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Abstract

IMPORTANCE Childhood lead poisoning causes irreversible neurobehavioral deficits, but current
practice is secondary prevention.

OBJECTIVE To validate a machine learning (random forest) prediction model of elevated blood lead
levels (EBLLs) by comparison with a parsimonious logistic regression.

DESIGN, SETTING, AND PARTICIPANTS This prognostic study for temporal validation of
multivariable prediction models used data from the Women, Infants, and Children (WIC) program of
the Chicago Department of Public Health. Participants included a development cohort of children
born from January 1, 2007, to December 31, 2012, and a validation WIC cohort born from January 1 to
December 31, 2013. Blood lead levels were measured until December 31, 2018. Data were analyzed
from January 1 to October 31, 2019.

EXPOSURES Blood lead level test results; lead investigation findings; housing characteristics,
permits, and violations; and demographic variables.

MAIN OUTCOMES AND MEASURES Incident EBLL (�6 μg/dL). Models were assessed using the
area under the receiver operating characteristic curve (AUC) and confusion matrix metrics (positive
predictive value, sensitivity, and specificity) at various thresholds.

RESULTS Among 6812 children in the WIC validation cohort, 3451 (50.7%) were female, 3057
(44.9%) were Hispanic, 2804 (41.2%) were non-Hispanic Black, 458 (6.7%) were non-Hispanic
White, and 442 (6.5%) were Asian (mean [SD] age, 5.5 [0.3] years). The median year of housing
construction was 1919 (interquartile range, 1903-1948). Random forest AUC was 0.69 compared
with 0.64 for logistic regression (difference, 0.05; 95% CI, 0.02-0.08). When predicting the 5% of
children at highest risk to have EBLLs, random forest and logistic regression models had positive
predictive values of 15.5% and 7.8%, respectively (difference, 7.7%; 95% CI, 3.7%-11.3%), sensitivity
of 16.2% and 8.1%, respectively (difference, 8.1%; 95% CI, 3.9%-11.7%), and specificity of 95.5% and
95.1% (difference, 0.4%; 95% CI, 0.0%-0.7%).

CONCLUSIONS AND RELEVANCE The machine learning model outperformed regression in
predicting childhood lead poisoning, especially in identifying children at highest risk. Such a model
could be used to target the allocation of lead poisoning prevention resources to these children.
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Key Points
Question How does a machine learning

model compare with logistic regression

in predicting childhood lead poisoning

during infancy?

Findings This prognostic study of 6812

children in a Women, Infants, and

Children cohort in Chicago, Illinois, used

blood lead level surveillance data,

housing characteristics, and

demographic characteristics to predict

lead poisoning risk. Using predictors

from a range of spatiotemporal scales, a

random forest model significantly

outperformed a parsimonious logistic

regression.

Meaning These findings suggest that

machine learning can be used to more

precisely predict risk of elevated blood

lead levels to guide allocation of

prevention resources to children most

at risk.
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Introduction

Despite substantial reductions in lead hazards during the past decades, childhood lead poisoning
remains a significant environmental health issue in the United States. An estimated 0.5% of children
born in 2013 to 2014 have blood lead levels (BLLs) greater than the current Centers for Disease
Control and Prevention reference level of 5 μg/dL (to convert to micromoles per liter, multiply by
0.0483).1 Elevated BLLs (EBLLs), even those below the current reference level, have been linked to
neurobehavioral deficits, such as reduced intellectual and academic performance and attention-
deficit/hyperactivity disorder.2

The main intervention that public health agencies such as the Chicago Department of Public
Health (CDPH) use for lead poisoning is inspection of the home environment in cases of EBLL to
identify and control hazards. This secondary prevention effort relies on reported exposure to trigger
the intervention. However, no treatment has been found effective for reversing the effects of
exposure.3 Thus the Centers for Disease Control and Prevention and American Academy of Pediatrics
have called for primary prevention through proactive identification and remediation of hazards
before a child develops an EBLL.4,5

However, primary prevention is a challenge. In Chicago, 81% of the city’s 1.2 million housing
units were built before 1978, the year in which lead-based paint was banned,6 but few of these
buildings have infants residing in them, and even fewer have reported cases of exposure. In 2017,
only 1713 new EBLL (�5 μg/dL) cases were reported, and 567 inspections were performed.

