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A generative artificial intelligence framework based
on a molecular diffusion model for the design of
metal-organic frameworks for carbon capture
Hyun Park1,2,3,10, Xiaoli Yan1,4,10, Ruijie Zhu1,5, Eliu A. Huerta 1,6,7✉, Santanu Chaudhuri1,4, Donny Cooper 8,

Ian Foster 1,6 & Emad Tajkhorshid 2,3,9

Metal-organic frameworks (MOFs) exhibit great promise for CO2 capture. However, finding

the best performing materials poses computational and experimental grand challenges in

view of the vast chemical space of potential building blocks. Here, we introduce GHP-

MOFassemble, a generative artificial intelligence (AI), high performance framework for the

rational and accelerated design of MOFs with high CO2 adsorption capacity and synthesiz-

able linkers. GHP-MOFassemble generates novel linkers, assembled with one of three pre-

selected metal nodes (Cu paddlewheel, Zn paddlewheel, Zn tetramer) into MOFs in a pri-

mitive cubic topology. GHP-MOFassemble screens and validates AI-generated MOFs for

uniqueness, synthesizability, structural validity, uses molecular dynamics simulations to study

their stability and chemical consistency, and crystal graph neural networks and Grand

Canonical Monte Carlo simulations to quantify their CO2 adsorption capacities. We present

the top six AI-generated MOFs with CO2 capacities greater than 2mmol g−1, i.e., higher than

96.9% of structures in the hypothetical MOF dataset.
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Metal-organic frameworks (MOFs) have garnered much
research interest in recent years due to their diverse
industrial applications, including gas adsorption and

storage1, catalysis2, and drug delivery3. As nanocrystalline porous
materials, MOFs are modular in nature4, with a specific MOF
defined by its three types of constituent building blocks (inor-
ganic nodes, organic nodes, and organic linkers) and topology
(the relative positions and orientations of building blocks). MOFs
with different properties can be produced by varying these
building blocks and their spatial arrangements. Nodes and linkers
differ in terms of their numbers of connection points: inorganic
nodes are typically metal oxide complexes whereas organic nodes
are molecules, both with three or more connection points; organic
linkers are molecules with only two connection points.

MOFs have been shown to exhibit superior chemical and
physical CO2 adsorption properties. In appropriate operating
environments, they can be recycled, for varying numbers of times,
before undergoing significant structural degradation. However,
their industrial applications have not yet reached full potential
due to stability issues, such as poor long-term recyclability5, and
high moisture sensitivity6. For instance, the presence of moisture
in adsorption gas impairs a MOF’s CO2 capture performance,
which may be attributed to MOFs having stronger affinity toward
water molecules than to CO2 molecules7. Other investigations of
MOF stability issues8–12 have shown that the gas adsorption
properties of MOFs can be enhanced by tuning the building
blocks used. Yet progress has been difficult due to the enormous
chemical space of building blocks, which makes exhaustive search
with traditional experimental methods impractical13.

Related work. Previous efforts in the search for new MOF
structures with exceptional gas adsorption properties include:

Database search methods. These methods apply filters to
identify optimal candidates in large databases of MOF structures
plus calculated properties obtained with molecular simulations.
For example, Ref. 14 shows how to search for MOFs with high
CO2 uptake when moisture is present using the experimental
MOF database (CoRE DB), while Ref. 15 shows how to search for
MOFs with high CH4/H2 selectivity in both CoRE DB and the
Cambridge Structural Database non-disordered MOF subset.

Machine Learning (ML)-assisted screening. Building large
MOF databases require expensive molecular simulation calcula-
tions for every target structure. ML-assisted screening avoids this
difficulty by using a regression model trained on a smaller
training set to predict target properties of a large number of new
test structures. This approach has been widely applied to gas
adsorption and separation property predictions of MOFs,
including CO2/H2 separation16 and CH4 adsorption17. ML-
assisted methods use of geometrical features (e.g., dominant pore
size, void fraction18) and chemical features (e.g., atom type,
electronegativity19). A compound feature, the atomic property
weighted radial distribution function20 has been shown to
improve regression model performance in finding MOF struc-
tures with high CO2 capacity21. This feature is constructed by
using both local geometry and chemistry of atomic sites in MOF
structures. As an alternative to the use of hand-engineered ML
features, neural networks have been applied to MOF research. In
Ref. 22, the Atomistic Line Graph Neural Network, trained on the
hMOF dataset, was applied to search CoRE DB for high-
performing MOFs for carbon capture23.

Generative modeling. Candidates are not drawn from a
database but are generated de novo via methods that produce
novel compounds that have a desired set of chemical features. For
instance, the Supramolecular Variational Autoencoder24 uses a
semantically constrained graph-based canonical code to encode

MOF building blocks. The variational autoencoder framework
structure allows this model to interpolate between existing MOF
structures and enables isoreticular optimization of MOF struc-
tures toward higher CO2 capacity and CO2/N2 selectivity.

This work. Proposed generative models include variational
autoencoders, generative adversarial networks, normalizing flows,
autoregressive models, and diffusion models25. Here, we adopt a
diffusion model named DiffLinker to generate novel MOF linkers.
Diffusion models use a probability distribution and Markovian
properties to generate new data via forward diffusion and
backward denoising steps. First, Gaussian noise is added to the
input samples to yield noisy data. A neural network is then
trained to learn what noise was added. The trained network is
then used to reversely transform (i.e., denoise) the noisy data back
into target samples that resemble molecules from the training
data distribution. This method has been widely applied to drug
discovery to speed up the design of new ligands and ligand-
protein complexes26–29. Two broad categories of molecular
representation schemes have been used in diffusion model-
based ligand generators: molecular graphs and 3D coordinates. In
the former case (Digress/Congress30 is an example), atoms are
represented as nodes and bonds as edges. In the latter case, the
3D atomic coordinates of molecules are generated directly, as in
DiffLinker31 and E(3) equivariant diffusion model (EDM)32.
Given the success of diffusion models in drug
discovery26,28,29,33,34, we demonstrate how to transfer the idea
to the iso-reticular design of MOF structures by varying MOF
linkers while fixing node and topology. The diffusion model is
used specifically for MOF linker design.

Our proposed approach, GHP-MOFassemble, is a novel high-
throughput computational framework to accelerate the discovery
of MOF structures with high CO2 capacities and synthesizable
linkers. While previous attempts to discover useful MOFs via
computational methods have proceeded via high-throughput
screening of existing datasets14,35,36, an approach that necessarily
limits the search to known MOFs. In contrast, GHP-
MOFassemble probes the MOF design space by employing a
molecular generative diffusion model, DiffLinker31, to generate
chemically diverse and unique MOF linkers from a set of
molecular fragments, which it assembles with pre-selected metal
nodes to form novel MOF structures. It then screens those
structures with a pre-trained regression model, a modified version
of Crystal Graph Convolutional Neural Network (CGCNN)37, to
identify high-performing MOF candidates for carbon capture. In
addition, we apply molecular dynamics (MD) and grand
canonical Monte Carlo (GCMC) to further down-select stable
AI-generated MOFs and compute more credible CO2 adsorption
capabilities. We demonstrate the utility of our framework by
applying it to the rational design of MOFs with pcu topology and
three types of inorganic nodes: Cu paddlewheel, Zn paddlewheel,
and Zn tetramer.

Results
Here we describe the key components of GHP-MOFassemble,
and present a new set of AI-generated MOF structures with high
CO2 capacities. A detailed description of the approaches used to
obtain these findings is provided in Methods.

