
1111111111111111 IIIIII IIIII 111111111111111 lllll lllll lllll 111111111111111 1111111111 11111111
US 20220374390Al

c19) United States
c12) Patent Application Publication

CHONG et al.
c10) Pub. No.: US 2022/0374390 Al
(43) Pub. Date: Nov. 24, 2022

(54) SYSTEM AND METHOD OF PARTIAL
COMPILATION WITH VARIATIONAL
ALGORITHMS FOR QUANTUM
COMPUTERS

(51)

Publication Classification

Int. Cl.
G06F 15182
G06N 10140

(2006.01)
(2006.01)

(71) Applicant: THE UNIVERSITY OF CHICAGO,
Chicago, IL (US)

(52) U.S. Cl.
CPC G06F 15182 (2013.01); G06N 10140

(2022.01)

(72) Inventors: Frederic T. CHONG, Chicago, IL
(US); Pranav GOKHALE, Chicago, IL
(US); Yongshan DING, Chicago, IL
(US); Thomas PROPSON, Chicago, IL
(US)

(57) ABSTRACT

A computing system includes a quantum processor with
qubits, a classical memory including a quantum program
defining a plurality of instructions in a source language, and
a classical processor configured to: (i) receive a circuit of
gates representing a quantum program for a variational
algorithm in which computation is interleaved with compi­
lation; (ii) identify a plurality of blocks, each block includes
a subcircuit of gates, leaving one or more remainder sub­
circuits of the circuit of gates outside of the plurality of
blocks; (iii) pre-compile each block of the plurality of blocks
with a pulse generation program to generate a plurality of
pre-compiled blocks including control pulses configured to
perform the associated block on the quantum processor; and
(iv) iteratively execute the quantum program using the
pre-compiled blocks as static during runtime and recompil­
ing the one or more remainder subcircuits on the classical
processor at each iteration of execution.

(21) Appl. No.: 17/641,036

(22) PCT Filed: Sep. 9, 2020

(86) PCT No.: PCT/US2020/049932

§ 371 (c)(l),
(2) Date: Mar. 7, 2022

Related U.S. Application Data

(60) Provisional application No. 62/900,120, filed on Sep.
13, 2019.

120

OUANTUM COMPUTING
DEVICE

110

CONTROL COMPUTING DEVICE

102 104

CLASSICAL
PROCESSOR

CLASSICAL
MEMORY

116

\Iii.RI!\ TIONAI. QUANTUM
PROGRAM (SOURCE)

COMPILATION ENGINE

OPTIMIZED
PHYSICAL
SCHEDULE

SIGNAL GENERATOR

OPTIMIZED
CONTROL
PULSES

QUANTUM PROCESSOR

□□□□
~ □□□□ ...

134 □□□□
□□□□

112

114

118

132

,r'lOO

ITERATION
EXECUTION

RESULT

140

130

Patent Application Publication Nov. 24, 2022 Sheet 1 of 6 US 2022/0374390 Al

110

120

QUANTUM COMPUTING
DEVICE

CONTROL COMPUTING DEVICE

102 104

CLASSICAL
PROCESSOR

CLASSICAL
MEMORY

VARIATIONAL QUANTUM
PROGRAM (SOURCE)

COMPILATION ENGINE

116
OPTIMIZED
PHYSICAL
SCHEDULE

SIGNAL GENERATOR

OPTIMIZED
CONTROL
PULSES

QUANTUM PROCESSOR

□□□□
/1"" □□□□ ...

134 □ □□ □
□□□□

FIG. 1

112

114

118

132

~100

130

Patent Application Publication Nov. 24, 2022 Sheet 2 of 6 US 2022/0374390 Al

114

COMPILATION ENGINE

210

' r 212
PARTIAL COMPILATION - - PARAMETER MONOTONICITY

BLOCKING MODULE - - BLOCKING MODULE

214

'
,2 16

HYPERPARAMETER - - GRAPE COMPILATION
OPTIMIZATION MODULE

~ - MODULE

218

'
,2 20

PRE COMPILATION - - RUNTIME COMPILATION
MODULE - - MODULE

FIG. 2

Patent Application Publication Nov. 24, 2022 Sheet 3 of 6

~ (
Ml
~

I
I
I
I
I
I
I
I

2;1
M

I

N
0
M

-

\ __ _

US 2022/0374390 Al

\0
0
M

M
■

l!)
.........
LL

Patent Application Publication Nov. 24, 2022 Sheet 4 of 6 US 2022/0374390 Al

0 0
0 ,:::I"'
M 0

~
,.....__ ,:::I"'

~c-.,
~
~

c:c: 0
N

(
0
,:::I"'

I
I I u
l ,:::I"'

I 0 .._ -- -- - ,:::I"'

,.....__
~"1
~
~ u c:c: N

0

()]
I I <(
l I v .._

■

,.....__ l!)
~"""
~ LL
~

ca c:c:
,:::I"' ca 0
s:::1"'/ - N

1~ I
I ~
I I
l J

-- --
,.....__

~"""
~

<(~
,:::I"' c:c: 0
,:::t

- <(
/ X 1~ I u

I I v
I I

0 \ I
0
,:::t

Patent Application Publication Nov. 24, 2022 Sheet 5 of 6 US 2022/0374390 Al

(
ca
-::t"
0
-::t"

--,.....__

~"""
~
~

c:c: ---.

I

0 :::.:::
I..U u
X 0

....I u.. ro

0 :::.::::
!..!..I u
X 0

....I
1...1.... ro

___L

r
,.....__

~"""
~

<(~
s:::r c:c: 0 -::r-T

0
I..U
X
u..

I

0
,.....__ -::t"
~c-., ..)
~
~

c:c: 0 -.- N
0
s:::r

-V

Cl :::.::::
!..!..I u
X 0

.....I
u... ro

:::.:::
u
0
....I
ro

I

u
-::t"
0
s:::r

~l.)
~"1
~
~

c:c:
.---

I

u
N
0
s:::r

_)

_)

_)

ca

""" ■ (!)
........
LL

Patent Application Publication Nov. 24, 2022 Sheet 6 of 6 US 2022/0374390 Al

0 u
0 0
M --I

~
(,.....__ -:::I"'

I
~c-.,
~

I
~

c:c: I
I I
I I I
I
I

I
I

l
'- I co

0
I' - --V I

,.....__
~~

I ~ I ~

I c:c: I
I I N I
I I u
l I v

<(
0 ■

'l"""l - l9 -:::I"' (,.....__ '
~ ~ LL

~
~

c:c:

'---------------✓

US 2022/0374390 Al

SYSTEM AND METHOD OF PARTIAL
COMPILATION WITH VARIATIONAL

ALGORITHMS FOR QUANTUM
COMPUTERS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to and the benefit
of U.S. Provisional Patent Application Ser. No. 62/900,120,
entitled SYSTEM AND METHOD OF PARTIAL COM­
PLIATION WITH VARIATIONAL ALGORITHMS FOR
QUANTUM COMPUTERS, filed Sep. 13, 2019, the con­
tents of which are incorporated herein in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH & DEVELOPMENT

[0002] This invention was made with govermnent support
under grant numbers CCF1730449, and PHY1818914
awarded by The National Science Foundation. The govern­
ment has certain rights in the invention.

TECHNICAL FIELD

[0003] This disclosure relates generally to quantum com­
puting and, more specifically, to systems and methods for
partial compilation with variational algorithms for quantum
computers.