To overcome this challenge, prioritization of lead poisoning prevention resources to children
most at risk of exposure has been proposed.7,8 A parsimonious regression model using county,
median income, and housing age was developed in North Carolina.7,9 More recently, a machine
learning model using BLL, housing, and demographic predictors at a range of spatiotemporal scales
was developed for Chicago.10 The present study had 3 main objectives: first, to replicate the
parsimonious regression model of lead poisoning using Chicago data; second, to validate the
machine learning model by comparison with this regression model; and third, to pilot the targeting
of lead poisoning prevention resources to children predicted to be most at risk of exposure.

Methods

We followed the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD) statement for reporting multivariable prediction model validation.11 This work
was determined to be exempt from human subjects review and informed consent by the institutional
review board at the CDPH as it qualifies as an evaluation of a procedure for obtaining benefits under
a public program.

Study Population
The validation cohort or test set consisted of children enrolled in the CDPH’s Women, Infants, and
Children (WIC) program and born from January 1 to December 31, 2013. The study used a temporal
validation design11 with a split date of January 1, 2014 (Figure 1). Thus, we excluded from the test set
children who enrolled in WIC after this date, who did not have an address in the WIC registry as of
this date, or who had a positive outcome (see below) before this date. The development cohorts or
training set consisted of all children born from January 1, 2007, to December 31, 2012, with a BLL
outcome at an address in Chicago before the split date.

There were several reasons to limit the test set to WIC participants. First, to operationalize the
predictions (described below), the CDPH needed current contact information, including telephone
numbers, which are available for WIC participants but not for others. Second, the WIC enrollment
database includes time stamps that allowed our validation to use only information that would have
been available as of the split date, enhancing its validity. Finally, WIC households have lower incomes,
so these children are in general at higher risk for lead poisoning.12 To assess how performance may
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change over time, we repeated this study design with validation on the 2010, 2011, and 2012
WIC cohorts.

Outcome
The primary outcome was the binary variable of whether the child had an EBLL, defined herein as 6
μg/dL or greater in either a venous or a capillary sample. This definition was used because until 2016,
some laboratories had a lower limit of detection of 5 μg/dL. In model development, the outcome was
defined using BLLs measured before January 1, 2014. In validation, outcomes were measured after
January 1, 2014, until December 31, 2018.

Random Forest Model
In 2015, a random forest model was developed to predict EBLLs in Chicago children.10 That model
was updated with additional predictors for this study. The source code is publicly available (https://
github.com/chicago/lead-model). Model hyperparameters were selected using the 2010-2012 cohorts
and blinded to the 2013 cohort.

Predictors
There were 2 types of predictors: spatial and spatiotemporal. Spatial variables were housing
characteristics (age, size, and condition) from the county assessor and the Chicago building
footprints shapefile (about 750 000 addresses). Spatiotemporal data sets at the address level
consisted of surveillance BLLs (approximately 2.5 million tests of 1 million children since 1995); CDPH
lead investigations (approximately 70 000 since 1994); Chicago Department of Buildings permits
(demolition, renovation, etc) and violations (walls, windows, paint, etc; approximately 2 million since
2006); and US Census American Community Survey sociodemographic variables at the census tract
level since 2005.

These data were aggregated in various ways to create predictors for the machine learning
model. For example, from the historical BLLs, we calculated the EBLL (both �6 and �10 μg/dL)
counts and rates at various spatial levels (address, census block, and census tract) and time periods
(1, 2, 3, 5, 10, and all available years). These aggregations generated more than 1000 total predictors
(eTables 1-3 in the Supplement). Predictors were developed using the development cohort data with
investigators blinded to the validation cohort data.

For each data set (eg, BLLs) and aggregation level (eg, census block, 2 years), we included as a
predictor the number of records in the aggregation. When equal to zero, this predictor indicated
missingness of other predictors in that aggregation. Those missing values were mean imputed.