Analysis of the hMOF dataset. The three most frequent node-
topology pairs in the hMOF dataset, accounting for around 74%
of its MOFs, are the Cu paddlewheel-pcu, Zn paddlewheel-pcu,
and Zn tetramer-pcu, which amount to 102,117 hMOF structures
(29,714 + 28,529 + 43,874 from first column of Table 1). Out of
these 102,117 structures, we only used those with correctly parsed
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MOFids and valid Simplified Molecular-Input Line-Entry System
(SMILES), i.e., 78,238 MOFs.

Linker generation and evaluation. For all three MOF types, we
start with 540 (i.e., = 180 + 162 + 198 from Table 1 last column)
unique molecular fragments extracted from high-performing
hMOF structures, and use DiffLinker to generate new MOF lin-
kers, with the number of sampled connection atoms ranging from
five to 10 (total six connection atom types). For each linker,
sampling is performed 20 times. Therefore, the resulting candi-
date pool contains a total of 64,800 linkers, i.e., 540 fragments ×
20 independent sampling steps × six unique number of connec-
tion atoms. Since these linkers only contain heavy atoms, to
generate all-atom linker molecules, we apply openbabel to add
hydrogen atoms, which results in 56,257 linkers after removing
linkers with erroneous hydrogen assignments. Next, dummy
atom identification is performed to generate information that
enables assembly with metal nodes. A total of 16,162 linkers with
dummy atoms are generated. These linkers are then passed
through the element filter, which removes linkers that contain S,
Br, and I, further reducing the number to 12,305 linkers. The
number of linkers in each step are summarized in the Total
column of Table 2.

MOF assembly. We generate new MOF structures by assembling
three randomly selected DiffLinker-generated linkers with one of
the three most frequent nodes in the hMOF dataset. Random
sampling of 12,305 linkers ensures that the selected linkers cover
a large design space. For each node-linker-topology combination,
we considered four levels of catenation (cat0, cat1, cat2, cat3). We
generated a total of 120,000 MOFs as follows: we have four
catenation levels and three node candidates. The random sam-
pling of 10,000 linkers for each catenation level-node candidate
pair generates 120,000 total MOFs of different catenation-node-
linker combinations.

MOF geometry examination
Inter-atomic distance check. We used Pymatgen to read each
MOF structure’s CIF file and to extract the pairwise distance

matrix. Diagonal entries of the distance matrix are discarded as
they signify the distance between an atom and itself. The off-
diagonal values are tested for minimum inter-atomic distance
threshold. The inter-atomic distance threshold is predetermined
by an experimental database, OChemDb38. If a MOF has at least
one entry of lower than threshold inter-atomic distance, the MOF
is discarded. 78,796 of the 120,000 assembled MOFs passed this
test.

Pre-simulation check. We used the open source library,
cif2lammps39, to automatically assign the Universal Force Field
for Metal-Organic Frameworks (UFF4MOF)40,41 to MOFs and
generate LAMMPS42 input files. This step ensures that all atomic
structures and bonding appearing in each MOF structure are
chemically valid within the scope of UFF4MOF. For example, if a
Zn atom is bonded to a C atom, or if an O atom is bonded to four
other atoms, etc., these structures will be identified as invalid and
will be discarded. Of the 78,796 MOFs that passed geometry and
inter-atomic distance checks, 18,770 passed this pre-simulation
check, and thus had LAMMPS input files generated.

Regression model for MOF CO2 capacity prediction. To reduce
the number of LAMMPS simulations, a screening step of the
MOFs’ adsorption performance is conducted on the 18,770 MOFs
described above using a modified version of the CGCNN model
that we introduced in Ref. 37. Here, we used MOF structures from
the hMOF dataset as well as their CO2 capacities at 0.1 bar as
input data. We split the hMOF dataset into three independent
sets: 80% for training, 10% for validation, and 10% for testing.
Using this data split, we trained three CGCNN models using
random initialization of weights for each of them. When we use
this model ensemble to infer the CO2 capacities of newly AI-
generated MOF structures, we take the average of the predictions
made by the three independent models as the predicted CO2

adsorption capacity. Out of the 18,770 AI-generated MOF
structures, a total of 364 were predicted to be high-performing
MOFs with CO2 capacity higher than 2 mmol g−1 at 0.1 bar.
Specifically, we used ensemble model prediction mean plus
standard deviation as CO2 adsorption capacity value to be higher
than 2 mmol g−1 as the threshold. The standard deviation con-
sideration is to assure we account for statistical errors of
adsorption predictions by our ensemble model. Categorization of
the predicted high-performing MOFs by node-topology pair and
catenation level indicates that for all three node types most of the
high-performing MOFs are cat2 and cat3.

Structural validation of AI-generated MOFs with molecular
dynamics simulations. We now examine the stability and porous
properties of the 364 AI-generated MOFs described in the pre-
vious section using MD simulations with LAMMPS42. For each
MOF, a 2 × 2 × 2 supercell structure is equilibrated under a tri-
clinic isothermal-isobaric ensemble (i.e., NPT) at 〈p〉= 1 atm and
〈T〉= 300K, such that the cell lengths and angles of the MOF
structure can be equilibrated. The NPT simulations are run for

Table 1 Most frequent node-topology pairs in the hMOF dataset.

node-topology total MOFs HP-MOFs HP-MOFs with three linkers unique linker SMILES unique molecular fragment conformers

Cu PW-pcu 29,714 1458 1016 3330 180
Zn PW-pcu 28,529 1314 834 3221 162
Zn TM-pcu 43,874 2129 1388 3265 198

Properties of the hMOF dataset. PW, TM, and HP-MOF stand for paddlewheel, tetramer, and high-performing MOF, respectively.

Table 2 Number of linkers at each step of the MOF assembly
process.

Method Total Cu PW-pcu Zn PW-pcu Zn TM-pcu

DiffLinker 64,800 21,600 19,440 23,760
Hydrogen addition 56,257 18,979 17,126 20,152
Dummy atom
identification

16,162 4964 4450 6748

Element filter 12,305 3702 3441 5162

Statistical summary of the number of linkers after each step categorized by the corresponding
MOF types. PW and TM stand for paddlewheel and tetramer, respectively. Element filter means
that linkers with S, Br and I elements are removed.

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-01090-2 ARTICLE

COMMUNICATIONS CHEMISTRY |            (2024) 7:21 | https://doi.org/10.1038/s42004-023-01090-2 | www.nature.com/commschem 3

www.nature.com/commschem
www.nature.com/commschem


400,000 steps with step size of 0.5 femtoseconds. The relative
changes of the lattice parameters before and after the simulation
are inspected to evaluate how well the MOF structure is main-
tained throughout the equilibrium MD simulation. The MOFs
with higher than 5% changes in any of the lattice parameters (a, b,
c, α, β, γ) are discarded (first three are lattice vector lengths and
the latter three are lattice angles) between the initial state and the
equilibrated state. The MOFs with higher than 5% changes in any
of the lattice parameters (a, b, c, α, β, γ) are discarded. This
process produces 102 MOFs that satisfied the previously defined
criteria, i.e., < 5% in lattice parameter change40.

Property validation of AI-generated MOFs with grand cano-
nical Monte Carlo (GCMC) simulations. These 102 MOFs are
further examined with GCMC simulations to calculate their CO2

adsorption capacity at a pressure and temperature of 0.1 bar and
300 K, respectively. RASPA43 is used to conduct these GCMC CO2

adsorption simulations. As demonstrated in Fig. 1, 6 MOFs can-
didates were found to have CO2 adsorption capacity higher than 2
mmol g−1 by the GCMC simulations. The 3D structure of these six
high performing, AI-generated MOFs is presented in Fig. 2.

