C before equilibration to room temperature for experimentation. This broth thus

contains a suite of chemical elicitors present in the Arabidopsis host environment.

In an attempt to pair my pathogens with their native host, I made an effort to obtain the

cultivar of isolation or, if this cultivar was no longer available, I obtained a phenotypically

similar cultivar grown in the same geographic region in the same years (Table 2.1). For

example, 1448A was isolated from Phaseolus vulgaris in Ethiopia in the 1960s but no cultivar

data was available; I therefore found a bean cultivar from Kenya that was grown in Kenya in

the 1960s (P. vulgaris cv. African Premiere). RRS10 is a representative Midwest A. thaliana

ecotype, which would be very similar to NP29’s native host (Platt et al. 2010).

Identification of secreted effectors A recent study gathered sequences from all known P.

syringae effectors, cataloging 14,613 sequences spanning 70 gene families and 523 alleles

as the PsyTec Compendium (LaFlamme et al. 2020). They published the sequences from

this database in the supplemental methods for the paper, which means it is freely available

for download. I downloaded and used their supplemental data to build a custom BLAST

database using BLAST+ for the command line (Camacho et al. 2009). I used the command

makeblastdb to assemble the PsyTec database and then blastn to compare my genomes

against it. I limited my analysis to matches with at least a 99% identity to the query

sequence.
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3.3.1 Growth in vitro

To estimate growth rate r and carrying capacity K of each pathogen in LB, KB and AB

media types, I measured optical density over 20 hours of incubation. Bacteria were brought

to comparable physiological conditions with a period of acclimation in which a single colony

was picked from KB agar and grown in liquid KB to stationary phase the night before the

assay. In the morning, overnight cultures were diluted 1/10 into fresh KB and grown for 6

more hours. Finally, I randomly positioned a 1/200 dilution of each acclimated culture into

a well of a sterile, optically transparent 96-well plate containing 200 µL of liquid media. I

incubated the plates at 28°C in a Tecan plate reader set to shake at an amplitude of 2 mm

for 10 seconds, then measured absorbance at 600 nm with 25 flashes, every 10 minutes for 20

hours. I repeated this assay for a total of six replicates. Each well was normalized to its own

initial optical density, removing the contribution of the media to optical density estimates.

Statistical analyses were performed in R v. 4.2.2 (R Core Team 2021) using the growthcurver

package (Sprouffske and Wagner 2016). Growthcurver is an R package that fits growth curve

data to a standard form of the logistic equation with the following parameters: the intrinsic

growth rate of the population, r, the initial population size, N0, and the carrying capacity,

K. The intrinsic growth rate of the population, r, is the growth rate that would occur if

there were no restrictions imposed by population size. Carrying capacity K is defined as the

maximum optical density reached over the course of the experiment. The logistic equation

describes the population size Nt at time t as: Nt = K/1+ ((K −N0)/N0) ∗ e− rt . Sample

curves for each pathogen are pictured below (Fig 1).

To calculate the number of generations, I used the standard equation (OD600final –

OD600initial)/ln(2), where OD600final is the carrying capacity K. Time was transformed

from seconds to hours for all calculations.
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Figure 3.1: Mean and 95% CI of CFU/mL over 3 replicates of pathogens grown at three
optical densities

3.3.2 OD600 correlation to CFU/mL

My measurements of strain performance were calculated on the optical density data for each

of the 5 strains. First, I sought to confirm that optical density could serve as a proxy for

CFU/mL in the same way across strains. To do this, I grew overnight cultures of each

strain, seeded by a single colony, pelleted cells to remove media, and resuspended them in

sterile buffer to common optical densities of 1, 0.1, and 0.01. I then diluted the cultures for

spread-plating, and enumerated colonies after incubation at 28°C for 2 days. The mean and

95% CIs for CFU/mL are shown for each of the 5 isolates in Fig. 3.1. I verified that there

was no effect of strain on CFU/mL using ANOVA (F = 0.821, p = 0.516) in which strains

were treated as fixed effects. Thus, the population sizes of each strain were indistinguishable

at a particular optical density.

3.3.3 Growth in planta

The in planta growth experiments were performed using all five hosts and all five strains

simultaneously, in each of four fully randomized blocks that included one replicate of each

host-strain combination. Experiments were performed on hosts synchronized to the same
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developmental stage. This was accomplished by planting bean and radish 12 days after

Arabidopsis and tomato and using Arabidopsis and tomato seedlings that were 21 days post

emergence (thus, radish and bean that were 9 days post emergence). Seeds were sewn into

autoclaved potting soil four inch 18-cell flats and covered with clear plastic domes until

germination. I watered as needed by soaking and supplemented seedlings with Jack’s 15-

30-15 fertilizer one week prior to infection. Plants were grown with a 16-hour photoperiod

at 22°C. Flats were rotated within and among shelves every 48 hours to minimize effects of

growth chamber position.

Each of the five pathogens were grown for plant inoculation by selecting single clones from

KB agar and seeding 5 mL liquid KB cultures grown at 28°C, shaking at 175 rpm for 12 hours.

Overnight cultures were diluted 1/1000 into 200 mL fresh KB and grown for 5 hours until

normalizing to OD600=0.2. Pathogens were applied to plants by spray inoculating leaves

until they were dripping wet, using sterilized amber glass bottles with plastic spray fixtures.

I allowed plants to dry for 12 hours before sorting into random order for the duration of the

experiment. To discourage cross-contamination, a checkerboard pattern was used in which

every-other cell was skipped so that plants would not touch.

Plants were harvested one, three, and five days after spray inoculation. For each plant,

two randomly selected whole leaves (whole rosettes for A. thaliana) were picked and washed

in 70% ETOH and sterile water for 30 seconds before taking two sets of six standard (six-

mm) hole punches. Samples were placed directly into ice-cold 50% glycerol before storage

at -20°C. One set of samples was saved as a backup, and total DNA was extracted from

the other using the protocol of Mayjonade et al. (2016). First, glycerol was removed by

pipetting. Then sterile, two mm ceramic beads and 300 µL of lysis buffer supplemented

with RNAseA at 0.3 mg/mL was added to leaf material before maceration in a Genogrinder

at 1750 rpm for three minutes. After homogenizing, I added another 300 µL of lysis buffer

and incubated samples for one hour at 65°C, mixing by inversion every 10 minutes. After
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lysis, I added 1/3 volume of 5 M potassium acetate to the samples, mixed by inversion, and

centrifuged for 10 minutes to precipitate cellular debris. Finally, I purified the extracted

DNA with a solution of homemade SPRI beads at 0.4%.

Titers were determined with qPCR on purified DNA. I first quantitated DNA in a 96-

well plate reader using Picogreen and diluted to approximately 30 ng/µL after confirming

purity with a Nanodrop. qPCR was performed using PowerUP SYBR MasterMix (catalog

number A25741) and a reaction volume of 10 µL in 384-well plates. I used the primers

for the single copy gene oprF (Ross and Somssich 2016) to quantify the abundance of my

P. syringae strains after verifying specificity by confirming that only a single product was

amplified. In addition, I confirmed that the standard curves were consistent for each of the

five strains by generating standard curves, doubly replicated for each pathogen, consisting

of 1/10 dilutions from 100 ng/µL to a concentration of < 10 ng/µL (no amplification). Each

of these correlation coefficients were above 0.99. To confirm there was no effect of pathogen

on CT, I used a two-way ANOVA (OD ∼ CFU/mL * pathogen). I found a significant main

effect of CFU/mL (F = 129.138, p < 2e-16), but no effect of pathogen (F = 0.313, p = 0.868)

or the interaction between CFU/mL and pathogen (F = 0.917, p = 0.459). To generate the

zero time-point, which represents the baseline titer given no infection, I took the mean per

cultivar of the mock treatment at Day 1.

