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Abstract

A core problem in genetics is molecular quantitative trait locus (QTL) mapping, in which

genetic variants associated with changes in the molecular phenotypes are identified. One of

the most-studied molecular QTL mapping problems is expression QTL (eQTL) mapping, in

which the molecular phenotype is gene expression. It is common in eQTL mapping to com-

pute gene expression by aggregating the expression levels of individual isoforms from the

same gene and then performing linear regression between SNPs and this aggregated gene

expression level. However, SNPs may regulate isoforms from the same gene in different

directions due to alternative splicing, or only regulate the expression level of one isoform,

causing this approach to lose power. Here, we examine a broader question: which genes

have at least one isoform whose expression level is regulated by genetic variants? In this

study, we propose and evaluate several approaches to answering this question, demon-

strating that “isoform-aware” methods—those that account for the expression levels of indi-

vidual isoforms—have substantially greater power to answer this question than standard

“gene-level” eQTL mapping methods. We identify settings in which different approaches

yield an inflated number of false discoveries or lose power. In particular, we show that calling

an eGene if there is a significant association between a SNP and any isoform fails to control

False Discovery Rate, even when applying standard False Discovery Rate correction. We

show that similar trends are observed in real data from the GEUVADIS and GTEx studies,

suggesting the possibility that similar effects are present in these consortia.

Introduction

Genome-Wide Association Studies (GWAS) have identified numerous genetic loci that are

associated with a variety of traits and diseases [1, 2]. A core challenge is understanding the

functional role of variants within these loci. Many loci identified in GWAS lie in non-coding

regions of the genome, so their functional role is not immediately clear, though it is expected

that many such loci play a role in gene regulation [3]. Molecular Quantitative Trait Loci (QTL)
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mapping studies help address this challenge. Molecular QTL studies identify genetic variants

(often Single Nucleotide Polymorphisms, or “SNPs”) that are associated with the molecular

phenotypes under study. In this manuscript, we focus on expression QTL (eQTL) mapping, in

which the molecular phenotype is gene expression, and a gene is called an “eGene” when at

least one nearby SNP is significantly associated with its expression level. Large-scale eQTL

mapping studies have led to a tremendous amount of information about which genetic vari-

ants regulate gene expression [4–7].

For any given DNA sequence comprising a “gene”, different combinations of exons can be

transcribed into mature mRNA (referred to as “alternative splicing”); the resulting distinct

canonical mRNA sequences for a given gene are known as “isoforms” of the gene. Transcripts

(copies) of these different isoforms are the actual biomolecules that are sequenced, such that

each gene corresponds to several distinct mRNA sequences with different abundances. Several

of the most-used eQTL mapping methods, such as Matrix eQTL [8] and FastQTL [9] do not

explicitly provide a way to account for the abundances of the different isoforms. Accordingly,

an important question is how to deal with these different isoform abundances when one’s goal

is to identify eGenes. It is common when using these tools to either quantify expression level at

the gene level, or to quantify expression levels of individual isoforms and then sum or average

these quantities before performing eQTL analysis [10, 11]. Large-scale studies have identified

many eQTLs for a variety of eGenes using this strategy [4–7].

Underlying this approach is the assumption that all isoforms follow similar gene-level

effects. However, this may not always be the case; isoforms can be functionally different at

either the regulatory or protein region [12–14] and thus may be regulated differently. This

approach loses power to identify eGenes if isoform expression levels are regulated in opposite

directions by a SNP (e.g. splicing QTLs) or if a SNP only affects an isoform with a low abun-

dance relative to the gene’s other isoforms [11]. While several approaches accounting for iso-

form expression have been developed in the context of differential expression testing [11, 15,

16], these methods are designed for small samples and thus lack power for large-scale eQTL

studies. For example, it is common to moderate the estimated variance of gene expression,

thus resulting in a biased, albeit more stable, estimate of variance. Recently, QTLtools [17]

extended the FastQTL method [9] to handle “grouped” hypotheses, i.e. testing effects on iso-

form-level expression for multiple isoforms in the same gene “group”, but we are not aware of

any extensive validation of these approaches beyond a few comparisons between different

grouped tests in the QTLtools paper.

In this study, we propose and examine the performance of several approaches for account-

ing for isoform expression in eQTL mapping, which we collectively refer to as “isoform-aware

methods”. Specifically, we focus on the task of identifying eGenes, which we define here as

genes for which one or more cis-SNPs are associated with the expression levels of one or more

of the gene’s isoforms. The notion of “eQTLs” and “eGenes” in this manuscript is therefore

somewhat broader than the common definition that eQTLs are cis-SNPs associated with the

“gene-level” expression of (e)Genes—i.e. the summed isoform expression levels. It captures

“regulation of expression” in a broader sense, including events that affect specific isoforms of

genes, such as alternative splicing or polyadenylation. For the remainder of the manuscript, we

use the terms “eQTLs” and “eGenes” in this broader sense for the sake of simplicity, though

alternative terms such as “iso-eQTLs” and “iso-eGenes” could be used.

We examine four types of approaches in this manuscript: (i) traditional p-value aggregation

methods; (ii) “grouped” permutation tests implemented in the QTLtools package; (iii) general

linear models; and (iv) multiple regression. The first three categories of methods use informa-

tion obtained by regressing cis-SNPs against the expression levels of each isoform for a gene.

P-value aggregation methods then attempt to aggregate the p-values from individual
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regressions into a single p-value at the gene level. QTLtools can obtain a gene-level p-value

from isoform-level p-value by employing a permutation scheme that generates a null distribu-

tion over all isoforms for a gene. Taking the results of the individual regressions as a “stacked”

general linear model, one can perform a multivariate hypothesis test on whether a SNP has a

nonzero association with any isoform. On the other hand, multiple regression between each

cis-SNP and all isoforms can be performed, followed by an F-test for whether the SNP is associ-

ated with any isoform. To our knowledge, the use of a general linear model for isoform-aware
eQTL mapping is novel, and while p-value aggregation (such as Fisher’s method [18]) and F-tests
are standard analysis tools, their use in eQTL mapping is currently uncommon.We explore

these approaches in more detail below, compare their performance in simulations, and apply

them to real expression data.

