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Abstract: Liquid argon technology is widely used by many previous and current neutrino experi-
ments, and it is also promising for future large-scale neutrino experiments. When detecting neutrinos
using liquid argon, many hadrons are involved, which can also interact with argon nuclei. In order to
gain a better understanding of the detection processes, and to simulate neutrino events, knowledge of
hadron-argon cross sections is needed. This paper describes a new procedure which improves upon
the previous work with multi-dimensional unfolding to measure hadron-argon cross sections in a
liquid argon time projection chamber. Through a simplified version of simulation, we demonstrate
the validity of this procedure.
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1. Introduction

Liquid argon (LAr) technology is widely used by many previous and current neutrino
experiments, such as MicroBooNE [1], ArgoNeuT [2], and ICARUS [3], and it is also
planned to be employed by future experiments such as SBND [4] as well as one of the
next-generation large-scale neutrino experiments DUNE [5]. Neutrinos are mostly detected
by their interactions with argon nuclei, in which many types of hadrons are involved,
including both the knockout of nucleons and the production of mesons. These neutrino-
induced hadrons can also interact with nucleons before they escape the nucleus. This may
change the kinematics and types of final state particles that are detected, which complicates
the reconstruction of neutrino interactions. These are known as final state interaction (FSI)
effects. In addition, the propagation and further interactions of these final state hadrons
also need to be simulated properly. Therefore, knowledge of hadron-argon cross sections
is required, which is useful for informing FSI and improve simulations as well as their
associated uncertainties.

However, there are few experimental data available on argon, and the predictions are
mostly derived by interpolating cross section results from lighter and heavier nuclei [6,7],
such as carbon, sulfur, and iron, which have more data available [8–11]. In those experi-
ments, the common set-up was to implement a beam of a certain type of hadron of interest
and shoot the beam toward a thin target of the material of interest. The survival rate of
the hadron beam after the thin target can be measured and used to calculate the cross
section. The increasing popularity of LAr-based detectors has motivated efforts toward
making cross section measurements of LAr. The LArIAT collaboration proposed the thin
slice method to measure hadron-argon cross sections using an LAr time projection chamber
(LArTPC) [12], which itself can no longer be considered a thin target of LAr for hadrons.
The precise track reconstruction capability of LArTPCs enables researchers to hypothetically
divide the detector into several thin slices, and each slice can be considered an individual
thin target experiment. The measurements from all these slices fill the corresponding
energy bins.

The original method treats the measured cross section in each bin independently and
performs an effective correction in each bin to account for inefficiency and bin migration
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caused by the detector’s resolution. We keep the essential idea of the thin slice method
and further develop the method with more rigorous statistical procedures, including using
multi-dimensional unfolding to consider the full correlations of different measurements.
In this paper, Section 2 shows the derivation of the cross section formula, and Section 3
describes the slicing method in more detail. Section 4 describes the measurement proce-
dures for a simplified simulation sample, where all results are derived using an IPython
notebook, referred to as hadron-Ar_XS [13]. Some further discussions on the results as well
as a summary are given in Section 5.

2. Cross Section Formula

The total cross section σtotal as a function of the incident particle’s kinetic energy E
(For convenience, σ and σ(E) are used interchangeably throughout the text.) is defined
according to

dΦ
dx

= −nσtotalΦ, (1)

where Φ denotes the particle beam flux, dΦ is the infinitesimal reduction of flux, and n
is the number density of the target material. By moving dx, the infinitesimal path length
of the particle inside the material shown on the right-hand side of Equation (1), and then
integrating both sides, we obtain

Φ = Φ0e−nσtotalδx, (2)

where δx is the path length integral. This assumes that the cross section σ remains constant
within the variation of E during its passage of δx. (In reality, σ indicates an effective mean
value for the cross section within the variation of E, since there will always be energy loss
during the particle’s passage inside the material when we measure the cross section. This
also applies to a finite passage length, as discussed in the last paragraph of this section.)
For a certain area and a certain period of time, the number of surviving particles detected
is proportional to the outgoing particle flux, and thus we have

e−nσtotalδx =
Φ
Φ0

=
Nsurviving

Nincident
. (3)

We can also define the number of interacting particles as Ninteracting = Nincident − Nsurviving.
Therefore, after measuring the number of incident particles and the number of surviving
particles, the total cross section can be calculated as follows:

σtotal = − 1
nδx

ln
(

Nsurviving

Nincident

)
= − 1

nδx
ln
(

Nincident − Ninteracting

Nincident

)
. (4)