Average coefficients from the standard curves used for titer calculations were b = 34.9

and m = −3.7. To calculate absolute titer, I used the standard formula: Log Quantity

= 10Ct−b/m. I took carrying capacity K as the highest titer reached over the course of

an infection and the calculated number of generations using the same methods used for

the abiotic experiments. I estimated growth rates by fitting Baranyi curves (Baranyi and

Roberts 1995) to infection curves using the R package growthrates (Mira et al. 2017). All

infections were fit with r2 > 0.82, and 20 out of 25 had r2 > 0.90.
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3.3.4 Phylogenetic Analysis

I sought to determine the phylogenetic relationship among pathogens in order to consider its

influence on infection patterns. To do this, I used anvi’o v. 7.1 (Eren et al. 2015). In brief, I

built a pangenome by: (1) simplifying FASTA definition lines, (2) generating anvi’o contigs

databases per each genome, (3) identifying open reading frames using Prodigal (Hyatt et al.

2010) v2.60X, (4) annotating genes with functions using the NCBI’s Clusters of Orthologous

Groups (Tatusov et al. 2000), (5) identifying single copy core genes using HMMER (Eddy

2008) v3.2.1X and an included collection of HMM profiles spanning bacteria and archaea, (6)

building an anvi’o genomes storage database, and finally (7) building the pangenome using

the script anvi-pan-genome. After building the pangenome using the steps described above,

I extracted the 3,548 single copy core gene clusters shared by each genome and used trimAl

(Capella-Gutierrez et al. 2009) to remove nucleotide positions that were gap characters in

more than half of the sequences. I then used IQ-TREE (Nguyen et al. 2015) with the general

matrix model ‘WAG’ to infer a maximum likelihood tree with 10,000 bootstraps.

3.3.5 Statistical Analyses

For both in vitro and in planta experiments, I used two-way ANCOVA with plate as covari-

ate, and plant and pathogen as fixed effects and including their interactions. The models

for all ANCOVAs were the same (K ∼ environment * pathogen + plate). In all cases I

confirmed that the assumptions of the ANCOVA were met prior to calculation of the model.

Specifically, I confirmed that there was linearity of regression slopes, and a lack of interaction

between the covariate “plate” and either grouping variable “plant” or “pathogen” (p > 0.05).

To check Akaike Information Criteria and perform tests for homoscedasticity, I used the R

packages AICcmodavg (Mazerolle 2023) and performance (Lüdecke et al. 2021) respectively.

Data were log transformed before ANCOVA. For the in vitro experiments, I followed the

two-way ANCOVA with post hoc contrasts, i.e., a Tukey’s Honest Distance test on all pair-
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wise comparisons. Additionally, I performed ANOVAs to test for an effect of pathogen on

K in the AB environment (K ∼ pathogen), and to test for the variability of NP29 across

environments (K ∼ environment). To test for a best/worst pathogen and for local adapta-

tion of the pathogens in the in planta experiments, I followed the two-way ANCOVA with

posthoc contrasts to determine the relative performance of DC3000 and NP29, and planned

contrasts comparing performance on the native host vs. all other hosts for each pathogen.

3.4 Results

3.4.1 Effector repertoires

I compared effector repertoires of the five strains in order to develop hypotheses about their

relative performance (Fig 2.6). Though effectors are frequently considered to be determinates

of a strain’s host range (Dillon et al. 2019B), it is unclear to what extent they affect growth

in vitro. One simple expectation is that maintenance of effectors is metabolically costly

(Iwasaki and Medzhitov 2015), so that a strain with more effectors would experience a

greater cost when growing in environments lacking a susceptible host and thus, a possible

benefit. The strain with the largest effector load in this experimental system is DC3000

(Fig. 2.6A), suggesting that DC3000 should grow relatively poorly in abiotic environments.

Conversely, NP29 should grow relatively well in abiotic environments as it contains few

effectors (Fig. 4A), a trait previously reported for many P. syringae strains isolated from

A. thaliana (Karasov et al. 2017).

The five pathogen strains contained numbers of effector families ranging from six to 36

(Fig. 4A). Two effector families were present in all five strains: AvrE and HopM (Fig. 4B).

These two families are broadly distributed across P. syringae and were each identified as

‘core’ effectors in a larger pangenome analysis of 494 strains (Dillon et al. 2019B). AvrE

was the first identified Type III secretion effector (Napoli and Staskawicz 1987) and it, along
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Figure 3.2: Effector repertories. (A.) Number of effector families per strain. (B.) Venn
diagram showing overlap of effector family identity.

with HopM, are part of the canonical Type III secretion system (T3SS) pathogenicity island

(Dillon et al. 2019B). There were seven effectors shared by all but NP29. (Fig. 4B), including

HopAA, HopAB, HopAF, HopAH, HopAS, HopI, HopR. These are additional widespread

effectors that have generally been well-characterized and function to increase pathogenicity

during infection; for example, HopR has been shown to suppress the plant immune system

by blocking callose deposition (Kvitko et al. 2009), and HopI has been shown to suppress

accumulation of the defense compound salicylic acid by the plant (Jelenska et al. 2010).

Genes specific to individual strains include any that have been maintained because they

are beneficial in the strain’s selective environment. DC3000, which had the highest number

of effector families at 36, contained eight specific effector families: AvrPto, HopAI, HopAM,

HopC, HopE, HopH, HopN, HopU. Most of these have known virulence functions in planta;

for example, AvrPto suppresses the basal immune response in tomato and Arabidopsis (Des-

landes and Rivas 2012), HopN suppresses cell death during the second phase of the plant
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immune response (Lopez-Solanilla et al. 2004), and HopAM has been shown to increase the

virulence of the pathogen under stressful, drought conditions in planta (Goel et al. 2008).

Strains 1448A and ES4326 each contained 22 and 29 effector families, with six and two spe-

cific effector families, respectively. ES4326 contains HopZ, which comprises a diverse family

of effectors that cause disease in many plants including A. thaliana (Lewis et al. 2008),

and 1448A contains AvrB, which is particularly interesting because though it is recognized

by A. thaliana and soybean, molecular recognition is suppressed by an additional effector,

AvrRpt2 (Russell et al. 2015). Strain A9 contained 23 effector families, one that was strain-

specific: HopAZ, which have been shown to elicit Effector Triggered Immunity in A. thaliana

(Nikolić et al. 2023). Note that there were no effector families specific to NP29. These ef-

fector repertoires reveal a diverse but strain-specific suite of strategies used by P. syringae

during infections.

3.4.2 Growth in vitro

This set of experiments consisted of growing five pathogens in three abiotic environments over

18 hours. Strains grew repeatably, with similar patterns of lag phase, exponential growth

and then a plateau as carrying capacity was reached. K ranged from OD600=0.27-0.77

(Table 3.1), with mean K of 0.418, 0.529, and 0.362 for the AB, KB, and LB environments

respectively.

There were significant differences in K across environments and strains (Fig. 3.2). The

results of a two-way ANCOVA indicated significant main effects of environment (F = 4.177, p

= 0.02047), pathogen (F = 5.333, p = 0.001), and plate (F = 3.066, p= 0.024). There was no

significant interaction between pathogen and environment (F = 1.002, p = 0.445), indicating

that the differences among pathogens were not dependent upon the environment in which

they were grown. Tukey Honest Significant Difference tests revealed a significant difference

between the environments LB and KB (-0.31, adjusted p = 0.015). Over all environments,
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Table 3.1: Main results of in vitro experiments

51



NP29 differed significantly from several strains: NP29-A9 (0.41, adjusted p = 0.033), NP29-

DC3000 (0.58, adjusted p = 0.001) and NP29-ES4326 (0.45, adjusted p = 0.013). NP29

had the highest median K across all strains in all environments (Fig. 3.2) and furthermore

was the only strain whose K significantly varied across environments (ANOVA, F = 9.945,

p = 0.003). Interestingly, the variability of NP29’s performance across environments was

not driven by the expected advantage in AB, an environment composed of NP29’s host-of-

isolation (ANOVA F = 2.254, p = 0.099). Instead, NP29 demonstrated a general tendency

to outperform other strains across all environments (Fig. 3.2). This is consistent with an

advantage of carrying relatively few effectors.