We demonstrate in simulations that isoform-aware methods offer a substantial increase in

power to identify eGenes compared with the approach of summing or averaging isoform

expression levels and then applying FastQTL or QTLtools (we refer to the latter approach as

“QTLtools-mean” below). Corroborating these findings, we show that these methods find

many more eGenes than the QTLtools-mean approach when run on isoform expression levels

of 87 Yoruban individuals from the GEUVADIS study [4] and when applied to 494 European

thyroid samples from the GTEx v8 dataset [6]. We identify several methods that have deflated

power or inflated empirical False Discovery Rates (FDR) when non-cis effects are simulated,

and demonstrate that a similar trend is observed in the GEUVADIS and GTEx data analyses.

We also show that running QTLtools on individual isoform expression levels and then calling

an eGene if there is a significant association between a SNP and any isoform fails to control

FDR, even when applying FDR correction.

Finally, we compare and contrast the problem setup in this paper with approaches that find

different types of QTLs such as splice QTLs or utilize allele-specific mapping information, and

discuss other biological association testing problems where the approaches assessed in this

paper should be useful. We expect that the findings discussed in this paper will serve as a useful

guidepost for further isoform-aware approaches that aim to increase power to identify genetic

regulation of gene expression.

Results

Overview of methods

We assessed the performance of several approaches towards utilizing isoform expression levels

in eQTL/eGene mapping. Here the goal is to identify eGenes (and their associated “eSNPs”),

which we define here as genes for which one or more cis-SNPs are associated with the expres-

sion levels of one or more of the gene’s isoforms. For the purposes of this paper, we assume

that the expression levels of each isoform for each individual have already been quantified by a

method such as kallisto [23] or Salmon [24], and that only the association step is desired.

Other use cases are discussed in the Discussion section. We describe the approaches below,

and they are summarized in Table 1.

A common approach to this problem is to simply add the expression levels of the isoforms

together to obtain expression levels for a gene, and then perform simple linear regression

between each SNP in cis and the obtained gene expression levels. Alternatively, collapsing the

isoform annotation to a “gene” annotation and “gene counting” is a possibility [25]. Methods

such as Matrix eQTL [8] and QTLtools [17] can be applied to rapidly perform such association

tests. Additionally, QTLtools introduces an approach to correct for the multiple hypothesis

testing burden that occurs as a result of testing association with every SNP in cis, which are

correlated due to linkage disequilibrium (LD). This approach uses a Beta distribution to
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approximate extreme p-values that would be obtained by an exhaustive permutation test [9,

17] (Methods). False Discovery Rate (FDR) control on the gene level can then be performed by

applying a standard FDR control procedure such as the q-value of Storey and Tibshirani [26].

While this approach is effective at controlling FDR [9, 17], it can lose power when a SNP

regulates isoforms in opposite directions (e.g. splice QTLs) or when one isoform is much more

highly expressed than another and masks the effect of the SNP on a low-expressed isoform

[11]. Several potential approaches mitigate these issues by taking into account the associations

between the expression level of each isoform and the target SNP and then combine the associa-

tion signal across all isoforms. We collectively refer to these approaches as “isoform-aware

methods” (Fig 1). The first step in most of these approaches is to perform simple linear regres-

sion between a SNP and each isoform for a gene. The differences emerge in how to aggregate

these association signals.

One such approach for isoform aggregation was proposed in the QTLtools paper [17].

Instead of computing permutation test p-values for each isoform separately, this approach

involves permuting all isoforms for a gene at once. The individual SNP-isoform associations

are then compared to this null distribution, and the pair with the best p-value is reported.

Alternatively, the first principal component of the isoforms can be computed and then tested

for association with each SNP. QTLtools also has an option to compute the mean of the iso-

forms and then test those phenotypes for association, but this is equivalent up to a constant

term with summing the isoform expression levels. We refer to these approaches as “QTLtools-

best”, “QTLtools-pca1”, “QTLtools-sum”, and “QTLtools-mean” below.

Another approach is to apply p-value aggregation on the isoform regressions to produce a

single gene-level p-value. Several common methods are simply taking the minimum p-value,

using the classic Fisher’s method [18], or using the popular recently-proposed Cauchy aggre-

gation test, also known as “ACAT” [19, 27]. One relevant question that we investigated is

whether it is appropriate to apply the p-value aggregation methods after the permutation-

adjusted p-value is obtained via the method described in the FastQTL paper [9]—in which

case one could simply run a method like QTLtools on individual isoforms, then use one of

these methods to obtain gene-level p-values—or whether aggregation should be performed

before permutation testing.

Table 1. Summary of the methods evaluated in this manuscript.

Method Name Description

QTLtools-sum/mean Sum/average the expression quantities of all isoforms for a gene, then run simple linear

regression with QTLtools [17].

QTLtools-pca1 Apply QTLtools’ “pca1” method, taking the first principal component of the isoform

expression levels and performing simple linear regression [17].

QTLtools-best Apply QTLtools’ “best” method for applying a permutation test across all isoforms for a

gene [17].

Fisher/Cauchy/Min-

perm

Perform simple linear regression against each isoform, then apply a p-value aggregation

method, then perform permutation testing to correct for multiple hypotheses. The

aggregation methods assessed were Fisher’s method [18], the Cauchy Combination Test

[19], or using the minimum p-value.

Fisher/Cauchy/Min-

qtltools-iso

Run QTLtools [17] on individual isoforms, then apply a p-value aggregation method to

those results. The aggregation methods assessed were Fisher’s method [18], the Cauchy

Combination Test [19], or using the minimum p-value.

F-test Perform multiple regression between a SNP and all isoforms for a gene, then perform an

F-test for significance.

Wilks-Bartlett Perform simple linear regression against each isoform, then perform a multivariate

hypothesis test for the effect of a SNP on any isoform [20], yielding a Wilks’ Lambda

Distribution [21] that Bartlett [22] showed is approximately chi-square distributed.

https://doi.org/10.1371/journal.pcbi.1011857.t001
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A third approach is to apply a multivariate hypothesis test to the association statistics

obtained from the regressions on each isoform to jointly assess whether the SNP in question is

associated with any of the isoforms. Several formulations construing the problem as either a

general linear model or as seemingly unrelated regressions (SUR) can be developed and are

often used in multivariate analysis of variance (MANOVA) [20, 28]. Here, we focus on one of

the best-studied approaches to this problem, which uses the Wilks’ Lambda distribution [21].

