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SYSTEM AND METHOD OF PARTIAL 
COMPILATION WITH VARIATIONAL 

ALGORITHMS FOR QUANTUM 
COMPUTERS 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

[0001] This application claims priority to and the benefit 
of U.S. Provisional Patent Application Ser. No. 62/900,120, 
entitled SYSTEM AND METHOD OF PARTIAL COM­
PLIATION WITH VARIATIONAL ALGORITHMS FOR 
QUANTUM COMPUTERS, filed Sep. 13, 2019, the con­
tents of which are incorporated herein in its entirety. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH & DEVELOPMENT 

[0002] This invention was made with govermnent support 
under grant numbers CCF1730449, and PHY1818914 
awarded by The National Science Foundation. The govern­
ment has certain rights in the invention. 

TECHNICAL FIELD 

[0003] This disclosure relates generally to quantum com­
puting and, more specifically, to systems and methods for 
partial compilation with variational algorithms for quantum 
computers. 

BACKGROUND 

[0004] Recent developments in quantum computing have 
pushed quantum computers closer to solving classically 
intractable problems. Existing quantum programming lan­
guages and compilers use a quantum assembly language 
composed of 1- and 2-quantum bit ("qubit") gates to prepare 
and execute primitive operations on quantum computers. 
Recent advancements in hardware and software include 
devices such as IBM's 50-qubit quantum machine and 
Google's 72-qubit machine, as well as classical-quantum 
hybrid algorithms tailored for such Noisy Intermediate­
Scale Quantum ("NISQ") machines, such as Quantum 
Approximate Optimization Algorithm ("QAOA") and Varia­
tional Quantum Eigensolver ("VQE"). 
[0005] Some of the most promising algorithms for these 
NISQ machines are variational algorithms. Conventional 
variational algorithms in Quantum Computing employ clas­
sical optimization coupled with quantum hardware to evalu­
ate the quality of each candidate solution. Recent work used 
Gradient Descent Pulse Engineering ("GRAPE") to translate 
quantum programs into highly optimized machine control 
pulses, resulting in a significant reduction in the execution 
time of programs. Such optimization can be generally 
important in conventional computing, but becomes of far 
more significant importance in quantum computing as these 
machines can support only short execution times before 
failing. 
[0006] GRAPE, however, suffers from high compilation 
latency. For example, running GRAPE control on a circuit 
with just four qubits can take many minutes, even with 
state-of-the-art hardware and graphics processing unit 
(GPU) acceleration. As circuits become longer (e.g., more 
gates) and broader (e.g., more qubits), compilation can take 
hours or days. In the NISQ era, quantum hardware with 
hundreds or thousands of qubits are anticipated. With varia­
tional algorithms, where computation is interleaved with 
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compilation at runtime, such high compilation costs are a 
further burden because recompilation is performed many 
times during execution. 
[0007] What are needed are compilation strategies that 
improve compilation times for variational algorithms. 

BRIEF DESCRIPTION 

[0008] In one aspect, a computing system for compiling 
and executing instructions on a quantum processor is pro­
vided. The system includes the quantum processor including 
a plurality of qubits. The system also includes a classical 
memory including a quantum program. The quantum pro­
gram defines a plurality of instructions in a source language. 
The system further includes a classical processor commu­
nicatively coupled to the classical memory. The memory 
includes computer-executable instructions that, when 
executed by the classical processor, cause the classical 
processor to receive a circuit of gates representing a quan­
tum program for a variational algorithm in which compu­
tation is interleaved with compilation at each iteration. The 
instructions also cause the classical processor to identify a 
plurality of blocks within the circuit of gates. Each block of 
the plurality of blocks includes a subcircuit of gates from the 
circuit of gates, leaving one or more remainder subcircuits 
of the circuit of gates outside of the plurality of blocks. The 
instructions further cause the classical processor to pre­
compile each block of the plurality of blocks with a pulse 
generation program to generate a plurality of pre-compiled 
blocks. Each pre-compiled block includes control pulses 
configured to perform the associated block on the quantum 
processor. The instructions also cause the classical processor 
to iteratively execute the quantum program on the quantum 
processor using the pre-compiled blocks as static during 
runtime and recompiling the one or more remainder subcir­
cuits on the classical processor at each iteration of execution. 
[0009] In another embodiment, a computer-implemented 
partial compilation method for compiling and executing 
instructions on a quantum computer is provided. The method 
is implemented using a classical processor in communica­
tion with a classical memory. The method includes receiving 
a circuit of gates representing a quantum program for a 
variational algorithm. The method also includes identifying 
a plurality of blocks within the circuit of gates. Each block 
of the plurality of blocks includes a subcircuit of gates from 
the circuit of gates, leaving one or more remainder subcir­
cuits of the circuit of gates outside of the plurality of blocks. 
The method further includes pre-compiling each block of the 
plurality of blocks with gradient ascent pulse engineering to 
generate a plurality of pre-compiled blocks. Each pre­
compiled block includes control pulses configured to per­
form the associated block on the quantum processor. The 
method also includes iteratively executing the quantum 
program on the quantum processor using the pre-compiled 
blocks as static during runtime and recompiling the one or 
more remainder subcircuits on the classical processor at 
each iteration of execution. 
[0010] In yet another embodiment, a non-transitory com­
puter-readable storage media having computer-executable 
instructions embodied thereon is provided. When executed 
by at least one classical processor, the computer-executable 
instructions cause the classical processor to receive a circuit 
of gates representing a quantum program for a variational 
algorithm. The instructions also cause the classical proces­
sor to identify a plurality of blocks within the circuit of 
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gates. Each block of the plurality of blocks includes a 
subcircuit of gates from the circuit of gates, leaving one or 
more remainder subcircuits of the circuit of gates outside of 
the plurality of blocks. The instructions further cause the 
classical processor to pre-compile each block of the plurality 
of blocks with gradient ascent pulse engineering to generate 
a plurality of pre-compiled blocks. Each pre-compiled block 
including control pulses configured to perform the associ­
ated block on the quantum processor. The instructions also 
cause the classical processor to iteratively execute the quan­
tum program on a quantum processor using the pre-com­
piled blocks as static during runtime and recompiling the 
one or more remainder subcircuits on the classical processor 
at each iteration of execution. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0011] FIGS. l-4C show exemplary embodiments of the 
methods and systems described herein. 
[0012] FIG. 1 is a diagram of exemplary quantum com­
puting system for executing variational quantum programs 
on a quantum computing device. 
[0013] FIG. 2 is a component diagram of the compilation 
engine 114 shown in FIG. 1. 
[0014] FIG. 3 is an example variational circuit for the 
variational quantum program shown in FIG. 1. 
[0015] FIG. 4A illustrates the outcome of the blocking 
analysis ( e.g., blocking out subcircuits that do not depend on 
any 8, or Rx(8,) gates that do depend on the parameteriza­
tion). 
[0016] FIG. 4B illustrates another view of the blocking, 
now excluding the details of the parameterization-indepen­
dent gates within each fixed block for purposes of illustra­
tion. 
[0017] FIG. 4C illustrates blocking of parameterized sub­
circuits that depend on only a single variational parameter. 