Discussion
GHP-MOFassemble combines novel generative and graph AI
applications, as well as a comprehensive screening workflow that
combines various modeling methods with increasing levels of
chemistry awareness and increasing levels of computational cost.
When we deployed and optimized GHP-MOFassemble on the
Delta supercomputer, unless indicated otherwise, we found that:

● We AI-assembled 120,000 MOFs within 33 minutes using
multiprocessing on 28 cores in the ThetaKNL super-
computer at the Argonne Leadership Computing Facility
(ALCF).

● We screened these 120,000 MOFs in 40 minutes using
multiprocessing on 128 cores, and identified 78,796 MOFs
with valid bond lengths.

● We further screened these 78,796 MOFs and identified
18,770 MOFs with valid chemistry, using UFF4MOF as a
reference, within 205 minutes using multiprocessing on
128 cores.

● We then used our AI ensemble of CGCNN models to
estimate the CO2 capacity of these 18,770 MOFs, and

identified 364 high-performing, AI-generated MOFs with
CO2 capacity higher than 2 mmol g−1 at 0.1 bar. AI
inference was completed in 50 minutes using one NVIDIA
A40 GPU.

In brief, from assembly to selection of high-performing MOFs,
GHP-MOFassemble completes the analysis within 5 hours and
7 minutes. Once we have selected 364 AI-generated, high-
performing MOFs, we carry out the most compute-intensive part
of the analysis, namely:

● We used the LAMMPS code to equilibrate 364 MOFs with
200-picosecond NPT MD simulations with the UFF4MOF
force field. Each of these simulations is completed within
11 minutes, on average, using between 6 to 14 MPI
processes, depending on the number of atoms in the MOF.
We identified 102 stable MOFs whose lattice parameters
changed less than 5% throughout the MD simulations.

● Finally, each of these 102 MOFs were further examined
with GCMC simulations, and a total of six MOF candidates
were found to have CO2 capacity higher than 2 mmol g−1,
which corresponds to the top 5% of the hMOF dataset.
Each of these 102 GCMC simulations is completed within
six hours, on average, using one CPU core.

Recent studies44–47 indicate that several functional groups play
an important role in determining MOF CO2 capacity, including
carboxylic acid (-COOH), primary amine (-NH2), hydroxyl
(-OH), and nitrile (-CN). These functional groups affect MOF
CO2 capacity due to their interaction with CO2 molecules
through charge redistribution46, hydrogen bond interaction45,
and electrostatic interaction45. Thus, we analyzed the functional
groups of linkers in the 364 AI-generated high-performing MOF
structures and compared them with high-performing hMOF
structures. The results of this analysis are presented in Fig. 3. We
observe that linkers in high-performing hMOF structures have a
higher proportion of carboxylic groups, whereas hydroxyl groups
appear more often in the predicted high-performing MOFs
generated by our framework. Moreover, the percentages of pri-
mary amine and nitrile in linkers are similar in both cases. Note
that some substructures appear more often than others. For
example, ring structures appear in most of the linkers in the top
candidates, and many of the DiffLinker-generated molecular
substructures (in between the terminal fragments) also contain

-1

Fig. 1 CO2 adsorption values at 0.1 bar and 300K. CO2 adsorption capacity values at a pressure and temperature of 0.1 bar and 300 K, respectively, for
the top six AI-generated MOFs' according to grand canonical Monte Carlo (GCMC) simulations and our modified crystal graph convolutional neural
network (CGCNN) model.
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ring structures. The frequent occurrence of rings in linkers of
high-performing MOFs may be due to the presence of CO2-ring
interaction, as reported in Ref. 48. In addition, rings in the linkers
may increase MOFs’ structural rigidity due to less rotatable
bonds.

In summary, the entire discovery process from generative AI
MOF assembly to detailed GCMC simulations of top AI-

predicted MOFs can be completed within 12 hours using dis-
tributed computing in modern supercomputing platforms. The
entire workflow may be further accelerated by scaling up any of
the subprocesses using more cores or by distributing AI inference
over more GPUs. Furthermore, the various pieces of GHP-
MOFassemble may be assembled to create a standalone workflow
that combines MD, density functional theory, and GCMC
simulations to expose our generative AI model to a larger set of
chemically diverse, high performing MOFs. Through online
learning methods one may continually guide generative AI until it
consistently assembles high performing MOFs. A study of this
nature will be pursued in future work.

Methods
Our GHP-MOFassemble framework has three components:

● Decompose. We use a molecular fragmentation algorithm to
decompose the MOF linkers found in high-performing MOF
structures within the hMOF dataset22—an open source
dataset that provides, for each of 137,652 hypothetical MOF
structures, and corresponding MOFid, MOFkey, geometric
features, and isotherm data for six adsorption gases (CO2, N2,
CH4, H2, Kr, Xe) at 0.01, 0.05, 0.1, 0.5, and 2.5 bar—covering
the pressure ranges of cyclic adsorption gas separation
processes in industrial applications. The adsorption proper-
ties of gases provided in this dataset were calculated using
GCMC calculations22, as described in Ref. 49.

● Generate. We use a diffusion model to generate new MOF
linkers. We then screen the AI-generated linkers by
removing linkers with S, Br and I elements (we call this
step “element filter”), and evaluate their quality using five

Fig. 3 Functional groups in high-performing MOFs. Comparison of the
proportion of selected functional group that appear in high-performing AI-
generated MOFs and MOFs in the hMOF dataset.

MOF-4 MOF-5 MOF-6

MOF-1

a b c

d

MOF-2

e

MOF-3

f

Fig. 2 Visualization of the crystal structure of AI-generated MOFs. a–f Crystal structure of the top six AI-generated MOFs. The color code used to
represent atoms is: carbon in grey, nitrogen in dark blue, fluorine in cyan, zinc in purple, hydrogen in white, and lithium in green.
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different scores to quantify their synthesizability (SAScore
and SCScore), validity, uniqueness, and internal diversity.
Linkers that passed the element filter are then assembled
with one of three pre-selected nodes into new MOF
structures in the pcu topology.

● Screen and Predict. We check for inter-atomic distances
with pre-simulation checks to ensure we filter poor AI-
generated MOF structures from previous steps. We then
use a pre-trained regression model to predict the CO2

capacities of the newly generated MOF structures. Lastly,
we perform MD and GCMC simulations to obtain stable
and high-performing MOF structures.

In the following sections we describe the datasets we have used,
and each of the GHP-MOFassemble components in detail.

The hMOF dataset. We selected the most common topologies of
the hMOF dataset for this work, i.e., Cu paddlewheel-pcu, Zn
paddlewheel-pcu, and Zn tetramer-pcu, i.e., 78,238 MOFs with
correctly parsed MOFids and valid SMILES. We gather the
numbers of molecular fragments in Table 1, produced through
the Fragment step of our GHP-MOFassemble framework,
described below. In Table 1 high-performing MOFs (second
column) with three parsed linkers are selected (third column),
and their unique linkers are parsed by using the MMPA (Mat-
ched Molecular Pairs Algorithm) algorithm. The cumulative

distribution functions of the CO2 capacities of these three types of
MOFs are shown in the right panel of Fig. 4.

In Table 1, the number of output molecular fragment
conformers (last column) is much less than the number of
unique linker SMILES (second to last column) for two reasons.
First, around 56% of linkers did not pass the valency check, which
may be due to the intrinsic limitations in the parsing of SMILES
of MOF linkers. Second, around 90% of linkers that passed the
valency check share similar molecular fragments, and thus many
duplicated molecular fragments exist. The successfully parsed
unique molecular fragment conformers are subsequently used for
linker generation.