Bartlett [22] developed a chi-squared approximation to the Wilks’ Lambda, so that a chi-

squared test can be applied to obtain a p-value for association between the SNP and any iso-

form [20]. One advantage of formulating the problem this way is that this model can straight-

forwardly accommodate tests between multiple SNPs and all isoforms at once, although we do

not pursue that use case in this manuscript.

Finally, instead of performing regressions between each cis-SNP and each isoform and then

aggregating the information across isoforms from the same gene, one may simply perform a

multiple linear regression between each SNP and all isoforms, and then use an F-test to test

Fig 1. (a) Box plots depicting expression level measured in Transcripts Per Million (TPM; y-axis) versus the genotype of the most-associated SNP (x-

axis) for the gene ENSG00000165630 and its two isoforms in the GEUVADIS [4] data. The gene plot shows the TPM obtained from summing the TPM

of each constituent isoform. (b) The performance of two approaches to association is contrasted: “isoform-aware” tests which utilize association

between the SNP and each isoform, versus “gene-level” tests which only test for association with the summed gene expression. The p-values depicted

were obtained by running QTLtools [17] with its grouped permutation scheme (left) or on summed gene-level expression data (right).

https://doi.org/10.1371/journal.pcbi.1011857.g001
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whether the SNP is associated with any isoform. In some sense this is the inverse of the model

described above. Here, the SNP is the response variable in the regression and the isoforms are

the predictors. In the general linear model formulation, we have a stack of simple linear regres-

sions which each have the SNP as the predictor variable and one of the isoforms as the

response variable.

More details on each of these methods is presented in the Methods section. We compare

the relative merits of these approaches for identifying eQTLs in simulation and real data analy-

ses below.

Simulation study

We first evaluated the relative performance of the methods described above by performing a

simulation study using the genotypes of 87 Yoruban donors from the GEUVADIS [4] dataset.

We selected a realistic set of non-zero isoforms and genes by applying kallisto [23] to the GEU-

VADIS RNA-seq data for the Yoruban samples to identify and filter out isoforms with near-

zero expression levels (S1 Text). For each gene we randomly selected k 2 (1, 2, 3) causal SNPs

within a 100 kilobase window around the transcription start site. We then simulated expres-

sion levels for each isoform via the following model:

Y ¼ βXþ Uþ �

where Y is an (m × n) matrix containing the isoform expression levels acrossm isoforms for

the gene and n samples, β is an (m × k) matrix of effect sizes of each of the k causal SNPs on

them isoforms, X is a (k × n) matrix containing the SNPs of the k causal SNPs across n sam-

ples, U is an (m × n) matrix containing non-cis effects on isoform expression, and � is an (m ×
n) noise matrix. The matrix U represents effects on isoform expression levels that are corre-

lated between both isoforms and samples, but are not due to cis-effects. For instance, this

could correspond to environmental effects or trans-regulation.

We assume that each causal SNP Xj affects the expression levels of the isoforms indepen-

dently of one another, so we can simulate

Y ¼
X

j

βjXj þ Uþ �

We assume, however, that a SNP may affect different isoforms in a correlated manner, e.g.

if the SNP is a splicing QTL. Thus we assume that the causal effects of the SNP on them iso-

forms is drawn from a multivariate normal distribution,

βj � N ð0; s2
gj
ΦjÞ

where Fj is an (m ×m) covariance matrix with diagonal entries equal to 1 and off-diagonal

entries between -1 and 1 (S1 Text). The s2
gj

parameter controls the percent of variance of iso-

form expression level explained by the SNP. In our simulations, the parameter for all SNPs

combined, s2
g , is set, and the individual SNP parameters are randomly set such that

s2
g ¼

P
js

2
gj

.

We draw U according to a matrix normal distribution,

U �MN ð0;V ∗ sh;W ∗shÞ;

where V is an (m ×m) covariance matrix between the isoforms, W is an (n × n) covariance

matrix between the samples, and s2
h is a tunable parameter controlling the proportion of vari-

ance in isoform expression explained by U.
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Finally, the noise parameter for each isoform i, which is not correlated across isoforms or

samples, is drawn according to

�i � N ð0; s2
eIÞ;

where s2
e ¼ 1 � s2

g � s
2
h and I is the n-dimensional identity matrix.

We simulated expression levels for each isoform of every gene in the GEUVADIS data with

m = 4 isoforms according to this model under multiple parameter settings, with s2
g 2

f5%; 10%; 15%; 20%g and s2
h 2 f0%; 5%; 10%; 20%; 40%g (for results with differentm, see

Fig B in S1 Text). We also varied the percentage of covariances between cis-effects on isoforms

that were negative—in other words, the percent of SNP-isoform effects that would wholly or

partially “cancel out” when summed together. The larger this parameter, the worse we expect

summation-based methods to perform. We tested five values for this parameter, negpct 2
{10%, 30%, 50%, 70%, 90%}. We set the default parameters to be s2

g ¼ 0:05, s2
h ¼ 0:0, and

negpct = 0.5, and then performed three different experiments in which one parameter was

allowed to vary within the settings listed above and the other two were fixed at their default val-

ues. Regardless of the s2
g setting, we set each gene to have s2

g ¼ 0 with 50% probability, so that

both power (to identify eGenes) and false discovery control could be evaluated. We ran each

method using these simulated expression levels and the Yoruban GEUVADIS genotypes as

input, with the false discovery threshold set to 10% (Fig 2). Below, we refer to p-value aggrega-

tion methods applied prior to the permutation test with the suffix “-perm”, and when applied

to QTLtools run on individual isoforms (i.e. after the permutation test) we refer to them with

the suffix “-qtltools-iso” (see Table 1 for reference).

In most settings, most methods had empirical false discovery rates (FDR) below 10%, indi-

cating the effectiveness of the permutation test and FDR approach for controlling false discov-

eries, and isoform-aware methods outperformed approaches that simply sum or average the

isoform expression levels, with Fisher-perm generally being the most powerful calibrated

method. The F-test was the most powerful method that did not have inflated FDR in any simu-

lation setting tested. Isoform-aware approaches had roughly 70–80% power when s2
g ¼ 0:1

and roughly 95% power when s2
g ¼ 0:2. We note some interesting trends and exceptions

below.

First, min-qtltools-iso generally had an inflated FDR of around 20%. This approach can be

summarized as counting a gene as an eGene if a SNP is significantly associated with any of the

isoforms for that gene. Researchers should be aware of this bias if they intend to apply this

approach. The Cauchy combination test performed similarly whether applied before or after

the permutation test, while Fisher’s method was more powerful when applied before the per-

mutation test.