When it comes to the exclusive cross section, (Even for the inclusive cross section,
there may be a reduction in flux due to particle decay. In this case, a denotes the total
inelastic interaction, b denotes the particle decay, and thus σb is considered an effective
cross section. For convenience, we will also refer to particle decay as an “interaction”.)
we denote a as the signal interaction and b as all the other interactions, and thus we have
dΦ = dΦa + dΦb, where dΦa is the reduction in flux due to the signal interaction. Also,
we have σtotal = σa + σb. By separating Ninteracting based on the type of interactions into
Na

interacting + Nb
interacting in Equation (4), we obtain

σa + σb = − 1
nδx

ln
(

1 −
Ninteracting

Nincident

)
= − 1

nδx
ln

(
1 −

Na
interacting + Nb

interacting

Nincident

)
. (5)

where σa and σb in Equation (5) are not separable given the logarithm function on the right-
hand side. Only when Ninteracting ≪ Nincident, which implies that δx is quite small, and
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the thin target approximation holds can we use the approximation limx→0 ln(1 − x) = −x
and find

σa + σb =
1

nδx

Na
interacting + Nb

interacting

Nincident
. (6)

Therefore, we have

σa =
1

nδx

Na
interacting

Nincident
(and σb =

1
nδx

Nb
interacting

Nincident
), (7)

which is in fact a direct implication from the definition of the exclusive cross section

dΦa

dx
= −nσaΦ. (8)

However, in the slicing method described in Section 3, δx for each slice, which we
used to calculate σ, is not necessarily small. Therefore, we wish to obtain an unbiased
cross section formula without the thin target approximation. From Equations (1) and (8),
we have

σtotal
σa

=
dΦ
dΦa

. (9)

For a finite δx, we can estimate this relationship as

σtotal
σa

=

∫
dΦ∫
dΦa

=
∆Φ
∆Φa

=
Ninteracting

Na
interacting

, (10)

where σ is the effective mean value for the cross section within the variation of E during
the passage of δx. (According to Equations (1) and (8), assuming n is constant, σ̄ can be
expressed as

∫
δx Φσdx.) Therefore, combined with Equation (4), we have the expression for

any channel a:

σa =
Na

interacting

nNinteractingδx
ln
(

Nincident
Nincident − Ninteracting

)
. (11)

Because we can never measure σ in an infinitely small E bin, we will express σ as σ
in the following sections. In the thin target approximation, where Ninteracting ≪ Nincident,
Equation (11) can be approximated to Equation (7).

3. Slicing Method

An LArTPC cannot be seen as a thin target in terms of hadrons, whose mean free
path in LAr is to the order of 10–100 cm. However, thanks to its high-resolution track
reconstruction ability, the LArIAT collaboration proposed the thin slice method [12], where
the detector is hypothetically divided into several slices along the hadron beam direction.
Each slice is viewed as a thin target with a width of several millimeters, based on the
spacing of the sensing wires. When detecting tracks in the TPC, each slice serves as an
individual thin target experiment. By detecting where the track ends, we know where
the interaction happens and thus fill in the corresponding energy bins of Ninteracting and
Nincident, which are used to calculate the cross section. The final results are rebinned to
wider energy bins, such as 50 MeV, in order to obtain the results.

Based on the thin slice method, Stocker et al. first proposed the idea of energy
slicing [14] based on a study of the ProtoDUNE-SP experiment [15]. In the energy slicing
method, each energy bin is directly considered a slice, which is natural since the cross
section is measured as a function of the kinetic energy of the incident particle. (The authors
of [16] also had a similar description of the slicing method, while the cross section formula
used in these papers is proven to be an approximation of Equation (11), according to
Section 2.) Figure 1 shows an illustration of an LArTPC. A beam hadron is incident from
the left side of the detector and leaves a track inside the detector. The beam hadron track
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ends at the end vertex, where either an interaction occurs or the hadron comes to rest,
potentially producing some daughter particles, which can be used to determine the type
of interaction or the decay. The kinetic energy of the beam hadron when it enters the
detector is denoted by Einitial, which is known from the beam, and it approximately follows
a Gaussian distribution, given the momentum spread. The kinetic energy of the beam
hadron at the end vertex is denoted by Eend. Given these two energies, the track can be
divided into several slices based on the predefined energy bins. (From this point onward,
the slice can be used interchangeably with the energy bin.) The bin edges are indicated by
dark red bars in Figure 1, where the last bar is dashed because the beam hadron did not
reach that energy. As shown in Figure 1, the first complete slice is referred to as the initial
slice, and the slice which has the end vertex is referred to as the end slice. If the interaction
occurring at the end vertex is a signal interaction, then the end slice is also referred to as
the interaction slice.

Figure 1. An illustration of an LArTPC, where a beam hadron is shot into the detector from the left
side. More descriptions of the elements in the illustration are provided in the text.