Figure 5 shows the empirical cumulative distribution functions of
the CO2 capacities of hMOF structures at different catenation levels
(i.e., MOFs with interpenetrated lattices). Therein, we observe that a
higher percentage of catenatedMOFs (cat1, cat2 and cat3) are high-
performing, as compared to the uncatenated MOFs (cat0). This
result confirms that catenation is an important factor when
designing new MOF structures with high CO2 capacity. This
observation is consistent with other studies in the literature50,51,
which indicate that even though catenation reduces pore size and
surface areas, catenated MOFs generally have higher CO2/H2

selectivities because MOF-CO2 interactions are enhanced as a result
of the strong confinement of CO2 with a much lower adsorption
surface. Thus, the results presented in Fig. 5 using the hMOF
dataset indicate that CO2 working capacities of catenated MOFs are
higher than their noncatenated counterparts. As we discuss below,
we found a similar pattern in AI-generatedMOFs. CatenatedMOFs
were generated by using site translation method, which is achieved
by displacing the reference lattice along the diagonal line of the unit
cell. For all four catenation levels, the amount of relative lattice
displacement is given in Table 3. The numbers are fractional
displacements relative to the unit cell diagonal.

Figure 6 shows the pairwise relationships of the CO2 capacities of
hMOF structures at five pressures. We observe a strong correlation
of CO2 capacities between 0.05 bar and 0.1 bar, with a Pearson’s
correlation coefficient of 0.86. For other pairs of pressures, the CO2

capacities are only weakly correlated, with a decreasing correlation
for larger pressure differences. Moreover, the distributions of CO2

capacities at all pressures exhibit long tails at high value ranges,
which indicate that the majority of MOFs are low-performing and
high-performing MOFs are uncommon.

Decomposing MOF linkers into molecular fragments. The first
component of the GHP-MOFassemble framework, Decompose,
decomposes linkers from high-performing MOF structures in the
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Fig. 4 Properties of the hMOF dataset. a Depictions of the most frequent node-topology pairs in hMOF structures. b Cumulative distribution functions of
their 0.1 bar CO2 capacities.

-1

Fig. 5 CO2 capacities of hMOF structures at different catenation levels.
Empirical cumulative distribution functions of MOFs in the hMOF dataset at
0.1 bar at different catenation levels. The x axis is capped at 4 mmol g−1 to
preserve details.
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hMOF dataset into their molecular fragments. As illustrated in
Fig. 7, this process applies the following three steps to a specified
node-topology pair, which in the figure is the most frequent
node-topology pair in the hMOF dataset, Zn tetramer-pcu. Note
that for the pcu topology, one linker is orientated along each of
the x, y, and z directions, and thus at most three unique linker
types are possible.

1. Select: We select high-performing MOFs with the given
node-topology pair from hMOF. We define here a high-
performing MOF structure as one with CO2 capacity higher
than 2 mmol g−1 at 0.1 bar, which corresponds to the top
5% of CO2 capacity of the hMOF dataset.

2. Extract: We extract the linker Simplified Molecular-Input
Line-Entry System (SMILES) strings for each high-
performing MOF identified in Select step, eliminate those
with more than three unique linker types, and assemble the
remaining into a linker dataset.

3. Fragment: We fragment the linkers produced in Extract
step to obtain their chemically relevant fragment-
connection atom pairs, which we assemble into a molecular
fragment dataset.

The extraction of linkers in Extract step is straightforward
because the MOFid of each hMOF structure specifies the SMILES
strings of its constituent metal nodes, linkers, as well as a format

signature and a topology code52. Together, these elements
uniquely define the topology and building blocks of a given
MOF structure.

Fragment step use MMPA53 as implemented in DeLinker54 to
generate molecular fragments of a given molecule by breaking
chemical bonds between atom pairs. We set the minimum
number of connection atoms, the minimum fragment size, and
the minimum path length to 3, 5, and 2, respectively. Moreover,
we only consider the case where the fragments are at least two
atoms away from each other. The chemically relevant fragment-
connection atoms pairs are then used to form the molecular
fragment dataset.

Generating new MOF structures. The Generate component
employs the pre-trained diffusion model DiffLinker31 to generate
new MOF linkers, and then assembles those new linkers with one
of three pre-selected nodes into new MOF structures in the pcu
topology. It comprises three steps: Diffuse and Denoise; Screen
and Evaluate; and Assemble. An example of these three steps for
Zn tetramer-pcu MOFs is shown in Fig. 8.

Diffuse and Denoise. We apply the pre-trained diffusion model
DiffLinker31 to generate new linkers based on the molecular
fragments outputted by the Decompose component. This model
connects the molecular fragments supplied as input (also known
as context) with a specified number of sampled atoms. With
less sampled atoms, straight chains or branched chains may be
obtained, while with more sampled atoms, ring structures may
be present. Moreover, during the denoising process, the species
of the sampled atoms may change. In this work, we vary
the number of sampled atoms from 5 to 10 to ensure that the
generated linkers have a diverse set of chemistry and
substructures.

DiffLinker applies a denoising process to determine the atomic
species and Cartesian coordinates of the sampled atoms by using
a decoder neural network architecture named E(3)-Equivariant
Graph Neural Network (EGNN)55. This graph neural network

Fig. 6 CO2 capacities of hMOF structures at different adsorption pressures. Pairplot of CO2 capacities of hMOF structures. The (x, y) axes represent
adsorption pressures. Different colors indicate MOFs with different node-topology pairs.

Table 3 Relative lattice displacement at each catenation
level.

catenation lattice1 lattice2 lattice3 lattice4

cat0 (0,0,0) / / /
cat1 (0,0,0) (12 ;

1
2 ;

1
2) / /

cat2 (0,0,0) (13 ;
1
3 ;

1
3) (23 ;

2
3 ;

2
3) /

cat3 (0,0,0) (14 ;
1
4 ;

1
4) (12 ;

1
2 ;

1
2) (34 ;

3
4 ;

3
4)

Amount of lattice displacement for catenated MOFs.
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predicts zero-mean centered Cartesian coordinates noise and
one-hot encoding noise of atomic species, and accounts for
equivariance due to translation, rotation, and reflection of
molecules, i.e., Euclidean Group 3 (E(3)). In this work, we use
the pre-trained DiffLinker model that was trained on the GEOM
dataset56, which contains 37 million molecular conformations for
over 450,000 molecules. Such diverse training data enables
DiffLinker to sample linker molecules with high chemical and
structural diversity.

The outputs of DiffLinker are the 3D coordinates and the
atomic species of heavy atoms in the linker molecules, rather than
SMILES strings or 2D graphs. Since hydrogen atoms are implicit
in the DiffLinker model, their 3D coordinates are not outputted
by the model. To generate the spatial configurations of all-atom
molecules, we employ openbabel to convert the DiffLinker
generated molecules to SMILES strings, which in turn are used
to generate 3D configurations of linkers with explicit hydrogen
atoms. Openbabel uses distance-based heuristics to determine
bond connectivity in a given molecule57, which is critical to the
assignment of the number of hydrogen atoms. Finally, after the
hydrogen addition step, we identify the dummy atoms which
contains information about how the linkers connect with metal
nodes.