Second, as expected, approaches that aggregate isoforms by summing or averaging their

expression levels were generally less powerful than isoform-aware methods. The underlying

cause of this can be observed in the plot where the percent of negatively correlation SNP-iso-

form effects (“negpct”) is varied. When negpct = 0.1, these approaches have power comparable

to some of the isoform-aware approaches, but as negpct is increased their power drops dramat-

ically, reaching nearly zero when negpct = 0.9. This stands to reason since negatively-correlated

cis-effects will partially or fully cancel out when summed together or averaged. The perfor-

mance when summing versus averaging isoform expression levels was nearly identical, as

expected, since these approaches only differ by a constant. Additionally, with negpct = 0.5, as

the number of isoforms per gene increased, the power of isoform-aware methods increased,

while that of sum or mean approaches did not, or even slightly decreased (Fig B in S1 Text).
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This is likely due to the larger number of isoforms giving more opportunities for isoform-

aware methods to identify true positive effects, while simultaneously creating more opportuni-

ties for these isoforms to “cancel out” when negatively correlated, harming sum or averaging

approaches. We note, however, that when genes have many isoforms in real data, many of

these isoforms may be lowly expressed, so this trend in our simulations may not translate pre-

cisely to real data.

Third, when the non-cis heritability, s2
h was increased, several trends emerged. Most strik-

ingly, the Wilks-Bartlett approach exhibited a highly inflated FDR, eventually predicting

almost every gene to be an eGene. This result follows since a non-diagonal U violates the

Wilks-Bartlett assumption that regression residuals will be uncorrelated across samples, as U

induces this correlation. Although less dramatic, Fisher-perm also appears to have a slightly

Fig 2. Simulation results with varying (a) percent variance of isoform expression explained by causal SNPs in cis; (b) percent of cis-eQTL effects that

are negatively correlated between the different isoforms for a gene; (c) percent variance of isoform expression explained by non-cis effects that are

correlated across samples and isoforms. Varying parameter shown on the X-axis with empirical False Discovery Rate (FDR; top row) or Power (bottom

row) on the Y-axis. When not being varied, these parameters were fixed at 0.05, 0.5, and 0.0, respectively. Dashed lines indicate methods which had

inflated empirical FDR in at least one simulation setting. The method types are organized by color: Gene-level methods are in purple/pink, QTLtools

grouped permutation methods are in dark/light blue, Wilks-Bartlett is in yellow, F-test is in green, and p-value aggregation methods are in oranges,

browns, gray, and black.

https://doi.org/10.1371/journal.pcbi.1011857.g002
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inflated FDR when s2
h ¼ 0:4, which may be because of the method’s assumption that the p-val-

ues from individual isoform regressions are uncorrelated, which is known to occasionally lead

to inflated FDR [29]. Finally, QTLtools-pca1 loses power as s2
h is increased. When s2

h ¼ 0,

QTLtools-pca1 and QTLtools-best have similar power, but as s2
h is increased to 0.4, QTLtools-

pca1 loses power until it is comparable to the sum and averaging approaches. This is likely

because the first principal component becomes distorted by the complex covariance structure

between isoforms induced by U.

Fourth, the methods that did not exhibit inflated FDR or reduced power when any of the

parameters were varied generally followed a consistent ranking in terms of power across most

settings tested. The F-test approach was generally the most powerful of these approaches, fol-

lowed by Fisher-qtltools-iso. Next, QTLtools-best, min-perm, Cauchy-perm, and Cauchy-

qtltools-iso generally performed quite similarly. When not inflated, Fisher-perm was generally

the most powerful method, albeit closely followed by the F-test. The Wilks-Bartlett approach

had similar power to the less powerful isoform-aware approaches when its FDR was not

inflated. QTLtools-pca1 had similar power to QTLtools-best when its power was not deflated.

Overall, the results suggest that Fisher-perm is a powerful approach that usually remains

calibrated but can exhibit inflated FDR under strong non-cis effects, while the F-test and

Fisher-qtltools-iso appeared to be the most powerful methods that were robust to all parameter

settings in terms of FDR. When using QTLtools, the “grp-best” permutation approach (as it is

called in the software) appears to be a robust and somewhat powerful method that is preferable

to the “grp-pca1” and “grp-mean” settings.

Application to GEUVADIS data

We next evaluated the performance of these methods on real expression data. Using the same 87

Yoruban samples from the GEUVADIS dataset [4] described in the simulation study, we quanti-

fied the normalized transcript-per-million (TPM) expression level of each isoform using kallisto

[23] and DESeq size factors [30] (S1 Text). Isoforms with 5 or fewer reads mapped for at least

50% of the samples were discarded. The methods were run on the remaining isoform and geno-

type data. The corresponding quantile-quantile (Q-Q or QQ) plot is shown in Fig A in S1 Text.

The findings on this data largely recapitulated those of the simulations, and strikingly

resembled those of the simulation where s2
h ¼ 0:4 and negpct = 50%. The Wilks-Bartlett

approach identified 9364 eGenes, much more than the next-greatest approach (4500), seem-

ingly suggesting a large number of false discoveries. The min-qtltools-iso approach identified

the next most, with 4500 eGenes, likely also due to inflated FDR. Next was Fisher-perm, with

4023 eGenes. The remaining isoform-aware approaches identified 2342 to 3003 eGenes, with

Fisher-qtltools-iso identifying the most, followed by the F-test (2661). QTLtools-sum,

QTLtools-mean, and QTLtools-pca1 identified 1552, 1294, and 1432 eGenes, respectively. We

note that the original GEUVADIS study identified 501 eGenes in the Yoruban samples [4]. We

attribute this difference to several factors in the analysis pipeline, including our use of kallisto

[23] and DESeq size factors [30] to quantify expression levels versus the original study’s use of

summed transcript reads per kilobase million (RPKM, which is now recommended against in

current practice [10, 31]) and the original study’s use of Matrix eQTL [8] to call eGenes.