However, the inverse prediction that DC3000, which had the highest effector load, would

perform poorly in abiotic environments was not borne out. Though NP29 was the clear best

grower of the strains, there was not a clear worst grower; the other four strains grew to the

same approximate titer in each environment. The absence of a theoretical cost for the strain

with the highest effector load reveals that any metabolic cost of maintaining a high number

of effectors is ameliorated in practice. For example, secondary mutations can compensate

for the fixation of an allele with a deleterious effect (Levin et al. 2000). Due to the absence

of a cost of high effector load under even simplified abiotic conditions, I do not predict a

cost of effectors for the in planta experiments. Instead, since effectors are likely to provide

an in planta advantage, I predict that the strain with the highest effector load will be the

best grower in general. Contrariwise, NP29 should suffer a disadvantage in planta due to

low effector load.

3.4.3 Growth in planta

The next set of experiments consisted of growing five pathogens within five hosts over five

days. All strains grew on all hosts (Fig. 3.3), reaching K ranging from mean log values of 4.5

– 5.6 and completing 5 – 12 generations. This performance indicates the suitability of these
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Figure 3.3: Boxplots for in vitro experiments. The x-axis represents plant or pathogen as
indicated; the y-axis shows K. Boxes show the median and lower and upper quartiles of the
data with whiskers representing the range. Points reflect outlying data points. Colors are
consistent for each pathogen.

hosts for these pathogens. I test whether the best grower is DC3000, and whether NP29,

with its relative dearth of effectors, will have a disadvantage relative to the other strains. I

also test whether strains are locally adapted by asking whether they grew best on their hosts

of isolation, and examine the trajectory of infection in context of local adaptation.

To test the simple prediction that pathogens grew best on their hosts of isolation, I

performed a two-way ANCOVA (K ∼ plant * pathogen + plate) to explore whether there

is a significant interaction between pathogens and the plants in which they are grown. The

ANCOVA revealed significant main effects of host (F = 18.938, p = 3.25e-12) and pathogen

(F = 4.975, p = 0.009), but no effect of plate (F = 0.0, p = 0.993) or the interaction between

plant and pathogen (F = 0.691, p = 0.798). Thus, differences among pathogens and hosts

appeared to be independent of which plant a particular pathogen was grown in. Despite this

lack of statistical interaction, two pathogens, 1448A and NP29, achieved their highest K on

their hosts-of-isolation (Table 3.2). Planned contrasts between K on the host-of-isolation
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Figure 3.4: Boxplots for in planta experiments. The x-axis represents plant or pathogen as
indicated; the y-axis shows K. Boxes show the median and lower and upper quartiles of the
data with whiskers representing the range. Points reflect outlying data points. Colors are
consistent for each pathogen.

vs. all other hosts were significant in these two cases (1448A p = 0.035; NP29 p = 0.029),

supporting the idea that these pathogens were locally adapted. For the remaining strains,

patterns were haphazard with respect to host: ES4326 reached its highest K on RRS10 and

the tomato pathovars reached theirs on bean, but these contrasts were not significant (p >

0.05).

To elucidate the ‘best’ and ‘worst’ pathogens, I performed post-hoc contrasts on all

possible comparisons. I found only two significant contrasts, both for DC000 and indicating

an advantage (1448A, p = 0.021; NP29, p = 0.006). Thus, the strain with the largest effector

repertoire was evidently the best performer in this set of experiments. In contrast, I did not

find evidence of a relative disadvantage for the strain with the lowest effector repertoire,

NP29, which had zero significant contrasts. Rather, the results indicate that, with the

exception of DC3000, the pathogens grew to the same approximate K across hosts, such
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Table 3.2: Main results of in planta experiments
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that there was not a truly poor performing pathogen or one that failed to grow.

3.4.4 Growth in planta: infection trajectories

In another attempt to explore patterns of local adaptation, I classified infection trajectories

after reaching high titers as having either maintained the high titer over the course of infec-

tion, or as having experienced a subsequent crash in population size. Local adaptation of the

pathogen to the host is required to avoid a crash, in that the pathogen is able to subvert or

tolerate the host immune response. Unfortunately, one cannot disentangle the possibilities of

the pathogen subverting or tolerating the host immune response based on phenotypic data,

but one indication is that a slow increase in population size is consistent with the pathogen

needing time to subvert the host response. Thus, I noted whether the increase in population

size was fast or slow in my analysis.

Growth curves in planta tended to follow one of two trajectory types (Fig. 3.4), in

contrast to the abiotic experiments which shared one common mode of growth. The first

and most common trajectory was one of ‘maintenance’, such that high titers were reached

and then maintained over the course of infection. The absence of a crash in population size

suggests the absence of a plant immune system response to shut-down pathogen growth,

either because there was no strong response or because the pathogen was able to tolerate

the plant’s response. Most of these maintenance infections demonstrated quick increases in

population size, such that K was reached by 24 hours-post infection with no indication of the

host slowing the pathogen’s growth. This occurred for 13 infections, including four of five

ES4326 infections (the exception being radish, the native host) and four of five pathogens

in Brandywine tomato (Tom-A9), excepting A9, the native pathovar. A few infections used

a different mode of infection: a slow, steady increase with eventual plateau as K is reached,

as is the case for 1448A in its native host, bean. This pattern is similar to the slow increase

and maintenance of high titer we see for DC3000 in its native host, Golden Sunrise tomato
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Figure 3.5: Infection trajectories over the average of 4 replicates. The x-axis shows Hours
since inoculation and the y-axis shows log pathogen titer. Points show log10 average titer,
and error bars show 95% confidence intervals.

(Tom-DC), as well as 1448A in Tom-DC, and A9 in radish. Thus, four infections fit this

‘slow-and-steady’ pattern, two of which are pathovars within their native host.

The other type of growth trajectory visible across experiments (Fig. 3.5) is one of an

increase followed by a ‘crash’ or significant decrease in population size. These infections were

able to reach high titers by 24 hours post-inoculation, but not to maintain such titers over

the course of five? days. This trajectory is consistent with a host immune response stopping

the pathogen from growing, or with the pathogen overexploiting all available resources. This

pattern was evident for seven infections, including ES4326, A9, and NP29 in their native

hosts. Each of these declines entailed a significant decrease in titer after 72 to 120 hours
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(Student’s t-tests, p < 0.05). Interestingly, three of five native-pair infections followed this

trajectory.

There was one infection that had a singular pattern: a significant decrease followed by

a significant increase (NP29 in Golden Sunrise tomato, i.e., Tom-DC). This infection is the

only one that follows its trajectory, and so I do not consider it in the following comparison.

In summary, I observed 54% maintenance patterns (13/24), 29% grow and crash (7/24), and

17% (4/24) slow and steady (Table 3.2).

3.5 Discussion

P. syringae, along with many microbial plant pathogens, has a dynamic pangenome that

includes a repertoire of molecular ‘weapons’ that benefit the pathogen in different ecologies.

Secreted effectors represent one such weapon that can determine infection success, with pat-

terns of presence/absence that are strain-specific (Dillon et al. 2019A). Another determinate

of infection success is adaptation of the pathogen to the plant, which is implied by pathovar

classification systems but not often empirically tested. In this study, I compared the effec-

tor repertoires and tested the growth of a suite of five pathogens using a series of controlled

growth experiments in abiotic vs. host environments. I tested questions including 1) whether

number of effectors was a good predictor of performance in vitro and in planta, 2) whether

all pathogens performed better in KB vs. LB, 3) whether NP29 would have an advantage

in the AB environment, 4) whether there was evidence of a ‘best’ and ‘worst’ pathogen, and

5) whether there was evidence for local adaptation in this experimental system.

