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We show that a new leptophilic Higgs sector can resolve some intriguing anomalies in current
experimental data across multiple energy ranges. Motivated by the recent CMS excess in the resonant eμ
channel at 146 GeV, we consider a leptophilic two-Higgs-doublet model, and propose a novel resonant
production mechanism for the neutral components of the second Higgs doublet at the LHC using the lepton
content of the proton. Interestingly, the same Yukawa coupling Yeμ ∼ 0.65–0.81 that explains the CMS
excess also addresses the muon (g − 2) anomaly. Moreover, the new Higgs doublet also resolves the recent
CDF W-boson mass anomaly. The relevant model parameter space will be completely probed by future
LHC data.
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I. INTRODUCTION

Using the Higgs boson as the keystone for new physics
searches is well-motivated [1], as an extended Higgs sector
could potentially address some of the pressing issues
plaguing the Standard Model (SM), including the gauge
hierarchy problem, stability of the electroweak vacuum,
mechanism of electroweak symmetry breaking, origin of
the fermion masses and mixing, matter-antimatter asym-
metry, and the nature of dark matter. Therefore, even
though the measured properties of the 125-GeV Higgs
boson discovered at the LHC [2,3] are thus far consistent
with the SM expectations [4,5], further precision Higgs
studies, as well as direct searches for additional Higgs
bosons, must continue.
An interesting aspect of beyond-the-SM (BSM) physics

is lepton flavor violation (LFV), which is forbidden in the
SM by an accidental global symmetry. In fact, the obser-
vation of neutrino oscillations [6–10] necessarily implies
LFV. However, despite intense experimental efforts, no
corresponding LFV in the charged lepton sector has been
observed [11]. Therefore, alternative searches for LFV
involving exotic Higgs decays (h → eμ; eτ; μτ) could be
powerful probes of BSM physics [12–18]. Both ATLAS
and CMS Collaborations have performed such LFV Higgs

searches with the
ffiffiffi
s

p ¼ 13 TeV LHC Run-2 data [19–23].
Although no evidence for LFV decays of the 125 GeV
Higgs boson was found, CMS has reported an intriguing
3.8σ local (2.8σ global) excess in the resonant eμ search
around 146 GeV, with a preferred cross-section of σðpp →
H → eμÞ ¼ 3.89þ1.25

−1.13 fb [23]. If confirmed, this would be
a clear sign of BSM physics. In this letter, we take the
CMS eμ excess at face value and provide the simplest
possible interpretation in terms of leptophilic neutral
scalars within a two-Higgs-doublet model (2HDM). In
this context, we propose a novel resonant production
channel for the leptophilic neutral (pseudo)scalars at the
LHC using the lepton parton distribution function (PDF) of
the proton [24–27]; see Fig. 1. We show that this scenario
can explain the CMS excess with a Yukawa coupling
Yeμ ∼ 0.55–0.81, while being consistent with all existing
constraints.
Another interesting feature of our solution is its intimate

connection to two other outstanding anomalies in current
experimental data, namely, the ðg − 2Þμ anomaly [28–30]

FIG. 1. A representative Feynman diagram for resonant pro-
duction of leptophilic scalar fields at hadron colliders through
lepton PDF.
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and the CDFW-mass anomaly [31]. We emphasize that the
prospects of probing a leptophilic light Higgs sector at
the energy and intensity frontiers is a worthwhile study in
its own right, irrespective of the future status of these
anomalies.

II. MODEL SETUP

Here we propose an economical scenario with a lep-
tophilic 2HDM to explain the CMS excess. We work in the
Higgs basis [32], where only one neutral Higgs acquires a
nonzero vacuum expectation value, v. In this basis, the
scalars fields can be parametrized as

H1 ¼
 

Gþ

1ffiffi
2

p ðvþH0
1 þ iG0Þ

!
; H2 ¼

 
Hþ

1ffiffi
2

p ðH0
2 þ iAÞ

!
;

where ðGþ; G0Þ are the Goldstone modes, eaten up by W
and Z after electroweak symmetry breaking, ðH0

1; H
0
2Þ and A

are the neutral CP-even and CP-odd scalars respectively,
and Hþ is a charged scalar field. In the alignment/decou-
pling limit [33–36], we identify H0