The piece of track prior to the initial slice is referred to as an incomplete slice, which
will not be used. In contrast, Eend is inside the end slice.

For convenience, we define the slice index ID from 1 to the number of energy bins
N, starting with the highest energy bin. Therefore, for each beam hadron track, there is
an initial slice index IDini, an end slice index IDend, as well as an interaction slice index
IDint, which is designated as null if the interaction occurring at the end vertex is not the
signal interaction. In addition, if the end vertex is inside the incomplete slice, then the
whole track is not usable, and thus the indices for all three slices will be designated as null.
For a sample of events with a beam hadron track in the detector, the distribution of IDini
forms the initial histogram Nini(ID), and similarly, we have the end histogram Nend(ID)
and the interaction histogram Nint(ID). We also define the incident histogram Ninc(ID),
which will later appear in the cross section formula in Equation (14). Each bin of Ninc(ID)
counts the number of tracks which reach the energy corresponding to the slice index ID,
and thus we say the tracks are incident to that slice. Note that for Ninc(ID), one event is
likely to contribute to multiple bins, since a track can be incident to a sequence of slices
until it interacts. In the thin slice method, for each track, IDini fills Nini(ID), and IDend fills
Nend(ID), while Ninc(ID) should be filled from the value of IDini to IDend. Equivalently,
Ninc(ID) can also be calculated by the derived Nini(ID) and Nend(ID) as shown below. This
calculation enables us to derive Ninc(ID) using the unfolded histogram given in Section 4.4.
This is because after unfolding, the event-wise information is lost, and Ninc(ID) cannot be
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derived by counting events. In addition, for Ninc(ID), it is no longer one entry per track,
and thus it would be problematic to unfold the counted Ninc(ID) directly: [14]

Ninc(ID) =
N

∑
j=ID

Nend(j)−
N

∑
j=ID+1

Nini(j),

or Ninc(ID) =
ID

∑
j=1

Nini(j)−
ID−1

∑
j=1

Nend(j).

(12)

The two expressions are equivalent given that

N

∑
ID=1

Nini(ID) =
N

∑
ID=1

Nend(ID), (13)

which equals the total number of beam hadron events. Given the relationship between the
slice index ID and the energy E by definition, all of these histograms can also be given as
energy histograms.

Compared with Equation (11), by replacing Nincident with Ninc(E), Ninteracting with
Nend(E), Na

interacting with Nint(E), and also 1
δx with 1

δE
dE
dx , we derive the cross section for the

signal interaction in each energy bin, given by

σ(E) =
Nint(E)

nNend(E)δE
dE
dx

(E) ln
(

Ninc(E)
Ninc(E)− Nend(E)

)
, (14)

where δE is the energy bin width and dE
dx (E) is the stopping power of the hadron in LAr.

Therefore, for each beam hadron event, three properties are needed, which are Einitial, Eend,
and whether or not there is signal interaction in order to derive the slice indices for Nini,
Nend, and Nint. This allows us to treat the three indices as a combined 3D variable, thus
enabling the multi-dimensional unfolding discussed in Sections 4.3 and 4.4.

4. Procedures and Results

This section describes the detailed procedures for measuring the hadron-argon cross
section with the help of the IPython notebook hadron-Ar_XS [13]. We first describe how the
simulation samples are prepared (Section 4.1) and then use their true information to extract
the true cross sections (Section 4.2). The derivation of statistical uncertainty is described in
Section 4.3. Section 4.4 talks about how we model the measurement effects and prepare the
fake data sample. Finally, the measured cross section results of the fake data sample are
presented in Section 4.5.

4.1. Simulations

All results presented in this paper were obtained from data simulated in hadron-
Ar_XS [13]. Although this paper focuses on the method for calculating the cross section, it
is worth describing how the simulation was carried out. Smooth and positive curves were
created to represent the hadron-argon cross sections σ as functions of the hadron’s kinetic
energy E, as shown in Figure 2. The signal cross section σsig(E) was the cross section for an
exclusive channel that we wanted to measure, and other cross sections σoth(E) accounted
for all the others. The total cross section is given as σtot(E) = σsig(E) + σoth(E).