A common alternative to summing isoform-level quantifications as we did for QTLtools-

sum is to use read counting or alignment methods such as featureCounts [25], HTSeq [32], or

STAR [33] to quantify gene expression levels. We also ran QTLtools on gene read counts

obtained from featureCounts. This approach identified more eGenes compared to the

QTLtools-sum approach (1718 versus 1552) but substantially fewer than the isoform-aware

methods, which each found 2342 or more eGenes.
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We next analyzed the overlap of eGenes found by each method, excluding methods that

had inflated empirical FDR in any simulation setting as well as non-isoform-aware methods.

These methods (QTLtools-best, F-test, fisher-qtltools-iso, cauchy-qtltools-iso, cauchy-perm,

min-perm) found 3,711 total genes, of which 1,876 were shared by all methods, indicating sub-

stantial concordance. Fisher-qtltools-iso had the most unique eGenes with 368, followed by F-

test with 316, QTLtools-grpbest with 65, cauchy-qtltools-iso with 31, and cauchy-perm and

min-perm with 3 each.

Given that the Wilks-Bartlett approach seemingly had a highly-inflated eGene count and

QTLtools-pca1 had a count similar to the sum and average approaches, which strikingly

resemble the results in our simulations with high s2
h, this suggests that non-cis effects that are

correlated across isoforms and individuals, possibly including trans-regulation and environ-

mental effects, are prevalent in real datasets. Another resemblance between the real data and

simulation findings was that Fisher-qtltools-iso and the F-test identified the most eGenes

among the non-inflated isoform-aware approaches. Interestingly, it appears that the F-test was

less powerful relative to the other isoform-aware approaches in GEUVADIS than it was in

simulations.

Additionally, the results corroborated our simulation findings that sum- and mean-based

approaches will identify fewer eGenes than isoform-aware methods. Fig 1 shows an example

gene that isoform-aware methods identified but QTLtools-mean did not. Clearly, in this exam-

ple, the two isoforms for the gene are regulated in opposite directions by the SNP, such that

summing the expression levels of the isoforms loses some of the signal. In general, we found

that isoform-aware methods tended to find eGenes with isoforms that were genetically regu-

lated in opposite directions, as expected. For example, we examined the eGenes with multiple

isoforms identified by both the F-test and QTLtools-sum, versus those identified only by the

F-test. We calculated the number of eGenes whose isoforms have opposite-sign associations

with the eQTL, meaning that the eQTL had a positive-sign effect estimate on at least one iso-

form and a negative-sign estimate on at least one isoform. We found that 88.3% (1221 of 1383)

of such eGenes found by the F-test but not QTLtools-sum have isoforms with opposite-sign

associations with the eQTL. Meanwhile, of the multi-isoform eGenes found by both methods,

only 50.1% (326 of 651) have opposite-sign associations with the eQTL. If we require the oppo-

site-sign isoform associations to be marginally significant at p< 0.05, then 47.9% (663 of

1383) of the F-test-exclusive eGenes have significant opposite-sign associations, while only

22.1% (144 of 651) of eGenes found by both methods fit this criterion.

Given that isoform-aware methods are likely to identify some splicing QTLs (sQTLs) in

addition to traditional eQTLs, we hypothesized that the frequency distribution of QTL loca-

tions relative to the gene body would differ between isoform-aware methods and QTLtools.

We found that two different isoform-aware methods, Fisher’s method and QTLtools-best

grouped permutations, had relatively similar QTL frequency distributions while QTLtools-

mean was rather different (Fig 3). eQTLs identified by QTLtools-mean were skewed towards

the immediate vicinity of the transcription start site (TSS), while the isoform-aware methods

identified relatively more eQTLs towards the end of the gene body and beyond the gene body.

Interestingly, Li et al [34] previously reported that eQTLs are enriched near the TSS of the

gene they regulate, while sQTLs are enriched throughout the gene body, particularly within

introns. We also noticed from the Li et al findings that, outside of the gene body, most eQTLs

were found to be immediately before the TSS while more sQTLs were found after the gene

body relative to eQTLs. Our findings largely corroborate these trends, suggesting that isoform-

aware methods are picking up in sQTLs in addition to eQTLs. Surprisingly, isoform-aware

methods only had a slightly higher percentage of eQTLs within introns (31.6% for Fisher’s
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method and 32.2% for QTLtools-best) than did QTLtools-mean (28.7%). This may be because

the isoform-aware methods are finding both eQTLs and sQTLs, not just sQTLs.

The running times of each of the methods are reported in the S1 Text. In general, the meth-

ods are difficult to compare directly due to their different implementations and pipelines. We

found that the majority of the runtime is taken up by running SNP-isoform or SNP-gene

regressions for each of the permutation replicates, rather than the specific testing method

employed. Because QTLtools implements these basic regressions and permutations more effec-

tively than the methods we implemented ourselves, their runtimes were generally much faster.

Application to GTEx Data

As another evaluation on more recent real data, we applied the methods to the GTEx v8 data

[6]. We decided to use thyroid samples because this tissue had among the most eGenes of any

tissue in the GTEx v8 data [6]. We preprocessed the data largely the same way as described in

the Supplementary Text of the GTEx v8 paper [6]—the expression data were normalized with

TMM [35], filtered for low expression, and then inverse-normal transformed. The main differ-

ences were that i) we used only European samples to avoid potential population stratification;

ii) we performed low-expression filtering on isoform expression levels rather than aggregated

gene expression levels; iii) normalization was applied to isoform expression levels rather than

aggregated gene expression levels (S1 Text). We then performed association testing with the

methods described above, controlling for covariates such as principal components and batches

as described in the GTEx v8 Supplementary Text [6].

Our results largely recapitulated the trends observed in our other experiments. The fewest

eGenes were identified by QTLtools-pca1 (9659) and QTLtools-mean (10241). Wilks-Bartlett

identified 16975 eGenes, considerably more than any other method, and was once again likely

inflated. The next most was Fisher-perm with 13825, followed by min-qtltools-iso with 13728,

then F-test with 13271. Fisher-qtltools-iso, Cauchy-qtltools-iso, QTLtools-best, Cauchy-perm,

and min-perm identified 12644, 12568, 12519, 12410, and 12395 eGenes, respectively.