The diffusion process involves two consecutive steps. The first
step adds Gaussian noise to the original data (i.e., x), yielding
noisy input (i.e., zt at time t). Next, the denoising step applies
neural network-based noise removal operation. Mathematically,

the following Markovian properties and equations are satisfied:

qðztjzt�1Þ ¼ N ðzt ; �αtzt�1; �σ
2
t IÞ; ð1Þ

qðztjxÞ ¼ N ðzt ; αtx; σ2t IÞ; ð2Þ

pðzt�1jztÞ ¼ qðzt�1jx; ztÞ; ð3Þ

qðzt�1jx; ztÞ ¼ N ðzt�1; μ
θ
t ðx; zt ; αt ; σ tÞ; ξtIÞ; ð4Þ

μθt ðx; zt ; αt; σ tÞ ¼ Atzt þ Btx; ð5Þ

x̂ ¼ x ¼ Ctzt � Dtϵ
θ
t ðzt ; tÞ; ð6Þ

where q and p are the probability density functions during
forward (diffusion) and reverse (denoising) process, respectively.
N stands for normal distribution. �αt ¼ αt=αt�1, and
�σ2t ¼ σ2t � �α2t σ

2
t�1. I is an identity matrix that computes an

isotropic Gaussian upon multiplying with a constant (e.g., σ2t ); αt
and �αt are signal controls, i.e., meaningful information during
training and generative steps; and σt and �σ t are noise controls, i.e.,
noisy information used for diversity during training and
generative steps. The subscript t= 0, 1,...,T is the time step at
which a molecule is generated (a.k.a. denoised or diffused). ξt, At,
Bt, Ct, and Dt are constants consisting of αt ; �αt ; σ t , and �σt

31.
Equations (1) and (2) represent a diffusion process that is

conditioned on the previous value, zt−1, and initial value, x, to
predict a current value, zt. The denoising processes are described

-1

-1

Fig. 7 First component of the GHP-MOFassemble framework. Schematic representation of the Decompose component, which consists of three steps,
which we showcase for Zn tetramer-pcu MOFs. First, the Select step selects the Zn tetramer-pcu MOFs in high-performing hMOF structures. Next, the
Extract step extracts unique linkers from those MOFs. Finally, the Fragment step generates unique linker fragments. The color scheme of elements is: carbon
in grey, oxygen in red, nitrogen in blue, and hydrogen in white. See Table 1 for unique linker fragments of Zn tetramer node.
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by Equations (3) and (4), which predict a previous value
conditioned on (either real or predicted) initial value and current
value. Equations (5) and (6) provide a detailed evolution for μθt
which represents the learned denoising mean parameterized by θ,
as well as x, a real initial value, approximated by x̂. The training
objective is to learn a neural network, i.e., EGNN, to predict a
denoising value so that random noise can be denoised to a
physically and chemically valid molecule during the generative
process. In practice, we predict ϵθt (learned noise value) rather
than x̂ directly (i.e., Equations (5) and (6)) for better prediction58.
Since DiffLinker generates chemically valid molecules, EGNN
needs to take more regularization into account, such as E(3) and
O(3) (i.e., orthogonal group in dimension 3: rotations and
reflections). Thus, invariant features such as one-hot and
equivariant features such as atomic coordinates updates need to
be considered31.

Screen and Evaluate. To ensure consistency of elements in hMOF
linkers and AI-generated MOF linkers, we manually filter out
generated linkers that contain elements not present in the hMOF
dataset. Since the pre-trained DiffLinker model we used in this
work was trained on the GEOM dataset56, a total of nine heavy
elements may be sampled, including C, N, O, F, P, S, Cl, Br, and I.
Among these elements, S, Br, and I do not appear in the hMOF
dataset, therefore we remove generated linkers that contain these
three elements. For each molecular fragment, we then perform
sampling 20 times. Each time the model samples a different
molecule may be obtained because of the random and probabil-
istic nature of denoising process. The probabilistic nature of
diffusion model enables it to generate linkers from an extensive
linker design space beyond that of the hMOF dataset.

We then use five metrics to evaluate the quality of the
remaining linkers. The first two metrics are commonly used

heuristic measures of synthesizability: the synthetic accessibility
score (SAscore), and the synthetic complexity score (SCscore)59.

The SAscore, as defined by Ertl and Schuffenhauer60, is based
on analysis of one million PubChem molecules, and combines
fragment contributions from molecule substructures with a
complexity penalty that accounts for molecular size and for
structural features of molecules such as the presence of rings. The
SCscore is computed by using a neural network trained on 12
million chemical reactions from the Reaxys database to estimate
the number of reaction steps required to produce a molecule59.
For both SAscore and SCscore, the higher the values are, the more
difficult it is to synthesize the linker, hence less desirable.
Specifically, the SAscore60 is defined as the difference of fragment
score and complexity penalty:

SAscore ¼ fragmentScore� complexityPenalty;

where fragment score is calculated by averaging over the
contributions of non-zero elements of the Morgan fingerprint
for all molecular fragments. The complexity score is calculated
based on five components:

complexityPenalty ¼ �sizePenalty � stereoPenalty

� spiroPenalty � bridgePenalty �macrocyclePenalty:

The size penalty increases with the number of atoms:

sizePenalty ¼ nAtoms1:005 � nAtoms;

The stereo penalty is calculated based on the number of chiral
centers:

stereoPenalty ¼ logðnChiralCentersþ 1Þ;
The spiro penalty is calculated based on the number of spiro
centers, or atoms that connect two rings together:

spiroPenalty ¼ logðnSpiroþ 1Þ;

Fig. 8 Second component of the GHP-MOFassemble framework. The Generate component of the GHP-MOFassemble framework involves Diffuse and
Denoise, Screen and Evaluate, and Assemble steps, as shown here for Zn tetramer-pcu MOFs (see Table 1 for unique linker fragments of Zn tetramer node).
First, we generate new linkers via the Diffuse and Denoise step. We then add hydrogen atoms to ensure correct valency of the generated linkers. Next, we
identify dummy atoms by replacing the two carbon atoms in the carboxyl groups of each generated linker with dummy atoms. Linkers with dummy atoms
then undergo the Screen and Evaluate step, where we remove those with S, Br, and I elements, since these three elements are present in the GEOM dataset
but not in the hMOF dataset. As a result, this step reduces the number of potential linkers to 5162. The generated linkers' molecular statistics are quantified
using five metrics, including SAscore, SCscore, validity, uniqueness, and internal diversity. Finally, in the Assemble step, we build 40,000 new MOFs with
Zn tetramer node in pcu topology. As before, the color scheme of elements is: carbon in grey, oxygen in red, nitrogen in blue, and hydrogen in white. See
last column of Table 2 regarding this component.
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The bridge penalty term is calculated based on the number of
bridgehead atoms, or atoms that belong to two or more rings:

bridgePenalty ¼ logðnBridgeheadsþ 1Þ;
Lastly, if macrocycles are present, the macroPenalty is:

macrocyclePenalty ¼ math: log 10ð2Þ;
otherwise, the macroPenalty is zero. The SCscore60 is calculated
by using a neural network trained on 12 million reactions from
the Reaxys database. The synthetic complexity of each molecule is
rated from 1 to 5, with 1 being the easiest and 5 the most difficult
to synthesize. To evaluate the capability of GHP-MOFassemble to
generate a valid, novel, and diverse set of linkers, we leverage the
MOSES framework61 to compute three additional metrics: the
fraction of valid linker SMILES strings (validity), the fraction of
unique linker SMILES strings (uniqueness), and the dissimilarity
of linkers (internal diversity). Validity measures whether atoms in
generated molecules have the correct valency, whereas uniqueness
quantifies the percentage of any molecule that is different from
the rest of molecules.

We show in Fig. 9 the synthetic accessibility score (SAscore)
and synthetic complexity score (SCscore) values for the
remaining linkers. We observe that as the number of sampled
atoms increases, both distributions generally shift to the right,
with the exception of the SAscore distribution with six sampled
atoms, which is to the left of that with five atoms. This general
trend indicates that linkers become harder to synthesize as the
molecules become bigger. This result is expected because as more
atoms are sampled, more complex substructures may be present.
We note that no linker has zero or very large SAscore or SCscore,
values that would indicate unsynthesizability.