1 ≡ h as the observed
125 GeV SM-like Higgs boson, whereas theH2-sector does
not couple to the SM gauge bosons. This is in agreement
with the LHC data [37–39]. We assume the mixing angle θ
between the CP-even scalar H0

2 ≡H and the SM Higgs
boson is small, and the only relevant production mechanism
for H (and A) at colliders is via its leptonic Yukawa
interactions:

−LY ⊃ YαβL̄αH2lβ;R þ H:c: ð1Þ

For either Yeμ ≠ 0 or Yμe ≠ 0, with all other Yαβ involving
electrons or muons assumed to be small, the dominant
contribution to the pp → H=A → eμ signal comes from
the s-channel Feynman diagram shown in Fig. 1, where
the H=A is produced resonantly using the lepton PDF
of the proton, and then decays to e∓μ� final states with a
branching ratio (BR) determined by the structure of the
Yukawa coupling matrix Y in Eq. (1). There is a sub-
dominant contribution to the same final-state from a
t-channel exchange of H=A, not shown in Fig. 1, but
included in our calculation.
We estimate the signal cross-section numerically using

MadGraph5_aMC@NLO [40] at leading order (LO) parton-level
with the LUXlep-NNPDF31 PDF (82400) [25,41–43]. The
default MadGraph5 cuts are applied at parton-level, and the
default LO dynamical scale is used, which is the transverse
mass calculated by a kt-clustering of the final-state partons
[44]. The cross section result including both H and A
contributions is shown by the blue curve in Fig. 2 left panel
as a function of jYeμj (also applicable for jYμej) for mH=A ¼
146 GeV and assuming BRðH=A → eμÞ ¼ 70% (explained
below), where the thickness accounts for the theory uncer-
tainty due to scale (þ39.4%

−30.3% ) and PDF (�4.5%) variation. The
horizontal green (yellow) shaded region explains the CMS
excess at 1σ (2σ). The corresponding ATLAS search [19] is
not directly comparable with the CMS analysis, but a back-
of-the-envelope calculation from the sideband data mildly
disfavors a narrow-width excess at 146 GeV, and a rough
scaling of background gives a ballpark upper limit of about
3.0 fb on the cross-section [45], as shown by the horizontal
dashed line in Fig. 2. We find that Yeμ ∼ 0.55–0.81 can
explain the CMS excess at 2σ. For such values of the

FIG. 2. Left: total eμ production cross-section from H=A (blue band) at
ffiffiffi
s

p ¼ 13 TeV LHC as a function of the Yukawa coupling Yeμ
(or Yμe) in our leptophilic 2HDM with mH ≃mA ¼ 146 GeV. Right: same as left panel but in the Yeμ − Yμe plane. See text for details.
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leptonic Yukawa coupling, any quark Yukawa couplings of
the second Higgs doublet H2 must be small; otherwise, it
will be ruled out by the chirality enhanced meson decays,
such as πþ → eþν. Thus our proposal is different from other
scalar interpretations of the CMS excess [46,47], which used
quark couplings to enhance the production cross section.

III. CONSTRAINTS

The large Yeμ=μe couplings of the neutral components, as
well as the charged component, of the leptophilic Higgs
doublet, are subject to a number of other constraints, and
also give rise to other interesting phenomena, as dis-
cussed below.

A. Neutral sector

Even if we choose only the off-diagonal entries
Yeμ=μe ≠ 0, small diagonal entries Yll ∼ sin θyl (with
l ¼ e, μ) will be induced via the h −H mixing and the
SM Yukawa couplings yl ≡

ffiffiffi
2

p
ml=v (with yμ ≃ 6 × 10−4

and ye ≃ 3 × 10−6). But the products YeμYee and YeμYμμ are
subject to strong LFV constraints [48]. Using the general
LFV formula [49] and the current MEG limit on μ → eγ
[50], we require Yee ≲ 9 × 10−5 and Yμμ ≲ 6 × 10−5, which
gives an upper limit of sin θ ≲ 0.1 on the Higgs mixing.
The same YeμðμeÞ coupling gives an additional contri-

bution to the eþe− → μþμ− cross-section via t-channel
H=A exchange, and therefore, is constrained by LEP
measurements, which are in good agreement with the
SM prediction [51,52]. Naively, the contact interaction
bounds from LEP data would kill the parameter space
for Oð1Þ Yukawa couplings [48]. However, this bound is
not directly applicable, if neutral scalars are lighter than the
LEP center-of-mass energy