QTLtools-mean is analogous to FastQTL, which the method used in the GTEx eQTL analysis,

Fig 3. Counts of eGenes found by each method, binned by distance from transcription start site (TSS) for eQTLs found outside the gene body

(left); or by percentile position within the gene body for eQTLs found within the gene body (right), where 0 is the start of the gene and 100 is the

end of the gene.

https://doi.org/10.1371/journal.pcbi.1011857.g003
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in that QTLtools-mean is essentially FastQTL run on gene-level expression data that is

obtained by averaging isoform expression levels rather than summing them. However,

QTLtools-mean found fewer eGenes than the GTEx v8 eQTL analysis on the thyroid (13477),

which was expected given the differences in the analysis pipeline described above. Overall,

these results recapitulate our findings that accounting for isoform-level expression increases

power to identify eGenes and our findings about the relative power of each isoform-aware

method.

We once again analyzed the overlap of eGenes found by each method, excluding methods

that had inflated empirical FDR in any simulation setting as well as non-isoform-aware meth-

ods. These methods (QTLtools-best, F-test, fisher-qtltools-iso, cauchy-qtltools-iso, cauchy-

perm, min-perm) found 13,917 total eGenes, of which 11,808 were shared by all methods, indi-

cating high concordance. F-test had the most unique eGenes with 738, followed by fisher-

qtltools-iso with 120, QTLtools-grpbest with 87, cauchy-qtltools-iso with 32, cauchy-perm

with 3, and min-perm with 0 (no unique eGenes).

We then performed functional enrichment analysis using torus [36] applied to eQTLs iden-

tified by an isoform-aware method (F-test) and a gene-level method (QTLtools-sum) given

genomic annotations from the GTEx v8 dataset [6] (Fig 4). F-test and QTLtools-sum had rela-

tively similar functional enrichment profiles, and were both fairly similar to the eQTL enrich-

ment profile found in the GTEx v8 paper [6]. However, the isoform-aware F-test was more

enriched for splicing-related categories, suggesting that some QTLs identified by isoform-

aware methods that are not identified by gene-level methods may be related to splicing.

Discussion

In this paper, we examined several approaches for utilizing isoform expression information in

eQTL mapping. We demonstrated that the common approach of summing or averaging the

isoform expression estimates together results in a loss of power to identify eGenes relative to

approaches that utilize isoform-specific information in situations where a SNP regulates iso-

forms in possibly different directions. Though we did not explicitly evaluate it here, a related

scenario in which this approach may lose power is when the expression level of one isoform is

Fig 4. Functional enrichment for various genomic annotations for eQTLs identified in the GTEx thyroid data by

an isoform-aware method (the F-test) and a gene-level method (QTLtools-sum).

https://doi.org/10.1371/journal.pcbi.1011857.g004
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much higher than that of the other isoforms for the same gene, such that the highly-expressed

isoform masks genetic regulation of the low-expressed isoforms when the expression levels are

added together [11].

We examined four classes of approaches to utilizing isoform-specific information:

QTLtools’ grouped permutation schemes, p-value aggregation, general linear models, and mul-

tiple regression. We also examined whether it is preferable to apply p-value aggregation meth-

ods to permutation-adjusted p-values generated by running QTLtools [17] on individual

isoforms, or to apply these methods to raw isoform-level regression p-values and subsequently

compute the permutation-adjusted p-value. While no single approach dramatically outper-

formed the others, Fisher’s method [18] applied prior to the permutation test (“Fisher-perm”)

generally had the highest power among methods that did not have dramatically inflated False

Discovery Rate (FDR) in simulations, followed by the multiple regression F-test and Fisher’s

method applied to QTLtools isoform-level results (“Fisher-qtltools-iso”), with most of the

remaining methods performing very similarly to one another. However, the Wilks-Bartlett

method and, to a lesser extent, Fisher-perm, exhibited inflated FDR when substantial non-cis
effects were simulated. Among the methods that did not exhibit inflated FDR in any simulation

setting, the F-test generally had the highest power in simulations and found the most eGenes

in the GTEx data, while Fisher-qtltools-iso found the most eGenes in the GEUVADIS data.

We observed conflicting and inconclusive answers as to whether it is preferable to apply p-

value aggregation approaches before or after the permutation test. Fisher-perm exhibited slight

FDR inflation in some settings, as discussed above, but Fisher-qtltools-iso did not. On the

other hand, min-perm did not exhibit inflated FDR but min-qtltools-iso did, cautioning

against the approach of calling an eGene if a SNP is significantly associated with any of the

gene’s isoforms. The Cauchy combination test [19] did not exhibit inflated FDR and had simi-

lar power in both settings. Numerous p-value aggregation methods exist, including those that

weight different p-values or attempt to account for dependencies between p-values [29, 37–

40]. For the sake of brevity, we were not able to explore all of these options, and it remains to

be seen whether they would substantially improve performance.

Results on the GEUVADIS data strongly resembled our simulation setting with strong

non-cis effects and roughly half of SNP-isoform effects being negatively correlated. In particu-

lar, Wilks-Bartlett appeared to yield a highly inflated eGene count, while QTLtools-pca1 iden-

tified a similar number of eGenes to the sum and average approaches. Results on the GTEx

data had similar trends. Real gene expression data is much more complicated than our simula-

tions can capture, with a variety of molecular processes and confounding signals involved, and

certainly it does not match any particular parameter setting in our simulation. However, these

findings do suggest that many eGenes are substantially impacted by non-cis effects, in line

with previous research that suggests that trans-effects on gene expression account for more

gene expression heritability than cis-effects across the genome [41–46]. Methods for identify-

ing eQTLs and simulations assessing these methods should take this factor into account.

Examining the GEUVADIS results further, we found that the eQTLs identified by

QTLtools-mean were skewed towards the transcription start site (TSS) of the genes they regu-

lated, while isoform-aware methods found relatively more eQTLs towards the end of the gene

body and beyond the gene body. As these trends largely matched those described by Li et al

[34] comparing eQTL locations to splicing QTL (sQTL) locations, these findings suggest that

some of the QTLs identified by isoform-aware methods are likely sQTLs. Additionally, in a

functional enrichment analysis of the eQTLs identified in the GTEx data, eQTLs identified by

the isoform-aware F-test were more enriched for splicing-related categories than eQTLs iden-

tified by the gene-level QTLtools-sum approach. In this sense, isoform-aware methods likely

identify a broader set of biological signals than traditional eQTL mapping identifies.
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This point about a potentially broader set of signals warrants further discussion. Traditional

eQTL mapping methods typically seek to identify SNPs associated with the “gene-level”

expression of genes—i.e. the sum of the isoform expression levels corresponding to a gene.