We show in Table 4 the validity, uniqueness, and internal
diversity metrics, grouped by the number of sampled atoms and
node-topology pairs of the corresponding MOFs. The validity
column confirms that all generated linkers are valid. The last
three columns, when reviewed from top to bottom, reveal a
considerable increase in linker uniqueness and a more modest

increase in internal diversity as the number of sampled atoms
increases. High uniqueness values indicate that our model is
generating non-duplicate molecules, whereas high internal
diversity values indicate that the generated molecules are
chemically diverse. Internal diversity (which indicates how
dissimilar a specific linker is to the rest of the population) is
computed using two internal diversity scores: IntDiv1 and
IntDiv261, also shown in Table 4. The increase in these metrics
as more atoms are sampled is expected because the degrees of
freedom of atomic species and their spatial coordinates increase
with molecular size.

The internal diversity scores were calculated based on the
Tanimoto distances62 among all pairs of molecules, which are
obtained by calculating the normalized Jaccard score of Morgan
fingerprint bit vector between all pairs of AI-generated linkers.
This yields similarities between a specific linker and the rest of the
linkers in the linker pool, which are averaged out. Therefore, we
end up with a metric showing each linker’s similarity compared
with the population of generated linkers. We used the MOSES61

framework to compute the internal diversity scores IntDiv1 and
IntDiv261 by using the relations:

IntDiv1ðGÞ ¼ 1� 1

jGj2 ∑
m1;m22G

Tdðm1;m2Þ; ð7Þ

IntDiv2ðGÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jGj2 ∑
m1;m22G

Tdðm1;m2Þ2
s

; ð8Þ

where Td is the Tanimoto distance, which relates to the Tanimoto
similarity (Ts) by:

Tdðm1;m2Þ ¼ 1� Tsðm1;m2Þ; ð9Þ
where G is the generated set of molecules, ∣G∣ is the size of that
set, and (m1, m2) is a pair of molecules in the set.

To measure the similarity between the AI-generated linkers
and hMOF linkers in high-performing MOF structures, we show
in Fig. 10 the distribution of maximum Tanimoto similarity

d

a

e f

Fig. 9 Synthesizability of DiffLinker-generated MOF linkers with dummy atoms. a–c Distributions of synthetic accessibility score (SAscore); and d–f
synthetic complexity score (SCscore) of DiffLinker-generated MOF linkers with dummy atoms. We indicate both node-topology pairs, and the number of
sampled atoms, from 5 to 10 inclusive.
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between the two linker sets. For each unique linker in the 364 AI-
generated high-performing MOF structures we calculated its
Tanimono similarity with all of the unique linkers in the hMOF
structures. The maximum value of the Tanimoto similarities gives
a quantitative measure of how different the generated linkers are
from the hMOF linkers. Results in Fig. 10 indicate that most

linkers in the predicted high-performing MOF structures are
vastly different from those in hMOF, i.e., our GHP-MOFassemble
framework generates novel MOF structures with chemically
unique linkers.

MOF Assembly. Once we have generated linkers, we can then
assemble them with metal nodes. To construct MOFs, we need to
guide the assembly process. We do this by using dummy atoms,
which indicate the points at which the building blocks are to be
connected. In practice, this is done as follows. Our parsing of
MOFids generates, for MOFs with Zn tetramer nodes, linkers that
carry two carboxyl groups, which by definition are part of metal
nodes instead of linkers. Such wrong assignment of carboxyl
groups is due to how the MOFid algorithm parses MOF struc-
tures. To reflect the correct molecular structure of linkers, the two
carbon atoms in the carboxyl groups are identified as dummy
atoms, and the redundant four oxygen atoms and two hydrogen
atoms are removed. An illustration of dummy atom identification
for linkers containing carboxyl groups is shown in the left panel
of Fig. 11.

For MOFs with Cu paddlewheel and Zn paddlewheel node,
however, another type of linker containing heterocyclic rings
exists. For this type of linker, the two atoms that are nitrogen-
metal bond distance away from the terminal nitrogen atoms on
the heterocyclic rings are identified as dummy atoms. After the
dummy atoms are correctly identified, three randomly selected
linkers (duplicates allowed) are assembled with one of the three
pre-selected nodes into MOFs in the pcu topology. An illustration
of dummy atom identification of linkers containing heterocyclic
groups is shown in the right panel of Fig. 11.

More than half of the hMOF structures are catenated MOFs,
i.e., MOFs with interpenetrated lattices. By varying the level of
interpenetration, it is possible to generate MOFs with different
pore sizes, with a higher catenation level generally corresponding
to smaller pores. We denote the four catenation levels in hMOF,
with increasing number of interpenetrated lattices, as cat0, cat1,
cat2 and cat3. To generate MOFs with high structural diversity,
we applied site translation method as implemented in
Pymatgen63 to generate MOFs with different catenation levels.
Figure 12 presents the building block combinations of the final six
MOF candidates that passed all screening processes. For linkers,

Fig. 10 Similarity between AI-generated and hMOF linkers in high-
performing MOF structures. Distribution of maximum Tanimono similarity,
which measures the uniqueness of AI-generated linkers as compared to
hMOF linkers for high-performing MOFs. The peak around 0.3 to 0.4
indicates that most generated linkers are just 30–40% similar to those in
hMOF, i.e., our AI framework generates novel linkers not present in hMOF
structures. On the other hand, the trailing heavy right tail above 0.4
Tanimoto similarity indicates that we are also able to generate linkers that
are structurally similar to those present in hMOF, showing that GHP-
MOFassemble enables generation of a diverse set of novel linkers.

Table 4 Statistical properties of AI-generated linkers.

node-topology N n_linker C H valid unique IntDiv1 IntDiv2
Cu paddlewheel-pcu 5 1240 774 466 1 0.496 0.692 0.669
Zn paddlewheel-pcu 5 1184 775 409 1 0.505 0.709 0.686
Zn tetramer-pcu 5 1666 1666 0 1 0.514 0.681 0.659
Cu paddlewheel-pcu 6 1117 761 356 1 0.545 0.718 0.695
Zn paddlewheel-pcu 6 992 681 311 1 0.554 0.718 0.697
Zn tetramer-pcu 6 1532 1532 0 1 0.512 0.693 0.672
Cu paddlewheel-pcu 7 499 383 116 1 0.919 0.751 0.734
Zn paddlewheel-pcu 7 453 329 124 1 0.933 0.758 0.742
Zn tetramer-pcu 7 709 709 0 1 0.866 0.744 0.729
Cu paddlewheel-pcu 8 330 245 85 1 0.947 0.759 0.742
Zn paddlewheel-pcu 8 338 247 91 1 0.943 0.763 0.745
Zn tetramer-pcu 8 550 550 0 1 0.905 0.746 0.732
Cu paddlewheel-pcu 9 281 191 90 1 0.979 0.756 0.739
Zn paddlewheel-pcu 9 257 175 82 1 0.989 0.763 0.746
Zn tetramer-pcu 9 389 389 0 1 0.959 0.742 0.727
Cu paddlewheel-pcu 10 235 165 70 1 0.988 0.769 0.750
Zn paddlewheel-pcu 10 217 148 69 1 1.000 0.768 0.749
Zn tetramer-pcu 10 316 316 0 1 0.994 0.750 0.737

Statistics of AI-generated linkers that correspond to different MOF types (first column), number of sampled atoms (N in the second column), number of carboxyl linkers (C, fourth column), and number
of heterocyclic linkers (H, fifth column). In total, there are 12,305 linkers (see Table 2’s Total column, Element filter row) with identified dummy atoms.