BACKGROUND

[0004] Recent developments in quantum computing have
pushed quantum computers closer to solving classically
intractable problems. Existing quantum programming lan­
guages and compilers use a quantum assembly language
composed of 1- and 2-quantum bit ("qubit") gates to prepare
and execute primitive operations on quantum computers.
Recent advancements in hardware and software include
devices such as IBM's 50-qubit quantum machine and
Google's 72-qubit machine, as well as classical-quantum
hybrid algorithms tailored for such Noisy Intermediate­
Scale Quantum ("NISQ") machines, such as Quantum
Approximate Optimization Algorithm ("QAOA") and Varia­
tional Quantum Eigensolver ("VQE").
[0005] Some of the most promising algorithms for these
NISQ machines are variational algorithms. Conventional
variational algorithms in Quantum Computing employ clas­
sical optimization coupled with quantum hardware to evalu­
ate the quality of each candidate solution. Recent work used
Gradient Descent Pulse Engineering ("GRAPE") to translate
quantum programs into highly optimized machine control
pulses, resulting in a significant reduction in the execution
time of programs. Such optimization can be generally
important in conventional computing, but becomes of far
more significant importance in quantum computing as these
machines can support only short execution times before
failing.
[0006] GRAPE, however, suffers from high compilation
latency. For example, running GRAPE control on a circuit
with just four qubits can take many minutes, even with
state-of-the-art hardware and graphics processing unit
(GPU) acceleration. As circuits become longer (e.g., more
gates) and broader (e.g., more qubits), compilation can take
hours or days. In the NISQ era, quantum hardware with
hundreds or thousands of qubits are anticipated. With varia­
tional algorithms, where computation is interleaved with

1
Nov. 24, 2022

compilation at runtime, such high compilation costs are a
further burden because recompilation is performed many
times during execution.
[0007] What are needed are compilation strategies that
improve compilation times for variational algorithms.

BRIEF DESCRIPTION

[0008] In one aspect, a computing system for compiling
and executing instructions on a quantum processor is pro­
vided. The system includes the quantum processor including
a plurality of qubits. The system also includes a classical
memory including a quantum program. The quantum pro­
gram defines a plurality of instructions in a source language.
The system further includes a classical processor commu­
nicatively coupled to the classical memory. The memory
includes computer-executable instructions that, when
executed by the classical processor, cause the classical
processor to receive a circuit of gates representing a quan­
tum program for a variational algorithm in which compu­
tation is interleaved with compilation at each iteration. The
instructions also cause the classical processor to identify a
plurality of blocks within the circuit of gates. Each block of
the plurality of blocks includes a subcircuit of gates from the
circuit of gates, leaving one or more remainder subcircuits
of the circuit of gates outside of the plurality of blocks. The
instructions further cause the classical processor to pre­
compile each block of the plurality of blocks with a pulse
generation program to generate a plurality of pre-compiled
blocks. Each pre-compiled block includes control pulses
configured to perform the associated block on the quantum
processor. The instructions also cause the classical processor
to iteratively execute the quantum program on the quantum
processor using the pre-compiled blocks as static during
runtime and recompiling the one or more remainder subcir­
cuits on the classical processor at each iteration of execution.
[0009] In another embodiment, a computer-implemented
partial compilation method for compiling and executing
instructions on a quantum computer is provided. The method
is implemented using a classical processor in communica­
tion with a classical memory. The method includes receiving
a circuit of gates representing a quantum program for a
variational algorithm. The method also includes identifying
a plurality of blocks within the circuit of gates. Each block
of the plurality of blocks includes a subcircuit of gates from
the circuit of gates, leaving one or more remainder subcir­
cuits of the circuit of gates outside of the plurality of blocks.
The method further includes pre-compiling each block of the
plurality of blocks with gradient ascent pulse engineering to
generate a plurality of pre-compiled blocks. Each pre­
compiled block includes control pulses configured to per­
form the associated block on the quantum processor. The
method also includes iteratively executing the quantum
program on the quantum processor using the pre-compiled
blocks as static during runtime and recompiling the one or
more remainder subcircuits on the classical processor at
each iteration of execution.
[0010] In yet another embodiment, a non-transitory com­
puter-readable storage media having computer-executable
instructions embodied thereon is provided. When executed
by at least one classical processor, the computer-executable
instructions cause the classical processor to receive a circuit
of gates representing a quantum program for a variational
algorithm. The instructions also cause the classical proces­
sor to identify a plurality of blocks within the circuit of

US 2022/0374390 Al

gates. Each block of the plurality of blocks includes a
subcircuit of gates from the circuit of gates, leaving one or
more remainder subcircuits of the circuit of gates outside of
the plurality of blocks. The instructions further cause the
classical processor to pre-compile each block of the plurality
of blocks with gradient ascent pulse engineering to generate
a plurality of pre-compiled blocks. Each pre-compiled block
including control pulses configured to perform the associ­
ated block on the quantum processor. The instructions also
cause the classical processor to iteratively execute the quan­
tum program on a quantum processor using the pre-com­
piled blocks as static during runtime and recompiling the
one or more remainder subcircuits on the classical processor
at each iteration of execution.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIGS. l-4C show exemplary embodiments of the
methods and systems described herein.
[0012] FIG. 1 is a diagram of exemplary quantum com­
puting system for executing variational quantum programs
on a quantum computing device.
[0013] FIG. 2 is a component diagram of the compilation
engine 114 shown in FIG. 1.
[0014] FIG. 3 is an example variational circuit for the
variational quantum program shown in FIG. 1.
[0015] FIG. 4A illustrates the outcome of the blocking
analysis (e.g., blocking out subcircuits that do not depend on
any 8, or Rx(8,) gates that do depend on the parameteriza­
tion).
[0016] FIG. 4B illustrates another view of the blocking,
now excluding the details of the parameterization-indepen­
dent gates within each fixed block for purposes of illustra­
tion.
[0017] FIG. 4C illustrates blocking of parameterized sub­
circuits that depend on only a single variational parameter.

DETAILED DESCRIPTION OF THE
DISCLOSURE

[0018] The following detailed description illustrates
embodiments of the disclosure by way of example and not
by way of limitation. It is contemplated that the disclosure
has general application to quantum computing.
[0019] Existing quantum programming languages and
compilers use a quantum assembly language composed of l­
and 2-qubit gates. Quantum compiler frameworks translate
this quantum assembly into control pulses, typically electric
signals that implement the specified computation on a spe­
cific quantum computing device. Such quantum programs
("non-variational algorithms") are typically compiled once
and then executed on the quantum computing device. Typi­
cal non-variational quantum algorithms are completely
specified at compilation time and therefore can be fully
optimized by static compilation tools before execution.
However, variational algorithms (or "hybrid quantum-clas­
sical algorithms") interleave compilation with computation,
necessitating recompilation during runtime (e.g., as the
program iterates toward a solution). Each iteration of a
variational algorithm depends on the results of the previous
iteration. As such, compilation is interleaved with compu­
tation. As even small instances of variational algorithms
typically perform thousands of iterations, the compilation
latency for each iteration becomes a significant limitation,
causing a significant departure from conventional non-varia-

2
Nov. 24, 2022

tional quantum algorithms. Examples of such variational
algorithms include molecular ground state estimation,
MAXCUT approximation, and prime factorization. While
GRAPE compilation of non-variational algorithms is known
to outperform gate-based compilation, GRAPE-based com­
pilation incurs a substantial cost in compilation time. In
variational algorithms, GRAPE-based compilation would be
magnified by the iterative recompilation.