Figure 1. Temporal Validation Flowchart

231 139 Chicago children with BLL born 2007-2012

36 353 Excluded
27 220 BLL later

9133 No address

1664 Excluded
1138 No address

518 Enrolled later
8 Prior EBLL

194 786 Included in model development set

8476 Chicago WIC participants born 2013

6812 Included in model validation set

6812 EBLL predictions made

5549 BLL outcome

5549 Included in model evaluation
BLL indicates blood lead level; EBLL, elevated BLL; and
WIC, Women, Infants, and Children.
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Predictor importance was measured as the mean reduction in error after a tree in the forest split on
that predictor.

Model
We used a balanced random forest model.13,14 Random forest uses bootstrap aggregation over
observations and predictors, so we did not perform additional feature selection. The output of the
model is an uncalibrated risk score from 0 to 1 for each child.

Regression Model
For comparison, we replicated a regression model from North Carolina.7 Having been previously
validated and deployed, this model was a natural alternative.9 The regression is parsimonious while
including housing, economic, racial, and geographic predictors.

We made 2 changes in replication. First, because BLL outcomes in our study population are
concentrated below laboratory limits of detection, we replaced the (continuous) maximum BLL
outcome of the original model with the (binary) EBLL outcome. Consequently, we replaced linear
with logistic regression. Second, because our analysis took place in a single county (Cook County), we
replaced county fixed effects with neighborhood fixed effects. Thus, the regression generalizes the
common strategy of neighborhood prioritization.15,16

The regression model included the following predictors: housing age from the county assessor,
median income, percentage of non-Hispanic Black and Hispanic residents at the census tract level
from the 5-year US Census American Community Survey, and fixed effects for 77 neighborhoods
(Chicago community areas). Addresses not matching an assessor record had their age mean imputed,
and a missingness indicator was included as a predictor.

Prediction Performance Measures
Performance of the models in predicting EBLLs was summarized using the receiver operating
characteristic curve and the area under the curve (AUC). More appropriate for our deployment
context, we also calculated the confusion matrix metrics of positive predictive value (PPV),
sensitivity, and specificity when predicting the highest-risk 5%, 10%, and 15% of children in the WIC
cohort to have EBLLs. Analyses were repeated with missing outcomes imputed using a range of
sensitivity parameters (eMethods in the Supplement). To investigate potential fairness concerns,
metrics were calculated by race/ethnicity.17

Operationalizing the Machine Learning Model to Target Proactive Inspections
On October 1, 2016, the machine learning model was updated using available data, and predictions
of EBLL risk were made for children in the WIC cohort. From October 1, 2016, to September 30, 2017,
the CDPH contacted WIC households to offer a proactive inspection. Offers were made to
households with children younger than 12 months because these children have the greatest
opportunity to benefit from a proactive inspection owing to the mean duration of 10 months it takes
to complete remediation in Chicago. Households were eligible to be contacted if the child was
younger than 12 months and had not had an EBLL test. The CDPH prioritized limited resources to
offer inspections to children who were at higher risk and closer to the age cutoff. Predictions were
updated twice (February 1 and June 1, 2017) to account for changed addresses and include newly
enrolled WIC participants.

Households of children selected for inspection offers were mailed a bilingual letter (in English
and Spanish) followed by a bilingual daytime telephone call offering and scheduling an inspection.
The CDPH’s certified lead risk assessors used an x-ray fluorescence analyzer to complete a lead-based
paint inspection per guidelines from the Department of Housing and Urban Development.18 They
performed clearance dust wipes if no lead-based paint hazards were identified.

Inspection offers were analyzed for 2 outcomes: completion and detection of lead-based paint
hazards. An estimate of the rate of lead-based paint hazards in the study population was made by
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reweighting estimates of significant lead-based paint hazards in the Midwest region by housing age
from the American Healthy Homes Survey (AHHS).19(p33) We also recorded the rate of lead-based
paint hazards found in reactive inspections, that is, those performed by CDPH in response to an
EBLL, during the same period.

Statistical Analysis
Data were analyzed from January 1 to October 31, 2019. Statistical analyses were performed using R,
version 3.3 (R Foundation for Statistical Computing) and Python, version 2.7 (Python Software
Foundation) software. A 2-sided P � .05 was considered statistically significant. We calculated 95%
CIs for comparisons of AUC and confusion matrix metrics using 10 000 bootstrap replications.