As described in Section 3, for each beam hadron event, we needed its initial kinetic
energy Eini, the kinetic energy at the end vertex Eend, as well as the type of interaction
occurring at the end vertex in order to use the slicing method to measure the cross section.
Therefore, in our simplified simulation, we only aimed to generate these three properties
for each event. For Eini, we generated a random value following a Gaussian distribution
for each event in order to mimic the momentum spread. (This assumes the momentum has
a central value, whereas most test beam experiments have multiple momentum modes.
Linearly combining data of different momentum modes will not affect the effectiveness
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of the procedures.) For the latter two, we simulated the hadron’s passage inside LAr
with a customized step size ∆x. (The simulation used in this paper was generated with
∆x = 0.1 cm, which should be much smaller than the mean free path of a particle with
a cross section to the order of hundreds of millibarns.) This means that in each step,
we generated a random indicator and decided whether the signal interaction or other
interactions happened. If not, then it proceeded to the next step until the hadron reacted
or its kinetic energy reached zero. Thus, it also included the simulation of particle energy
loss inside LAr. We used the Bethe–Bloch formula [17] to model the mean dE/dx curve
as a function of the hadron kinetic energy. In each step, a random value was generated
following a simplified version of the Landau–Vavilov distribution [17] as the dE/dx value
to be used in the step. The mean dE/dx value of the Landau–Vavilov distribution employed
in each step aligned with the value calculated by the Bethe–Bloch formula at the kinetic
energy in that step. As a result, the energy loss in each step would be ∆E = dE/dx · ∆x if
no interaction occurred. The mean dE/dx curve used in the simulation and an example
dE/dx distribution derived at E = 400 MeV, where the mean dE/dx was approximated to
be 2.10 MeV/cm, are shown in Figure 3.

0 200 400 600 800 1000 1200 1400
Kinetic energy (MeV)

0

200

400

600

800

Cr
os

s s
ec

tio
n (

mb
)

User-defined cross sections used in simulation
Total cross section
Signal cross section
Other cross sections

Figure 2. Cross section curves based on which the simulation was generated. The total cross section
(blue dash-dotted curve) is the sum of the signal cross section (orange solid curve) and the other
cross sections (green dashed curve). The curves do not correspond to any real hadrons in LAr, but
they were created to have an order of magnitude in the hundreds of millibarns, which is similar to
the real case. The signal cross section curve also imitates a ∆ resonant peak at about 200 MeV in the
low-energy region.

0 200 400 600 800 1000
Kinetic energy (MeV)

0

1

2

3

4

5

dE
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)

User-defined mean dE/dx curve used in simulation
Mean dE/dx curve
Example kinetic energy at 400 MeV

(a)

0 1 2 3 4 5
dE/dx (MeV/cm)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
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F (

M
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/cm
)1

Example dE/dx distribution at 400 MeV
dE/dx PDF curve
Mean dE/dx = 2.10 MeV/cm

(b)

Figure 3. (a) The mean dE/dx curve used in the simulation. The dashed vertical line at E = 400 MeV
indicates the case of the example dE/dx distribution. (b) The example dE/dx distribution at
E = 400 MeV, where the mean dE/dx is approximately 2.10 MeV/cm, which aligns with the value
given in subplot (a).
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A simulation sample of 100,000 events was generated. In this simplified simulation,
each event had only three properties relevant to the cross section calculations, which were
Eini, Eend, and a flag indicating the fate of the hadron. The distributions of these three
properties for the simulation sample are shown in Figure 4. (There could be a fourth
property for each event, which is the event weight. It can be useful when reweighting the
simulation sample to study the systematic uncertainties [18,19]. To simplify the problem,
we assigned uniform weights to all samples used in this paper, but the procedures also
applied to the samples with non-uniform weights.)

600 800 1000 1200
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0
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30,000
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ts

Distribution of Eini(a)
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Distribution of Eend(b)

No interaction Signal interaction Other interactions
Flag

0

10,000

20,000

30,000

40,000

50,000
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ts

Distribution of the flag indicating the fate of the hadron(c)

Figure 4. For the simulation sample, the distribution of (a) Eini, (b) Eend, and (c) the flag indicating the
fate of the hadron, where it either has no interaction before it comes to rest, or it has signal interaction
or other interactions.

4.2. Extracting the True Cross Section

From the three properties associated with each event, we used an even binning with
δE = 50 MeV (The binning did not need to be even, and this should be decided on a case-
by-case basis.) and obtained the relevant histograms as described in Section 3: Ninitial as
the distribution of Eini, Nend as the distribution of Eend, and Ninteractionex as the distribution
of Eend, but only for events having the signal interaction. After that, we calculated Nincident
using Equation (12). The obtained histograms are shown in Figure 5.