[0020] A quantum computing system and associated meth­
ods are described herein for addressing these problems. The
quantum computing system described herein includes a
compilation engine (e.g., executed on a classical computing
device) that is configured to prepare and optimize a quantum
program for execution on a quantum processor. In some
instances, the quantum processor may include tens, hun­
dreds of qubits for use in execution, with thousands of qubits
expected in the future. The compilation engine is configured
to prepare and execute variational algorithms on the quan­
tum processor using partial compilation strategies prior to
runtime that can improve compilation latency during run­
time (e.g., increasing runtime compilation efficiency, reduc­
ing runtime compilation time).
[0021] The term "classical," as used herein, refers to
conventional transistor-based computing technology. This
term, where necessary, is used to distinguish conventional
computing devices or associated hardware, software, algo­
rithms, and such, from "quantum" computing. Quantum
computing devices or associated hardware, software, algo­
rithms, and such, are typically distinguished from classical
computing devices based on their reliance on quantum
phenomena of quantum mechanics to perform processing
operations. Example classical computing devices include
conventional personal computers, servers, tablets, smart­
phones, x86-based processors, random access memory
("RAM") modules, and so forth. Example quantum com­
puting devices include "IBM Q" devices from International
Business Machines (IBM), "Bristlecone" quantum comput­
ing device from Google, "Tangle Lake" quantum computing
device from Intel, and "2000Q" from D-Wave. The term
"classical bit" or "cbit" may be used herein to refer to a bit
within classical computing. The term "qubit" may be used
herein to refer to a quantum bit in quantum computing.

[0022] FIG. 1 is a diagram of exemplary quantum com­
puting system 100 for executing variational quantum pro­
grams on a quantum computing device 130. The quantum
computing system 100 includes a control computing device
110 that is configured to prepare (e.g., compile and optimize)
a quantum program 112 for execution on the quantum
computing device 130. The control computing device 110
includes a classical processor 102 (e.g., a central processing
unit ("CPU"), an x86-based processor, or the like) that can
be configured to execute classical processor instructions, a
classical memory 104 (e.g., random access memory
("RAM"), memory SIMM, DIMM, or the like, that includes
classical bits of memory). The quantum computing device
130 includes multiple qubits 134 that represent a quantum
processor 132 upon which the quantum program 112 is
executed. In the example embodiment, the quantum program
112 is a variational quantum program that interleaves com­
pilation with computation during runtime, and the quantum
processor 132 includes 50 or 100 qubits, but it should be
understood that the present disclosure is envisioned to be
operable and beneficial for quantum processors with many
tens, hundreds, or more qubits 134.

US 2022/0374390 Al

[0023] The fundamental unit of quantum computation is a
quantum bit, or qubit 134. In contrast to classical bits
("cbits"), qubits are capable of existing in a superposition of
logical states, notated herein as 10) and 11). The general
quantum state of a qubit may be represented as:

l1j,l)~a1o)+i3ll),

where a,~ are complex coefficients with lal 2 +1~1 2 =1. When
measured in the 0/1 basis, the quantum state collapses to 10
) or 11) with a probability of lal 2 and I ~1 2

, respectively. The
qubit 134 can be visualized as a point on a 3D sphere called
the Bloch sphere. Qubits 134 can be realized on different
Quantum Information Processing (QIP) platforms, including
ion traps, quantum dot systems, and, in the example embodi­
ment, superconducting circuits. The number of quantum
logical states grows exponentially with the number of qubits
134 in the quantum processor 132. For example, a system
with three qubits 134 can live in the superposition of eight
logical states: 1000), 1001), 1010), 1011), ... 1111). This
property sets the foundation of potential quantum speedup
over classical computation. In other words, an exponential
number of correlated logical states can be stored and pro­
cessed simultaneously by the quantum system 100 with a
linear number of qubits 134.

[0024] A quantum algorithm may be described in terms of
a quantum circuit. During quantum compilation, the quan­
tum program 112 is first decomposed into a set of 1- and
2-qubit discrete quantum operations called logical quantum
gates. These quantum gates are represented in matrix form
as unitary matrices. 1-qubit gates correspond to rotations
along a particular axis on the Bloch sphere. In an example
quantum ISA, the 1-qubit gate set may include rotations
along the x-, y-, and z-axes of the Block sphere. Such gates
are notated herein as Rx, Ry, and R

2
gates, respectively.

Further, the quantum ISA may also include a Hadamard
gate, which corresponds to a rotation about the diagonal x+z
axis. An example of a 2-qubit logical gate in the quantum
ISA is a Controlled-NOT ("CNOT" or "CX") gate, which
flips the state of the target qubit if the control qubit is 11) or
leaves the state unchanged if the control qubit is 10). For
example, the CX gate sends 110) to 111), sends 111) to 110
) , and preserves the other logical states.

[0025] Further, it should be understood that the general
logical assembly instructions typically used during compi­
lation of the variational quantum program 112 were
designed without direct consideration for the variations in
the types of physical hardware that may be used. As such,
there is often a mismatch between the logical instructions
and the capabilities of the particular QIP platform. For
example, on some QIP platforms, it may not be obvious how
to implement the CX gate directly on that particular physical
platform. As such, a CX gate may be further decomposed
into physical gates in a standard gate-based compilation.
Other example physical quantum gates for various architec­
tures include, for example, in platforms with Heisenberg
interaction Hamiltonian, such as quantum dots, the directly
implementable 2-qubit physical gate is the ySWAP gate
(which implements a SWAP when applied twice). In plat­
forms with ZZ interaction Hamiltonian, such as supercon­
ducting systems of Josephson flux qubits and NMR quantum
systems, the physical gate is the CPhase gate, which is
identical to the CX gate up to single qubit rotations. In
platforms with XY interaction Hamiltonian, such as capaci­
tively coupled Josephson charge qubits (e.g., transmon

3
Nov. 24, 2022

qubits), the 2-qubit physical gate is iSWAP gate. For trapped
ion platforms with dipole-chain interaction, two popular
physical 2-qubit gates are the geometric phase gate and the
XX gate.

[0026] The quantum processor 132 can be continuously
driven by external physical operations to any state in the
space sparmed by the logical states. The physical operations,
called control fields, are specific to the underlying system,
with control fields and system characteristics controlling a
unique and time-dependent quantity called the Hamiltonian.
The Hamiltonian determines the evolution path of the quan­
tum states. For example, in superconducting systems such as
the example quantum computing device 130, the qubits 134
can be driven to rotate continuously on the Bloch sphere by
applying microwave electrical signals. By varying the inten­
sity of the microwave signal, the speed of rotation of the
qubit 134 can be manipulated. The ability to engineer the
system Hamiltonian in real time allows the quantum com­
puting system 100 to direct the qubits 134 to the quantum
state of interest through precise control of related control
fields. Thus, quantum computing may be achieved by con­
structing a quantum system in which the Hamiltonian
evolves in a way that aligns with high probability upon final
measurement of the qubits 134. In the context of quantum
control, quantum gates can be regarded as a set of pre­
programmed control fields performed on the quantum pro­
cessor 132.
[0027] During operation, the control computing device
110 implements a quantum algorithm, attempting to create
as efficient a quantum circuit as possible, where efficiency
may be in terms of circuit width (e.g., number of qubits) and
depth (e.g., length of critical path, or runtime of the circuit).
In some embodiments, the compilation engine 114 optimizes
various circuits or subcircuits using IBM Qiskit Transpiler,
which applies a variety of circuit identities (e.g., aggressive
cancellation of CX gates and Hadamard gates). In some
embodiments, the compilation engine 114 also performs
additional merging of rotation gates (e.g., Rx(a) followed by
Rx(~) merges into Rx(a+~)) to further reduce circuit sizes.