Results

Among 6812 children receiving WIC in the 2013 test set (mean [SD] age, 5.5 [0.3] years), 3451
(50.7%) were female, 3361 (49.3%) were male, 3057 (44.9%) were Hispanic, 2804 (41.2%) were
non-Hispanic Black, 458 (6.7%) were non-Hispanic White, and 442 (6.5%) were Asian. The median
year of housing construction was 1919 (interquartile range, 1903-1948).

Models were developed using training data for 194 786 children (Figure 1). The most important
predictors in the random forest model were spatiotemporal EBLL rate aggregations (0.81-1.00);
residential property values (0.52), latitude (0.47), and age (0.47); census educational level (0.30),
health insurance (0.30-0.32), and income variables; lead investigation compliance (0.24), inspection
(0.25-0.27), and hazard rates (0.22); and building violation counts (0.09) and the proportion
pertaining to walls and windows (0.08) (Table 1). Fitted logistic regression coefficients are presented
in eTable 4 in the Supplement.

Blood lead level outcomes were measured for 5549 children (81.4%) in the test set (Figure 1). Of
these BLLs, 271 were elevated, for a prevalence of 4.9% compared with 6.8% for the training set.
The AUCs of random forest and logistic regression were 0.69 and 0.64, respectively. The difference
in AUC was 0.05 (95% CI, 0.02-0.08) (Figure 2).

The confusion matrix metrics for both models at thresholds of 5%, 10%, and 20% of children at
highest risk are listed in Table 2. Random forest outperformed logistic regression in every metric and
at every threshold. The greatest differences were in PPV and sensitivity and at higher-risk thresholds.
For example, when classifying 5% of children with EBLLs, random forest and logistic regression
models had PPVs of 15.5% and 7.8%, respectively (difference, 7.7%; 95% CI, 3.7%-11.3%), sensitivity
of 16.2% and 8.1%, respectively (difference, 8.1%; 95% CI, 3.9%-11.7%), and specificity of 95.5% and
95.1%, respectively (difference, 0.4%; 95% CI, 0.0%-0.7%). This random forest model also
significantly outperformed the originally published model specification (eTable 5 in the Supplement).

Prevalence of EBLLs declined from 536 of 6337 (8.5%) in the 2010 cohort to 271 of 5549 (4.9%)
in the 2013 cohort (eTable 6 in the Supplement). When repeating validation on these cohorts, some
metrics also declined, for example, PPV at 5% highest risk decreased from 22.5% to 15.4%. Other
metrics that are agnostic to prevalence (eg, sensitivity and AUC) were stable or increased from 2010
to 2013 (eTable 7 and eFigure in the Supplement).

In the proactive inspections pilot, offers to 478 higher-risk households yielded 27 inspections, 3
(11.1%) of which were at a different address than the risk assessment. Lead-based paint hazards were
found in 20 of the 27 homes (74.1%). Using the AHHS, the estimated rate of lead-based paint hazards
in the study population was 56.7% (95% CI, 46.9%-66.4%) (eTable 8 in the Supplement). Reactive
inspections during the study period had an 83.8% lead hazard rate.

Blood lead levels, building characteristics, and sociodemographic predictors were rarely
missing, whereas investigations and building violation and permit predictors were often missing.
Missingness did not vary substantially between training and test sets (eTable 9 in the Supplement).
Hispanic children were more likely both to have a BLL outcome measurement (2673 of 5585
[47.9%]) and to complete an inspection offer (12 of 27 [44.4%]). Children with no BLL outcome were
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predicted to have a lower mean risk by both models (eTables 10 and 11 in the Supplement). Prediction
performance was robust to sensitivity analysis (eTables 12 and 13 in the Supplement). The test set of
WIC participants had a higher EBLL risk compared with non-WIC participants in the same birth cohort
(risk ratio, 1.4; 95% CI, 1.2-1.6) (eTable 14 in the Supplement).

Discussion

In this prognostic study, we used machine learning to predict childhood lead exposure risk from BLL
surveillance data, housing characteristics, and demographic characteristics at a range of
spatiotemporal scales. We validated the predictions in the 2010-2013 Chicago WIC birth cohorts
using temporal validation. We focused on the 2013 cohort validation, in which the model was fit using
predictors and outcomes measured before January 1, 2014, and evaluated against outcomes
occurring after the date. Performance was compared with a parsimonious regression model
replicated from North Carolina.