The range of effector loads across the five strains (8-36, Fig. 2.6) is not surprising,

considering that effector genes are considered to be highly dynamic, with frequent gene loss

at play (Ochman and Moran 2001; Morris et al. 2012). I explored the possibility that

selection in alternative environments may explain variation in effector repertoires among

strains. I expected that NP29, with its reduced effector load, would grow best in abiotic
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treatments due to minimal costs of carrying effectors, and this was exactly what I found. At

the same time, I expected the minimal effector load of NP29 would have a deleterious effect in

planta, and it did not. This indicates that the effector load itself is not the determining factor

of infection success; that is, even with few effectors, a strain can successfully grow in multiple

host species. This is likely the case for most P. syringae isolates of A. thaliana, where there

is selection against many effector families due to host recognition (Laflamme et al. 2020). As

for how a strain can be a successful pathogen with few effectors, there is evidence that the P.

syringae effector repertoire functions redundantly, such that an expanded repertoire does not

necessarily mean an equally expanded set of functions (Bundalovic-Torma et al. 2022). This

implies the existence of a minimal repertoire, which has been defined empirically in DC3000

(Cunnac et al. 2011). Additionally, some effectors are key determinates of microbe:microbe

interactions (Snelders et al. 2020), so it is possible that the effectors that are maintained in

NP29 provide a benefit outside of the host environment.

I performed the in planta experiments with the aim of elucidating local adaptation in

this experimental system, as well as testing my predictions that NP29 would have a relative

disadvantage due to encoding few effectors, and that DC3000 with the highest effector load

of the pathogens used in this study would be the best in planta grower. I did this by

infecting pathogens on their own, and on each other’s, host-of-isolation. I found that the

tomato pathovar DC3000 was the best in planta grower as evidenced by it having achieved

significantly higher carrying capacity in two of four comparisons (planned contrasts following

ANOVA). DC3000 is a race 0 pathovar of tomato, and known for being highly virulent (Dong

et al. 1991). This study confirmed that its virulence is not specific to tomato, but rather

that this strain appears to be a true generalist, capable of infecting multiple plant species

to roughly the same extent. The same set of in planta experiments revealed patterns of

local adaptation for two of five pathogens. That is, I found that two of five pathogens

achieved significantly higher carrying capacity in their hosts-of-isolation than in all other
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hosts. These strains were 1448A, isolated from bean, and NP29, isolated from A. thaliana.

1448A is an important genetic model of P. syringae that is known to be recognized by its

host-of-isolation (Arnold et al. 2011). 1448A has been shown to have a generalist, but not

ubiquitous host range (Morris et al. 2019). My results are not inconsistent with previous

findings, but reveal that 1448A has a strong preference for its host-of-isolation despite being

able to grow across a suite of hosts. Interestingly, NP29 has been classified as ‘maladapted’

to A. thaliana based on its induction of host recognition (Kniskern et al. 2011). Here, I

found that NP29 still performed best in A. thaliana relative to all other hosts, despite any

response from the plant. That NP29 was able to outperform all other pathogens on this host

reveals a benefit of NP29’s lack of effectors in an A. thaliana environment, consistent with

the findings of others that A. thaliana recognition selects against many effectors (Laflamme

et al. 2020).

Finally, I considered the trajectory of infection as it pertains to local adaptation. I

found maintenance trajectories for the majority of infections, including 1448A in its native

host, which demonstrated a slow increase, consistent with the pathogen needing time to

subvert the host immune response. This was not the trajectory experienced by NP29 in its

native host; instead, NP29 experienced a crash in population size in RRS10. In fact, three

of five native-pairings exhibited this crash pattern, making it tempting to speculate that

hosts may have a relative advantage in their ability to shut-down infections with their native

pathogen. Future studies may focus on the genetics underlying the patterns of growth

seen here, revealing whether there are specific genes responsible for the patterns of local

adaptation observed.

One caveat to my approach is that I focused exclusively on carrying capacity as a proxy

for fitness, when there is also rate of growth to consider. I feel confident in this choice as

repeating the analysis with rate in place of K generally made the results less informative.

In the in vitro experiments for example, repeating the ANCOVA (rate ∼ environment *
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pathogen + plate) with rate in place of K revealed a significant main effect of pathogen (F

= 6.591 , p = 0.000209) and plate (F = 4.162, p = 0.005134), but no effect of environment or

the interaction between environment and pathogen. This differs from the original ANCOVA

with K, which uncovered significant effects of plant and pathogen, indicating that K was a

more informative choice than rate. For the in planta experiments, ANCOVA with rate (rate

∼ plant * pathogen + plate) yielded results that were entirely non-significant, indicating

that pathogens grew at approximately the same rate across experiments, again indicating

that K was a more appropriate choice.

In conclusion, I find that signatures of local adaptation are present, but not universal, in

this experimental system. Our findings indicate a caution against assuming local adaptation

based on host-of-adaptation. They also reveal that predicting growth based on effector load

is not always straightforward. For NP29, maintaining only a small effector load seems to be

an effective strategy for growth in abiotic and host environments. However, the strain with

the largest effector load did not suffer a disadvantage because of it in these experiments.

Instead, I found that the pathogen with the highest effector load, DC3000, was the best

pathogen across plants. Thus, successful prediction of infection outcomes likely relies on a

deep understanding of the molecular underpinnings of the virulence factors per a pathogen,

plus the ecology of the interaction itself.
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CHAPTER 4

TNSEQ WITH FIVE HOST-PATHOGEN PAIRS

4.1 Abstract

The genes involved in disease spread and emergence are of central interest to the field of

evolutionary biology. TnSeq is one method by which genotype can be linked directly to

phenotype and even to selective coefficient in a given environment. Much has been learned

from TnSeq applied to microbial pathogens; for example, the essential genome has been

elucidated for many pathogens in common lab cultivation media. There have been a few

important attempts to apply TnSeq to a host-pathogen system in planta; these have revealed

the suggestion of a host-specific accessory genome in a single of Pseudomonas syringae. I

designed a five-by-five factorial infection experiment to generate a TnSeq dataset that would

have allowed me to learn whether, for each of five pathogens, there exists a host-specific

accessory genome for each of give hosts. However, I was ultimately unable to generate

enough sequencing material for statistical hypothesis testing. I present growth assays on my

Tn-libraries and as much explication as possible in hopes that someone may benefit from it

in future.

4.2 Introduction

Pseudomonas syringae is an agriculturally important pathogen with a host range that in-

cludes many crop plants (Preston et al. 2000; Lindeberg et al. 2009; Baltrus et al. 2017).

P. syringae has a global distribution and can cause devastating pandemics; for example, an

outbreak of disease on kiwifruit devastated production across multiple countries for years

(McCann et al. 2017). Thus, there is a great deal of interest in identifying the genetic

basis of disease in this pathogen. Like many bacterial phytopathogens, P. syringae has a

large pangenome that is still increasing in size as new strains are added (Dillon et al. 2019).
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There is a wealth of rare and even singleton genetic variants (Karasov et al. 2017), which

are unlikely to be strictly neutral in fitness effect (Wolf et al. 2016). The observation of

rare genetic variants in high numbers makes it tempting to speculate that such variants are

maintained by selection on various host plants.

One way to link molecular pattern to function is through forward genetic screens, which

involve knocking-out the genes in a single genetic backbone in order to observe the fitness

effects of the knock-out relative to the wildtype gene (Shuman and Silhavy 2003). More

specifically, TnSeq is a forward genetic screen that uses sequencing to obtain data comparing

the relative allele frequencies of knock-outs grown in various environmental conditions (Chao

et al. 2016). There are numerous examples of TnSeq applied to bacteria grown in vitro (Coe

et al. 2019; Langridge et al. 2019; Hentchel et al. 2018; Higgins et al. 2017; Lee et al. 2015;

Manoharan et al. 2015; Gallagher et al. 2010). For example, essential genomes in common

lab media have been identified for some well-studied pathogenic taxa, including Burkholderia

cenocepacia (Higgins et al. 2017), Pantoea stewartia (Duong et al. 2018), and Pseudomonas

aeruginosa (Poulsen et al. 2019).

Some studies have focused on P. syringae, including one on the common cultivation

environment King’s B (KB) for strain 1448A (Manoharan et al. 2015) and another on KB vs.

Arabidopsis thaliana for strain ES4326 (Schreiber et al. 2012). There are two additional key

studies by Helmann et al. (2019 and 2020) that considered a Tn-library of P. syringae isolate

B728A in common bean, lima bean, and pepper. In addition to identifying genes specific

to each host, an interesting result from their study was that toxin production was beneficial

in a host-specific pattern (less beneficial in lima bean than in common bean or pepper).