[0028] At the lowest level of hardware, quantum comput­
ers are controlled by analog pulses. Therefore, quantum
compilation translates from a high level quantum algorithm
down to a sequence of control pulses 120. Once a quantum
algorithm has been decomposed into a quantum circuit
comprising single- and two-qubit gates, gate-based compi­
lation can be performed by concatenating a sequence of
pulses corresponding to each gate. In particular, a lookup
table maps from each gate in the gate set to a sequence of
control pulses that executes that gate. Pure gate-based com­
pilation provides an advantage in short pulse compilation
time, as the lookup and concatenation of pulses can be
accomplished very quickly. Some known methods of com­
pilation for variational algorithms use the gate-based
approach to compilation, using parameterized gates such as
Rx(8) and RzCcp). However, the pure gate-based compilation
approach prevents the optimization of pulses from happen­
ing across the gates because there might exist a global pulse
for an entire circuit that is shorter and more accurate than the
concatenated one. The quality of the concatenated pulse
relies heavily on an efficient gate decomposition of the
quantum algorithm. GRAPE is a strategy for compilation
that numerically finds the best control pulses needed to
execute a quantum circuit or sub-circuit by following a
gradient descent procedure. In contrast to the gate based

US 2022/0374390 Al

approach, GRAPE does not have the limitation incurred by
the gate decomposition. Instead, the GRAPE-based
approach directly searches for the optimal control pulse for
the input circuit as a whole. Some embodiments described
herein utilize GRAPE for portions of compilation, as
described in further detail below.

[0029] In the example embodiment, the control computing
device 110 includes a compilation engine 114 that, during
operation, is configured to compile the variational quantum
program 112 (e.g., from source code) into an optimized
physical schedule 116. The quantum computing device 130
is a superconducting device and the signal generator 118 is
an arbitrary wave generator ("A WG") configured to perform
the optimized control pulses 120 on the quantum processor
132 (e.g., via microwave pulses sent to the qubits 134, where
the axis of rotation is determined by the quadrature ampli­
tude modulation of the signal and where the angle of rotation
is determined by the pulse length of the signal). The opti­
mized physical schedule 116 represents a set of control
instructions and associated schedule that, when sent to the
quantum computing device 130 as optimized control pulses
120 (e.g., the pre-programmed control fields) by a signal
generator 118, cause the quantum computing device 130 to
execute the quantum program 112, thereby generating an
execution result 140. In the example embodiment, the itera­
tion execution result 140 is sent back to the compilation
engine 114 and the compilation engine 114 performs addi­
tional compilation to generate a new optimized physical
schedule for the next iteration. It should be understood that
other quantum computing architectures may have different
supporting hardware.

[0030] In some example embodiments, the variational
quantum program 112 may be a Variational Quantum Eigen­
solver (VQE). The quantum computing system 100 may use
VQE to find the ground state energy of a molecule. This task
is exponentially difficult in general for a classical computer,
but efficiently solvable by a quantum computer. Estimating
the molecular ground state has important applications to
chemistry such as determining reaction rates and molecular
geometry. A conventional quantum algorithm for solving
this problem is the Quantum Phase Estimation (QPE) algo­
rithm. However, for target precision E, QPE yields a quan­
tum circuit with depth 0(1/E), whereas VQE algorithm
yields 0(1/E2

) iterations of depth 0(1) circuits. The latter
assumes a more relaxed fidelity requirement on the qubits
and gate operations, because the higher the circuit depth, the
more likely the circuit experiences an error at the end. At a
high level, VQE can be conceptualized as a guess-check­
repeat algorithm, where the compilation engine 114 recom­
piles at each iteration for the next guess based on the results
of previous executions. The check stage involves the prepa­
ration of a quantum state corresponding to the guess. This
preparation stage is done in polynomial time on a quantum
computer, but would incur exponential cost on a classical
computer (e.g., due to 2N state vector scaling).

[0031] In some example embodiments, the variational
quantum program 112 may be a Quantum Approximate
Optimization Algorithm (QAOA). The quantum computing
system 100 may use QAOA to generate approximate solu­
tions to problems that are difficult to solve exactly. QAOA
can be understood as an alternating pattern of mixing and
cost-optimization steps. At each mixing step, QAOA applies
diffusion so that every possible state is explored in quantum
superposition. At each cost-optimization step, a bias is

4
Nov. 24, 2022

applied to boost the magnitudes of quantum states that
minimize a cost function. Thereafter, measuring can yield an
approximate solution close to optimal with high probability.
Similar to VOE, QAOA is a guess-check-repeat algorithm.
The number of alternating mixing and cost-optimization
rounds is p. In the case of QAOA, the guesses correspond to
mixing magnitude during iteration lsisp and cost-optimi­
zation magnitude during iteration 1 sisp. Hence, the number
of parameters in a QAOA circuit is 2p, one scalar for mixing
magnitude and one for cost-optimization magnitude, for
each of the p rounds. Even for small p, QAOA has com­
petitive results against classical approximation methods. For
example, at p=l, QAOAapplied to the NP-hard MAX-CUT
problem yields a cut of size at least 69% of the optimal cut
size. At p=5, simulations have demonstrated that QAOA
achieves mean parity with the best-known classical algo­
rithm, Goemans-Williamson, for 10 node graphs. For larger
p, QAOA may outperform classical approximation algo­
rithms even for worst-case bounds. QAOA is of particular
interest in the near term because recent work has shown that
it is computationally universal. Moreover, QAOA has shown
experimental resilience to noise. For at least these reasons,
QAOA is a leading candidate for quantum supremacy, the
solution of a classically-infeasible problem using a quantum
computer.

[0032] FIG. 2 is a component diagram of the compilation
engine 114 shown in FIG. 1. The modules shown in FIG. 2
pre-compile the quantum program 112 and prepare the
optimized physical schedule 116 for execution. In the
example embodiment, the compilation engine 114 includes
a partial compilation blocking module 210, a parameter
monotonicity blocking module 212, a hyperparameter opti­
mization module 214, a GRAPE compilation module 216, a
precompilation module 218, and a runtime compilation
module 220.

[0033] The partial compilation blocking module 210, in
the example embodiment, is configured to analyze a varia­
tional circuit of the variational quantum program 112 shown
in FIG. 1 and identify blocks of parameter-independent
gates. Parameter-independent blocking is described below
with respect to FIGS. 4A and 4B. The parameter monoto­
nicity blocking module 212 is configured to analyze a
variational circuit and create parameter-monotonic blocks of
gates. Parameter-monotonic blocking is described below
with respect to FIG. 4C. The hyperparameter optimization
module 214 is configured to determine sets ofhyperparam­
eters for parameter-monotonic blocks. Hyperparameter opti­
mization is descried in greater detail below with respect to
FIG. 4C.

[0034] In the example embodiment, the GRAPE compi­
lation engine 216 is configured to generate control pulses for
various circuits and subcircuits, such as the blocks of
parameter-independent gates identified by the partial com­
pilation blocking module 210 or parameter-monotonic
blocks identified by the parameter monotonicity blocking
module 212. The precompilation module 218 is configured
to invoke the partial compilation blocking module 210,
parameter monotonicity blocking module 212, hyperparam­
eter optimization module 214, and GRAPE compilation
module 216 during compilation time (e.g., before runtime)
to pre-stage various aspects of the algorithms as described
herein. The runtime compilation module 220 is configured to
perform recompilation of various subcircuits or reassemble
components of circuits during runtime.