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-01090-2 ARTICLE

COMMUNICATIONS CHEMISTRY |            (2024) 7:21 | https://doi.org/10.1038/s42004-023-01090-2 | www.nature.com/commschem 11

www.nature.com/commschem
www.nature.com/commschem


the corresponding molecules (without dummy atoms) are shown
for ease of visualization. For catenated MOF structures, we keep
the spacing between interpenetrated lattices the same, so as to
ensure equal pore sizes.

Screening and predicting properties of AI-generated
assembled MOFs. Here we describe the final Screen and Pre-
dict component of GHP-MOFassemble. After the MOF struc-
tures are assembled, a comprehensive screening workflow is

developed to sift through the candidates with increasing levels of
computational cost and confidence level:

● Inter-atomic Distance Check (screen)
● Pre-simulation Check (screen)
● Predicting CO2 Capacity of MOF via Pre-trained Regres-

sion Model (screen and predict)
● Structure Validation of the Assembled MOFs (screen)
● Grand Canonical Monte Carlo Simulation (screen and

predict)

  

Fig. 11 Assembly of AI-generated linkers with metal nodes. a Identification of dummy atoms for linkers containing carboxyl groups. The dummy atoms
are found by substituting the carbon atoms in the carboxyl groups. The remaining oxygen and hydrogen atoms in the carboxyl groups are removed.
b Identification of dummy atoms for linkers containing heterocyclic rings. The dummy atoms are found at nitrogen-metal bond distance from the terminal
nitrogen atoms along the vectors pointing from the opposing carbon atoms to nitrogen atoms.

Fig. 12 Optimal linkers and catenation levels for MOF assembly. Building blocks and catenation levels of the top six AI-generated MOF candidates.
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Inter-atomic Distance Check. A pairwise distance matrix Mn×n is
extracted from a MOF’s CIF file. The matrix element Mi,j

denoting the Euclidean distance between atom Ai and atom Aj is:

Mi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2 þ ðzi � zjÞ2

q
; ð10Þ

where 1 ≤ i ≤ n and 1 ≤ j ≤ n, and (xi, yi, zi) and (xj, yj, zj) are the
Cartesian coordinates of atoms Ai and Aj. For an arbitrary pair of
atoms Ai and Aj, their chemical symbols can be denoted as Ei and
Ej, respectively. The bond length between atoms Ai and Aj is δ(Ei,
Ej). The minimum allowed inter-atomic distance between the
these two atoms can be estimated by calculating the infimum of
all experimental bond lengths between these two element types,
i.e.: inf ðδðEi; EjÞÞ, which can be queried from the OChemDb38

database. All values of Mi,j (i ≠ j) are compared against
inf ðδðEi; EjÞÞ, and any occurrence of Mi;j< inf ðδðEi; EjÞÞ ði≠jÞ will
result in the MOF candidate being discarded. Entries with i= j
(i.e., the diagonal entries of the distance matrix Mi,i) are not
examined as they should always be zero, because the distance
between an atom and itself is zero. We used Python 3.10’s built-in
multiprocessing library to help launch the inter-atomic distance
check on different MOF structures in parallel.

Pre-simulation Check. For each atom in the MOF structure, the
pre-simulation check workflow can be described as the following:

1. The atom’s element should be recognized as one of the
supported elements in the UFF4MOF parameter set,

2. The atom’s neighboring atoms that are within the allowed
bonding distance are examined for chemistry validity.We
conducted this process with the help of the cif2lammps
library. Python’s multiprocessing library is also used to
speed up this process over many structures in parallel.

Predicting CO2 capacity of MOF via pre-trained regression model.
The GHP-MOFassemble framework uses an ensemble of
regression models to estimate the CO2 capacity of newly gener-
ated pcu MOF structures. We use for this purpose a modified
version of the CGCNN model, developed in our previous work37,
which adopts an adjacency list to format node and edge
embeddings, rather than the adjacency matrix format of the
original CGCNN, a change that enhances model training speed,
training stability, and prediction accuracy. To fine-tune this AI
model, we used MOF structures in the hMOF dataset, along with
their CO2 capacities at 0.1 bar as input. We split the hMOF
dataset into 80% training set, 10% validation set, and 10% test
test. We independently trained three modified versions of the
CGCNN model for 5000 epochs with a batch size of 160, using
Adam as the optimizer, at a learning rate of 10−4, and a weight
decay rate of 2 × 10−5.

Table 5 shows the R2 score, mean absolute error (MAE), and
root mean squared error (RMSE) of the three AI models
ensemble on the 10% test set. Figure 13 shows the distribution
of the standard deviations of ensemble model predictions. We
treat the standard deviation of predictions from the three models
as a measure of model uncertainty, which we view as arising from
the model’s difficulty in learning certain data points. This
uncertainty is also known as epistemic uncertainty. By employing
an ensemble of models and averaging their prediction results, we
can increase prediction accuracy, which is thoroughly and
extensively explored in the machine learning community64,65.
We chose the threshold for the standard deviation filter to be 0.2
mmol g−1 because it is sufficiently small (with 96% of data points
below the threshold) that for low CO2 capacity predictions, the
predicted values across the ensemble are similar. On the other
hand, for high CO2 capacity predictions, it also ensures that the
outliers (i.e., predicted values across the ensemble are vastly
different) are filtered out, therefore minimizing the overall error.
In Table 6 we also notice that most of the high-performing MOFs
are cat2 and cat3. This is consistent with our preliminary analysis
on catenation levels and distributions of CO2 adsorption capacity
in Fig. 5.

We show in the left panel of Fig. 14 the scatter plot of the
ensemble model predictions for the 10% test set (from hMOF),
which has a MAE of 0.093 mmol g−1. Using CO2 capacity of 2
mmol g−1 as a threshold, we repurposed our predictive model as
a classifier to categorize MOFs into low and high performers, with
predicted CO2 capacities below and above the threshold,
respectively. Using this scheme, the confusion matrix for
identifying low and high performers is shown in the right panel
of Fig. 14. We conclude from the confusion matrix that the pre-
trained model classifies both low and high performers with high

-1

Fig. 13 Standard deviation of AI model ensemble to estimate MOFs’ CO2

capacity. Distribution of the standard deviation of AI ensemble predictions.
Predictions with standard deviation of less than 0.2 mmol g−1 consist of
around 96% of the test set. This shows that our three independently
trained AI models are in great agreement. The remaining 4% with larger
than 0.2 mmol g−1 standard deviation implies that these are the data points
which may be difficult to predict due to errors in target property or extra
information other than atomic species and periodic neighbor being
necessary for accurate predictions.

Table 6 Catenation level of high-performing MOFs.

node-topology cat0 cat1 cat2 cat3

Cu paddlewheel-pcu 0 1 38 26
Zn paddlewheel-pcu 0 0 66 23
Zn tetramer-pcu 0 0 53 157

Numbers of predicted high-performing MOFs found in the hMOF dataset.

Table 5 Statistical properties of AI ensemble to characterize
MOF’s performance.