This was not expected and demonstrates the ability of TnSeq to reveal differential patterns

of selection across hosts. Other than this example, we know little about the specificity of

genes required for growth on different hosts, and it remains an open question to what extent

pathogens use specific genes to infect their hosts-of-isolation.
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Herein I describe my attempts to use TnSeq to uncover the molecular mechanisms that

cause pathogenicity in P. syringae. Unfortunately, I failed to generate significant results, for

reasons I describe in detail below. With this approach, I attempted to generate a selective

coefficient for each accessory gene, which would have enabled me to infer essentiality of those

genes which cannot withstand transposon-insertion. For an initial set of experiments, I chose

environments that represent typical laboratory growth conditions for P. syringae. Next, I

paired the pathogens with their hosts-of-isolation (or as close as possible), in order to identify

host-specific accessory genes, if any are present in this system.

4.3 Methods

Strain and environment selection In this chapter I repeat a series of growth assays that include

growth in three abiotic and growth in five plant host environments (Table 4.1). Instead of

using the wildtype pathogen as in Chapter 2, I performed these assays on transposon-mutant

libraries of the pathogens (generation of these libraries is described in detail below). Details

on strain and environment selection and composition are described in detail in Chapter 2;

in brief, I chose virulent pathogens isolated from a range of hosts, including crop plants

(bean, radish, and tomato) and the natural, weedy host A. thaliana. I chose two abiotic

environments that the pathogens are likely to encounter during cultivation, King’s Broth

(KB) and Lysogeny Broth (LB), plus I used a third media that was generated in-house by

maceration and filtration of A. thaliana plants. For in planta assays, I chose to assay each

transposon-mutant-library in each pathogen’s host-of-isolation (or a phenotypically similar

cultivar that was grown in the same location at the time of isolation). Thus, I first grew

libraries in abiotic enviroments with the goal of identifying phenotypic patterns of growth

and the genes required for growth of each strain in each environment. Then, I grew libraries

in their own, and in each other’s host-of-isolation with the goal of asking whether each

pathogen contains genes that are specifically beneficial in the host-of-isolation vs. all other
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hosts.

4.3.1 Tn-library construction

I generated transposon-mutant-libraries of each of five P. syringae donors via tri-parental

mating with Escherichia coli donor SM10λpIT2, containing the transposon used for muta-

genesis, and helper RK600, containing the conjugative plasmid, both kindly provided by Dr.

Colin Manoil. Transposon Tn8 (ISlacZ/hah-tc) mutagenizes through Cre-Lox recombina-

tion, randomly inserting the “hah-tc” sequence containing a tetracycline-resistance cassette

into the recipient genome (Jacobs et al. 2003).

I used the following antibiotics as required: for SM10λ/pIT2, ampicillin at 100 mg/mL;

for RK600, chloramphenicol at 25 mg/mL, nitrofurantoin for Pseudomonads except for

ES4326, at 100 mg/mL, and streptomycin for ES4326 at 30 mg/mL. In all cases, cultures

were incubated at 28°C and liquid cultures were grown shaking at 120 rpm. Starting with

single colonies grown on plain KB or LB, I inoculated 5 mL liquid cultures with the ap-

propriate antibiotics and grew them overnight, shaking at 28°C for 12 hours. The following

morning, I diluted cultures 1/10 into fresh media and antibiotics and grew for 4-6 more

hours to mid-stationary phase. I then combined equal quantities of each parent, pelleted

and washed the mixture twice in liquid KB, resuspended it in 100 µL liquid LB, then spotted

the suspension onto plain KB agar. Matings were incubated at 28°C for two days, at which

point I scraped them into sterile buffer, then pelleted and washed the cells twice in buffer to

remove residual agar. I then spread-plated the transformants onto KB agar supplemented

with two selective antibiotics (tetracycline to select for the transposon and nitrofurantoin or

streptomycin to select for the Pseudomonad). These were incubated for 2 days or until indi-

vidual colonies were visible, with a minimum of 50,000 transformants per strain. I scraped

colonies into fresh liquid KB and grew for four hours to separate transformants from residual

agar, then I normalized the libraries to OD600=1.4 in plain KB before diluting to a final
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Table 4.1: Host-pathogen pairs
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concentration of 15% glycerol and storing in 2 mL aliquots at -80°C.

4.3.2 In vitro growth assays

To estimate growth of the Tn-libraries in abiotic environments, I measured optical density

over 20 hours of incubation. To allow acclimation before this assay, I diluted flash-thawed

library aliquots 1/10 into fresh KB and grew for three hours. I chose three hours to allow

the library sufficient time to revive and expand but to preclude competition due to nutrient-

limitation. I diluted these pre-grown cultures 1/200 into 199 µL of media in sterile, optically

clear 96-well plates. I then incubated plates at 28°C in a Tecan plate reader set to shake

at an amplitude of 2 mm for 10 seconds, and to measure absorbance at 600 nm with 25

flashes, every 10 minutes for 20 hours. I repeated this assay for a total of six replicates.

Each well was normalized to its own initial optical density, removing the contribution of

the media to optical density estimates. To generate material for sequencing to elucidate the

genes essential for growth in vitro, I grew the libraries in three liquid media in 50 mL. I

inoculated 200 µL of flash-thawed freezer culture into 20 mL of either LB, KB, or AB, and

grew cultures for four hours at 28°C and shaking at 120 rpm before DNA extraction.

4.3.3 In planta growth assay

Plants were grown using the same conditions described in Chapter 2; briefly, all five hosts

and five Tn-libraries were included simultaneously, in each of four fully-randomized blocks

that included one replicate of each host-library combination. Plants were synchronized to

the same approximate developmental stage; I infected 21-day old (Arabidopsis and tomato)

or 9-day old (bean and radish) seedlings. To prepare Tn-libraries for infection, I inoculated

10 mL of flash-thawed freezer culture into 200 mL KB and grew for 4-6 hours to, at which

point I pelleted and washed the cells with sterile buffer, before resuspending in buffer to

an OD=1.1. Plants were sprayed until dripping wet and allowed to dry for 24 hours before
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being randomized in a checkerboard pattern to ensure plants did not touch. I harvested

plants on day six of infection by taking two sets of 18 (six mm) hole punches from surface-

sterilized leaves (dipped in 70% then sterile water for 30 s each). One set of holepunches was

used to obtain titers while the other was used to obtain sequencing material. Hole punches

were reserved in 50% glycerol at -20°C until processing. To obtain titers, hole punches were

macerated, diluted in sterile buffer, and spread-plated for colony enumeration. To obtain

sequencing material, hole punches were macerated in buffer, spread-plated, and harvested

(scraped into sterile buffer) after two days of incubation. Thus, my TnSeq input material was

plant-selected bacteria. DNA extraction was performed using the Qiagen DNeasy Blood and

Tissue kit (catalog 69504) with a final elution of 60 µL. DNA was kept in Milli-Q water at

4°C to avoid degradation from salt and freeze/thaw cycles, and quantitated with Nanodrop

or Picogreen prior to library prep.

4.3.4 Statistical analyses

Statistical analyses were performed in R v. 4.2.2 (R Core Team 2021) using the growthcurver

package (Sprouffske and Wagner 2016). Growthcurver is an R package that fits growth curve

data to a standard form of the logistic equation with the following parameters: the intrinsic

growth rate of the population, r, the initial population size, N0, and the carrying capacity,

K. The intrinsic growth rate of the population, r, is the growth rate that would occur

if there were no restrictions imposed by population size. Carrying capacity K is defined

as the maximum optical density reached over the course of the experiment. The logistic

equation describes the population size Nt at time t as: Nt = K/1+ ((K −N0)/N0) ∗ e− rt

. To calculate the number of generations, I used the standard equation (OD600final –

OD600initial)/ln(2), where OD600final is the carrying capacity K. Time was transformed

from seconds to hours for all calculations. To analyze the in vitro growth experiments, I

used an ANCOVA (K ∼ environment * library + plate), followed by Tukey’s post hoc tests
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on all possible comparisons. For the in planta experiments, I used an ANOVA (K ∼ plant *

library) followed by planned contrasts of growth on the host-of-isolation vs. all other hosts.