ffiffiffi
s

p ¼ 209 GeV. A dedicated
analysis [53] comparing the 2HDM cross-section, which
includes the interference between the H=A-mediated dia-
grams with the SM processes, against the LEP dimuon data
imposes the constraint Yeμ < 0.8, thus ruling out the
parameter space shown by the brown-shaded region in
Fig. 2. The same bounds are also applicable to the Yμe

coupling; see Fig. 4 for different masses. The LEP limit can
be significantly improved at future lepton colliders, such
as the

ffiffiffi
s

p ¼ 1 TeV ILC [54] with integrated luminosity
L ¼ 500 fb−1 (cf. the dashed curve in Fig. 4), which can
probe Yeμ (or Yμe) up to 0.1 [53,55,56].
As for the hadron collider constraints on light neutral

scalars, most of the Tevatron/LHC searches are done in the
context of either MSSM or general 2HDM, and rely on the
gluon fusion or vector boson fusion production mecha-
nisms. None of these searches are applicable for us, because
the leptophilic H=A does not directly couple to the quarks,
and in the alignment limit (θ → 0), also does not couple to
the W=Z bosons. This also suppresses other production
channels like pair-production of HA.

The most important constraint on the neutral scalar sector
comes from low-energy process of muonium (Mμ ¼ e−μþ)-
antimuonium (M̄μ ¼ eþμ−) oscillation [57–60]. TheMACS
experiment at PSI puts an upper bound on the oscillation
probability PðMμ ↔ M̄μÞ < 8.2 × 10−11 at 90% CL [61],
while a sensitivity at the level ofOð10−14Þ is expected at the
proposed MACE experiment [62]. In our 2HDM setup,
the oscillation probability gets contribution from both H
and A [60,63]; see Appendix A. If H and A are highly
nondegenerate, i.e. only either H or A dominantly contrib-
utes, the MACS bound requires Yeμ < 0.18 for mH=A ¼
146 GeV, as shown (for illustration only) by the vertical
purple line in Fig. 2 left panel, which rules out the LFV
coupling needed to explain the CMS excess with a single
scalar/pseudoscalar. However, for mH ≃mA, there is a
cancellation in the Mμ ↔ M̄μ amplitude which allows for
either Yeμ or Yμe to be large, but not both. This is depicted by
the gray-shaded region in Fig. 2 right panel for mH ≃
mA ¼ 146 GeV. In this limit, even the future MACE
sensitivity cannot rule out the CMS excess region.
Thus far, it seems either Yeμ or Yμe coupling can be

taken to be large for explaining the CMS excess, while
being consistent with the current constraints. However, as
discussed below, a combination of the LHC charged Higgs
constraints and the global fit to nonstandard neutrino
interactions (NSI), preclude the possibility of a large
Yμe coupling, as shown by the horizontal purple-shaded
region in Fig. 2 right panel. Therefore, the only viable
possibility is to have a large Yeμ coupling and small Yμe

coupling (the lower right band of the CMS excess region in
Fig. 2 right panel).

B. Charged sector

At LEP, H� can be pair produced through either
s-channel Drell-Yan process via γ=Z, or t-channel via light
neutrino. It can also be singly produced either in association
with a W boson or through the Drell-Yan channel in
association with the leptons [48]. Once produced, the
charged scalar decays into ναlβ;R through the Yukawa
coupling Yαβ, which has the same signature as the right-
handed slepton decay into lepton plus massless neutralino in
SUSY models: eþe− → l̃þ

R l̃
−
R → lþ

R χ̃
0l−

Rχ̃
0. We can there-

fore reinterpret the LEP slepton searches [64–68] to derive a
bound on light charged scalars. Depending on the branching
ratio BRðHþ → lþνÞ the LEP limit on the charged scalar
varies from 80–100 GeV [48].
Similarly at the LHC, a pair of charged scalars can be

produced through s-channel Drell-Yan process via γ=Z,
followed by decays into ναlβ;R. By reinterpreting the LHC
searches for right-handed sleptons, one can therefore put
bounds on the charged scalar mass as a function of BR in
the massless neutralino limit. From an ATLAS analysis of
the LHC Run-2 data [69], we obtain a lower bound of
mHþ > 425 GeV at 90% CL for BRðHþ → μþνeÞ ¼ 1.
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As we will see below, for mH ¼ mA ¼ 146 GeV, the
charged Higgs boson cannot be too much heavier due to
the electroweak precision data (EWPD) constraints.
Therefore, we would need additional decay channels in
order to make BRðHþ → μþνeÞ < 1 and relax the LHC
constraints.