DETAILED DESCRIPTION OF THE 
DISCLOSURE 

[0018] The following detailed description illustrates 
embodiments of the disclosure by way of example and not 
by way of limitation. It is contemplated that the disclosure 
has general application to quantum computing. 
[0019] Existing quantum programming languages and 
compilers use a quantum assembly language composed of l­
and 2-qubit gates. Quantum compiler frameworks translate 
this quantum assembly into control pulses, typically electric 
signals that implement the specified computation on a spe­
cific quantum computing device. Such quantum programs 
("non-variational algorithms") are typically compiled once 
and then executed on the quantum computing device. Typi­
cal non-variational quantum algorithms are completely 
specified at compilation time and therefore can be fully 
optimized by static compilation tools before execution. 
However, variational algorithms (or "hybrid quantum-clas­
sical algorithms") interleave compilation with computation, 
necessitating recompilation during runtime (e.g., as the 
program iterates toward a solution). Each iteration of a 
variational algorithm depends on the results of the previous 
iteration. As such, compilation is interleaved with compu­
tation. As even small instances of variational algorithms 
typically perform thousands of iterations, the compilation 
latency for each iteration becomes a significant limitation, 
causing a significant departure from conventional non-varia-
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tional quantum algorithms. Examples of such variational 
algorithms include molecular ground state estimation, 
MAXCUT approximation, and prime factorization. While 
GRAPE compilation of non-variational algorithms is known 
to outperform gate-based compilation, GRAPE-based com­
pilation incurs a substantial cost in compilation time. In 
variational algorithms, GRAPE-based compilation would be 
magnified by the iterative recompilation. 

[0020] A quantum computing system and associated meth­
ods are described herein for addressing these problems. The 
quantum computing system described herein includes a 
compilation engine ( e.g., executed on a classical computing 
device) that is configured to prepare and optimize a quantum 
program for execution on a quantum processor. In some 
instances, the quantum processor may include tens, hun­
dreds of qubits for use in execution, with thousands of qubits 
expected in the future. The compilation engine is configured 
to prepare and execute variational algorithms on the quan­
tum processor using partial compilation strategies prior to 
runtime that can improve compilation latency during run­
time (e.g., increasing runtime compilation efficiency, reduc­
ing runtime compilation time). 
[0021] The term "classical," as used herein, refers to 
conventional transistor-based computing technology. This 
term, where necessary, is used to distinguish conventional 
computing devices or associated hardware, software, algo­
rithms, and such, from "quantum" computing. Quantum 
computing devices or associated hardware, software, algo­
rithms, and such, are typically distinguished from classical 
computing devices based on their reliance on quantum 
phenomena of quantum mechanics to perform processing 
operations. Example classical computing devices include 
conventional personal computers, servers, tablets, smart­
phones, x86-based processors, random access memory 
("RAM") modules, and so forth. Example quantum com­
puting devices include "IBM Q" devices from International 
Business Machines (IBM), "Bristlecone" quantum comput­
ing device from Google, "Tangle Lake" quantum computing 
device from Intel, and "2000Q" from D-Wave. The term 
"classical bit" or "cbit" may be used herein to refer to a bit 
within classical computing. The term "qubit" may be used 
herein to refer to a quantum bit in quantum computing. 

[0022] FIG. 1 is a diagram of exemplary quantum com­
puting system 100 for executing variational quantum pro­
grams on a quantum computing device 130. The quantum 
computing system 100 includes a control computing device 
110 that is configured to prepare ( e.g., compile and optimize) 
a quantum program 112 for execution on the quantum 
computing device 130. The control computing device 110 
includes a classical processor 102 (e.g., a central processing 
unit ("CPU"), an x86-based processor, or the like) that can 
be configured to execute classical processor instructions, a 
classical memory 104 (e.g., random access memory 
("RAM"), memory SIMM, DIMM, or the like, that includes 
classical bits of memory). The quantum computing device 
130 includes multiple qubits 134 that represent a quantum 
processor 132 upon which the quantum program 112 is 
executed. In the example embodiment, the quantum program 
112 is a variational quantum program that interleaves com­
pilation with computation during runtime, and the quantum 
processor 132 includes 50 or 100 qubits, but it should be 
understood that the present disclosure is envisioned to be 
operable and beneficial for quantum processors with many 
tens, hundreds, or more qubits 134. 
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[0023] The fundamental unit of quantum computation is a 
quantum bit, or qubit 134. In contrast to classical bits 
("cbits"), qubits are capable of existing in a superposition of 
logical states, notated herein as 10) and 11). The general 
quantum state of a qubit may be represented as: 

l1j,l)~a1o)+i3ll), 

where a,~ are complex coefficients with lal 2 +1~1 2 =1. When 
measured in the 0/1 basis, the quantum state collapses to 10 
) or 11) with a probability of lal 2 and I ~1 2

, respectively. The 
qubit 134 can be visualized as a point on a 3D sphere called 
the Bloch sphere. Qubits 134 can be realized on different 
Quantum Information Processing (QIP) platforms, including 
ion traps, quantum dot systems, and, in the example embodi­
ment, superconducting circuits. The number of quantum 
logical states grows exponentially with the number of qubits 
134 in the quantum processor 132. For example, a system 
with three qubits 134 can live in the superposition of eight 
logical states: 1000), 1001), 1010), 1011), ... 1111). This 
property sets the foundation of potential quantum speedup 
over classical computation. In other words, an exponential 
number of correlated logical states can be stored and pro­
cessed simultaneously by the quantum system 100 with a 
linear number of qubits 134. 

[0024] A quantum algorithm may be described in terms of 
a quantum circuit. During quantum compilation, the quan­
tum program 112 is first decomposed into a set of 1- and 
2-qubit discrete quantum operations called logical quantum 
gates. These quantum gates are represented in matrix form 
as unitary matrices. 1-qubit gates correspond to rotations 
along a particular axis on the Bloch sphere. In an example 
quantum ISA, the 1-qubit gate set may include rotations 
along the x-, y-, and z-axes of the Block sphere. Such gates 
are notated herein as Rx, Ry, and R

2 
gates, respectively. 

Further, the quantum ISA may also include a Hadamard 
gate, which corresponds to a rotation about the diagonal x+z 
axis. An example of a 2-qubit logical gate in the quantum 
ISA is a Controlled-NOT ("CNOT" or "CX") gate, which 
flips the state of the target qubit if the control qubit is 11) or 
leaves the state unchanged if the control qubit is 10). For 
example, the CX gate sends 110) to 111), sends 111) to 110 
) , and preserves the other logical states. 