While this goal may be interesting, we think it is valuable to develop methods with the broader

goal of identifying genetic regulation of expression. Accordingly, we define an eGene as a gene

with at least one isoform whose expression level is regulated by a cis-SNP. This may include

effects specific to one or a subset of isoforms, such as alternative splicing or polyadenlyation.

An alternative approach is to consider specific kinds of regulatory QTLs—e.g. “gene-level”

eQTLs and sQTLs—separately. Several methods have been developed that are dedicated to

finding sQTLs [47–49]. If one wanted to explicitly separate traditional eQTLs from sQTLs,

one could consider running the QTLtools-sum or QTLtools-mean approach for eQTLs and

one of the sQTL methods from sQTLs. This has the benefit of delineating specific kinds of reg-

ulatory QTLs, but has the drawbacks of requiring multiple analyses, exacerbating multiple test-

ing burden, and not capturing other types of regulatory QTLs. These two approaches may be

considered complementary, as each have their benefits and drawbacks.

For simplicity, in this manuscript, we focused on a specific problem: detecting cis-eQTLs

and eGenes given quantified isoform expression levels generated by a method such as kallisto

[23] or Salmon [24]. A similar approach that we do not consider here is using exon quantifica-

tions rather than isoform quantifications, which can also be computed using kallisto or

Salmon. Alternatively, differential exon usage methods like DEXSeq [50] could be adapted for

eQTL/eGene analysis. While many reads will be compatible with multiple isoforms, presenting

a challenge for estimating individual isoform quantities, this is generally less of an issue for

exon quantification. While this is possible, it has been noted that these methods suffer from

other issues such as not utilizing full information of junction reads [51]. Another option is to

work with read count data obtained from a method such as featureCounts [25] or HTSeq [32],

which could be either on the gene or exon level. We found in our analysis of GEUVADIS data

that QTLtools run on featureCounts read counts obtained slightly more eGenes than QTLtools

run on summed kallisto isoform quantifications, albeit still substantially fewer eGenes than

isoform-aware methods. Reliably quantifying isoform expression can be challenging, particu-

larly for lowly expressed isoforms [52]. In such cases, it may be preferable to work with simpler

count-based data such as that obtained from featureCounts. Since these counts will be rela-

tively low, it may be preferable to apply a Poisson or negative binomial model and test for asso-

ciation using a generalized linear model rather than ordinary least squares. This is an

interesting direction for future research.

We also note that there are other methods for finding molecular QTLs, including eQTLs,

that involve different computational pipelines. For example, WASP [53] and RASQUAL [54]

are QTL-finding methods that include mapping stages in their pipeline that are designed to

identify allele-specific reads and reduce the effects of several read mapping biases. These meth-

ods increase QTL mapping power relative to simple linear regression at the cost of substan-

tially slower computational speed [54], and may be preferable in some contexts. These

methods do not currently account for isoform-level effects. Because these methods involve

substantially different pipelines and are not trivial to extend to multiple-isoform contexts, we

do not examine them here.

One other approach that we considered but did not evaluate due to its substantial differ-

ences with the evaluated methods is aggregating information from multiple SNPs in cis to

increase power to identify eGenes, rather than testing each SNP in cis individually. Some

methods for doing this are implemented in QTLtools [17], but we are not aware of any exten-

sive evaluations of the performance of these methods relative to other possible approaches.
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Another dimension in which this problem can be approached differently is in the choice of

FDR control. In this manuscript we used the beta-distributed approximate permutation test

(Methods) along with Storey’s Q-value [26], as suggested by FastQTL [9], to control FDR.

Alternative approaches include the overall FDR [15, 16, 55] and hierarchical FDR [56, 57]. We

found the FastQTL approach to be effective for controlling FDR, and for simplicity, we do not

evaluate these alternatives here. However, one disadvantage of this approach is that it focuses

on gene-level testing, and does not obviously suggest a principled way to identify the isoforms

that drove the gene-level signal (apart from identifying individual isoform-level p-values that

are significant). Methods such as stageR [15] offer an alternative approach to FDR control that

does allow for identifying the driver isoforms. In the stageR method, approaches that we evalu-

ated in this manuscript such as the F-test or p-value aggregation form an initial “screening

stage,” which is then followed by a “confirmation stage” in which the individual (isoform-

level) tests are re-assessed and controlled for FDR or Family-Wise Error Rate. It would be

interesting to compare the stageR and FastQTL (and other) approaches in future work.

The findings in this paper may be relevant to other contexts. For example, it would be inter-

esting to compare some of these approaches for trans-eQTL mapping. Similar approaches

could be developed for different types of molecular QTLs for which it is appropriate to account

for hierarchical information. Another possibility is extending the approaches presented in this

paper to other contexts in which hierarchical information is available. Most straightforwardly,

these approaches could be applied directly to exon expression levels rather than isoform

expression levels. Other applications, such as identifying QTLs associated with the expression

level of any gene in a gene set, or with genes whose expression levels are correlated due to their

involvement in similar pathways within a co-expression network, may also be interesting

directions for future work. Finally, similar approaches may be used to more-powerfully iden-

tify expression or other molecular traits that mediate genetic effects on complex traits and dis-

eases. Indeed, recent work has shown that isoform-level modeling increases power in

Transcriptome-Wide Association Studies (TWAS) [58]. Utilizing hierarchical information

could potentially lead to substantial power increases across a variety of biological association

mapping problems, providing further opportunities for developing biological insights.

Methods

P-value aggregation methods

Methods for aggregating p-values from multiple hypothesis tests have been studied extensively,

and there are too many methods to cover comprehensively here. We focus on one naive

method—simply using the minimum p-value—and two more well-founded and popular

approaches, the classic Fisher’s method [18] and the currently-popular Cauchy aggregation

test, also called “ACAT” [19, 27].

Fisher’s method aggregates the p-values into a chi-squared statistic:

w2
2k ¼ � 2

Xk

i¼1

logðpiÞ;

where k is the number of studies, pi is the p-value from study i, and w2
2k is the chi-squared distri-

bution with 2k degrees of freedom. The basic principle is that a p-value is uniform under the

null, the negative log of aUnif(0, 1) random variable is exponentially distributed, and multiply-

ing an exponential random variable by 2 yields a chi-squared random variable with two

degrees of freedom. Summing k such variables yields a chi-squared random variable with 2k
degrees of freedom.
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Fisher’s method is asymptotically optimal when p-values are independent [59, 60] but fails

to take into account correlations between the p-values. If they are correlated, Fisher’s method

may result in anti-conservative aggregated p-values. Numerous extensions to Fisher’s method

have been proposed to deal with dependent p-values or weighting of p-values [29, 37–40].