In overall performance as measured by AUC, the machine learning model was a significant but
modest improvement. However, for PPV and sensitivity at high-risk thresholds, which are the
relevant metrics in our context of targeting interventions to a small proportion of the population, the
improvement was significant and large.

Our study is important because both the Centers for Disease Control and Prevention and
American Academy of Pediatrics have called for proactive lead poisoning interventions, but

Table 1. Most Important Predictors by Category for the Random Forest Model

Data source Variable

Aggregation

Importancea

Value by outcome, mean (SD)b

Space Years Function No EBLL EBLL
Blood lead levelsc Child mean BLL, μg/dL Tract 3 Median 1.00 1.4 (0.4) 1.7 (0.4)

Child mean BLL, μg/dL Tract 3 Mean 0.91 1.9 (0.6) 2.3 (0.6)

Child maximum BLL, μg/dL Tract 3 Mean 0.84 3.8 (1.1) 4.5 (1.1)

Child EBLL ≥6 μg/dL Tract 3 Count 0.81 16.0 (9.1) 22.0 (9.3)

Child mean BLL, μg/dL Tract 2 Mean 0.81 1.8 (0.5) 2.2 (0.5)

Building characteristics Residential value, $105 Block NA Mean 0.52 0.6 (3.5) 0.3 (1.6)

Latitude, ° Address NA NA 0.47 41.9 (0.1) 41.8 (0.1)

Housing age, y Block NA Mean 0.47 80.6 (24.1) 89.1 (19.9)

Residential value, $105 Block NA Sum 0.47 4.8 (11.1) 3.2 (5.0)

Rooms per unit, No. Block NA Mean 0.46 5.3 (1.1) 5.2 (1.0)

American Community
Survey

Medicaid insurance, No. Tract 5 Percentage 0.32 28.6 (14.1) 34.6 (12.2)

High school graduate, No. Tract 5 Percentage 0.30 14.0 (7.3) 16.9 (6.9)

Associate’s degree, No. Tract 5 Percentage 0.30 5.0 (2.8) 4.8 (2.7)

Employer insurance, No. Tract 5 Percentage 0.30 41.2 (17.0) 33.9 (13.4)

Bachelor’s degree, No. Tract 5 Percentage 0.30 13.7 (11.6) 9.4 (8.1)

Investigations Compliance, No. Tract 3 Percentage 0.27 40.0 (22.6) 33.5 (18.4)

Inspection, No. Tract 3 Percentage 0.27 58.4 (19.6) 54.1 (16.9)

Inspection, No. Tract 2 Percentage 0.25 58.4 (22.0) 53.2 (19.4)

Compliance, No. Tract 2 Percentage 0.24 37.8 (24.8) 30.2 (20.4)

Inspection interior hazard, No. Tract 3 Percentage 0.22 53.8 (32.8) 62.6 (28.1)

Building permits and
violations

Violations, No. Address All Count 0.09 2.7 (9.2) 2.8 (8.8)

Violations, No. Address 5 Count 0.09 2.4 (8.3) 2.7 (8.4)

Wall violations, No. Address All Percentage 0.08 8.6 (13.4) 8.8 (11.8)

Wall violations, No. Address 5 Percentage 0.08 8.5 (13.5) 8.8 (11.9)

Window violations, No. Address All Percentage 0.08 6.2 (11.1) 8.0 (12.7)

Abbreviations: BLL, blood lead level; EBLL, elevated BLL; NA, not applicable.
a Importance of a feature in the random forest model is measured as the mean reduction

in error after a tree in the forest splits the data on that variable. Here it is rescaled to
have a maximum of 1.00.

b Excludes missing predictors.
c Elevated levels were at least 6 μg/dL, venous or capillary samples.
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resources have not been allocated to deliver them universally.4,5 Targeting of lead poisoning
prevention resources had been proposed as an approach to this problem.7-10 This study
demonstrates that this approach can benefit from using machine learning methods in place of a
traditional regression. Moreover, we demonstrated for the first time, to our knowledge, the use of
machine learning predictions to target lead poisoning prevention interventions in practice, although
uptake was low.