[0025] Further, it should be understood that the general 
logical assembly instructions typically used during compi­
lation of the variational quantum program 112 were 
designed without direct consideration for the variations in 
the types of physical hardware that may be used. As such, 
there is often a mismatch between the logical instructions 
and the capabilities of the particular QIP platform. For 
example, on some QIP platforms, it may not be obvious how 
to implement the CX gate directly on that particular physical 
platform. As such, a CX gate may be further decomposed 
into physical gates in a standard gate-based compilation. 
Other example physical quantum gates for various architec­
tures include, for example, in platforms with Heisenberg 
interaction Hamiltonian, such as quantum dots, the directly 
implementable 2-qubit physical gate is the ySWAP gate 
(which implements a SWAP when applied twice). In plat­
forms with ZZ interaction Hamiltonian, such as supercon­
ducting systems of Josephson flux qubits and NMR quantum 
systems, the physical gate is the CPhase gate, which is 
identical to the CX gate up to single qubit rotations. In 
platforms with XY interaction Hamiltonian, such as capaci­
tively coupled Josephson charge qubits ( e.g., transmon 
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qubits), the 2-qubit physical gate is iSWAP gate. For trapped 
ion platforms with dipole-chain interaction, two popular 
physical 2-qubit gates are the geometric phase gate and the 
XX gate. 

[0026] The quantum processor 132 can be continuously 
driven by external physical operations to any state in the 
space sparmed by the logical states. The physical operations, 
called control fields, are specific to the underlying system, 
with control fields and system characteristics controlling a 
unique and time-dependent quantity called the Hamiltonian. 
The Hamiltonian determines the evolution path of the quan­
tum states. For example, in superconducting systems such as 
the example quantum computing device 130, the qubits 134 
can be driven to rotate continuously on the Bloch sphere by 
applying microwave electrical signals. By varying the inten­
sity of the microwave signal, the speed of rotation of the 
qubit 134 can be manipulated. The ability to engineer the 
system Hamiltonian in real time allows the quantum com­
puting system 100 to direct the qubits 134 to the quantum 
state of interest through precise control of related control 
fields. Thus, quantum computing may be achieved by con­
structing a quantum system in which the Hamiltonian 
evolves in a way that aligns with high probability upon final 
measurement of the qubits 134. In the context of quantum 
control, quantum gates can be regarded as a set of pre­
programmed control fields performed on the quantum pro­
cessor 132. 
[0027] During operation, the control computing device 
110 implements a quantum algorithm, attempting to create 
as efficient a quantum circuit as possible, where efficiency 
may be in terms of circuit width ( e.g., number of qubits) and 
depth (e.g., length of critical path, or runtime of the circuit). 
In some embodiments, the compilation engine 114 optimizes 
various circuits or subcircuits using IBM Qiskit Transpiler, 
which applies a variety of circuit identities ( e.g., aggressive 
cancellation of CX gates and Hadamard gates). In some 
embodiments, the compilation engine 114 also performs 
additional merging of rotation gates ( e.g., Rx( a) followed by 
Rx(~) merges into Rx(a+~)) to further reduce circuit sizes. 

[0028] At the lowest level of hardware, quantum comput­
ers are controlled by analog pulses. Therefore, quantum 
compilation translates from a high level quantum algorithm 
down to a sequence of control pulses 120. Once a quantum 
algorithm has been decomposed into a quantum circuit 
comprising single- and two-qubit gates, gate-based compi­
lation can be performed by concatenating a sequence of 
pulses corresponding to each gate. In particular, a lookup 
table maps from each gate in the gate set to a sequence of 
control pulses that executes that gate. Pure gate-based com­
pilation provides an advantage in short pulse compilation 
time, as the lookup and concatenation of pulses can be 
accomplished very quickly. Some known methods of com­
pilation for variational algorithms use the gate-based 
approach to compilation, using parameterized gates such as 
Rx(8) and RzCcp). However, the pure gate-based compilation 
approach prevents the optimization of pulses from happen­
ing across the gates because there might exist a global pulse 
for an entire circuit that is shorter and more accurate than the 
concatenated one. The quality of the concatenated pulse 
relies heavily on an efficient gate decomposition of the 
quantum algorithm. GRAPE is a strategy for compilation 
that numerically finds the best control pulses needed to 
execute a quantum circuit or sub-circuit by following a 
gradient descent procedure. In contrast to the gate based 
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approach, GRAPE does not have the limitation incurred by 
the gate decomposition. Instead, the GRAPE-based 
approach directly searches for the optimal control pulse for 
the input circuit as a whole. Some embodiments described 
herein utilize GRAPE for portions of compilation, as 
described in further detail below. 

[0029] In the example embodiment, the control computing 
device 110 includes a compilation engine 114 that, during 
operation, is configured to compile the variational quantum 
program 112 (e.g., from source code) into an optimized 
physical schedule 116. The quantum computing device 130 
is a superconducting device and the signal generator 118 is 
an arbitrary wave generator ("A WG") configured to perform 
the optimized control pulses 120 on the quantum processor 
132 ( e.g., via microwave pulses sent to the qubits 134, where 
the axis of rotation is determined by the quadrature ampli­
tude modulation of the signal and where the angle of rotation 
is determined by the pulse length of the signal). The opti­
mized physical schedule 116 represents a set of control 
instructions and associated schedule that, when sent to the 
quantum computing device 130 as optimized control pulses 
120 (e.g., the pre-programmed control fields) by a signal 
generator 118, cause the quantum computing device 130 to 
execute the quantum program 112, thereby generating an 
execution result 140. In the example embodiment, the itera­
tion execution result 140 is sent back to the compilation 
engine 114 and the compilation engine 114 performs addi­
tional compilation to generate a new optimized physical 
schedule for the next iteration. It should be understood that 
other quantum computing architectures may have different 
supporting hardware. 

[0030] In some example embodiments, the variational 
quantum program 112 may be a Variational Quantum Eigen­
solver (VQE). The quantum computing system 100 may use 
VQE to find the ground state energy of a molecule. This task 
is exponentially difficult in general for a classical computer, 
but efficiently solvable by a quantum computer. Estimating 
the molecular ground state has important applications to 
chemistry such as determining reaction rates and molecular 
geometry. A conventional quantum algorithm for solving 
this problem is the Quantum Phase Estimation (QPE) algo­
rithm. However, for target precision E, QPE yields a quan­
tum circuit with depth 0(1/E), whereas VQE algorithm 
yields 0(1/E2

) iterations of depth 0(1) circuits. The latter 
assumes a more relaxed fidelity requirement on the qubits 
and gate operations, because the higher the circuit depth, the 
more likely the circuit experiences an error at the end. At a 
high level, VQE can be conceptualized as a guess-check­
repeat algorithm, where the compilation engine 114 recom­
piles at each iteration for the next guess based on the results 
of previous executions. The check stage involves the prepa­
ration of a quantum state corresponding to the guess. This 
preparation stage is done in polynomial time on a quantum 
computer, but would incur exponential cost on a classical 
computer ( e.g., due to 2N state vector scaling). 