US 2022/0374390 Al

[0035] FIG. 3 is an example variational circuit 300 for the
variational quantum program 112 shown in FIG. 1. In the
example shown here, the variational circuit 300 has been
decomposed into various 1- and 2-input quantum gates for
a six-qubit quantum processor 132. The fundamental unit of
quantum computation is the qubit (e.g., qubit 134). A qubit
has two basis states, which may be represented by state
vectors denoted:

[0036] Unlike a classical bit, the state of a qubit can be in
a superposition of both 10) and 11) . In particular, the space
of valid qubit states are alO) +~I 1) , normalized such that
lal 2+1~1 2=1. When a qubit is measured, its quantum state
collapses and either 10) or 11) are measured, with probabili­
ties a 2 and ~2

, respectively.
[0037] A 2-qubit system has four basis states:

and any 2-qubit state can be expressed as the superposition
al00)+~10l)+y110)+8111), normalized such that lal 2+
1~1 2+1yl 2+181 2 =1. More generally, an N-qubit system has 2N
basis states. Therefore, 2N numbers, called amplitudes, are
needed to describe the state of a general N-qubit system.
This exponential scaling gives rise to both the difficulty of
classically simulating a quantum system, as well as the
potential for quantum computers to exponentially outper­
form classical computers in certain applications.
[0038] In FIG. 3, each of the six horizontal lines 302 (not
separately numbered) represent a particular qubit 134 of the
quantum processor 132. FIG. 3 also identifies several 1- and
2-qubit gates that operate on the qubits. Quantum gates may
be represented by a square matrix and the action of a gate is
to left-multiply a state vector of the qubit(s) by the gate's
matrix. Because quantum states are normalized by measure­
ment probabilities, these matrices preserve 12-norms. This
corresponding set of matrices are unitary (orthogonal) matri­
ces. The unitary matrices for two important 1-qubit gates
are:

[
. e . e l zcos- sm- 1 O

Rx(0) = . i . 2
0 and R,(¢) = (0 e'¢)-

sm- zcos-
2 2

[0039] At 0=rc, the R)rc) gate has a matrix

which acts as a NOT gate (e.g., left-multiplying by it swaps
between the 10) and 11) states). This bit-flip gate is termed
the "X" gate (not shown) herein. Similarly, at <p=rc, the R)rc)
gate has a matrix

5
Nov. 24, 2022

which applies a -1 multiplier to the amplitude of 11) . This
type of gate is unique to the quantum setting, where ampli­
tudes can be negative (e.g., complex). This phase-flip gate is
termed the "Z" gate 308 herein.
[0040] A "eX" gate 306 is a controlled NOT (or eNOT)
represented as:

[

1 o o ol
0 1 0 0

ex= o o o 1 ·

0 0 1 0

[0041] The ex gate 306 applies an action that is con­
trolled on a first input (e.g., the first qubit, identified in FIG.
3 as a shaded dot on the qubit connected to the ex gate 306
by a control line 312). If the first input is 10), then the ex
gate 306 has no effect. If the first input is 11) , then the ex
gate 306 applies an X=Rx (re) to the second qubit. The ex
gate 306 is an entangling gate, meaning that its effect cannot
be decomposed into independent gates acting separately on
the two qubits. An important result in quantum computation
states that the set of all 1-qubit gates, plus a single entangling
gate, is sufficient for universality. Since the R)0) and Ri<!J)
gates span the set of all one qubit gates, {R)0), Ri<!J), eX}
is a universal gate set.
[0042] During operation, the quantum computing system
100 prepares the quantum algorithm for execution, maxi­
mizing efficiency in the quantum circuit in various respects
(e.g., in terms of "circuit width" or number of qubits and
"depth" or length of critical path). For example, the quantum
circuit 300 may optimized by repeatedly applying gate
identities that reduce the resources consumed by the circuit
300. In some embodiments, the circuit 300 or various
sub-circuits may be optimized using IBM Qiskit Transpiler,
which applies a variety of circuit identities (e.g., aggressive
cancellation of ex gates and Hadamard gates), as well as a
customized compiler pass for merging rotation gates (e.g.,
R)a) followed by R)~)), which can further reduce circuit
sizes.
[0043] In typical gate-based compilations, once a quantum
program is decomposed into quantum circuit such as the
circuit 300 shown here, gate-based compilation simply
involves concatenating together sequences of pulses corre­
sponding to each gate (e.g., via a lookup table mapping each
gate into a sequence of control pulses that executes that
gate). The advantage of the gate-based approach is its short
pulse compilation time, as the lookup and concatenation of
pulses can be accomplished very quickly. However, as
previously mentioned, gate-based compilation prevents
optimization of pulses from happening across gates.
[0044] In typical GRAPE compilations (referred to herein
as "complete" GRAPE compilations), GRAPE numerically
finds an efficient control pulse sequence needed to execute
the entire quantum circuit 300, represented here by circuit
320, by following a gradient descent procedure. However, as
previously mentioned, this compilation is computationally
expensive when performed on the entire circuit 320, and that
expense is exacerbated in variational algorithms, where
compilation is performed again at each iteration.

US 2022/0374390 Al

[0045] In the example embodiment, the quantum comput­
ing system 100 addresses the deficiencies of gate-based
compilation and complete GRAPE compilations. For
example, in "strict partial compilation" and "flexible partial
compilation" methods described herein, the quantum com­
puting system 100 may analyze the circuit 300 to determine
blocks of fixed gates that do not change from iteration to
iteration. These fixed blocks may be pre-compiled and
optimized individually (e.g., using GRAPE, referred to
herein as a "partial" compilation), and then reused through
the various iterations. These methods are described in
greater detail below.

[0046] FIGS. 4A and 4B illustrate an example blocking
map 400 of the circuit 300 identified by the compilation
engine 114 prior to execution. In example embodiments for
strict and flexible partial compilation methods, the compi­
lation engine 114 performs blocking of the circuit 300 prior
to execution (e.g., at compile time). Many variational algo­
rithms contain sets of gates that do not change from iteration
to iteration. More specifically, the compilation engine 114
identifies blocks of gates (or just "fixed blocks") 402 (e.g.
one or more gates) that do not depend upon the variational
parameters 8, (e.g., parameterization-independent gates or
subcircuits). All of the other variational parameterization­
dependent gates (or subcircuits) 404 are excluded from the
fixed blocks 402 but remain a part of the circuit. Variational
parameters 8, may be specific to the type of variational
algorithm. The variational parameters 8, may be relatively
small (e.g., polynomial) number of parameters of an Ansatz
that represent different underlying meanings or may simply
add degrees of freedom that permit greater state exploration.
In QAOA, the variational parameters 8, may correspond to
the magnitude of exploration versus exploitation performed
at each of the p rounds. In VQE, the variational parameters
8, may be described as capturing an amount of deviation
from a reference guess (e.g., a Hartree-Fock) of a ground
state of a molecule.

[0047] FIG. 4A illustrates the outcome of the blocking
analysis (e.g., blocking out subcircuits that do not depend on
any 8, or Rx(8,) gates that do depend on the parameteriza­
tion). FIG. 4B illustrates another view of the blocking, now
excluding the details of the parameterization-independent
gates within each fixed block 402 for purposes of illustra­
tion.