IV. RESOLVING THEW-BOSONMASS ANOMALY

The mass splitting between the neutral and charged
components of the SUð2ÞL doublet H2 breaks the custodial
symmetry of the SM at the loop level. The change in the
relationship between the W and Z boson masses can be
used to accommodate the recent CDF W-mass anomaly,
which currently stands at 7σ [31]. This effect can be
parametrized by the oblique parameters S and T [70,71],
which modifies [72]

mW ≃mSM
W

�
1 −

αðS − 2cos2θwTÞ
4ðcos2θw − sin2θwÞ

�
; ð2Þ

where θw is the electroweak mixing angle. We incorporate
the global electroweak fit [73] with the new CDF data to
show allowed ranges for the scalar masses ðmA;mHþÞ with
the choice ofmH ¼ 146 GeV in Fig. 3 (blue band). In spite
of explaining the CDF W mass shift, the model is mildly
consistent with the PDG global fit [74], as can be seen from
the red region in Fig. 3. We find that the CDF anomaly
prefers significant splitting between mA and mHþ . For
mH ¼ mA ¼ 146 GeV, we require mHþ ≃ 228–234 GeV
to explain the CDF anomaly at 2σ.
To reconcile the CDF-preferred mHþ region with the

LHC constraint mHþ > 425 GeV, we reinterpret the slep-
ton search limit as a function of the charged Higgs mass

and BRðHþ → μþνeÞ, using the publicly available cross-
section limits given as a function of the slepton mass from
the auxiliary material of Ref. [69], as well as from an
earlier ATLAS analysis [75]. We find that to lower themHþ

bound to ∼230 GeV, as required by the CDF anomaly, we
need BRðHþ → μþνeÞ < 0.7 (0.95) according to the cross-
section limits reported in Ref. [75] ([69]). We therefore fix
BRðHþ → μþνeÞ ¼ 0.7 for our analysis of the CMS
excess in Fig. 2.
For the purpose of our discussion here, we are agnostic

about the detailed structure of the Yukawa coupling matrix,
which could account for the remaining 30% BR. Additional
nonzero entries in the Yukawa matrix are viable, albeit
requiring potential adjustments to suppress LFV. One
example texture that fits our branching ratio requirement
is Yeμ ¼ 0.71, Yττ ¼ 0.46, and all other Yukawa entries
negligible. This choice does not lead to trilepton LFV
decays but does induce the radiative LFV decay μ → eγ via
a two-loop process involving the tauon in the Barr-Zee
diagram [15,76]. However, it is also important to consider
other diagrams such as the two-loop Barr-Zee diagram
from the charged Higgs, which depends on the quartic
coupling λðH†

2H2ÞðH†
1H2Þ, and depending on the sign of λ,

can destructively interfere with the tau-loop-induced dia-
gram. We find that the LFV constraints can be satisfied for
the above choice of Yukawa couplings for a relatively small
quartic coupling of order Oð10−3Þ.
We note here that instead of a large Yeμ coupling, if we

had allowed a large Yμe coupling, it would imply the
coupling of charged Higgs H− to electrons and muon
neutrinos. This leads to a νμ − e coherent scattering in
matter via t-channel exchange of the charged Higgs, and
hence, generates an NSI of the type εμμ ¼ jYμej2=
ð4 ffiffiffi

2
p

GFm2
HþÞ [48]. From a recent global analysis of NSI

constraints, we get a 90% CL bound of εμμ < 0.015 [77].1

For mHþ ∼ 230 GeV, this gives an upper bound of
Yμe ≃ 0.23, which is shown by the purple-shaded region
in Fig. 2 right panel.

V. MUON ANOMALOUS MAGNETIC MOMENT

The same Yeμ coupling also contributes to the ðg − 2Þμ
via the neutral and charged Higgs loops [79,80]; see
Appendix B. The combined result of the Brookhaven
[28] and Fermilab [29] ðg − 2Þμ experiments is 4.2σ away
from the 2020 global average of the SM prediction [81]:
ΔaμðWPÞ ¼ ð251� 59Þ × 10−11.2 This discrepancy is

FIG. 3. 2σ allowed ranges from EWPD global fit for the
charged and neutral Higgs masses in the alignment limit of
our 2HDM scenario.