[0031] In some example embodiments, the variational 
quantum program 112 may be a Quantum Approximate 
Optimization Algorithm (QAOA). The quantum computing 
system 100 may use QAOA to generate approximate solu­
tions to problems that are difficult to solve exactly. QAOA 
can be understood as an alternating pattern of mixing and 
cost-optimization steps. At each mixing step, QAOA applies 
diffusion so that every possible state is explored in quantum 
superposition. At each cost-optimization step, a bias is 
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applied to boost the magnitudes of quantum states that 
minimize a cost function. Thereafter, measuring can yield an 
approximate solution close to optimal with high probability. 
Similar to VOE, QAOA is a guess-check-repeat algorithm. 
The number of alternating mixing and cost-optimization 
rounds is p. In the case of QAOA, the guesses correspond to 
mixing magnitude during iteration lsisp and cost-optimi­
zation magnitude during iteration 1 sisp. Hence, the number 
of parameters in a QAOA circuit is 2p, one scalar for mixing 
magnitude and one for cost-optimization magnitude, for 
each of the p rounds. Even for small p, QAOA has com­
petitive results against classical approximation methods. For 
example, at p=l, QAOAapplied to the NP-hard MAX-CUT 
problem yields a cut of size at least 69% of the optimal cut 
size. At p=5, simulations have demonstrated that QAOA 
achieves mean parity with the best-known classical algo­
rithm, Goemans-Williamson, for 10 node graphs. For larger 
p, QAOA may outperform classical approximation algo­
rithms even for worst-case bounds. QAOA is of particular 
interest in the near term because recent work has shown that 
it is computationally universal. Moreover, QAOA has shown 
experimental resilience to noise. For at least these reasons, 
QAOA is a leading candidate for quantum supremacy, the 
solution of a classically-infeasible problem using a quantum 
computer. 

[0032] FIG. 2 is a component diagram of the compilation 
engine 114 shown in FIG. 1. The modules shown in FIG. 2 
pre-compile the quantum program 112 and prepare the 
optimized physical schedule 116 for execution. In the 
example embodiment, the compilation engine 114 includes 
a partial compilation blocking module 210, a parameter 
monotonicity blocking module 212, a hyperparameter opti­
mization module 214, a GRAPE compilation module 216, a 
precompilation module 218, and a runtime compilation 
module 220. 

[0033] The partial compilation blocking module 210, in 
the example embodiment, is configured to analyze a varia­
tional circuit of the variational quantum program 112 shown 
in FIG. 1 and identify blocks of parameter-independent 
gates. Parameter-independent blocking is described below 
with respect to FIGS. 4A and 4B. The parameter monoto­
nicity blocking module 212 is configured to analyze a 
variational circuit and create parameter-monotonic blocks of 
gates. Parameter-monotonic blocking is described below 
with respect to FIG. 4C. The hyperparameter optimization 
module 214 is configured to determine sets ofhyperparam­
eters for parameter-monotonic blocks. Hyperparameter opti­
mization is descried in greater detail below with respect to 
FIG. 4C. 

[0034] In the example embodiment, the GRAPE compi­
lation engine 216 is configured to generate control pulses for 
various circuits and subcircuits, such as the blocks of 
parameter-independent gates identified by the partial com­
pilation blocking module 210 or parameter-monotonic 
blocks identified by the parameter monotonicity blocking 
module 212. The precompilation module 218 is configured 
to invoke the partial compilation blocking module 210, 
parameter monotonicity blocking module 212, hyperparam­
eter optimization module 214, and GRAPE compilation 
module 216 during compilation time (e.g., before runtime) 
to pre-stage various aspects of the algorithms as described 
herein. The runtime compilation module 220 is configured to 
perform recompilation of various subcircuits or reassemble 
components of circuits during runtime. 
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[0035] FIG. 3 is an example variational circuit 300 for the 
variational quantum program 112 shown in FIG. 1. In the 
example shown here, the variational circuit 300 has been 
decomposed into various 1- and 2-input quantum gates for 
a six-qubit quantum processor 132. The fundamental unit of 
quantum computation is the qubit (e.g., qubit 134). A qubit 
has two basis states, which may be represented by state 
vectors denoted: 

[0036] Unlike a classical bit, the state of a qubit can be in 
a superposition of both 10) and 11) . In particular, the space 
of valid qubit states are alO) +~I 1) , normalized such that 
lal 2+1~1 2=1. When a qubit is measured, its quantum state 
collapses and either 10) or 11) are measured, with probabili­
ties a 2 and ~2

, respectively. 
[0037] A 2-qubit system has four basis states: 

and any 2-qubit state can be expressed as the superposition 
al00)+~10l)+y110)+8111), normalized such that lal 2+ 
1~1 2+1yl 2+181 2 =1. More generally, an N-qubit system has 2N 
basis states. Therefore, 2N numbers, called amplitudes, are 
needed to describe the state of a general N-qubit system. 
This exponential scaling gives rise to both the difficulty of 
classically simulating a quantum system, as well as the 
potential for quantum computers to exponentially outper­
form classical computers in certain applications. 
[0038] In FIG. 3, each of the six horizontal lines 302 (not 
separately numbered) represent a particular qubit 134 of the 
quantum processor 132. FIG. 3 also identifies several 1- and 
2-qubit gates that operate on the qubits. Quantum gates may 
be represented by a square matrix and the action of a gate is 
to left-multiply a state vector of the qubit(s) by the gate's 
matrix. Because quantum states are normalized by measure­
ment probabilities, these matrices preserve 12-norms. This 
corresponding set of matrices are unitary ( orthogonal) matri­
ces. The unitary matrices for two important 1-qubit gates 
are: 

[
. e . e l zcos- sm- 1 O 

Rx(0) = . i . 2
0 and R,(¢) = ( 0 e'¢ )-

sm- zcos-
2 2 

[0039] At 0=rc, the R)rc) gate has a matrix 

which acts as a NOT gate (e.g., left-multiplying by it swaps 
between the 10) and 11) states). This bit-flip gate is termed 
the "X" gate (not shown) herein. Similarly, at <p=rc, the R)rc) 
gate has a matrix 
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which applies a -1 multiplier to the amplitude of 11) . This 
type of gate is unique to the quantum setting, where ampli­
tudes can be negative (e.g., complex). This phase-flip gate is 
termed the "Z" gate 308 herein. 
[0040] A "eX" gate 306 is a controlled NOT ( or eNOT) 
represented as: 