[0048] In strict partial compilation, once the compilation
engine 114 performs the blocking and generates the blocking
map 400 shown here, the compilation engine 114 pre­
compiles each of the fixed blocks 402. In the example
embodiment, the compilation engine 114 uses GRAPE on
each fixed block 402 (e.g., as a subcircuit) to precompute the
shortest pulse sequence needed to execute each fixed sub­
circuit. These static, precompiled pulse sequences can be
defined as microinstructions in a low-level assembly such as
eQASM. The compilation engine 114 stores the precompiled
fixed-block pulse sequences in a fixed-block lookup table for
use during runtime. Further, the compilation engine 114 also
generates a non-fixed lookup table for the parameterization­
dependent portions (e.g., parameterization-dependent gates
404, ~(8,) gates). More specifically, the compilation engine
114 pre-compiles pulses for R/8,) gates at values of 8,=90,
45, 22.5, 11.25, 5.625, and so forth (in degrees, e.g., dividing
by two). Thereafter, at runtime, the compilation engine 114
can generate any R

2
(8x) by adding together the stored pulses

from the non-fixed lookup table for angles adding up to 8x.

6
Nov. 24, 2022

As such, the pulse sequence for any parameterization can be
generated by simply concatenating the pre-computed pulse
sequences for the fixed blocks 402 from the fixed-block
lookup table with the control pulses for the parameteriza­
tion-dependent portions (e.g., parameterization-dependent
gates 404, R/8,) gates) from the non-fixed lookup table. In
some embodiments, the optimal pulse for 8, may be solved
for analytically (e.g., for single-qubit simple gates, such as
R

2
). Since each fixed block 402 was compiled by GRAPE,

the resulting pulse duration is shorter than if the fixed blocks
402 had been compiled by gate-based compilation. Thus,
strict partial compilation achieves pulse speedups over gate­
based compilation with minimal increase in compilation
latency.

[0049] FIG. 4C illustrates blocking of parameterized sub­
circuits that depend on only a single variational parameter.
In flexible partial compilation, subcircuits are created that
are only slightly parameterized (e.g., depend on only one of
the 8, variational parameters). In the example embodiment,
the compilation engine 114 merges all of the consecutive
fixed blocks and parameter-dependent gates or subcircuits of
the same variational parameter, 8,, together into parameter­
monotonic blocks 410. Each resulting parameter-monotonic
block is dependent upon only one variational parameter, 8,.
For example, block 410A is dependent upon only 81 , block
410B is dependent upon only 82 , and block 410C is depen­
dent upon only 83 •

[0050] In the example embodiment, it is noted that, for
example, in VQE and QAOA circuits, the appearances of
8,-dependent gates is monotonic in i once a 8,-dependent
gate appears, the subsequent parameterization-dependent
gates are 81 for j2:i. As a result, subcircuits with the same
value of 8, are consecutive. For example, the sequence of
angles in parameterization-dependent gates may be [8 1 , 81 ,

82 , 83], but not [Bi, 82 , 83 , 81]. Parameter monotonicity for
VQE/UCCSD and QAOA arise because their circuit con­
structions sequentially apply a circuit corresponding to each
parameter exactly once. For instance, in QAOA, each
parameter corresponds to the magnitude of mixing or cost­
optimization during the i,h round. Once the corresponding
mixing or cost-optimization has been applied, the circuit no
longer depends on that parameter. Parameter monotonicity is
not immediately obvious from visual inspection of varia­
tional circuits because the circuit constructions and optimi­
zations transform individual 8 1 -dependent gates to ones that
are parameterized in terms of -8, or 8/2.

[0051] In the example embodiment, these latent depen­
dencies are tracked and resolved by tagging the dependent
parameter during the variational circuit construction phase.
More specifically, any time a new 8, is created, that 8, is
added to a list of tracked independent parameters. A pointer
is added from 8, to the list of tracked independent param­
eters. As such, subsequent operations on that 8, may change
the effective angle from 8, to 8,12, 8,13 , an so forth. The
reference to 8, is still tracked and, as such, these kuown 8,'s
are not new angles. For example, presume a quantum circuit
with two parameters, 81 and 82 . After circuit optimizations,
there is an R/8 112) gate. Now suppose that 81=10 degrees
and 82 =30 degrees. The quantum circuit has three angles: 5
degrees, 10 degrees, and 30 degrees. However, since the 5
degree rotation is tagged as still being dependent on 8 i, the
5 degree rotation may fall under the same parameter depen­
dent block (e.g., dependent on 81) as the 10 degree rotation.

US 2022/0374390 Al

[0052] Once the compilation engine 114 analyzes the
circuit 300 and performs parameter-monotonic blocking, the
compilation engine 114 may perform an angle approxima­
tion method or a hyperparameter optimization method based
on the parameter monotonic blocking.
[0053] In the angle approximation method, the compila­
tion engine 114 precompiles a circuit for various angles
(e.g., 0, 15, 30, 45, ... , 345 degrees) for each of the
parameter-monotonic blocks 410. At runtime, the closest
pre-compiled circuit for the current angle is used as an initial
guess (e.g., a seed). The solver will converge on an actual
solution much faster with a closer guess. If the angles are
close in result, the pulse sequence also tends to be close and
converges faster. In some embodiments, the compilation
engine 114 may precompile a circuit for various sets of two
or more angles. For example, the compilation engine 114
may precompile a circuit for various pairs of angles, such as
(0, 0), (0, 15), (0, 30), ... , (0, 345), (15, 0), (15, 15), (15,
30), ... , (345, 345).
[0054] In the hyperparameter optimization method, the
compilation engine 114 precomputes hyperparameters for
each parameter-monotonic block 410 that can be used dur­
ing runtime to converge much faster to the optimal pulse
sequence for each block 410. In GRAPE, an optimal control
pulse is one that minimizes a set of cost functions corre­
sponding to control amplitude, target state infidelity, and
evolution time, amongst others. To obtain an optimal control
pulse, the GRAPE algorithm manipulates a set of time­
discrete control fields that act on a quantum system. It may
analytically compute gradients of the cost function to be
minimized with respect to the control fields. These gradients
are used to update control fields with an optimizer such as
ADAM or L-BFGS-B. As opposed to the control fields,
which are parameters manipulated by GRAPE, these opti­
mizers have their own parameters such as learning rate and
learning rate decay. These parameters are termed "hyperpa­
rameters" because they are set before the learning process
begins. Since they are inputs to the learning process, there is
no closed form expression relating to hyperparameters and
the cost functions a learning model is minimizing. In the
example embodiment, hyperparameter optimization is
employed on GRAPE ADAM optimizer, realizing faster
convergence to a desired error rate over a baseline, signifi­
cantly reducing compilation latency.
[0055] As such, in the example embodiment, the compi­
lation engine 114 precomputes hyperparameter configura­
tions for each single-angle parameterized subcircuit (e.g.,
each block 410) and uses those hyperparameter configura­
tions at each compilation. For each iteration of the varia­
tional algorithm, the argument of the 8,-dependent gates of
each subcircuit 410 will change, but the same hyperparam­
eters are specified to the GRAPE optimizer, maintaining the
same reduced compilation latency.
[0056] As will be appreciated based on the foregoing
specification, the above-described embodiments of the dis­
closure may be implemented using computer programming
or engineering techniques including computer software,
firmware, hardware or any combination or subset thereof,
wherein the technical effect is to compile and optimize a
variational quantum program for execution on a quantum
processor. Any such resulting program, having computer­
readable code means, may be embodied or provided within
one or more computer-readable media, thereby making a
computer program product, (i.e., an article of manufacture),

7
Nov. 24, 2022

according to the discussed embodiments of the disclosure.
The computer-readable media may be, for example, but is
not limited to, a fixed (hard) drive, diskette, optical disk,
magnetic tape, semiconductor memory such as read-only
memory (ROM), and/or any transmitting/receiving medium
such as the Internet or other communication network or link.
The article of manufacture containing the computer code
may be made and/or used by executing the code directly
from one medium, by copying the code from one medium to
another medium, or by transmitting the code over a network.

