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Abstract

IMPORTANCE An accurate and robust artificial intelligence (AI) algorithm for detecting cancer in
digital breast tomosynthesis (DBT) could significantly improve detection accuracy and reduce health
care costs worldwide.

OBJECTIVES To make training and evaluation data for the development of AI algorithms for DBT
analysis available, to develop well-defined benchmarks, and to create publicly available code for
existing methods.

DESIGN, SETTING, AND PARTICIPANTS This diagnostic study is based on a multi-institutional
international grand challenge in which research teams developed algorithms to detect lesions in DBT.
A data set of 22 032 reconstructed DBT volumes was made available to research teams. Phase 1, in
which teams were provided 700 scans from the training set, 120 from the validation set, and 180
from the test set, took place from December 2020 to January 2021, and phase 2, in which teams
were given the full data set, took place from May to July 2021.

MAIN OUTCOMES AND MEASURES The overall performance was evaluated by mean sensitivity for
biopsied lesions using only DBT volumes with biopsied lesions; ties were broken by including all
DBT volumes.

RESULTS A total of 8 teams participated in the challenge. The team with the highest mean
sensitivity for biopsied lesions was the NYU B-Team, with 0.957 (95% CI, 0.924-0.984), and the
second-place team, ZeDuS, had a mean sensitivity of 0.926 (95% CI, 0.881-0.964). When the results
were aggregated, the mean sensitivity for all submitted algorithms was 0.879; for only those who
participated in phase 2, it was 0.926.

CONCLUSIONS AND RELEVANCE In this diagnostic study, an international competition produced
algorithms with high sensitivity for using AI to detect lesions on DBT images. A standardized
performance benchmark for the detection task using publicly available clinical imaging data was
released, with detailed descriptions and analyses of submitted algorithms accompanied by a public
release of their predictions and code for selected methods. These resources will serve as a
foundation for future research on computer-assisted diagnosis methods for DBT, significantly
lowering the barrier of entry for new researchers.
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Key Points
Question Can a grand challenge be

used to facilitate the advancement of

automated digital breast tomosynthesis

(DBT) cancer detection technology?

Findings This diagnostic study, in which

8 challenge teams developed algorithms

to detect lesions on 22 032 DBT

volumes, resulted in tumor detection

performances as high as a mean

biopsied lesion sensitivity of 0.957,

which arose from the development of

several novel approaches.

Meaning The variety of approaches

that participants used in this study,

alongside their released code and our

released tumor detection benchmarking

platform, present a starting point for

future research in this area.
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Introduction

Breast cancer is the leading cause of cancer death for women worldwide,1 and detection is a
challenging process that requires the involvement of experienced radiologists. Digital breast
tomosynthesis (DBT) creates high-resolution quasi–3-dimension (3D) scans consisting of multiple
adjacent reconstruction slices, which reduces the effect of overlapping tissues seen in 2D
mammography. This improves cancer detection rates but at the cost of increased reading time.2 An
AI-based DBT cancer detection tool with radiologist-level performance could significantly reduce
cancer screening costs and time and improve detection performance, which would be particularly
helpful at sites that do not have access to fellowship-trained radiologists.

The most common AI method for image analysis is deep learning, which involves the training of
nonlinear hierarchical models with many parameters (known as neural networks) to perform difficult
tasks, such as image classification,3 object detection,4 and semantic segmentation,5,6 enabled by
large data sets and specialized computing power.7 Deep learning detection algorithms have even
surpassed radiologist performance8,9 due to their ability to learn far more complex features than
earlier computer-assisted diagnosis systems, which had limited clinical applicability.10,11 In fact,
algorithms with high sensitivity may even detect cancers missed by radiologists, serving as a second
independent reader.12 However, developing deep learning algorithms for medical image analysis
faces significant challenges, including a lack of sufficient, well-organized, and labeled training data; a
lack of benchmark and test data as well as clearly defined rules for comparing algorithms, especially
important because systems with significant false-positive rates can reduce radiologist sensitivity12;
and limited access to previously developed algorithms for comparison. Moreover, DBT lesion
detection introduces further difficulties for deep learning, including high scan resolution, high
anatomical variability of both normal and abnormal breast tissue, and a very high class-imbalance of
normal to cancerous cases for screening DBT.