1This is derived from the bound on εττ − εμμ [77] (see also
Ref. [78]), which is stronger than the individual bound on εμμ. In
our model, both εμμ and εττ cannot be simultaneously large due to
strong charged LFV constraints; therefore, the bound on εττ − εμμ
is also applicable for εμμ.

2This was recently updated to ΔaμðWPÞ ¼ ð249� 48Þ ×
10−11 [30], but there is no noticeable change in our results.
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however reduced to only 1.5σ, if we use the ab initio lattice
calculation from the BMW collaboration [82],3 which
gives ΔaμðBMWÞ ¼ ð107� 70Þ × 10−11 [87]. The extra
contribution from the neutral Higgs sector in our 2HDM
scenario can explain the ðg − 2Þμ anomaly at 1σ, as shown
by the red (orange) shaded region in Fig. 2, using the
BMW (WP) value for the SM prediction. We find that the
1σ WP-preferred region is excluded by LEP constraint on
Yeμ for mH ≃mA ¼ 146 GeV, whereas part of the 1σ
BMW-preferred region is still allowed, while simultane-
ously explaining the CMS excess and the CDF W-mass
anomaly.
Figure 4 shows the range of the ðg − 2Þμ anomaly-

preferred region at 1σ in the neutral Higgs mass-coupling
plane. For comparison, the green bar at 146 GeV shows the
CMS excess region, whereas the purple shaded region
around it is the exclusion region derived from CMS
data [23]. The gray-shaded region shows the LEP exclusion
from eþe− → μþμ− data [53]. The magenta region is
excluded at 2σ from the precision Z-width measurements
[74], because for mH=A < mZ, an additional decay mode
Z → lþ

α l−
βH=A → 4l opens up. The vertical cyan (blue)

line is the indirect lower bound on the neutral Higgs mass,
derived using a combination of the electroweak precision
constraint on the mass splitting between the neutral and
charged Higgs sectors using the CDF (PDG) value of mW ,
and the LEP lower limit of ∼100 GeV on the charged Higgs

mass. From Fig. 4, we find that if we use the WP value for
g − 2, only a narrow band around mH=A ≃ 25 GeV can
explain the g − 2 anomaly at 1σ. On the other hand, if we
use the BMW value, most of the parameter space for
mH=A > 25 GeV is currently allowed. Future sensitivity
projections from HL-LHC [88] and ILC [54] can cover most
of the remaining allowed parameter space, irrespective of
the status of the CMS excess. In general, a dedicated neutral
scalar search in the LFV dilepton channels beyond 160 GeV
could completely probe the ðg − 2Þμ-allowed region.

VI. DISCUSSION AND CONCLUSION

Both ATLAS and the CMS collaborations searched for
new bosons decaying into opposite-sign and different
flavor light leptons (e�μ∓) [19,23]. In the CMS analysis,
machine-learning techniques are used to enhance the
sensitivity where an excess is observed. ATLAS, on the
other hand, did not perform such a dedicated, BDT-
optimized resonance search, and did not interpret the
results for masses which are different than the SM value of
∼125 GeV. Therefore, naively, it could be that the CMS
analysis is sensitive to a signal hypothesis which was not
reachable by ATLAS. Although a similar excess at
146 GeV is disfavored by ATLAS at 1σ (as shown in
our Fig. 2) [45], it is a ballpark estimate only and not
entirely conclusive; a dedicated interpretation of the
ATLAS results is required.
Both analyses generated signal samples with two

mechanisms: gluon-fusion (ggH) and vector-boson-fusion
(VBF). The contribution of the ggH mechanism to the total
cross-section is significantly higher [23], and therefore it
has the dominant effect on the results. In order to validate
the use of the results by simply comparing cross-sections,
we compared the kinematic distributions of the leptons
between the ggH mechanism and a direct production with
leptons from the proton, and found good agreement.
It is also interesting that CMS reported excesses in the

diphoton [89] and ditau [90] channels at 95 GeV, but only
with 2.9σ local (1.3σ global) and 2.6σ local (2.3σ global)
significances, respectively. These can be accommodated
with an extended Higgs sector [91–95], but a common
explanation together with the 146 GeV eμ excess seems
difficult, and requires further investigation.
In conclusion, the leptophilic 2HDM provides the