[

1 o o ol 
0 1 0 0 

ex= o o o 1 · 

0 0 1 0 

[0041] The ex gate 306 applies an action that is con­
trolled on a first input (e.g., the first qubit, identified in FIG. 
3 as a shaded dot on the qubit connected to the ex gate 306 
by a control line 312). If the first input is 10), then the ex 
gate 306 has no effect. If the first input is 11) , then the ex 
gate 306 applies an X=Rx (re) to the second qubit. The ex 
gate 306 is an entangling gate, meaning that its effect cannot 
be decomposed into independent gates acting separately on 
the two qubits. An important result in quantum computation 
states that the set of all 1-qubit gates, plus a single entangling 
gate, is sufficient for universality. Since the R)0) and Ri<!J) 
gates span the set of all one qubit gates, {R)0), Ri<!J), eX} 
is a universal gate set. 
[0042] During operation, the quantum computing system 
100 prepares the quantum algorithm for execution, maxi­
mizing efficiency in the quantum circuit in various respects 
(e.g., in terms of "circuit width" or number of qubits and 
"depth" or length of critical path). For example, the quantum 
circuit 300 may optimized by repeatedly applying gate 
identities that reduce the resources consumed by the circuit 
300. In some embodiments, the circuit 300 or various 
sub-circuits may be optimized using IBM Qiskit Transpiler, 
which applies a variety of circuit identities (e.g., aggressive 
cancellation of ex gates and Hadamard gates), as well as a 
customized compiler pass for merging rotation gates (e.g., 
R)a) followed by R)~)), which can further reduce circuit 
sizes. 
[0043] In typical gate-based compilations, once a quantum 
program is decomposed into quantum circuit such as the 
circuit 300 shown here, gate-based compilation simply 
involves concatenating together sequences of pulses corre­
sponding to each gate (e.g., via a lookup table mapping each 
gate into a sequence of control pulses that executes that 
gate). The advantage of the gate-based approach is its short 
pulse compilation time, as the lookup and concatenation of 
pulses can be accomplished very quickly. However, as 
previously mentioned, gate-based compilation prevents 
optimization of pulses from happening across gates. 
[0044] In typical GRAPE compilations (referred to herein 
as "complete" GRAPE compilations), GRAPE numerically 
finds an efficient control pulse sequence needed to execute 
the entire quantum circuit 300, represented here by circuit 
320, by following a gradient descent procedure. However, as 
previously mentioned, this compilation is computationally 
expensive when performed on the entire circuit 320, and that 
expense is exacerbated in variational algorithms, where 
compilation is performed again at each iteration. 
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[0045] In the example embodiment, the quantum comput­
ing system 100 addresses the deficiencies of gate-based 
compilation and complete GRAPE compilations. For 
example, in "strict partial compilation" and "flexible partial 
compilation" methods described herein, the quantum com­
puting system 100 may analyze the circuit 300 to determine 
blocks of fixed gates that do not change from iteration to 
iteration. These fixed blocks may be pre-compiled and 
optimized individually (e.g., using GRAPE, referred to 
herein as a "partial" compilation), and then reused through 
the various iterations. These methods are described in 
greater detail below. 

[0046] FIGS. 4A and 4B illustrate an example blocking 
map 400 of the circuit 300 identified by the compilation 
engine 114 prior to execution. In example embodiments for 
strict and flexible partial compilation methods, the compi­
lation engine 114 performs blocking of the circuit 300 prior 
to execution (e.g., at compile time). Many variational algo­
rithms contain sets of gates that do not change from iteration 
to iteration. More specifically, the compilation engine 114 
identifies blocks of gates ( or just "fixed blocks") 402 ( e.g. 
one or more gates) that do not depend upon the variational 
parameters 8, (e.g., parameterization-independent gates or 
subcircuits). All of the other variational parameterization­
dependent gates ( or subcircuits) 404 are excluded from the 
fixed blocks 402 but remain a part of the circuit. Variational 
parameters 8, may be specific to the type of variational 
algorithm. The variational parameters 8, may be relatively 
small ( e.g., polynomial) number of parameters of an Ansatz 
that represent different underlying meanings or may simply 
add degrees of freedom that permit greater state exploration. 
In QAOA, the variational parameters 8, may correspond to 
the magnitude of exploration versus exploitation performed 
at each of the p rounds. In VQE, the variational parameters 
8, may be described as capturing an amount of deviation 
from a reference guess (e.g., a Hartree-Fock) of a ground 
state of a molecule. 

[0047] FIG. 4A illustrates the outcome of the blocking 
analysis ( e.g., blocking out subcircuits that do not depend on 
any 8, or Rx(8,) gates that do depend on the parameteriza­
tion). FIG. 4B illustrates another view of the blocking, now 
excluding the details of the parameterization-independent 
gates within each fixed block 402 for purposes of illustra­
tion. 

[0048] In strict partial compilation, once the compilation 
engine 114 performs the blocking and generates the blocking 
map 400 shown here, the compilation engine 114 pre­
compiles each of the fixed blocks 402. In the example 
embodiment, the compilation engine 114 uses GRAPE on 
each fixed block 402 ( e.g., as a subcircuit) to precompute the 
shortest pulse sequence needed to execute each fixed sub­
circuit. These static, precompiled pulse sequences can be 
defined as microinstructions in a low-level assembly such as 
eQASM. The compilation engine 114 stores the precompiled 
fixed-block pulse sequences in a fixed-block lookup table for 
use during runtime. Further, the compilation engine 114 also 
generates a non-fixed lookup table for the parameterization­
dependent portions ( e.g., parameterization-dependent gates 
404, ~(8,) gates). More specifically, the compilation engine 
114 pre-compiles pulses for R/8,) gates at values of 8,=90, 
45, 22.5, 11.25, 5.625, and so forth (in degrees, e.g., dividing 
by two). Thereafter, at runtime, the compilation engine 114 
can generate any R

2
(8x) by adding together the stored pulses 

from the non-fixed lookup table for angles adding up to 8x. 
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As such, the pulse sequence for any parameterization can be 
generated by simply concatenating the pre-computed pulse 
sequences for the fixed blocks 402 from the fixed-block 
lookup table with the control pulses for the parameteriza­
tion-dependent portions ( e.g., parameterization-dependent 
gates 404, R/8,) gates) from the non-fixed lookup table. In 
some embodiments, the optimal pulse for 8, may be solved 
for analytically (e.g., for single-qubit simple gates, such as 
R

2
). Since each fixed block 402 was compiled by GRAPE, 

the resulting pulse duration is shorter than if the fixed blocks 
402 had been compiled by gate-based compilation. Thus, 
strict partial compilation achieves pulse speedups over gate­
based compilation with minimal increase in compilation 
latency. 

[0049] FIG. 4C illustrates blocking of parameterized sub­
circuits that depend on only a single variational parameter. 
In flexible partial compilation, subcircuits are created that 
are only slightly parameterized ( e.g., depend on only one of 
the 8, variational parameters). In the example embodiment, 
the compilation engine 114 merges all of the consecutive 
fixed blocks and parameter-dependent gates or subcircuits of 
the same variational parameter, 8,, together into parameter­
monotonic blocks 410. Each resulting parameter-monotonic 
block is dependent upon only one variational parameter, 8,. 
For example, block 410A is dependent upon only 81 , block 
410B is dependent upon only 82 , and block 410C is depen­
dent upon only 83 • 

[0050] In the example embodiment, it is noted that, for 
example, in VQE and QAOA circuits, the appearances of 
8,-dependent gates is monotonic in i once a 8,-dependent 
gate appears, the subsequent parameterization-dependent 
gates are 81 for j2:i. As a result, subcircuits with the same 
value of 8, are consecutive. For example, the sequence of 
angles in parameterization-dependent gates may be [8 1 , 81 , 

82 , 83], but not [Bi, 82 , 83 , 81]. Parameter monotonicity for 
VQE/UCCSD and QAOA arise because their circuit con­
structions sequentially apply a circuit corresponding to each 
parameter exactly once. For instance, in QAOA, each 
parameter corresponds to the magnitude of mixing or cost­
optimization during the i,h round. Once the corresponding 
mixing or cost-optimization has been applied, the circuit no 
longer depends on that parameter. Parameter monotonicity is 
not immediately obvious from visual inspection of varia­
tional circuits because the circuit constructions and optimi­
zations transform individual 8 1 -dependent gates to ones that 
are parameterized in terms of -8, or 8/2. 