In this article, we provide a practical foundation for the future open development and
evaluation of algorithms for DBT lesion detection by providing a collection of analyses and resources
for researchers, based on a new publicly available data set. Namely, we created a well-defined
benchmark for evaluating future DBT lesion detection algorithms13; a description of several state-of-
the-art algorithms for the task; a public release and comparative analysis of the predictions made by
these algorithms, allowing for comparison with future approaches; and code for several of the
algorithms, where possible. To generate these resources, we hosted a grand challenge, DBTex, for
the automated detection of lesions in screening DBT scans. DBTex was divided into 2 phases, from
December 14, 2020, to January 25, 2021, and May 24 to July 26, 2021, respectively. Challenges such
as BraTS,14 ImageNet,15 other Kaggle competitions,16 and others have long been used to move the
field forward by motivating intense and competitive research.

Several recent works have used deep learning to either classify DBT scans for the presence of
lesions17-29 or localize lesion(s) within DBT scans. Localization tasks include determining the exact
shape of these lesions, known as segmentation,12,30,31 or drawing bounding boxes around them,
known as detection.32-40 Our challenge task was the detection of masses and architectural
distortions in DBT scans.

Challenge teams developed and trained their detection methods on a large data set of healthy
participants, with limited scans containing lesions, from a recently released large, public radiologist-
labeled data set of DBT volumes from 5060 patients. After the training phase, participants were
provided with a smaller validation data set to fine-tune their methods. At the end of the challenge,
teams applied their methods to a previously unseen test set of scans with normal and cancerous
tissue, which was used to obtain final rankings. While pathology and lesion locations of the training
set were shared with participants as a reference standard, they were made unavailable for the
validation and test sets.
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Methods

This study was approved by the Duke University Health System institutional review board with a
waiver of informed consent due to its retrospective nature. The Duke University Breast Cancer
Screening DBT (BCS-DBT) data set, which was provided by the challenge organizers, was publicly
available data. Three teams used additional data: the NYU B-Team used an internal data set approved
by the NYU Langone Health institutional review board, ZeDuS used an internal institutional review
board–approved data set, and VICOROB used the OPTIMAM data set (OMI-DB), whose ethical
approval is publicly available.41 This study followed the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guideline.

Data Set
DBTex was built on Duke University’s BCS-DBT data set,32 which was designed to be the first large,
curated and labeled, and publicly available DBT data set, hosted on the Cancer Imaging Archive.42,43

It includes 22 032 reconstructed DBT volumes (a stack of spatially adjacent 2D scan slices) from scans
of 5060 participants, with annotations for biopsied lesions provided by 2 trained radiologists. A
given DBT scan has separate volumes corresponding to at least 1 and as many as 4 of the anatomical
views of the breasts: left craniocaudal (LCC), right craniocaudal (RCC), left mediolateral oblique
(LMLO), and right mediolateral oblique (RMLO).

Each of the radiologists who completed the annotations had at least 18 years of experience with
breast imaging. Scans were classified as normal, actionable (further imaging requested), benign
(lesion found, negative biopsy), or cancerous (lesion found, positive biopsy). Additionally, for benign
and cancerous cases, radiologists provided annotations in the form of a tight bounding box around
each lesion. If a lesion annotation were present in a volume, the annotation was assigned to the
central slice of the volume. (There are approximately 70 slices for each scan volume.) Annotations for
microcalcifications were not included. For the challenge, the data set was stratified by participant
into training, validation, and test sets, as outlined in Table 1. Lesion boxes and volume class labels
were only provided to challenge teams for the training set. In phase 1 of the challenge, teams were
provided with 700 scans from the training set, 120 from the validation set, and 180 from the test set,
while the second phase used the entire data set. All lesion cases were included in both phases. We
provide further logistical details for the challenge in eAppendix 2 in Supplement 1.

Statistical Analysis
Teams were tasked with developing algorithms that take a DBT volume as input and detect any
biopsy-proven (cancerous or benign) lesions found within by generating proposed bounding boxes
that enclose the lesion(s). To evaluate this task on the validation and test sets of scans with class
labels and lesion bounding boxes unknown to participants, teams were asked to provide bounding
box locations (horizontal and vertical pixel coordinates and slice index) and sizes, accompanied by
prediction scores indicating a level of certainty for each box for any lesions detected by their models.