[0057] In some embodiments, a quantum computing sys­
tem for compiling and executing instructions on a quantum
processor is provided. The quantum computing system
includes the quantum processor including a plurality of
qubits, a classical memory including a quantum program,
the quantum program defines a plurality of instructions in a
source language, and a classical processor communicatively
coupled to the classical memory. The memory including
computer-executable instructions that, when executed by the
classical processor, cause the classical processor to: (i)
receive a circuit of gates representing a quantum program
for a variational algorithm in which computation is inter­
leaved with compilation at each iteration; (ii) identify a
plurality of blocks within the circuit of gates, each block of
the plurality of blocks includes a subcircuit of gates from the
circuit of gates, leaving one or more remainder subcircuits
of the circuit of gates outside of the plurality of blocks; (iii)
pre-compile each block of the plurality of blocks with a
pulse generation program to generate a plurality of pre­
compiled blocks, each pre-compiled block including control
pulses configured to perform the associated block on the
quantum processor; and (iv) iteratively execute the quantum
program on the quantum processor using the pre-compiled
blocks as static during runtime and recompiling the one or
more remainder subcircuits on the classical processor at
each iteration of execution.

[0058] In some embodiments, the quantum computing
system iteratively executing the quantum program includes,
at each iteration of execution: (a) compile each remainder
subcircuit of the one or more remainder subcircuits to
generate a plurality of compiled remainder subcircuits; (b)
concatenate the plurality of pre-compiled blocks and the
plurality of compiled remainder subcircuits based on their
relative positions within the circuit of gates, thereby creating
control pulses for a present iteration of execution; and (c)
execute the control pulses for the present iteration of execu­
tion on the quantum processor. In some embodiments,
compiling each remainder subcircuit of the one or more
remainder subcircuits includes compiling a first remainder
subcircuit with gradient ascent pulse engineering. In some
embodiments, identifying a plurality of blocks within the
circuit of gates includes identifying a block within the circuit
of gates based on variational parameter independence. In
some embodiments, identifying a block within the circuit of
gates further includes blocking all variational parameter­
independent gates between two variational parameter-de­
pendent gates. In some embodiments, the computer-execut­
able instructions further cause the classical processor to
identify a plurality of parameter-monotonic blocks based on
subcircuits within the circuit of gates that depend on at most
one variational parameter of the variational algorithm. In
some embodiments, the computer-executable instructions
further cause the classical processor to precompute hyper-

US 2022/0374390 Al

parameter configurations for each parameter-monotonic
block of the plurality of parameter-monotonic blocks for use
during iterative execution.

[0059] In some embodiments, a method for compiling and
executing instructions on a quantum computer is provided.
The method is implemented using a classical processor in
communication with a classical memory. The method
includes: (i) receiving a circuit of gates representing a
quantum program for a variational algorithm; (ii) identifying
a plurality of blocks within the circuit of gates, each block
of the plurality of blocks includes a subcircuit of gates from
the circuit of gates, leaving one or more remainder subcir­
cuits of the circuit of gates outside of the plurality of blocks;
(iii) pre-compiling each block of the plurality of blocks with
gradient ascent pulse engineering to generate a plurality of
pre-compiled blocks, each pre-compiled block including
control pulses configured to perform the associated block on
a quantum processor; and (iv) iteratively executing the
quantum program on the quantum processor using the
pre-compiled blocks as static during runtime and recompil­
ing the one or more remainder subcircuits on the classical
processor at each iteration of execution.

[0060] In some embodiments, iteratively executing the
quantum program includes, at each iteration of execution:
(a) compile each remainder subcircuit of the one or more
remainder subcircuits to generate a plurality of compiled
remainder subcircuits; (b) concatenate the plurality of pre­
compiled blocks and the plurality of compiled remainder
subcircuits based on their relative positions within the circuit
of gates, thereby creating control pulses for a present itera­
tion of execution; and (c) execute the control pulses for the
present iteration of execution on the quantum processor. In
some embodiments, compiling each remainder subcircuit of
the one or more remainder subcircuits includes compiling a
first remainder subcircuit with gradient ascent pulse engi­
neering. In some embodiments, identifying a plurality of
blocks within the circuit of gates includes identifying a
block within the circuit of gates based on variational param­
eter independence. In some embodiments, identifying a
block within the circuit of gates further includes blocking all
variational parameter-independent gates between two varia­
tional parameter-dependent gates. In some embodiments, the
method further includes identifying a plurality of parameter­
monotonic blocks based on subcircuits within the circuit of
gates that depend on at most one variational parameter of the
variational algorithm. In some embodiments, the method
further includes precomputing hyperparameter configura­
tions for each parameter-monotonic block of the plurality of
parameter-monotonic blocks for use during iterative execu­
tion.

[0061] In some embodiments, a non-transitory computer­
readable storage media having computer-executable instruc­
tions embodied thereon is provided. When executed by at
least one classical processor, the computer-executable
instructions cause the classical processor to: (i) receive a
circuit of gates representing a quantum program for a
variational algorithm; (ii) identify a plurality of blocks
within the circuit of gates, each block of the plurality of
blocks includes a subcircuit of gates from the circuit of
gates, leaving one or more remainder subcircuits of the
circuit of gates outside of the plurality of blocks; (iii)
pre-compile each block of the plurality of blocks with
gradient ascent pulse engineering to generate a plurality of
pre-compiled blocks, each pre-compiled block including

8
Nov. 24, 2022

control pulses configured to perform the associated block on
the quantum processor; and (iv) iteratively execute the
quantum program on a quantum processor using the pre­
compiled blocks as static during runtime and recompiling
the one or more remainder subcircuits on the classical
processor at each iteration of execution.

[0062] In some embodiments, iteratively executing the
quantum program includes, at each iteration of execution:
(a) compile each remainder subcircuit of the one or more
remainder subcircuits to generate a plurality of compiled
remainder subcircuits; (b) concatenate the plurality of pre­
compiled blocks and the plurality of compiled remainder
subcircuits based on their relative positions within the circuit
of gates, thereby creating control pulses for a present itera­
tion of execution; and (c) execute the control pulses for the
present iteration of execution on the quantum processor. In
some embodiments, compiling each remainder subcircuit of
the one or more remainder subcircuits includes compiling a
first remainder subcircuit with gradient ascent pulse engi­
neering. In some embodiments, identifying a plurality of
blocks within the circuit of gates includes identifying a
block within the circuit of gates based on variational param­
eter independence. In some embodiments, the computer­
executable instructions further cause the classical processor
to identify a plurality of parameter-monotonic blocks based
on subcircuits within the circuit of gates that depend on at
most one variational parameter of the variational algorithm.
In some embodiments, the computer-executable instructions
further cause the classical processor to precompute hyper­
parameter configurations for each parameter-monotonic
block of the plurality of parameter-monotonic blocks for use
during iterative execution.

[0063] These conventional computer programs (also
known as programs, software, software applications, "apps",
or code) include machine instructions for a conventional
programmable processor, and can be implemented in a
high-level procedural and/or object-oriented programming
language, and/or in assembly/machine language. As used
herein, the terms "machine-readable medium" "computer­
readable medium" refers to any computer program product,
apparatus and/or device (e.g., magnetic discs, optical disks,
memory, Programmable Logic Devices (PLDs)) used to
provide machine instructions and/or data to a programmable
processor, including a machine-readable medium that
receives machine instructions as a machine-readable signal.
The "machine-readable medium" and "computer-readable
medium," however, do not include transitory signals. The
term "machine-readable signal" refers to any signal used to
provide machine instructions and/or data to a programmable
processor.