4.3.5 Efforts related to sequencing

Before large-scale sequencing, I performed some quality control qPCR reactions to check

the efficacy of primers designed to amplify the transposon sequence. This was primarily

due to the fact that I was planning to try amplifying transformants directly from plant

material, meaning that the primers needed to amplify transformants and not plant material.

The initial TnSeq primer G-43899 (inherited from TK) amplified the reverse complement

of bases 53 through 33 of Tn8. This happened to contain a partial sequence match to the

A. thaliana genome, so I selected a few alternate primer sequences to verify (T8-3: reverse

complement of bases 46 to 13; T8-4: reverse complement of bases 193 to 158). I Sanger

sequenced amplicons generated with each of the experimental primers to confirm orientation

of the transposon was as expected. I also performed qPCR to compare the percent of

on-target hits per each experimental primer. All experimental primers, designed to exclude

plant material, performed better than the initial primer; the example shown below (Fig. 4.1)

compares accuracy of T8-4 to G-43899 (TK) in a single sample. Thus, I used experimentally

verified transposon sequences in the following primer designs.

I performed all sequencing preparations on ice and kept working dilutions of DNA in Milli-

Q water at 4°C to avoid degradation from salt and freeze/thaw cycles. I used Picogreen

to quantitate and a Nanodrop to check purity of DNA, and homemade SPRI beads for

purification and size selection. I obtained all primers by custom order from IDT (Table 4.2).

4.3.6 Sequencing scheme 1

An initial sequencing scheme (2016) was inherited from Talia Karasov. This involved prep

with a Nextera kit (Illumina) to “tagment”, or fragment and ligate adapters to the fragment
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Figure 4.1: Log fold increase in on/off-target PCR product. T8-4 generally outperforms the
initial primer.

Figure 4.2: Tagmentation in this system. Double-stranded breaks are indicated by lightening
bolts. The transposon is shown in purple; the standard Illumina adapters are indicated in
pink and green. A ‘successful’ fragment of interest contains the transposon sequence.

ends in one reaction (Fig. 4.2). After tagmentation, there was a two-step, nested PCR to

enrich for the transposon while adding sequencing primers and indexed-adapters.

Fig. 4.3 shows the PCR protocol used after tagmentation to generate sequence-ready

amplicons. The first PCR used a standard N700 primer on one end (Illumina), and T8-4, a

primer that amplified the 5’ end of the Tn8-transposon (Table 4.2). This PCR was followed

by a SPRI bead reaction to purify and remove residual adapters. Finally, a second PCR

used a ‘general’ N700 primer (G-28018) that amplifies any N700 adapter on one end, and a

modified P500 primer that contained part of the transposon sequence on the other end (Table

4.2). This generated sequence ready amplicons with indexed adapters flanking a region of

P. syringae donor DNA and the junction with the transposon insertion.

I prepared approximately 60 samples in triplicate for sequencing on a Hiseq 4000. Se-

quencing with this scheme failed completely and lead to zero data being generated. This was

unexpected as library concentration and Bioanalyzer traces were in accordance with typi-
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Figure 4.3: Sequencing scheme 1 included nested PCRs. The transposon is shown in purple;
the standard Illumina adapters are indicated in pink, green, and blue.

cally successful library preparations. The sequencing was done at the UChicago core facility,

where it seems the standard step of performing qPCR with Illumina sequencing primers was

not performed. This was unexpected and left me without confirmation that my adapters

were in the correct orientation. With the information I had, I reasoned something must

be fundamentally wrong with the sequencing scheme. I consulted with my lab’s sequenc-

ing expert, Hannah Whitehurst, who theorized that an intermediate product containing the

transposon sequence could be interfering with priming in the second PCR. This is theoret-

ically possible, though not directly testable, and it was our best guess for what mechanism

led to a failed sequencing run. Thus, I decided to abandon this sequencing scheme and come

up with an alternative method.

4.3.7 Sequencing scheme 2

The second sequencing scheme was the most successful but still did not generate enough

data for my purposes. The design is essentially the inverse of the first, in that it attached

the transposon sequence to the opposite adapter, but I also tried to reduce complexity and

combine all steps into one PCR (Fig. 4.4). Thus, the second scheme included tagmentation

(same exact protocol as the first), but used different PCR primers to generate a sequence-

ready amplicons in one step (Table 4.2). I prepared six samples for an initial pilot experiment

that generated good-looking quality control metrics, including concentration and Bioanalyzer

results. I submitted them for sequencing on a Miseq with a 1.2 Gb kit (v2 Micro). This

sequencing run generated high quality reads, but only approximately 50% of them contained
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Table 4.2: Primers used in this study
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the transposon sequence, which should have been in virtually every read. Additionally, there

were a high proportion of duplicates, which I addressed by reducing number of cycles from

30 to 18. With this adjustment, I proceeded to prepare and sequence approximately 100

samples in triplicate for sequencing on a Hiseq 4000. Though these preparations also yielded

good-looking quality control metrics, unfortunately, again, about 50% of the reads contained

the transposon sequence, when it should have been found in all reads. Additionally, the

quality of the runs was very poor as indicated by FastQC and MultiQC, with most of the

sequences being duplicates even though I had adjusted PCR cycle number. There was also a

large amount of adapter contamination, which is my fault as I failed to confirm an additional

adapter removal step with the sequencing facility after initial quality control was returned.

Thankfully, Hanna Maerkle realized that the reads not mapping to the transposon were

actually mapping to the pIT2 transposon vector. That is, in sequences that did contain the

5’ end of the transposon as expected, often in place of P. syringae donor DNA there was

pIT2 vector DNA. Thus, it seemed that with some frequency, the vector had recombined

into the transformant’s genetic backbone after transformation. I confirmed that this does

occur (personal communication with Colin Manoil), though it appears the frequency of

this occurrence is unknown. It seems the majority of our reads were comprised of vector

contamination instead of donor gDNA, severely limiting my ability to generate statistically

significant TnSeq results. I was able to generate some non-significant TnSeq results with the

sequencing data I did generate, which I present in the Results section.

4.3.8 Sequencing scheme 3

In a final attempt to generate data, I thought of a new approach that would allow me to

sequence around vector contamination while eliminating the use of tagmentation entirely.

I thought this might be beneficial as the tagmentation relies on Tn5 transposition; Tn5 is

closely related to Tn8 and I reasoned this could lead to unforeseen interactions. The original
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Figure 4.4: The second sequencing scheme involved a single PCR. The transposon is shown
in purple; the standard Illumina adapters are indicated in pink, green, and blue.

TnSeq method used semi-degenerate primers (Manoil 2000) with complementary adapters

to comprise a two-step, nested PCR to generate sequence-ready fragments. This approach

had been modernized with the addition of TruSeq adapters by Anzai et al. (2017). The

point of using semi- instead of fully-degenerate primers is that there are ‘blocker’ sequences

at one end of the degenerate bases that limit binding to a reasonable number of genomic

locations (instead of literally anywhere, which can lead to the amplification of extremely

short sequences). I reasoned that I could use this same approach, but with modified semi-

degenerate primers that would selectively exclude pIT2 (Fig. 4.5). I replaced the ‘blocker’

sequences GATAT and ACGC with TAGATC and AACGCTA, which are not found in pIT2

so would not amplify pIT2 if present. Thus, the scheme involved first amplifying out of the

transposon on one end vs. a semi-random location in the donor genome on the other end.

Then, a second PCR added indexed-adapters and sequencing primers. Critically, the final

amplicon contains indexed-TruSeq adapters flanking the first 27 bases at the 5’ end of the

transposon, plus a region of the donor genome.