Table 1. Statistics of the Data Sets Used for the Challenge

Characteristics

No. (%)

Training set Validation set Test set
Participants

Total 4362 (100) 280 (100 418 (100)

Normal 4109 (94.2) 200 (71.4) 300 (71.8)

Actionable 178 (4.1) 40 (14.3) 60 (14.4)

Benign 62 (1.4) 20 (7.1) 30 (7.2)

Cancer 39 (0.9) 20 (7.1) 30 (7.2)

Total DBT volumes, No. 19 148 1163 1721

Bounding boxes for biopsied lesions, No. 224 75 136
Abbreviation: DBT, digital breast tomosynthesis.
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These scores could be on any scale, but the scale had to be unified across the evaluation of the data
set and were used by challenge organizers (along with the bounding boxes submitted by participants
and reference standard) to evaluate the overall detection performance of an algorithm.

The overall performance evaluation for an algorithm was based on free-response receiver
operating characteristic (FROC) curves, which examine the sensitivity of each model with respect to
the number of false-positive (FP) predictions created by the model for each view in the test set.
Details of how a prediction was deemed a true positive appear in eAppendix 2 in Supplement 1. The
primary performance metric was calculated only on DBT volumes with biopsied lesions (benign or
malignant) and was the mean sensitivity (ie, the true-positive rate) over 1, 2, 3, and 4 FPs per volume.
We average over the different FP counts to comprehensively reflect the overall performance curve
across different sensitivities and specificities. This metric is similar to the competition performance
metric for assessing lung nodule detection.44

The secondary performance metric used to break ties, if any, was the sensitivity at 2 FPs per
DBT volume calculated using all DBT volumes (eTable in Supplement 1). To win the challenge, a
team’s performance did not need to demonstrate a statistically significant improvement over that of
the runner-up. The number of views in the test set with biopsied lesions was the same in both
challenges, meaning that the primary performance metric is identical. All evaluation code is publicly
available.45 Finally, we created a webpage for future evaluations of the DBTex performance metric
(on both the validation and test sets).13 This will allow algorithms developed in the future to have a
standardized tool for model selection (by the validation set) and performance metric (on the
test set).

Results

Grand Challenge Results
In Table 2, we present the ranked roster of participating teams: their affiliations, method names, final
scores for all challenge phases that they participated in, and a reference to their code when
possible.45-56 We also provide the performance results of 2 simple baseline models on the task, both
with code: the model that accompanied the BCS-DBT data set release32 and a basic faster region-
based convolutional neural network (R-CNN) model (eAppendix 2 in Supplement 1). We provide
detailed summaries of all algorithms in eAppendix 2 in Supplement 1, with a link to all prediction
results. The teams that participated in both challenge phases had the same final ranking order, so we
display the results of both phases in the same table. eAppendix 1 in Supplement 1 presents secondary
metric results.

Analysis of Grand Challenge Results
Beyond the individual performances of each participant algorithm, we analyzed the collective results
of the challenge to obtain a holistic measure for the capability of state-of-the-art DBT lesion
detection algorithms. First, we examined how lesion detection difficulty varied between different
cases. Next, we analyzed the success of the submitted algorithms by aggregating their predictions.

Lesion Detection Difficulty Ranking
We considered 2 extremes: the easiest lesions to detect and the most difficult. Figure 1A and 1B show
the 2 lesions that were easiest to detect according to our difficulty measures (eAppendix 2 in
Supplement 1), alongside the algorithms’ corresponding predictions. We see that most submitted
algorithms made similar predictions for these lesions. Figure 1C and D show the 2 most challenging
lesions, which resulted in disagreeing predictions. Overall, we found that within 4 FPs per DBT
volume all algorithms detected 16 of 136 lesion annotations (12%), and there was only 1 lesion (<1%)
that was not detected by any algorithm.

Next, we analyzed the association of lesion detection difficulty with (1) the classification of the
lesion being cancerous or benign and (2) lesion type (mass or architectural distortion). We compare
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these lesion characteristics with our measures of lesion difficulty in Table 3. We also measured the
correlation between the number of algorithms that detected a lesion and the lesion size (bounding
box diagonal length) to be 0.28, using Spearman rank correlation coefficient.