Model R2 MAE RMSE

Model1 0.932 0.098 0.171
Model2 0.937 0.100 0.170
Model3 0.936 0.099 0.170

Statistics of AI ensemble, including R2 score, mean absolute error (MAE), and root mean
squared error (RMSE).
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accuracy, with 98.4% (13,551 out of 13,765) of test samples (of
hMOF) correctly classified. As the test set is heavily imbalanced,
with many more low performers than high performers, we also
calculated the balanced accuracy of classification66 (the sum of
true positive rate and true negative rate divided by two for binary
classification or average of recalls for multi-class classification),
obtaining a value of 90.7%. Since the majority of the 214
misclassified samples lie close to the decision boundaries, as
shown in the red and purple regions of the left panel of Fig. 14,
we conclude that the ensemble model is capable of differentiating
low and high performers.

We show in Fig. 15 the empirical cumulative distribution
functions of the CO2 capacities of hMOF (dashed lines) structures
and AI-generated MOF structures (solid lines) at different
catenation levels. We observe that there are more high-
performing cat2 and cat3 MOFs among the generated structures
compared to the hMOF dataset, as indicated by lower cumulative
density values at 2 mmol g−1 (black dashed line). On the other
hand, there are fewer high-performing cat0 and cat1 MOFs, as
shown by higher cumulative density values at 2 mmol g−1. This
result demonstrates that within the AI-generated MOF design
space, there are more high-performing candidates with higher
catenation levels compared to lower catenation levels.

In summary, we use an ensemble of 3 AI models to identify
pcu AI-generated MOFs produced by the Generate step (in
addition to inter-atomic distance and pre-simulation checks) that
have predicted CO2 capacities higher than 2 mmol g−1. We use
the ensemble mean plus standard deviation as the final prediction.
These MOFs are then selected for further investigation with MD
simulations.

Structure Validation of the Assembled MOFs. Pre-screened MOFs
are checked for stability using MD simulations with LAMMPS42,
version stable release 2 August 2023 compiled with gcc 11.2.0 and
OpenMPI 4.1.2. For each MOF, a 2x2x2 supercell of triclinic
periodic boundary condition is created. A triclinic isothermal-
isobaric ensemble (i.e., NPT) at 300 K and 1 atm is applied to the
supercell structure. All lattice parameters: a, b, c, α, β, γ are
allowed to equilibrate freely. A relatively short simulation with
400,000 steps is conducted for each MOF to allow for structural
equilibrium with a step size of 0.5 femtoseconds. The potential
energy Epot of the MOF structure can be expressed as:

Epot ¼ Ebond þ Eangle þ Edihedral þ Eimproper þ EVdw þ ECoul;

ð11Þ

where Ebond is the bond stretch energy, Eangle is the angle between
bonds energy, Edihedral is the dihedral angle energy, Eimproper is the
improper dihedral angle energy, Evdw is the nonbonded interac-
tion energy, and Ecoul is the Coulombic interaction energy.

Coupry et al. (2016)40 stated that 76.5% of the CoRE
structures14 lattice parameters are within 5% change when they
are simulated with the UFF4MOF parameters. A similar criterion
is used here such that if any of MOF’s lattice parameters of
triclinic cell changes are more than 5%, the structure is discarded
in the screening process. This screening process provides a new
level of confidence in terms of structural stability of the AI-
generated MOFs. Figure 16 demonstrates the relative error of all
lattice parameters of the top six MOF candidates during the MD
simulation.

Grand Canonical Monte Carlo (GCMC) Simulations. The void
fraction of each candidate MOF is calculated using the RASPA43’s
helium void fraction function. It helps us understand the porosity
contribution toward MOF CO2 adsorption capacity. Next,
PACMOF67 is used to assign partial charges to MOFs. Using the
pre-trained partial atomic charge model on the density-derived
electrostatic and chemical (DDEC) charge68 data, the partial
charges are assigned to atoms in MOF structures. After deter-
mining the partial charges, the MOF structures are assigned with
UFF4MOF force field parameters. The GCMC simulations are
conducted at 0.1 bar and 300 K with a step size of 0.5 fs/step. The
MOF structures are under the rigid assumption, therefore only
Van der Waals interactions and Coulombic interactions (i.e.,
non-bonded) are considered:

Epot ¼ EVdw þ ECoul; ð12Þ
which can be expressed as69

Epot ¼ ∑
i;j
4ϵij

σ ij
rij

 !12

þ σ ij
rij

 !6" #
þ

qiqj
4πϵ0rij

; ð13Þ

where ϵij, σij, and rij are the well depth, zero position, and inter-
atomic distance of a Lennard-Jones 12-6 interaction between
atom i and atom j; qi and qj are the electrostatic charges of atom i
and atom j; ϵ0 is the vacuum permittivity.

Computational resources and performance. We have deployed
and extensively tested GHP-MOFassemble on computers at the
ALCF and at the National Center for Supercomputing Applica-
tions (NCSA), with the intent of providing scalable and

-1

1-

Fig. 14 Performance of AI ensemble to measure CO2 capacity. a Predictive performance of the ensemble model on the 10% test set of hMOF. b Confusion
matrix of the ensemble model in classifying low and high performers in the test set. MOFs with real/predicted CO2 capacity lower than 2 mmol g−1 are
identified as low performers, and MOFs with real/predicted CO2 capacity higher than 2 mmol g−1 are identified as high performers.
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computationally efficient AI tools to accelerate the modeling and
discovery of novel MOF structures. The tools introduced in this
work may be readily fine-tuned and adapted to other available
datasets beyond hMOF to enable accelerated design and discovery
of novel MOF structures for carbon capture at industrial scale.

The training and inference of the generative model and the
training of the regression model was conducted on 8-way NVI-
DIA A100 GPUs with FP32 mode. The inference of the regression
model is conducted on a single NVIDIA A40 GPU with FP32
mode. CPU-based screening processes, including distance check,

  -1 m mol g-1

  -1   -1

    

Fig. 15 MOFs’ CO2 capacities in terms of catenation levels. Comparison of empirical cumulative distribution functions of the predicted CO2 capacities of
generated and hMOF structures for a cat0, b cat 1, c cat2, and d cat 3.

Fig. 16 Lattice parameter relative errors of the top 6 AI-generated MOFs. The top six AI-generated MOF candidates have change less than 5% in all
lattice parameter during MD simulation. The first three lattice parameters are cell axes length and the latter three lattice parameters are cell plane angles.
Their CO2 capacities are higher than 96.9% of MOF structures in the hMOF database.
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pre-simulation check, MD simulations, and GCMC simulations,
are run on two-way AMD Epyc 7763 CPUs. We now present a
breakdown of the average computational cost of each step of the
GHP-MOFassemble workflow per MOF:

● MOF assembly: 0.46 seconds per core. We scaled up this
analysis by multiprocessing on 28 cores.

● Distance check to ensure structural validity: 2.56 seconds
per core. We scaled up this analysis by multiprocessing on
128 cores.

● Pre-simulation check to ensure chemical consistency:
19.98 seconds per core. We scaled up this analysis by
multiprocessing on 128 cores.

● AI ensemble inference of CO2 adsorption capacity:
20.46 seconds. We used one NVIDIA A40 GPU.

● MD simulations to validate stability and chemical con-
sistency: 658.40 seconds, or about ~ 10 minutes. We scaled
up this analysis using between six to 14 MPI processes
based on the number of atoms in the MOF.

● Detailed GCMC simulations: 21214.04 seconds, or about
~6 hours. This averaged number is based on simulations on
one CPU core.

A schematic representation of this benchmark analysis is
presented in Fig. 17.

Data availability
The datasets generated during and/or analysed during the current study are available in
the GitHub repository, https://github.com/hyunp2/ghp_mof/tree/main/utils. We also
used the open source hMOF dataset70, and the GEOM dataset56.

Code availability
The scientific software and data used in this article are readily available in GitHub at
https://github.com/hyunp2/ghp_mof/tree/main.
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