simplest explanation for the CMS eμ excess at 146 GeV.
It also simultaneously resolves the CDF W-mass and the
ðg − 2Þμ anomalies. A minimal extension of this 2HDM by
a singlet charged scalar leads to the Zee model of radiative
neutrino mass generation [96]. Should the CMS excess be
confirmed, a detailed neutrino oscillation fit (similar to
what was done in Ref. [48]) with large Yeμ entry could be
performed, which might also lead to concrete predictions in
the neutrino sector, including NSI, as well as for charged
LFV decays.

FIG. 4. The CMS excess at 1σ (green) and 95% CL exclusion
(purple) in the mass-coupling plane, contrasted with the 1σ
regions preferred by ðg − 2Þμ. Also shown are the constraints
from LEP dilepton, Z → 4l, EWPD, and the future ILC and
HL-LHC sensitivities.

3Other lattice calculations now agree with the BMW result in
the “intermediate distance regime” [83–86], but a more thorough
and complete analysis is ongoing.
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APPENDIX A: MUONIUM-ANTIMUONIUM
OSCILLATION

The muonium-antimuonium oscillation probability in
our 2HDM scenario is given by [60,63]

PðMμ → M̄μÞ ≃
64α6m6

redτ
2
μ

π2
G2

MM̄; ðA1Þ

where α is the fine-structure constant,mred ¼ memμ=ðme þ
mμÞ is the reduced mass of the electron-muon system, τμ is
the muon lifetime, and GMM̄ is the Wilson coefficient
which, in our 2HDM scenario, is given by [60]

G2
MM̄ ≃ 0.32

���� 3G3

2
þG45

4

����2 þ 0.13

����G45

4
− 0.68G3

����2; ðA2Þ

with the following coefficients in the alignment limit:

G45 ≡ −
Y�2
eμ þ Y2

μe

8
ffiffiffi
2

p
�

1

m2
H
−

1

m2
A

�
; ðA3Þ

G3 ≡ −
Y�
eμYμe

8
ffiffiffi
2

p
�

1

m2
H
þ 1

m2
A

�
: ðA4Þ

We find that for mH ≃mA, there is a cancellation in the G45

amplitude (at the level of 6%), while the G3 amplitude
vanishes if we consider only Yeμ (or Yμe).

APPENDIX B: LEPTON ANOMALOUS
MAGNETIC MOMENT

The expression for one-loop contribution of neutral and
charged scalars to ðg − 2Þμ is given by

Δaμ ≃
m2

μ

16π2

�
1

m2
H

�jYeμj2 þ jYμej2
6

− 2
me

mμ

�
3

4
þ log

�
me

mH

��
ℜðYμeYeμÞ

	

þ 1

m2
A

�jYeμj2 þ jYμej2
6

þ 2
me

mμ

�
3

4
þ log

�
me

mA

��
ℜðYμeYeμÞ

	
−

1

m2
Hþ

jYeμj2
6

�
: ðB1Þ

In the limit of mH ≃mA, the terms proportional to memμ

cancel. These terms also vanish in the limit of Yμe → 0, or if
the Yukawa couplings are real. For complex Yukawa
couplings, there will be additional strong constraints from
electron electric dipole moment [97]. For our scenario with
small Yμe, Eq. (B1) reduces to the simple expression

Δaμ ≃
m2

μjYeμj2
96π2

�
1

m2
H
þ 1

m2
A
−

1

m2
Hþ

�
: ðB2Þ

The same Yukawa coupling Yeμ also contributes to
ðg − 2Þe, andΔae is given by Eq. (B2) with the replacement

mμ ↔ me. Due to the m2
e suppression, the corresponding

bound on Yeμ is much weaker. Moreover, it is not clear
whether the ðg − 2Þe result is anomalous. Although the
experimental value of ae has been measured very precisely
[98], the SM prediction [99] relies on the measurement of
the fine-structure constant, and currently there is a 5.5σ
discrepancy between the Paris Rb determination of α [100]
and the Berkeley Cs determination [101]. The recent
Northwestern result sits in between [98]. Until the discrep-
ant α measurements are resolved, we cannot draw any
meaningful constraints from ðg − 2Þe.
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