Combining Predictions
To aggregate lesion detection results from all methods (not including the baseline models), ie, to
merge lesion bounding box predictions that were made by different algorithms, we normalized the
detection confidence scores assigned by each algorithm to its predicted bounding boxes, across all
algorithms, by transforming all scores for each algorithm to a percentile range. Next, we merged
lesion box predictions across the width, height, and slice dimensions using the weighted boxes fusion
algorithm57 (eAppendix 2 in Supplement 1).

After this merging procedure, we obtained a set of merged predicted lesion bounding boxes
with accompanying prediction scores aggregated from each model. We computed merged results for
both (1) all submitted algorithms and (2) only phase 2 submissions. For the 3 teams that participated
in both phases, we use the results from phase 2, as they were superior to phase 1 submissions in all

Figure 1. The Least and Most Difficult Lesions to Detect

Easily detected lesion 1A Easily detected lesion 2B Challenging lesion 1C Challenging lesion 2D

NYU B-team
ZeDuS

VICOROB
Prarit

UCLA-MII
Pranjalsahu

Team-PittRad
Data set baseline

Coolwulf
Faster R-CNN baseline

A and B, Examples of digital breast tomosynthesis volumes containing annotated lesions
that were the easiest to detect. On average, all 10 algorithms detected lesions in A and
with 0.13 and 0.16 false positives, respectively. C and D, Examples of digital breast
tomosynthesis volumes containing annotated lesions that were the most difficult to
detect. The lesion in panel C was not detected by any algorithm, and the lesion in panel
D was detected by only 2 of 10 algorithms with 1.34 false positives on average (due to the

presence of a breast implant). Detection bounding boxes indicate submitted algorithm
predictions. The number in the upper-left corner of each box indicates the percentile of
the corresponding algorithm’s score with respect to the distribution of all algorithm
scores for the volume. At most, 2 boxes per algorithm are shown, and the colors of each
algorithm’s boxes correspond to the free-response receiver operating characteristic
curves shown in Figure 2.

Table 3. Comparison of Lesion Detection Difficulty Metrics and Lesion Characteristics for the Test Set

Metric

Mean (SD)

Lesion diagnosis Lesion type

Benign Cancer Mass
Architectural
distortion

Total count, No. 70 66 121 15

No. of algorithms that detected lesion within 4 FPs
per volume

7.47 (1.73) 7.82 (1.76) 7.63 (1.78) 7.73 (1.44)

FPs corresponding to correct prediction considering
teams that detected it within 4 FPs per volume

0.77 (0.49) 0.55 (0.43) 0.64 (0.47) 0.91 (0.47)

Abbreviation: FP, false positive.
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cases. The mean sensitivity at 1, 2, 3, and 4 FPs per volume was 87.9% (95% CI, 83.6%-91.8%)for the
former group and 92.6% (95% CI, 88.8%-95.9%) for the latter. On the same metric, for phase 2, NYU
B-Team achieved 94.3% (95% CI, 90.7%-97.2%); ZeDuS, 90.4% (95% CI, 86.1%-94.3%); and
VICOROB, 89.6% (95% CI, 85.0%-93.7%). We show these results as FROC curves in Figure 2,
including the Faster R-CNN baseline and the baseline model from Buda et al.32

Discussion

The purpose of this challenge was to facilitate the development of state-of-the-art machine learning
algorithms for the challenging task of DBT lesion detection. Our goal was to address the current lack
of public, standardized resources for research in this field, as prior works have often relied on private
data sets, detection models, or both. We approached this by (1) establishing a standardized, publicly
accessible testing benchmark, evaluation pipeline, and training data set for this task; (2) hosting a
grand challenge to encourage the concentrated development of algorithms; and (3) encouraging the
release of publicly available algorithm code.