[0064] This written description uses examples to disclose
the disclosure, including the best mode, and also to enable
any person skilled in the art to practice the disclosure,
including making and using any devices or systems and
performing any incorporated methods. The patentable scope
of the disclosure is defined by the claims, and may include
other examples that occur to those skilled in the art. Such
other examples are intended to be within the scope of the
claims if they have structural elements that do not differ
from the literal language of the claims, or if they include
equivalent structural elements with insubstantial differences
from the literal languages of the claims.

US 2022/0374390 Al

What is claimed is:
1. A quantum computing system for compiling and

executing instructions on a quantum processor having a
plurality of qubits, the quantum computing system compris­
ing:

a classical memory including a quantum program, the
quantum program defines a plurality of instructions in
a source language; and

a classical processor communicatively coupled to the
classical memory, the classical memory including com­
puter-executable instructions that, when executed by
the classical processor, cause the classical processor to:
receive a circuit of gates representing the quantum

program for a variational algorithm in which com­
putation is interleaved with compilation at each
iteration;

identify a plurality of blocks within the circuit of gates,
each block of the plurality of blocks includes a
subcircuit of gates from the circuit of gates, leaving
one or more remainder subcircuits of the circuit of
gates outside of the plurality of blocks;

pre-compile each block of the plurality of blocks with
a pulse generation program to generate a plurality of
pre-compiled blocks, each pre-compiled block
including control pulses configured to perform the
associated block on the quantum processor; and

iteratively execute the quantum program on the quan­
tum processor using the pre-compiled blocks as
static during runtime and recompiling the one or
more remainder subcircuits on the classical proces­
sor at each iteration of execution.

2. The quantum computing system of claim 1, wherein
iteratively executing the quantum program includes:

at each iteration of execution:
compile each remainder subcircuit of the one or more

remainder subcircuits to generate a plurality of com­
piled remainder subcircuits;

concatenate the plurality of pre-compiled blocks and
the plurality of compiled remainder subcircuits
based on their relative positions within the circuit of
gates, thereby creating control pulses for a present
iteration of execution; and

execute the control pulses for the present iteration of
execution on the quantum processor.

3. The quantum computing system of claim 2, wherein
compiling each remainder subcircuit of the one or more
remainder subcircuits includes compiling a first remainder
subcircuit with gradient ascent pulse engineering.

4. The quantum computing system of claim 1, wherein
identifying a plurality of blocks within the circuit of gates
includes identifying a block within the circuit of gates based
on variational parameter independence.

5. The quantum computing system of claim 4, wherein
identifying a block within the circuit of gates further
includes blocking all variational parameter-independent
gates between two variational parameter-dependent gates.

6. The quantum computing system of claim 1, wherein the
computer-executable instructions further cause the classical
processor to identify a plurality of parameter-monotonic
blocks based on subcircuits within the circuit of gates that
depend on at most one variational parameter of the varia­
tional algorithm.

7. The quantum computing system of claim 6, wherein the
computer-executable instructions further cause the classical

9
Nov. 24, 2022

processor to precompute hyperparameter configurations for
each parameter-monotonic block of the plurality of param­
eter-monotonic blocks for use during iterative execution.

8. A method for compiling and executing instructions on
a quantum computer, the method is implemented using a
classical processor in communication with a classical
memory, the method comprising:

receiving a circuit of gates representing a quantum pro­
gram for a variational algorithm;

identifying a plurality of blocks within the circuit of gates,
each block of the plurality of blocks includes a subcir­
cuit of gates from the circuit of gates, leaving one or
more remainder subcircuits of the circuit of gates
outside of the plurality of blocks;

pre-compiling each block of the plurality of blocks with
gradient ascent pulse engineering to generate a plurality
of pre-compiled blocks, each pre-compiled block
including control pulses configured to perform the
associated block on a quantum processor; and

iteratively executing the quantum program on the quan­
tum processor using the pre-compiled blocks as static
during runtime and recompiling the one or more
remainder subcircuits on the classical processor at each
iteration of execution.

9. The method of claim 8, wherein iteratively executing
the quantum program includes:

at each iteration of execution:
compile each remainder subcircuit of the one or more

remainder subcircuits to generate a plurality of com­
piled remainder subcircuits;

concatenate the plurality of pre-compiled blocks and
the plurality of compiled remainder subcircuits
based on their relative positions within the circuit of
gates, thereby creating control pulses for a present
iteration of execution; and

execute the control pulses for the present iteration of
execution on the quantum processor.

10. The method of claim 9, wherein compiling each
remainder subcircuit of the one or more remainder subcir­
cuits includes compiling a first remainder subcircuit with
gradient ascent pulse engineering.

11. The method of claim 8, wherein identifying a plurality
of blocks within the circuit of gates includes identifying a
block within the circuit of gates based on variational param­
eter independence.

12. The method of claim 11, wherein identifying a block
within the circuit of gates further includes blocking all
variational parameter-independent gates between two varia­
tional parameter-dependent gates.

13. The method of claim 8 further comprising identifying
a plurality of parameter-monotonic blocks based on subcir­
cuits within the circuit of gates that depend on at most one
variational parameter of the variational algorithm.

14. The method of claim 13 further comprising precom­
puting hyperparameter configurations for each parameter­
monotonic block of the plurality of parameter-monotonic
blocks for use during iterative execution.

15. A non-transitory computer-readable storage media
having computer-executable instructions embodied thereon,
wherein when executed by at least one classical processor,
the computer-executable instructions cause the classical
processor to:

receive a circuit of gates representing a quantum program
for a variational algorithm;

US 2022/0374390 Al

identify a plurality of blocks within the circuit of gates,
each block of the plurality of blocks includes a subcir­
cuit of gates from the circuit of gates, leaving one or
more remainder subcircuits of the circuit of gates
outside of the plurality of blocks;

pre-compile each block of the plurality of blocks with
gradient ascent pulse engineering to generate a plurality
of pre-compiled blocks, each pre-compiled block
including control pulses configured to perform the
associated block on a quantum processor; and

iteratively execute the quantum program on the quantum
processor using the pre-compiled blocks as static dur­
ing runtime and recompiling the one or more remainder
subcircuits on the classical processor at each iteration
of execution.

16. The non-transitory computer-readable storage media
of claim 15, wherein iteratively executing the quantum
program includes:

at each iteration of execution:
compile each remainder subcircuit of the one or more

remainder subcircuits to generate a plurality of com­
piled remainder subcircuits;

concatenate the plurality of pre-compiled blocks and
the plurality of compiled remainder subcircuits
based on their relative positions within the circuit of
gates, thereby creating control pulses for a present
iteration of execution; and

10
Nov. 24, 2022

execute the control pulses for the present iteration of
execution on the quantum processor.

17. The non-transitory computer-readable storage media
of claim 16, wherein compiling each remainder subcircuit of
the one or more remainder subcircuits includes compiling a
first remainder subcircuit with gradient ascent pulse engi­
neering.

18. The non-transitory computer-readable storage media
of claim 15, wherein identifying a plurality of blocks within
the circuit of gates includes identifying a block within the
circuit of gates based on variational parameter indepen­
dence.

19. The non-transitory computer-readable storage media
of claim 15, wherein the computer-executable instructions
further cause the classical processor to identify a plurality of
parameter-monotonic blocks based on subcircuits within the
circuit of gates that depend on at most one variational
parameter of the variational algorithm.

20. The non-transitory computer-readable storage media
of claim 19, wherein the computer-executable instructions
further cause the classical processor to precompute hyper­
parameter configurations for each parameter-monotonic
block of the plurality of parameter-monotonic blocks for use
during iterative execution.

* * * * *