By inserting these histograms into Equation (14), we derived the signal cross section
σsig(E), (In principle, σoth(E) and σtot(E) can also be derived using the same method.) as
shown in Figure 6. This cross section was calculated originally using the true values of
the three properties of each event, and its consistency with the simulation curve suggests
the feasibility of the slicing method. For a quantitative comparison of the extracted cross
section from the simulation sample against the input curve, we can calculate χ2, given as

χ2 = [σ − σcurve] · V−1
σ · [σ − σcurve]

T , (15)

where σcurve is a vector of the input cross section evaluated at the middle point in each
energy bin and Vσ denotes the covariance matrix for the calculated true cross sections σ.
The derivation of Vσ is described later in Section 4.3. The p value shown in the legend in
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Figure 6 suggests good consistency of the sample with the curve. In Section 5, toy studies
are performed to further validate the slicing method.
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Initial histogram Nini(a)
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End histogram Nend(b)
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Figure 5. Energy histograms derived from the simulation sample: (a) Ninitial(E), (b) Nend(E),
(c) Ninteractionex (E), and (d) Nincident(E). The first and last energy bins are given as overflows. The
derivation of error bars is described later in Section 4.3.
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Figure 6. The cross section extracted using the true information of the simulation sample. The
right-tail p value was calculated assuming a χ2 distribution with the number of degrees of freedom
Ndf being 18, which is the number of cross section bins. The derivation of error bars is described later
in Section 4.3.
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4.3. Deriving the Statistical Uncertainty

In the last Section 4.2, we described how to extract the true cross section but not yet
how to calculate its statistical uncertainty. In order to accomplish this, we considered the
problem in the multi-dimensional variable space. This is because the three histograms
Ninitial, Nend, and Ninteractionex directly derived from each event were not independent of
each other. For example, for different values of Eini, the distributions of Eend are supposed
to be different. In order to fully consider the correlations among them, we defined a
combined variable:

IDcom = IDini + (Nbin + 1) · IDend + (Nbin + 1)2 · IDintex . (16)

Here, we assigned ID = 0 for events with a null value, which is defined in Section 3,
and thus there was one more bin in addition to the number of energy bins Nbin for each
of IDini, IDend, and IDintex . (The null-value events need to be included rather than cut
directly, because it is possible for them to be assigned a normal value in the measured
space described in Section 4.4, which should be handled by the response matrix.) This
definition can be understood as flattening a 3D array into a 1D array. The distribution of
this combined variable is shown in Figure 7. Since we had 20 bins for all of Ninitial, Nend,
and Ninteractionex , there were (20 + 1)3 = 9261 bins for IDcom. The entry in each bin was
derived by counting the (weighted) events independently, and thus a (weighted) Poisson
error could be assigned as the statistical uncertainty for each bin content.

0 2000 4000 6000 8000
IDcom

0

2000

4000

6000

8000

10,000

Co
un

ts

Figure 7. The distribution of the combined variable IDcom of the simulation sample.

After that, we followed standard error propagation by constructing a Jacobian
matrix, defined as J = (∂ fi/∂xj)m×n, where x denotes the original variable and f denotes
the variable it will be transformed into, and thus the covariance matrix is propagated by
Vf = J · Vx · JT . There are three steps to transition from the covariance matrix for the
combined variable to the covariance matrix for the cross section, which are also described
in the caption of Figure 8. (In Figure 8a, the matrix may look to be empty because it is
sparse, and the bins may be too small for readers to visualize its color. It is still kept for
consistency with the other subplots. Similarly, this happens to Figure 9c):

• Firstly, the combined variable is projected back to the three axes, namely IDini, IDend,
and IDintex , (This can be accomplished by calculating Ninitial = ∑IDend ∑IDintex

(IDini,
IDend, and IDintex), Nend = ∑IDini ∑IDintex

(IDini, IDend, and IDintex), and Ninteractionex =

∑IDini ∑IDend
(IDini, IDend, and IDintex), where N denotes the bin content for the corre-

sponding ID) and the covariance matrix for (IDini; IDend; IDintex) is derived.
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• Secondly, the null value bins with ID = 0 for the three variables are ignored. Ninc,
calculated by Equation (12), replaces Nini, and the covariance matrix for (Ninc; Nend;
Nintex) is derived.

• Thirdly, the cross section is calculated using the three energy histograms with Equation (14),
and its covariance matrix can be derived by calculating the derivatives appearing in
the Jacobian matrix.

With these covariance matrices, the error bars in Figures 5 and 6 were obtained.
Figure 8 shows the correlation matrices for these four stages, allowing better visualization
than the covariance matrices. As can be seen in Figure 8c, the off-diagonal blocks were not
empty, which suggests there were correlations among different histograms. In Figure 8d,
the correlation matrix for σ(E) is diagonal, which suggests that the true cross section in each
bin was independent. However, this would not be the case for the measured cross section,
as shown later in Section 4.5. Thus, considering the problem in the multi-dimensional
variable space is necessary for a rigorous uncertainty evaluation.
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Figure 8. (a) Correlation matrix for the combined variable IDcom, which is diagonal since the entry
in each bin was derived by counting independently. (b) Correlation matrix for (IDini; IDend; IDintex ),
where the first block (bin indices 0–20) corresponds to IDini, the second block (bin indices 21–41)
corresponds to IDend, and the third block (bin indices 42–62) corresponds to IDintex . (c) Correlation
matrix for (Ninc; Nend; Nintex ), where the first block (bin indices 0–19) corresponds to Ninc, the second
block (bin indices 20–39) corresponds to Nend, and the third block (bin indices 40–59) corresponds
to Nintex . (d) Correlation matrix for the extracted cross section σ(E), which has 18 bins on each axis
without the underflow and overflow bins.
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Figure 9. Correlation matrices for (a) IDmeas
rem , (b) IDunfd