Fairness, Accountability, and Transparency
The incidence of EBLL was higher among non-Hispanic Black and Hispanic participants. Prediction
performance varied by race/ethnicity, with, for example, greater sensitivity and lower specificity for
non-Hispanic Black participants (eTables 15-17 in the Supplement). Such variation may reflect varying
risk distributions, in which case they may be considered fair.20 Insofar as interventions allocated
using these predictions are beneficial rather than punitive, this performance could be viewed as
beneficial to Black children.21 If, however, equal performance across race/ethnicity is preferred, this
can be achieved by using different thresholds for each race, although with some limitations and to
the detriment of overall performance.22,23

Figure 2. Receiver Operating Characteristic Curves for Random Forest
and Logistic Regression Models
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Difference in the areas under the receiver operating characteristics curve was
0.05 (95% CI, 0.02-0.08).

Table 2. Confusion Matrix Metrics for Random Forest and Logistic Regression Models

Population at
highest risk, %a

Specificity, % Sensitivity, % PPV, %
Random
forest

Logistic
regression Difference (95% CI)b

Random
forest

Logistic
regression Difference (95% CI)b

Random
forest

Logistic
regression Difference (95% CI)b

5 95.5 95.1 0.4 (0.0 to 0.7) 16.2 8.1 8.1 (3.9 to 11.7) 15.5 7.8 7.7 (3.7 to 11.3)

10 90.4 90.1 0.2 (−0.2 to 0.7) 27.3 19.9 7.4 (3.0 to 14.6) 12.7 9.4 3.3 (1.3 to 6.7)

20 80.3 79.9 0.3 (−0.1 to 1.4) 42.4 38.4 4.1 (−1.1 to 12.5) 9.9 8.9 1.0 (−0.1 to 3.0)

Abbreviation: PPV, positive predictive value.
a Binary predictions are obtained from continuous risk scores by classifying this highest-risk percentage as positive.
b The 95% CIs were estimated using 10 000 bootstrap replications.
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A related concern regards interpretability. Although random forest may be less interpretable
than logistic regression, it is more interpretable than some other machine learning models, such as
neural networks. Indeed, the most important predictors aligned with our understanding that lead
poisoning is determined by age and quality of housing (Table 1). Moreover, interpretability may not be
as important for this prediction application as it is for causal inference.24,25

Implications
Our findings are relevant to public health and housing agencies across the country. Other
municipalities may achieve better or worse results in predicting EBLLs depending on factors that
include the data available to them and the prevalence of lead poisoning. Comparing results for the
2013 validation cohort with the 2010-2012 development cohorts suggests that if prevalence
continues to decline into the future, absolute measures of performance (eg, PPV) may also decline,
but measures that are relative to prevalence (eg, sensitivity, lift, and AUC) could remain stable
or improve.

Given fixed resources for proactive interventions in Chicago, targeting using this prediction
model will increase the possibility of preventing lead exposure. For example, with resources to
proactively inspect 5% of children in the WIC population, targeting using random forest has the
potential to prevent 16.2% of cases, twice as many as using logistic regression (8.1%). Our results
suggest that lead poisoning is difficult to predict and that proactively addressing all cases would
require more than the 20% intervention levels considered above. Prognosis using this predictive
model is intended to supplement diagnosis using BLL testing so that secondary prevention is
possible for cases that are not proactively identified for potential primary prevention.

However, successful primary prevention requires both the intervention and outreach to be
effective. Regarding the intervention, a Cochrane review found that “dust control interventions may
lead to little or no difference in blood lead levels” but that “the quality of evidence was moderate to
low, meaning that future research is likely to change these results.”26(p2) More recently, results of a
randomized clinical trial in Cincinnati, Ohio, were reported.27 Overall, a comprehensive residential
intervention did not result in significant BLL reductions or neurobehavioral improvements, albeit in a
population with relatively low BLLs (>5 μg/dL in 3% of control group). Significant BLL reductions
were, however, documented among the higher-risk non-Hispanic Black subpopulation (>5 μg/dL in
6% of control group), and the authors concluded that the “intervention may be more effective
among high-risk populations.”27(p941) Our findings show that a machine learning prediction model can
identify such a high-risk subpopulation (BLL � 6μg/dL in 16% of the 5% at highest risk).