By merging the results from all submissions, we found that most submitted algorithms achieved
strong performance on this task. All submitted algorithms that we analyzed (eAppendix 2 in
Supplement 1) relied on some object detection neural network. The key properties that led some
submissions to perform better than others were (1) the specific model used, (2) any novel
refinements that teams made to their methods, and (3) the training data used. Leading teams used
more recent detection architectures, such as EfficientDet58 (NYU B-Team), highly optimized for
modern object detection tasks, or RetinaNet37 (ZeDuS), which is especially well-suited for small
objects (eg, small lesions) and class-imbalanced data sets like the BCS-DBT training set. The top 3
teams also used model ensembling, the aggregation of multiple models’ predictions to improve
overall robustness. This method is well-suited for improving the generalizability of models,59 which
is especially applicable to this task because breast tissue and breast lesions have high morphological
variability. Finally, winning teams also used additional internal training data that provided more lesion
examples to learn from. This is important because the detection model itself can only carry
performance so far; the training of deep models is data driven, so the variety and quantity of lesion
examples to learn from will significantly affect an algorithm’s ability to generalize to new data.

Figure 2. Free-Response Receiver Operating Characteristic Detection Curves for All Methods
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The importance of training data, model choice, and novel methods is especially apparent when
submitted results are compared with the 2 baseline models (Table 2), which were trained only on
the provided BCS-DBT training set and had poorer performance than most submissions. However,
some submissions (eg, UCLA-MII, pranjalsahu, Team-PittRad) that also only used the provided data
performed almost as well as algorithms that used additional data, while vastly outperforming the
baseline models (Table 2). As such, the usage of supplementary data appears not to be the only
necessary factor for achieving good performance, but also the development of specialized
techniques for the unique characteristics of the data set or domain, which the baseline models did
not have. This shows that DBT tumor detection is a challenging problem for typical detection models,
but large performance improvements are possible if the model development is targeted for this
modality. Finally, an additional tactic that some teams used (eg, VICOROB and UCLA-MII) was
pretraining their detection models on common universal natural image data sets, such as COCO,60

before training on the target domain of DBT data, giving the models a starting point for visual feature
recognition.

Limitations
This study has limitations. All teams relied on supervised training of their detection algorithms, ie,
directly recognizing visual features that discriminate between healthy and cancerous examples. One
potential obstacle for this approach is the presence of anomalous objects that may mislead
detection. The case shown in Figure 1D is an example of this, where an implant distracted most of the
models from the mass present in the image. This behavior is due to the data-driven nature of training
deep learning models; if an object appears in a test image that is rare within the training data, this
may interfere with model predictions. Despite the strong overall results of the algorithms, the
presence of these rare cases cannot be ignored in the clinical setting; this could be mitigated by the
use of anomaly detection methods.61,62

Another limitation is that each of the top 3 finalists used additional training data including
lesions outside of the provided data set, so no conclusion can be drawn about which method would
be superior given the same training data set. However, submitted algorithms were still directly
compared in their effectiveness at detecting lesions in the test set. An additional limitation of our
study is that the benchmark was computed only on true-positive cases. This was because the data set
has missing views but only for biopsied cases, which could be (intentionally or not) taken advantage
of by participants by prioritizing predictions for these missing-view cases or determining which cases
are biopsied by the presence of missing views. However, by comparing the competition results
(Table 2) with the FROC curves in Figure 2, the latter of which were computed on all cases, we found
there to be no notable difference between (1) the metric computed on all cases and (2) only true-
positive cases, so the effect of this factor is minimal.

The scope of the test set was somewhat limited because it included only 136 lesions (due to the
natural screening rarity of breast cancer) and because microcalcification annotations are not included
in the data set.32 The ability of our benchmark to measure clinical detection performance across a
range of institutions is also limited because the data originated only from the Duke University Health
System. However, the leading algorithms’ success of using supplementary training data indicates
that DBT scans created at different sites still possesses common features to learn from and implies
that the algorithms were able to generalize across multiple data domains.

Conclusions

In this diagnostic study of AI for DBT, submitted algorithms for the DBTex challenge gave promising
breast lesion detection performance over a range of difficult cases, improving over existing baseline
models by a wide margin. To accompany these results, we presented a benchmark evaluation
platform for assessing detection algorithms, a large public data set, and code for certain submitted
algorithms. The success of this challenge marks a large improvement in DBT tumor detection
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methods, and the public resources we provide lay the groundwork for the development of clinically
relevant computer-assisted diagnosis systems.
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