rem , (c) IDcom, (d) (IDini; IDend; IDintex ),
(e) (Ninc; Nend; Nintex ), and (f) the measured cross section σ(E) for the fake data sample.

4.4. Measurement Effects

In practice, the true values of Eini and Eend and the type of interaction are unknown,
but they need to be measured, which may result in some measurement effects, including the
detector resolution and inefficiency when measuring the energy, as well as misidentification
of the type of interaction. Eini is usually measured with external instruments outside the
LArTPC, while Eend is derived from Eini with the reconstructed track information in the
LArTPC. We also relied on random variables to model these effects effectively rather than
simulating events from the origins of the effects. Firstly, to simulate the selection process,
a score was generated for each event. Based on whether the score was larger or smaller
than a threshold, the event was kept or rejected. The score was generated following a
Gaussian distribution, whose mean parameter depended on the true parameters of the
event, in order for the efficiency to be non-uniform as a more general case. (In more
detail, the mean of the Gaussian distribution used for the simulation was a linear function
of log

(
Etrue

ini − Etrue
end

)
, and a constant threshold needed to be reached for the event to be

selected. This mimics the actual scenario where the selection efficiency is smaller for too
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short of tracks and larger if the tracks are long enough.) In all, 40,620 out of 100,000 events
in the simulation sample passed selection. Secondly, for all events that passed selection,
two random variables following different Gaussian distributions were generated for each
event, denoted as E1 and E2. E1 was used to imitate the resolution for measuring Eini, while
E2 accounted for the resolution effects involved with energy deposition of the reconstructed
track. Therefore, we had Emeas

ini = Etrue
ini + E1 and Emeas

end = Etrue
end + E1 + E2. (Emeas

end was
derived from the measurement of Emeas

ini , and thus E1 was inherited) Finally, in order to
simulate the misidentification among the three types of interactions, or to say the event
fates, which were “no interaction”, “signal interaction”, and “other interactions”, a 3 × 3
confusion matrix was defined, where each element indicated the possibility of a true fate
being recognized as a measured fate. Random numbers were used in order to decide the
measured fate of each event according to the defined confusion matrix. As a result, the
simulated measurement effects (In this simulation, the resolutions and the confusion matrix
were defined as the same for all events, which were independent of their energy. The work
in [13] can be referred to for more detail.) can be seen in Figure 10.
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Figure 10. (a) The distribution of Emeas
ini (orange histogram) and Etrue

ini (blue histogram) for the
simulation sample. (b) The distribution of Emeas

end (orange histogram) and Etrue
end (blue histogram) for

the simulation sample. (c) The resulting confusion matrix for the event fates of the simulation sample.
The horizontal axis indicates the measured fates, and the vertical axis indicates the true fates. The
color bar indicates the (weighted) event counts in each bin, which add up to be the event counts
passing selection.

Therefore, for each event in the simulation sample passing selection, it had three true
properties and three measured properties. With these properties, we were able to determine
its index for the combined variable IDcom in both the true space and the measured space,
and thus we could use the simulation sample to model the response matrix as well as the
efficiency plot for IDcom, which would later be the inputs for unfolding [20] as well as
efficiency correction. Figure 11 shows the distribution of the measured combined variable
IDmeas

com , which was also calculated by Equation (16) but with the measured values.
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Figure 11. The distribution of the measured combined variable IDmeas
com of the simulation sample.

For the real data, the true information was not available, and thus we used unfolding
together with the efficiency correction to transform from the measured histogram to the
estimated true histogram, which is referred to as the unfolded histogram. However, the
number of bins for IDcom to the order of N3

bins could reach over a thousand. To unfold a
histogram with such a large number of bins can be quite time-consuming. Fortunately, in
our case, despite the large number of bins, the histogram was usually sparse, with many
empty bins. (For example, out of 9261 bins in total, for either the IDtrue

com histogram in
Figure 7 or the IDmeas

com histogram in Figure 11, only 315 bins and 331 bins were non-empty,
respectively.) Therefore, we deleted these empty bins in the IDtrue

com histogram and the
IDmeas

com histogram separately, re-indexed the remaining bins, and denoted the new index
as IDrem. A map was created between IDtrue

com and IDtrue
rem , and another map was created

between IDmeas
com and IDmeas

rem . After that, we built the response matrix as well as the efficiency
plot of IDrem, as shown in Figure 12.
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Figure 12. (a) The response matrix modeled using the simulation sample. The horizontal axis is
IDmeas

rem , and the vertical axis is the true IDtrue
rem . The color bar indicates the (weighted) event counts

for each bin. (b) The efficiency for each IDtrue
rem bin. The uncertainty for efficiency was calculated

according to the Clopper–Pearson method [21].