I prepared three samples for sequencing on a Novaseq 6000 using this scheme, and while

the sequencing failed to generate data, I have every reason to think that the protocol worked

to generate amplicons as expected. This is because 1) amplicons produced a smear via

gel electrophoresis, as expected, 2) amplicons produced Bioanalyzer traces consistent with

the distribution seen on the gel, and 3) qPCR results produced approximately the same
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Figure 4.5: The transposon is shown in purple; the Illumina Truseq adapters are indicated
in green and blue.

concentrations as the Bioanalyzer. Based on these results, I reasoned it must be an incom-

patibility of the sequencing adapters with the sequencer, even though I had used published

sequences. I contacted Illumina customer support and worked with them to discover that

this sequencing scheme is missing part of Read 2 sequencing primer, which is required to

appropriately anneal amplicons to the sequencer. Note that the corrected primer sequence

from Illumina, indicating the missing bases in bold, is listed in Table 4.2. Either there was

an error in the published sequence (Anzai et al. 2017) or their method relies on out-of-date

Illumina sequences. Thus, the method of using modified semi-degenerate primers for se-

quencing preparation appears to be a solid one, but an updated adapter scheme is required

for successful sequencing.

4.3.9 TnSeq analysis with TRANSIT

Hanna Maerkle did the majority of computational hacking of pipelines described in this

section, while Rebecca Satterwhite completed the sequencing and analysis. We analyzed our

TnSeq dataset by adjusting the publicly available TPP and TRANSIT pipelines (DeJesus et

al. 2015) to account for the specifics of our Tn8 amplification and sequencing scheme. TPP

cleans, maps, and tallies raw TnSeq reads to a reference genome. TRANSIT also requires

standard reference genome annotations be converted to the ‘.prot-table’ file format, which

links genomic location to protein annotation. For statistical analyses of our Tn8 data, we

selected the Tn5Gaps statistical method (DeJesus et al. 2015), which uses the distribution of

‘gaps’, i.e., sequence lacking Tn-insertions, across the whole genome (including introns), to
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predict the expected maximum length of such gaps, and to calculate a p-value per each actual

gap. Genes are then classified as essential based on the p-value of the largest overlapping gap;

that is, the probability under a Gumbel distribution that the protein product is disrupted.

We modified TPP to allow tallying of our Tn8 reads to reference genomes. Modifica-

tions include 1) we added the Tn8 primer sequence to the program, 2) adjusted the coded

location of the transposon to match the format of our data, and 3) omitted a superfluous

step to check for unused barcodes. We used the standard settings to run TPP, and then

combined all .wig files for a sample in a particular environment using the TRANSIT script

convertToCombinedWig with normalization method set to Trimmed Total Reads (TTR).

TTR normalizes by total read-count per isolate per environment and trims the top and bot-

tom 5% of read-counts. This scales each sample to have the same mean over all read-counts,

and is recommended for resampling analyses.

4.4 Results

The first set of experiments I performed with my Tn-libraries was to ask how they grow in

standard laboratory environments (Fig 6). I asked whether there are significant differences

in K across libraries and environments with an ANCOVA (K ∼ environment * pathogen

+ plate). I found significant effects of environment (F = 9.295, p = 0.000418), plate (F

= 5.082, p = 0.001823), and the interaction between library and environment (F = 2.428,

p = 0.028385). Thus, the performance of each library depends, to at least some extent,

on what environment it is in. To determine the drivers of these differences, I performed

a Tukey’s post hoc test of all possible comparisons, and found two significant environment

contrasts indicating that K in KB was higher than K in AB (p = 0.0005) and in LB (p

= 0.008). From this I learned that the libraries had significant growth advantages in KB

relative to the other media. This is consistent with what I found for the pathogens themselves

(Chapter 1). However, there were no significant library contrasts, consistent with the results

76



Figure 4.6: Median and 95% CIs of carrying capacity in abiotic environments

of the ANCOVA. Thus, the libraries had a significant advantage in KB relative to the

other environments, but there was not a best or worst grower. This is somewhat surprising

considering that NP29 had a significant advantage in prior assays (Chapter 1). However,

in this case I am estimating growth of a pooled mutant library where allele frequencies are

likely to change over the course of the assay.

Having assessed phenotypic patterns of growth, I next asked to what extent the genes

essential for growth in each environment are exclusive using the sequencing I obtained with

the second scheme. Unfortunately, and for reasons unknown, results from the A9-Tn-library

were exceptionally low in number and quality, so I excluded them from these examples. The

results produced a wide range of predicted numbers of significant (essential) genes (Table

4.2). In order to explore these results, I considered the number of overlapping essential

genes in the AB vs. KB environment (Table 4.3). I confirmed that at least a few of the

genes identified as essential are housekeeping genes, such as the RpoA, RpoB, and RpoC.

Similarly, I confirmed that at least a few of the genes identified as non-essential are known to

be non-essential, including virulence sensor protein BvgS and multidrug efflux pump subunit

AcrA.

The second set of experiments I performed with my Tn-libraries was to grow them in a

series of five plant hosts (Fig. 4.6). The ultimate goal of this experiment was to ask whether

there is a host-specific accessory genome; however, I am limited by poor data generation

from being able to answer this question. First, I ask what the phenotypic patterns of growth
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are across the experiment; specifically, I ask whether there are significant differences in K

across libraries grown in their own, and in each other’s, hosts-of-isolation (K ∼ plant *

library). I found significant effects of plant (F = 40.19, p < 2e − 16), library (F = 16.25,

p = 4.99e − 12), and the interaction between plant and library (F = 12.91, p < 2e-16).

This indicates that library growth depended on which plant the library was grown in, and

demonstrates that the hosts represented distinct selective environments for the libraries. To

determine whether the interaction between plant and library was driven by libraries growing

most on their host-of-isolation, I performed planned contrasts of growth on the native host

vs. all other hosts. I found that in only one of five cases (DC3000-Tom-DC, p = 0.0453),

growth on the host-of-isolation was significantly greater than on all other hosts. In two other

cases, growth on the host-of-isolation was actually significantly worse than on all other hosts

(ES4236-Radish, p = 0.0047 and 1448A-Bean, p < 0.0001).

4.5 Discussion

Elucidating the molecular basis of disease has long been a central goal in the field of evo-

lutionary biology (Suárez-Díaz 2019; Croll and Laine 2016; Rosenberg and Queitsch 2014;

Monteil et al. 2013; Lederberg 1997; Pauling 1964). An often-used approach are forward

genetic screens, for example TnSeq, which enables the fitness effect of any and all genes to be

estimated after growth under controlled selective conditions. With this chapter I attempted

to ask whether there exists a host-specific accessory genome in P. syringae. Though I was

unable to answer this question specifically, I was able to generate and assay five Tn-libraries

for growth phenotypes in multiple environments, revealing patterns largely different from

those obtained with assaying the wildtype pathogen under the same conditions.

Consistent with assays of the pathogen in vitro from Chapter 2, I found a significant

advantage for the libraries when grown in KB vs. LB and AB. This is not surprising as KB

was designed for the cultivation of Pseudomonads. However, I did not find the same relative
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Figure 4.7: Median and 95% CIs of carrying capacity in abiotic environments

Table 4.3: Overlap in essential functions in the AB (A) and KB (B) environments.
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advantage for the NP29-library as for the wildtype pathogen (Chapter 2). Thus, library

performance is likely not predictable based on the performance of the pathogen. This is also

true for the in planta experiments, where only one of the libraries grew most on its host-of-

isolation (DC3000). For the pathogen in planta experiments, not only were two pathogens

found to grow most on their hosts-of-isolation, but neither were DC3000 (Chapter 2).

Though I was unable to produce significant TnSeq results, we have learned a lot from

the previous work of others. For example, Duong et al. (2018) found the genes conditionally

essential for growth of Pantoea stewartii in LB and corn xylem, finding approximately 500

genes that were beneficial for growth in corn xylem relative to LB. Another study by Helmann

et al. (2019) found that for P. syringae strain B728A, 60 genes had significant competitive

fitness estimates in the common bean apoplast relative to KB. It will be interesting to

compare the results of the B728A experiment to the results of in planta TnSeq on other

P. syringae strains, in particular with differing effector repertoires. For example, I would

be curious to compare the fitness effects of genes used by a strain with a minimal effector

repertoire vs. one a maximal effectors repertoire. B728A has at least 22 secreted effectors

(Vinatzer et al. 2006), vs. a strain like NP29 that has only 6; thus, I would expect that such

strains use different molecular strategies to infect.