The AHHS establishes that lead-based paint hazards are much more common than EBLLs. This
means that when performing proactive inspections, many more hazards will be found—and thus
remediations ordered—than potential EBLL cases prevented in current children occupants.
Moreover, remediation is more expensive than inspection.28 Therefore, the efficiency of targeting
proactive inspections comes not just from the targeted inspections but from the resulting targeted
remediations.

Regarding outreach, uptake will likely be limited in any voluntary lead inspection program. In
the Philadelphia Lead Safe Homes Study,29 uptake of completely subsidized lead remediation work
for households of children without an EBLL was just 28%. The uptake of reactive inspections in
Chicago in response to an EBLL during the study period was 58%, suggesting, unsurprisingly, that
households are more likely to take up an inspection when notified by the CDPH that their child has an
EBLL. Because vital statistics records do not include telephone numbers, offering proactive
inspections beyond WIC is a challenge. Efforts to improve data sharing across state and local agencies
may be helpful.

To use an EBLL prediction model, clinicians should first use temporal cross validation to
estimate prediction performance. Next they should determine a risk threshold for intervention
eligibility by examining performance (Table 2) and estimating and weighing potential health benefits
and harms (such as illegal landlord retaliation) as well as costs.28,30 In particular, they should consider
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the above lack of evidence for the effectiveness of lead-hazard control in lower-risk children. Our
study shows that the machine learning approach can provide substantial improvements over
parsimonious regression in identifying the highest-risk children, making it effective for resource-
constrained public health organizations. Clinicians should also consider factors that affect the timely
completion of interventions, such as grant funding of remediation.

Limitations
This study has several limitations. First, BLL outcomes were missing for 1263 predictions (18.5%) of
the test set, and missingness was associated with race/ethnicity, although results were robust to
sensitivity analyses. Outcomes were also subject to laboratory limits of detection, which were
historically as high as 5 μg/dL. This prevented us from analyzing an EBLL outcome of at least 5 μg/dL.

The performance of the machine learning model, although significantly better than the
regression model, leaves room for further improvement. For example, longitudinal methods can take
advantage of repeated BLL measurements, and likelihood-based methods can account for
measurements that were left-censored owing to lower limits of detection.31 Initial results suggested
that alternative machine learning classifiers, such as a support vector machine, would perform
similarly to the random forest model.10

Our estimate of the population rate of lead hazards is limited by our use of the AHHS. On the
one hand, use of the AHHS may result in an overestimate, because the data were collected in 2005
to 2006, when the national EBLL (�5 μg/dL) rate was 2.9%, and it has since declined to 0.5% in 2013
to 2014.1 On the other hand, it may result in an underestimate because it is based on building age
alone and does not take into account the fact that the WIC population is lower income and at higher
risk for lead exposure compared with the rest of the Chicago population (eTable 9 in the
Supplement).

We estimated 56.7% for population, 74.1% for targeted proactive inspection, and 83.8% for
reactive inspection hazard rates. The above limitations of the AHHS and the small sample size of
proactive inspections limit our ability to rigorously interpret these numbers. They are, however,
consistent with the hypothesis that targeted proactive inspections are about as likely to find hazards
as reactive inspections, and both find hazards more often than would random inspections. Moreover,
they suggest that uptake of proactive inspections was not strongly biased toward lower-risk
households.

Mobility and/or poor data quality resulted in 3 of 27 targeted proactive inspections (11.1%) being
scheduled at a different address from where the child was predicted to be at risk. Mobility presents
2 limitations. First, a child’s risk may change between prediction and intervention. Second, if a child
moves after a residential intervention, they are not likely to fully benefit.

Conclusions

Our study provides evidence that machine learning can improve on parsimonious regression in
predicting the risk for childhood lead poisoning. We also demonstrated the feasibility of using model
predictions to target proactive residential inspections for lead, potentially enabling a shift from
secondary to primary prevention. However, uptake of voluntary inspection offers was low, and
evidence of their effectiveness is currently incomplete. We are implementing this system to provide
predictions to physicians, community health workers, and community-based organizations so that
resources for lead poisoning prevention may be allocated to children most at risk of exposure.
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