[0051] In the example embodiment, these latent depen­
dencies are tracked and resolved by tagging the dependent 
parameter during the variational circuit construction phase. 
More specifically, any time a new 8, is created, that 8, is 
added to a list of tracked independent parameters. A pointer 
is added from 8, to the list of tracked independent param­
eters. As such, subsequent operations on that 8, may change 
the effective angle from 8, to 8,12, 8,13 , an so forth. The 
reference to 8, is still tracked and, as such, these kuown 8,'s 
are not new angles. For example, presume a quantum circuit 
with two parameters, 81 and 82 . After circuit optimizations, 
there is an R/8 112) gate. Now suppose that 81=10 degrees 
and 82 =30 degrees. The quantum circuit has three angles: 5 
degrees, 10 degrees, and 30 degrees. However, since the 5 
degree rotation is tagged as still being dependent on 8 i, the 
5 degree rotation may fall under the same parameter depen­
dent block ( e.g., dependent on 81) as the 10 degree rotation. 
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[0052] Once the compilation engine 114 analyzes the 
circuit 300 and performs parameter-monotonic blocking, the 
compilation engine 114 may perform an angle approxima­
tion method or a hyperparameter optimization method based 
on the parameter monotonic blocking. 
[0053] In the angle approximation method, the compila­
tion engine 114 precompiles a circuit for various angles 
(e.g., 0, 15, 30, 45, ... , 345 degrees) for each of the 
parameter-monotonic blocks 410. At runtime, the closest 
pre-compiled circuit for the current angle is used as an initial 
guess ( e.g., a seed). The solver will converge on an actual 
solution much faster with a closer guess. If the angles are 
close in result, the pulse sequence also tends to be close and 
converges faster. In some embodiments, the compilation 
engine 114 may precompile a circuit for various sets of two 
or more angles. For example, the compilation engine 114 
may precompile a circuit for various pairs of angles, such as 
(0, 0), (0, 15), (0, 30), ... , (0, 345), (15, 0), (15, 15), (15, 
30), ... , (345, 345). 
[0054] In the hyperparameter optimization method, the 
compilation engine 114 precomputes hyperparameters for 
each parameter-monotonic block 410 that can be used dur­
ing runtime to converge much faster to the optimal pulse 
sequence for each block 410. In GRAPE, an optimal control 
pulse is one that minimizes a set of cost functions corre­
sponding to control amplitude, target state infidelity, and 
evolution time, amongst others. To obtain an optimal control 
pulse, the GRAPE algorithm manipulates a set of time­
discrete control fields that act on a quantum system. It may 
analytically compute gradients of the cost function to be 
minimized with respect to the control fields. These gradients 
are used to update control fields with an optimizer such as 
ADAM or L-BFGS-B. As opposed to the control fields, 
which are parameters manipulated by GRAPE, these opti­
mizers have their own parameters such as learning rate and 
learning rate decay. These parameters are termed "hyperpa­
rameters" because they are set before the learning process 
begins. Since they are inputs to the learning process, there is 
no closed form expression relating to hyperparameters and 
the cost functions a learning model is minimizing. In the 
example embodiment, hyperparameter optimization is 
employed on GRAPE ADAM optimizer, realizing faster 
convergence to a desired error rate over a baseline, signifi­
cantly reducing compilation latency. 
[0055] As such, in the example embodiment, the compi­
lation engine 114 precomputes hyperparameter configura­
tions for each single-angle parameterized subcircuit ( e.g., 
each block 410) and uses those hyperparameter configura­
tions at each compilation. For each iteration of the varia­
tional algorithm, the argument of the 8,-dependent gates of 
each subcircuit 410 will change, but the same hyperparam­
eters are specified to the GRAPE optimizer, maintaining the 
same reduced compilation latency. 
[0056] As will be appreciated based on the foregoing 
specification, the above-described embodiments of the dis­
closure may be implemented using computer programming 
or engineering techniques including computer software, 
firmware, hardware or any combination or subset thereof, 
wherein the technical effect is to compile and optimize a 
variational quantum program for execution on a quantum 
processor. Any such resulting program, having computer­
readable code means, may be embodied or provided within 
one or more computer-readable media, thereby making a 
computer program product, (i.e., an article of manufacture), 
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according to the discussed embodiments of the disclosure. 
The computer-readable media may be, for example, but is 
not limited to, a fixed (hard) drive, diskette, optical disk, 
magnetic tape, semiconductor memory such as read-only 
memory (ROM), and/or any transmitting/receiving medium 
such as the Internet or other communication network or link. 
The article of manufacture containing the computer code 
may be made and/or used by executing the code directly 
from one medium, by copying the code from one medium to 
another medium, or by transmitting the code over a network. 

[0057] In some embodiments, a quantum computing sys­
tem for compiling and executing instructions on a quantum 
processor is provided. The quantum computing system 
includes the quantum processor including a plurality of 
qubits, a classical memory including a quantum program, 
the quantum program defines a plurality of instructions in a 
source language, and a classical processor communicatively 
coupled to the classical memory. The memory including 
computer-executable instructions that, when executed by the 
classical processor, cause the classical processor to: (i) 
receive a circuit of gates representing a quantum program 
for a variational algorithm in which computation is inter­
leaved with compilation at each iteration; (ii) identify a 
plurality of blocks within the circuit of gates, each block of 
the plurality of blocks includes a subcircuit of gates from the 
circuit of gates, leaving one or more remainder subcircuits 
of the circuit of gates outside of the plurality of blocks; (iii) 
pre-compile each block of the plurality of blocks with a 
pulse generation program to generate a plurality of pre­
compiled blocks, each pre-compiled block including control 
pulses configured to perform the associated block on the 
quantum processor; and (iv) iteratively execute the quantum 
program on the quantum processor using the pre-compiled 
blocks as static during runtime and recompiling the one or 
more remainder subcircuits on the classical processor at 
each iteration of execution. 