One recent popular alternative is the Cauchy combination test [19, 27], which is based on

the observation that Cauchy statistics can be used to correct for possible dependence structures

between p-values. The Cauchy combination test is defined as

T ¼
Xk

i¼1

oitanð½0:5 � pi�pÞ;

where ωi are weights on the p-values. If the observed test statistic is T = t0, the p-value can be

approximated as

p ¼
1

2
�
arctanðt0Þ

p
:

We use the Cauchy combination test as a representative modern p-value aggregation

approach.

Wilks-Bartlett test

Let n be the number of samples and letm be the number of isoforms for the gene being tested.

Let Y be the (n ×m) matrix of isoform expression levels. Let X be the (n × 1) SNP dosage vec-

tor for any SNP in cis. Then we model

Y ¼ X βþ �;

where β are effect sizes of the SNP on each isoform and � is the (n ×m) error matrix, which is

assumed independent across samples. The hypothesis we want to test is:

H0 : β ¼ 0

H1 : β 6¼ 0:

That is, under the null, a SNP has zero effect on each isoform.

A likelihood ratio test can be constructed [20] for this which results in the Wilks’ lambda-

distributed [21] test statistic

L
2=n
¼
jŜj

jŜ ij
;

where Ŝ ¼ 1

n �̂
T �̂, with �̂ being estimated via the ordinary least squares (OLS) estimate for β,

and Ŝi is the equivalent matrix for the intercept-only model.

Bartlett [20, 22] showed that the modified statistic

� n � r � 1 �
1

2
m � r þ qþ 1ð Þ

� �

log
jŜj

jŜ ij

 !

has approximately a w2
mðr� qÞ distribution for large n, where r is the total number of regressors

and q is the number of regressors not being tested for zero effect. Thus, in our case, r = 1 (since
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we test one SNP at a time) and q = 0, so the statistic simplifies to

� n � 2 �
1

2
m

� �

log
jŜj

jŜ ij

 !

and has an approximate w2
m distribution.

Multiple regression and F-test

Let n be the number of samples and letm be the number of isoforms for the gene being tested.

Let Y = (Y1, . . ., Ym) be the (n ×m) matrix of isoform expression levels. Let X be the (n × 1)

SNP dosage vector for any SNP in cis. We then perform the multiple regression

X ¼ Yβþ �f :

We also perform the intercept-only regression. Let RSSf represent the residual sum of

squares computed from the full model above, and let RSSi represent the residuals sum of

squares computed from the intercept-only model. We can then perform an F-test for whether

the full model predicts X better than the intercept-only model. The F-statistic will be

F ¼
ðRSSi � RSSf Þ=ðdi � df Þ

RSSf=ðn � df Þ
;

where di = n − 1 is the degrees of freedom in the intercept-only model and df = n −m − 1 is the

degrees of freedom in the full model. An F-test is then performed using this statistic to com-

pute the gene-level p-value, with the two degrees of freedom parameters being df andm − 1.

Beta-approximated permutation test and False Discovery Rate control

When performing eQTL mapping, multiple SNPs are associated with each phenotype (a gene

or isoform expression level) and multiple phenotypes are tested across the genome. Both of

these multiple testing burdens must be corrected for. FastQTL [9] introduced a scheme for

doing so, which was later incorporated into the QTLtools [17] software and which we emulate

for each method discussed in this paper.

SNPs in the same region are correlated via linkage disequilibrium, and a gold standard

approach for adjusting for multiple testing with correlated tests is permutation testing. Permu-

tation testing involves generating R rearrangements of the data points, computing the hypoth-

esis test for each of the R permutations as well as the original data, and then comparing the p-

value for the original data with those obtained using the permuted data. The permutation test

p-value will be

r þ 1

Rþ 1

where r is the number of permuted-data p-values that are less than the p-value obtained from

the original data. An issue arises from this: it is computationally infeasible to compute extreme

p-values using this approach. For example, obtaining a p-value of 10−6 requires computing one

million permutated versions of the data and running the hypothesis test on each of them.

This computational burden can be avoided by using a Beta distribution to approximate the

tails of the distribution of permuted p-values, thus allowing the quick computation of permu-

tation test p-values [9]. This is because p-values are uniformly distributed under the null

hypothesis, and the order statistics of independent uniformly-distributed random variables are

Beta-distributed [61]. Thus, the p-values from a permutation test are also Beta distributed [62].
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In our case, because the SNPs are not independent, the p-values from standard regressions are

not independent. Thus, the parameters of the Beta distribution are fit via a maximum likeli-

hood approach [63] using a limited (about 100–1000) number of permutations to generate a

null set of p-values [9].

The authors of QTLtools [17] extended this methodology to accomodate “grouped” pheno-

types, such as multiple isoforms from the same gene. We refer to their paper for more details,

but briefly, the idea is to permute all isoforms from a given gene at once to generate a null dis-

tribution and fit the Beta distribution parameters. Then each SNP-isoform pair’s permutation

p-value is computed, and the SNP-isoform pair with the strongest p-value is reported for each

gene. As an alternative way to aggregate multiple phenotypic signals, they suggested comput-

ing loadings on the first principal component of the isoforms, and then performing the regular

permutation scheme described above on this. Finally, the isoform expression levels can simply

be averaged, which is proportional to simply summing the isoforms.

Once the permuted p-values are obtained for each gene, standard False Discovery Rate

(FDR) methods can be applied across genes. The authors of FastQTL recommend Storey and

Tibshirani’s q-value [26], which is the method we also use in this paper.

There are alternative approaches to this two-level multiple testing problem, including the

overall FDR [15, 16, 55] and hierarchical FDR [56, 57]. We found the approach outlined above

to be effective for controlling FDR, and for simplicity, we do not evaluate these alternatives here.

Supporting information

S1 Text. Supplementary Materials for: Accounting for Isoform Expression Increases

Power to Identify Genetic Regulation of Gene Expression. Details on data preprocessing,

software settings, and runtime analysis; quantile-quantile plot of GEUVADIS results; simula-
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(PDF)
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