By denoting the response matrix as Rij = P(IDmeas
rem = j|IDtrue

rem = i) and the efficiency
as ϵi = P(events with IDtrue

rem = i being selected), we had IDmeas;sim
rem = R · (ϵ · IDtrue;sim

rem ),
where IDtrue

rem held for the simulation sample. For a data sample, we first used the map for
the measured histogram to derive IDmeas

rem from IDmeas
com . Then, we relied on an unfolding

algorithm of choice to estimate the unfolding matrix, denoted as R̃, (It might be natural
to think of R̃ as the direct inverse of R, but it has been proven to be problematic to use.
This has been described in many references about unfolding, such as [20].) and thus the
unfolded IDrem histogram for the data was IDunfd;data

rem = (R̃ · IDmeas;data
rem ) · ϵ−1. (If ϵ in bin

i is zero, then the value in the bin IDunfd;data
rem = i can be estimated using the simulation

sample normalized to the data sample directly, because the zero efficiency is usually due to
low statistics and will not change the final result significantly. However, the uncertainty
associated with this can be evaluated by fluctuating these bin entries.) Finally, the map for



Instruments 2024, 8, 15 14 of 18

the true histogram was used to transform IDtrue
rem back into IDtrue

com. (It is possible that a bin
for IDcom is empty in the simulation sample but not empty in the data sample, especially
for bins with low statistics. In this case, we can add these non-empty bins of data to the
map as well. It is not necessary for the map to be the same for all data samples.)

4.5. Fake Data Results

A sample of 10,000 events was generated using the same procedure as the simulation
sample, but its true information was not used in order to mimic the real data. After selection,
we had 3984 events in this fake data sample. The selection rate was similar to the simulation
sample. Figure 9 shows the correlation matrices involved in the error propagation from
the measured IDrem histograms to the final cross section results. Compared with Figure 8,
when extracting the true cross section, there were two extra steps, which were unfolding
and mapping back to IDrem.

In Figure 9a, the correlation matrix for IDmeas
rem is diagonal because in each bin, the

events were counted independently. Figure 9b is the correlation matrix for IDunfd
rem , which

was derived from (a) using the unfolding algorithm of choice. We used the Python ver-
sion of RooUnfoldBayes [22] as the unfolding algorithm, which employs the d’Agostini
method [23]. The unfolding algorithm was treated as a black box in this paper, where we
input the measured IDrem histograms as well as its covariance matrix and obtained the
output, including the unfolded IDrem histograms as well as its covariance matrix. (How-
ever, because the IDrem histogram we unfolded was not a smooth physical spectrum, the
unfolding algorithms that tried to regularize the unfolded result by smoothing may thus
not be applicable). We proceeded with the number of iterations being four, which was
the only parameter in d’Agostini’s method for unfolding, and it was not optimized in this
work. After that, IDrem was converted back into IDcom under the map created using the
measured histograms, and then the following steps were the same as those for the error
propagation of the true cross section, as described in Section 4.3. Figure 13 shows the
cross section measured using the fake data sample, whose correlation matrix is shown in
Figure 9f. The correlation matrix is not diagonal, which means the measured cross section
in each energy bin was correlated, and thus for the final cross section result, we needed to
present both the central values as well as their covariance matrix. We could also calculate
χ2 of the measured cross section against the simulation curve with Equation (15), whose
value is shown in the legend of Figure 13. The error bars in the lower-energy bins tended to
be larger, mostly because the statistics were smaller, since most hadrons interact before they
reach these low energies. This trend can also be seen in the true cross section in Figure 6 for
the same reason.
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Figure 13. The cross section measured using the unfolded histograms of the fake data sample. The
right-tail p value was calculated assuming a χ2 distribution with the number of degrees of freedom
Ndf being 18, which is the number of cross section bins.
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5. Discussion and Summary