[0058] In some embodiments, the quantum computing 
system iteratively executing the quantum program includes, 
at each iteration of execution: (a) compile each remainder 
subcircuit of the one or more remainder subcircuits to 
generate a plurality of compiled remainder subcircuits; (b) 
concatenate the plurality of pre-compiled blocks and the 
plurality of compiled remainder subcircuits based on their 
relative positions within the circuit of gates, thereby creating 
control pulses for a present iteration of execution; and ( c) 
execute the control pulses for the present iteration of execu­
tion on the quantum processor. In some embodiments, 
compiling each remainder subcircuit of the one or more 
remainder subcircuits includes compiling a first remainder 
subcircuit with gradient ascent pulse engineering. In some 
embodiments, identifying a plurality of blocks within the 
circuit of gates includes identifying a block within the circuit 
of gates based on variational parameter independence. In 
some embodiments, identifying a block within the circuit of 
gates further includes blocking all variational parameter­
independent gates between two variational parameter-de­
pendent gates. In some embodiments, the computer-execut­
able instructions further cause the classical processor to 
identify a plurality of parameter-monotonic blocks based on 
subcircuits within the circuit of gates that depend on at most 
one variational parameter of the variational algorithm. In 
some embodiments, the computer-executable instructions 
further cause the classical processor to precompute hyper-
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parameter configurations for each parameter-monotonic 
block of the plurality of parameter-monotonic blocks for use 
during iterative execution. 

[0059] In some embodiments, a method for compiling and 
executing instructions on a quantum computer is provided. 
The method is implemented using a classical processor in 
communication with a classical memory. The method 
includes: (i) receiving a circuit of gates representing a 
quantum program for a variational algorithm; (ii) identifying 
a plurality of blocks within the circuit of gates, each block 
of the plurality of blocks includes a subcircuit of gates from 
the circuit of gates, leaving one or more remainder subcir­
cuits of the circuit of gates outside of the plurality of blocks; 
(iii) pre-compiling each block of the plurality of blocks with 
gradient ascent pulse engineering to generate a plurality of 
pre-compiled blocks, each pre-compiled block including 
control pulses configured to perform the associated block on 
a quantum processor; and (iv) iteratively executing the 
quantum program on the quantum processor using the 
pre-compiled blocks as static during runtime and recompil­
ing the one or more remainder subcircuits on the classical 
processor at each iteration of execution. 

[0060] In some embodiments, iteratively executing the 
quantum program includes, at each iteration of execution: 
(a) compile each remainder subcircuit of the one or more 
remainder subcircuits to generate a plurality of compiled 
remainder subcircuits; (b) concatenate the plurality of pre­
compiled blocks and the plurality of compiled remainder 
subcircuits based on their relative positions within the circuit 
of gates, thereby creating control pulses for a present itera­
tion of execution; and ( c) execute the control pulses for the 
present iteration of execution on the quantum processor. In 
some embodiments, compiling each remainder subcircuit of 
the one or more remainder subcircuits includes compiling a 
first remainder subcircuit with gradient ascent pulse engi­
neering. In some embodiments, identifying a plurality of 
blocks within the circuit of gates includes identifying a 
block within the circuit of gates based on variational param­
eter independence. In some embodiments, identifying a 
block within the circuit of gates further includes blocking all 
variational parameter-independent gates between two varia­
tional parameter-dependent gates. In some embodiments, the 
method further includes identifying a plurality of parameter­
monotonic blocks based on subcircuits within the circuit of 
gates that depend on at most one variational parameter of the 
variational algorithm. In some embodiments, the method 
further includes precomputing hyperparameter configura­
tions for each parameter-monotonic block of the plurality of 
parameter-monotonic blocks for use during iterative execu­
tion. 

[0061] In some embodiments, a non-transitory computer­
readable storage media having computer-executable instruc­
tions embodied thereon is provided. When executed by at 
least one classical processor, the computer-executable 
instructions cause the classical processor to: (i) receive a 
circuit of gates representing a quantum program for a 
variational algorithm; (ii) identify a plurality of blocks 
within the circuit of gates, each block of the plurality of 
blocks includes a subcircuit of gates from the circuit of 
gates, leaving one or more remainder subcircuits of the 
circuit of gates outside of the plurality of blocks; (iii) 
pre-compile each block of the plurality of blocks with 
gradient ascent pulse engineering to generate a plurality of 
pre-compiled blocks, each pre-compiled block including 
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control pulses configured to perform the associated block on 
the quantum processor; and (iv) iteratively execute the 
quantum program on a quantum processor using the pre­
compiled blocks as static during runtime and recompiling 
the one or more remainder subcircuits on the classical 
processor at each iteration of execution. 

[0062] In some embodiments, iteratively executing the 
quantum program includes, at each iteration of execution: 
(a) compile each remainder subcircuit of the one or more 
remainder subcircuits to generate a plurality of compiled 
remainder subcircuits; (b) concatenate the plurality of pre­
compiled blocks and the plurality of compiled remainder 
subcircuits based on their relative positions within the circuit 
of gates, thereby creating control pulses for a present itera­
tion of execution; and ( c) execute the control pulses for the 
present iteration of execution on the quantum processor. In 
some embodiments, compiling each remainder subcircuit of 
the one or more remainder subcircuits includes compiling a 
first remainder subcircuit with gradient ascent pulse engi­
neering. In some embodiments, identifying a plurality of 
blocks within the circuit of gates includes identifying a 
block within the circuit of gates based on variational param­
eter independence. In some embodiments, the computer­
executable instructions further cause the classical processor 
to identify a plurality of parameter-monotonic blocks based 
on subcircuits within the circuit of gates that depend on at 
most one variational parameter of the variational algorithm. 
In some embodiments, the computer-executable instructions 
further cause the classical processor to precompute hyper­
parameter configurations for each parameter-monotonic 
block of the plurality of parameter-monotonic blocks for use 
during iterative execution. 

[0063] These conventional computer programs (also 
known as programs, software, software applications, "apps", 
or code) include machine instructions for a conventional 
programmable processor, and can be implemented in a 
high-level procedural and/or object-oriented programming 
language, and/or in assembly/machine language. As used 
herein, the terms "machine-readable medium" "computer­
readable medium" refers to any computer program product, 
apparatus and/or device (e.g., magnetic discs, optical disks, 
memory, Programmable Logic Devices (PLDs)) used to 
provide machine instructions and/or data to a programmable 
processor, including a machine-readable medium that 
receives machine instructions as a machine-readable signal. 
The "machine-readable medium" and "computer-readable 
medium," however, do not include transitory signals. The 
term "machine-readable signal" refers to any signal used to 
provide machine instructions and/or data to a programmable 
processor. 

[0064] This written description uses examples to disclose 
the disclosure, including the best mode, and also to enable 
any person skilled in the art to practice the disclosure, 
including making and using any devices or systems and 
performing any incorporated methods. The patentable scope 
of the disclosure is defined by the claims, and may include 
other examples that occur to those skilled in the art. Such 
other examples are intended to be within the scope of the 
claims if they have structural elements that do not differ 
from the literal language of the claims, or if they include 
equivalent structural elements with insubstantial differences 
from the literal languages of the claims. 
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What is claimed is: 
1. A quantum computing system for compiling and 

executing instructions on a quantum processor having a 
plurality of qubits, the quantum computing system compris­
ing: 

a classical memory including a quantum program, the 
quantum program defines a plurality of instructions in 
a source language; and 

a classical processor communicatively coupled to the 
classical memory, the classical memory including com­
puter-executable instructions that, when executed by 
the classical processor, cause the classical processor to: 
receive a circuit of gates representing the quantum 

program for a variational algorithm in which com­
putation is interleaved with compilation at each 
iteration; 

identify a plurality of blocks within the circuit of gates, 
each block of the plurality of blocks includes a 
subcircuit of gates from the circuit of gates, leaving 
one or more remainder subcircuits of the circuit of 
gates outside of the plurality of blocks; 

pre-compile each block of the plurality of blocks with 
a pulse generation program to generate a plurality of 
pre-compiled blocks, each pre-compiled block 
including control pulses configured to perform the 
associated block on the quantum processor; and 

iteratively execute the quantum program on the quan­
tum processor using the pre-compiled blocks as 
static during runtime and recompiling the one or 
more remainder subcircuits on the classical proces­
sor at each iteration of execution. 