If I were to repeat these experiments again, I would attempt to use the semi-degenerate

primer scheme as I think it worked well and was the most straight-forward approach. The

central change I would make is to use a barcoded Tn-library. Even at the cost of the novelty

of generating a library in-house (that is, even limited to the existing barcoded libraries

available), I think the utility of having each transposon insertion be barcoded such that

unambiguous tracking and comparison of read enrichment is available is key to the strength of

the TnSeq approach. Additionally, barcoded libraries provide the utility of having individual

knock-outs in-hand to allow performance of fine-tuned experimentation. Future work could

be done with the P. syringae library generated by Helmann et al. (2019) grown on additional
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Figure 4.8: Median and 95% CIs of carrying capacity in planta

plants to expand the search for a host-specific accessory genome.

TnSeq is a powerful tool that can link phenotype and genotype directly with selective

coefficient (van Opijnen et al. 2009). I attempted an ambitious TnSeq experiment to generate

and compare the genomes of five P. syringae pathogens from various hosts. This would have

enabled me to search broadly for a host-specific accessory genome, though unfortunately this

was not possible given the data I was able to generate. Instead, I was able to observe patterns

of growth in vitro and in planta for the pooled Tn-libraries. I offer my best explication of

the experiments in hope that someone can benefit in future.
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CHAPTER 5

CONCLUSIONS

Microbial isolates comprising an ecotype are adapted to their shared ecology, which is borne

out in their patterns of relatedness; these works expand our knowledge of adaptation and

ecotype evolution in Pseudomonas syringae. Chapter 1 examines the relatedness of three

groups of strains from different sources (Arabidopsis thaliana, crop hosts, and environmental

reservoirs), and supports them as distinctly evolving lineages. Additionally, I find that the A.

thaliana-derived group represents a stable ecotype. However, host is a poor proxy for strain

relatedness (outside of the A. thaliana-derived group). Chapter 2 compares the effector

repertoires and growth of five isolates from different hosts in their own, and in each other’s,

host-of-isolation. Findings indicate that NP29 has a benefit across abiotic environments,

and that local adaptation is present, but not ubiquitous, in this system. Chapter 3 describes

attempts to generate a Tn-seq database that would have enabled elucidation of the pathogen

genes underlying the infections described in Chapter 2. In lieu of these results, which I was

unable to produce, I presented growth assays and compared the results of an insignificant

TnSeq analysis. In summary, these findings suggest that A. thaliana-derived isolates act

as an evolutionary ecotype, that host-of-isolation is not a reliable predictor of pathogen

relatedness, and that pathovars are not necessarily adapted to the hosts from which they

were isolated. These works also indicate a caution for the assumption of local adaptation

implied by the use of pathovar systems for classification.

More generally, these results reflect that molecular signatures of host-specific adaptation

are more likely to be in the variable than core genomes. It is possible that a focus on

singletons (reviewed in Taut et al. 2011) and effectors (e.g., Collmer et al. 2009) specifically

has been at the expense of other members of the variable genome that represent adaptation

to particular host niches. Even core genes can come in variable copy numbers per strain,

indicating the differential influence of selection and/or horizontal transfer even in genes
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present in all members of a species. To fully understand ecological adaptation, a more

comprehensive view of the variable genome is required.

5.0.1 Chapter 2 Caveats and future work

Several points of evidence support the designation of A. thaliana derived isolates of P.

syringae as a stable ecotype, but these are only correlative. For example, the At group

achieves all three predictions of a stable ecotype defined by Cohan (2002). These include

1) that they form a monophyletic group, 2) that they form a star clade with individuals

approximately equally related, and 3) that relatedness is greater within an ecotype than

between. Each of these were true for the At group, in contrast to the crop and env groups,

neither of which belong to one single monophyletic clade. Additionally, my findings of few

effectors for the At group, along with similar, previous findings of others (Karasov et al.

2017) indicate the presence of a selective force for loss of effectors in A. thaliana. The At

group pattern was again in contrast to the env and crop groups, which shared the majority

of effectors discovered in this study. The fact that few effectors were also detected in A.

thaliana-derived isolates of P. syringae from Michigan, USA (Karasov et al. 2017) indicates

that having few effectors is not specific to just one P. syringae population. In fact, if the

selective pressure comes from A. thaliana, it is unlikely that the effect is only present in

P. syringae, as A. thaliana has several natural pathogens. It remains unclear why, relative

to other plants, A. thaliana seems to contain so much potential for effector recognition. It

may not be something unique to A. thaliana but simply a byproduct of the plant’s selective

environment; that is, sampled populations of A. thaliana often grown adjacent to agricultural

fields (François et al. 2008) where they are likely to interact with at least some of the

pathogens that infect crops. Thus, it may be that A. thaliana and similar weedy hosts have

the evolutionary advantage over crop cultivars, in that they could have, over millions of

years, naturally built-up extensive resistance to crop-infecting pathogens. It has been shown
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that diffuse interactions with multiple pathogens can maintain resistance polymorphism in

A. thaliana for millions of years (Karasov et al. 2015), so perhaps there is a case for a ‘slow

and steady’ accumulation of resistance in this natural host.

Future work should compare A. thaliana-derived isolates of P. syringae from France to

those from other geographic regions to test how well the ecotype finding holds against an

expanded sample. Additionally, it would be of interest to know whether isolates of other

gram-negative phytopathogens of A. thaliana, like X. campestris, also contain few effectors

relative to isolates from other sources. This would indicate the presence of a powerful selective

force represented by A. thaliana and acting against pathogen effector alleles beyond just the

specific suite found in P. syringae.

5.0.2 Chapter 3 conclusions and caveats

One caveat to the approach used in Chapter 3 is that I focused exclusively on carrying ca-

pacity as a proxy for fitness, when there is also rate of growth to consider. I feel confident

in this choice as repeating the analysis with rate in place of K generally made the results

less informative. In the in vitro experiments for example, repeating the ANCOVA (rate ∼

environment * pathogen + plate) with rate in place of K revealed a significant main effect

of pathogen (F = 6.591 , p = 0.000209) and plate (F = 4.162, p = 0.005134), but no effect

of environment or the interaction between environment and pathogen. This differs from

the original ANCOVA with K, which uncovered significant effects of plant and pathogen,

indicating that K was a more informative choice than rate. For the in planta experiments,

ANCOVA with rate (rate ∼ plant * pathogen + plate) yielded results that were entirely

non-significant, indicating that pathogens grew at approximately the same rate across ex-

periments, again indicating that K was a more appropriate choice.

Another caveat to this work is that any direct test of local adaptation is limited by the

number of plants tested. It is possible that I would have found different results if we had used

84



a different set of cultivars, but I did my best to find a cultivar either identical to or as similar

as possible to the host-of-isolation. It seems unlikely that my finding of local adaptation

of 1448A to bean and NP29 to A. thaliana would change, considering the number of hosts

already tested. Future experiments should focus on testing for local adaptation of additional

pathovars, since assuming local adaptation based on host-of-isolation is evidently not reliable.

Also of note: a classification system completely divorced from pathogen phenotype, and

instead based on whole genome sequences has been suggested (Baltrus 2016). This has

the advantage of application to even unculturable isolates and does not require phenotypic

testing for proper classification. Perhaps such a system should be adopted in the future.

5.0.3 Chapter 3 conclusions and caveats

Chapter 3 was built on a solid question that I still wish I knew the answer to: is there a host-

specific accessory genome in P. syringae? There is only one previously published example

of a Tn-library of a P. syringae strain has been grown in more than one host (Helmann

et al. 2020). This important study demonstrated the presence of a host-specific accessory

genome for B728A in common bean, lima bean, and pepper grown in the apoplast. However,

these results have yet to be replicated in another strain or even another lab, so the extent

of their generality remains to be known. The obvious caveat to this chapter is that I was

unable to generate significant TnSeq results, but I do not believe there was a fundamental

problem with the experimental design. One lesson learned is to make full use of Illumina

customer service when planning a sequencing experiment, since they will help make sure

your scheme is compatible with the specific sequencer. Another is not to trust published

sequences without verification. The extent to which P. syringae has a host-specific genome

remains to be fully explored.
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