In the previous section, we described how to extract the true cross section of the
simulation sample as well as how to measure the cross section of a data sample. Here,
χ2 was calculated in both cases, which was used to quantify the consistency against the
simulation curve. In order to further test the results, we performed toy studies. Four
hundred simulation samples, referred to as toys, each with a sample of 10,000 events, were
generated in the same way as what was described in Section 4. The true cross section as
well as its covariance matrix was calculated in each toy simulation sample. For each cross
section bin, we calculated the pull value of each toy, which is defined as

pull =
σ(E)− σcurve(E)√

Vσ(E, E)
, (17)

where
√

Vσ(E, E) is the uncertainty for σ(E). In each bin, the pull values were expected
to follow a normal distribution. Figure 14a shows the test results, where a Gaussian
distribution was fitted onto the pull histograms in each cross section bin, as shown by the
blue error bars. By visually comparison with the reference lines, we can see that they were
generally consistent with the expectation that each of them centered at zero and had a bar
length of one, corresponding to the two parameters in the Gaussian fit. As another test,
which took into account the covariance among cross section bins, we show in Figure 14b
the histogram of χ2, calculated according to Equation (15), for each toy. A χ2 distribution
was fitted onto the histogram, whose degree of freedom Ndf, as shown in the legend, was
consistent with the expectation, with 18 being the number of cross section bins. These
tests served as a validation of the slicing method. They also suggest that given the current
statistics of the events for each toy, the bias caused by the approximations of the method
(For example, we considered the cross section calculated to be at the middle point in each
energy bin, and we evaluated dE/dx at the middle energy value as well. Further corrections
are needed if the statistical uncertainty becomes smaller when the sample size is much
larger.) was insignificant.
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Figure 14. Toy studies using the extracted true cross sections of 400 toy simulation samples. (a) The
pull value test results. The horizontal axis is the energy slice index ID, where ID = 2 corresponds
to an energy bin of [900, 950] MeV and ID = 19 corresponds to an energy bin of [50, 100] MeV. The
vertical axis is the pull value. The green lines are the pull values of each toy in each ID bin. The blue
point and its error bars indicate µ and σ of the Gaussian fit in each ID bin. The red lines sandwiching
the blue point indicate the fit error of µ in each ID bin, which can be visually compared to the dashed
orange line for its consistency with 0. The dark blue lines sandwiching the end points of the blue
error bars indicate the fit error of σ in each ID bin, which can be visually compared to the dotted
red line for its consistency with 1. (b) The histogram of χ2 against the simulation curve. Fitted χ2

distributions using both the maximum likelihood (MLH) fit and the least chi-square (LCS) fit are
overlaid, with the result given in the legend.
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Similarly, we generated 400 toy fake data samples, each with a sample of 10,000 events
before selection, in order to study the performance of the procedures to measure the
cross section. The 400 toy simulation samples used above were combined into a total
of 4,000,000 events in order to model the response matrix as well as the efficiency plot
for each toy fake data sample, and thus we could ignore the statistical uncertainty of the
simulation sample. The cross section was measured for each toy fake data sample, and we
could also derive the pull distributions in each cross section bin as well as the histogram
of χ2, as shown in Figure 15. In subplot (a), we can see that the lengths of the blue error
bars were generally consistent with one, but some of their central points showed a small
bias away from zero. This bias is considered the unfolding error. The general unfolding
result effectively applies a re-smearing matrix on the true information [24]. Treating the
re-smeared truth as the truth introduces an unfolding error, and thus publishing the re-
smearing matrix is suggested in order for others to consider this error when comparing
the results. In addition, the unfolding error tends to be smaller when the regularization
becomes weaker with a greater number of iterations. Since we did not include this bias, the
derived χ2 was supposed to be larger, whose distribution is shown in Figure 15b.

In the fake data toy study, the simulation sample used to model the response matrix
and the efficiency plot was consistent with the toy fake data samples because they were
generated in the same way. When it comes to real data, we need to consider the uncertainties
caused by the differences between the data and simulation, which can be estimated by
fluctuating the relevant parameters of the simulation sample. Additional model validation
procedures are essential to examine the compatibility between the data and simulation and
ensure the differences were within the quoted simulation uncertainties.
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Figure 15. Toy studies using the measured cross sections of 400 toy fake data samples. The detailed
descriptions of subplots (a,b) are the same as described in Figure 14.

In summary, a method as well as the corresponding procedures for the hadron-argon
cross section measurement in an LArTPC detector were provided in this paper. The method
requires the inputs of the initial energy and the energy at the end vertex of the track, as well
as whether it is signal interaction occurring at the end vertex. The method showed good
statistical performance, with no obvious bias except for that caused by unfolding, and good
estimation of statistical uncertainties, as suggested by the toy studies. To apply it to real
data, the systematic uncertainties due to the difference between the data and simulation
should be considered, and the parameters of the unfolding algorithm used should be
optimized with further investigations into the trade-off between bias and variance. These
features can be added to the IPython notebook hadron-Ar_XS [13], which also has the
potential to be extended to more cross section studies.
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