2. The quantum computing system of claim 1, wherein 
iteratively executing the quantum program includes: 

at each iteration of execution: 
compile each remainder subcircuit of the one or more 

remainder subcircuits to generate a plurality of com­
piled remainder subcircuits; 

concatenate the plurality of pre-compiled blocks and 
the plurality of compiled remainder subcircuits 
based on their relative positions within the circuit of 
gates, thereby creating control pulses for a present 
iteration of execution; and 

execute the control pulses for the present iteration of 
execution on the quantum processor. 

3. The quantum computing system of claim 2, wherein 
compiling each remainder subcircuit of the one or more 
remainder subcircuits includes compiling a first remainder 
subcircuit with gradient ascent pulse engineering. 

4. The quantum computing system of claim 1, wherein 
identifying a plurality of blocks within the circuit of gates 
includes identifying a block within the circuit of gates based 
on variational parameter independence. 

5. The quantum computing system of claim 4, wherein 
identifying a block within the circuit of gates further 
includes blocking all variational parameter-independent 
gates between two variational parameter-dependent gates. 

6. The quantum computing system of claim 1, wherein the 
computer-executable instructions further cause the classical 
processor to identify a plurality of parameter-monotonic 
blocks based on subcircuits within the circuit of gates that 
depend on at most one variational parameter of the varia­
tional algorithm. 

7. The quantum computing system of claim 6, wherein the 
computer-executable instructions further cause the classical 
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processor to precompute hyperparameter configurations for 
each parameter-monotonic block of the plurality of param­
eter-monotonic blocks for use during iterative execution. 

8. A method for compiling and executing instructions on 
a quantum computer, the method is implemented using a 
classical processor in communication with a classical 
memory, the method comprising: 

receiving a circuit of gates representing a quantum pro­
gram for a variational algorithm; 

identifying a plurality of blocks within the circuit of gates, 
each block of the plurality of blocks includes a subcir­
cuit of gates from the circuit of gates, leaving one or 
more remainder subcircuits of the circuit of gates 
outside of the plurality of blocks; 

pre-compiling each block of the plurality of blocks with 
gradient ascent pulse engineering to generate a plurality 
of pre-compiled blocks, each pre-compiled block 
including control pulses configured to perform the 
associated block on a quantum processor; and 

iteratively executing the quantum program on the quan­
tum processor using the pre-compiled blocks as static 
during runtime and recompiling the one or more 
remainder subcircuits on the classical processor at each 
iteration of execution. 

9. The method of claim 8, wherein iteratively executing 
the quantum program includes: 

at each iteration of execution: 
compile each remainder subcircuit of the one or more 

remainder subcircuits to generate a plurality of com­
piled remainder subcircuits; 

concatenate the plurality of pre-compiled blocks and 
the plurality of compiled remainder subcircuits 
based on their relative positions within the circuit of 
gates, thereby creating control pulses for a present 
iteration of execution; and 

execute the control pulses for the present iteration of 
execution on the quantum processor. 

10. The method of claim 9, wherein compiling each 
remainder subcircuit of the one or more remainder subcir­
cuits includes compiling a first remainder subcircuit with 
gradient ascent pulse engineering. 

11. The method of claim 8, wherein identifying a plurality 
of blocks within the circuit of gates includes identifying a 
block within the circuit of gates based on variational param­
eter independence. 

12. The method of claim 11, wherein identifying a block 
within the circuit of gates further includes blocking all 
variational parameter-independent gates between two varia­
tional parameter-dependent gates. 

13. The method of claim 8 further comprising identifying 
a plurality of parameter-monotonic blocks based on subcir­
cuits within the circuit of gates that depend on at most one 
variational parameter of the variational algorithm. 

14. The method of claim 13 further comprising precom­
puting hyperparameter configurations for each parameter­
monotonic block of the plurality of parameter-monotonic 
blocks for use during iterative execution. 

15. A non-transitory computer-readable storage media 
having computer-executable instructions embodied thereon, 
wherein when executed by at least one classical processor, 
the computer-executable instructions cause the classical 
processor to: 

receive a circuit of gates representing a quantum program 
for a variational algorithm; 
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identify a plurality of blocks within the circuit of gates, 
each block of the plurality of blocks includes a subcir­
cuit of gates from the circuit of gates, leaving one or 
more remainder subcircuits of the circuit of gates 
outside of the plurality of blocks; 

pre-compile each block of the plurality of blocks with 
gradient ascent pulse engineering to generate a plurality 
of pre-compiled blocks, each pre-compiled block 
including control pulses configured to perform the 
associated block on a quantum processor; and 

iteratively execute the quantum program on the quantum 
processor using the pre-compiled blocks as static dur­
ing runtime and recompiling the one or more remainder 
subcircuits on the classical processor at each iteration 
of execution. 

16. The non-transitory computer-readable storage media 
of claim 15, wherein iteratively executing the quantum 
program includes: 

at each iteration of execution: 
compile each remainder subcircuit of the one or more 

remainder subcircuits to generate a plurality of com­
piled remainder subcircuits; 

concatenate the plurality of pre-compiled blocks and 
the plurality of compiled remainder subcircuits 
based on their relative positions within the circuit of 
gates, thereby creating control pulses for a present 
iteration of execution; and 
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execute the control pulses for the present iteration of 
execution on the quantum processor. 

17. The non-transitory computer-readable storage media 
of claim 16, wherein compiling each remainder subcircuit of 
the one or more remainder subcircuits includes compiling a 
first remainder subcircuit with gradient ascent pulse engi­
neering. 

18. The non-transitory computer-readable storage media 
of claim 15, wherein identifying a plurality of blocks within 
the circuit of gates includes identifying a block within the 
circuit of gates based on variational parameter indepen­
dence. 

19. The non-transitory computer-readable storage media 
of claim 15, wherein the computer-executable instructions 
further cause the classical processor to identify a plurality of 
parameter-monotonic blocks based on subcircuits within the 
circuit of gates that depend on at most one variational 
parameter of the variational algorithm. 

20. The non-transitory computer-readable storage media 
of claim 19, wherein the computer-executable instructions 
further cause the classical processor to precompute hyper­
parameter configurations for each parameter-monotonic 
block of the plurality of parameter-monotonic blocks for use 
during iterative execution. 

* * * * * 


