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Dietary macronutrient composition
impacts gene regulation in adipose tissue
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Diet is a key lifestyle component that influences metabolic health through several factors, including
total energy intake and macronutrient composition. While the impact of caloric intake on gene
expression and physiological phenomena in various tissues is well described, the influence of dietary
macronutrient composition on these parameters is less well studied. Here, we use the Nutritional
Geometry framework to investigate the role of macronutrient composition on metabolic function and
gene regulation in adipose tissue. Using ten isocaloric diets that vary systematically in their proportion
of energy from fat, protein, and carbohydrates, we find that gene expression and splicing are highly
responsive to macronutrient composition, with distinct sets of genes regulated by different
macronutrient interactions. Specifically, the expression of many genes associated with Bardet-Biedl
syndrome is responsive to dietary fat content. Splicing and expression changes occur in largely
separate gene sets, highlighting distinct mechanisms by which dietary composition influences the
transcriptome and emphasizing the importance of considering splicing changes to more fully capture
the gene regulation response to environmental changes such as diet. Our study provides insight into
the gene regulation plasticity of adipose tissue in response tomacronutrient composition, beyond the
already well-characterized response to caloric intake.

Diet and nutrition are key determinants of metabolism, with implications
for both personal and public health. However, what defines a metabolically
healthy diet remains elusive. Some studies have focused on total energy and
caloric restriction as the most impactful components of a healthy diet1,2,
while others have argued for the importance of particular nutrients such as
fat, carbohydrates, or protein3,4. One contested component of a healthy diet
is therefore macronutrient composition, namely the ratio of fat, carbohy-
drates, and protein in a diet. Therefore, understanding the impact of these
macronutrients on metabolic health is important for defining a healthy
lifestyle and may lead to better-informed nutritional guidelines.

Studies that investigate the impactof diet onmetabolic health often rely
on ahigh-fat diet paradigm,where a high-fat, energy-dense diet is compared
to a control diet. This study design focuses on a single macronutrient and
conflates changes inmacronutrient compositionwith changes in the energy
density of thediet. TheNutritionalGeometry frameworkmovesbeyond this

single-macronutrient-at-a-time paradigm by considering a wide range of
diets that vary systematically in their ratios of fat, carbohydrates, and
protein5–8. By considering a large number of isocaloric diets, this framework
allows us to determine the metabolic impact of each individual macro-
nutrient and interactions between macronutrients, while controlling for
caloric density through titrating indigestible cellulose. Previous work using
the Nutritional Geometry framework has shown that both total energy
intake and dietary macronutrient composition impact metabolic health,
lifespan, and fertility9–12, but themechanismsunderlying these effects arenot
fully known.

A deeper understanding of the molecular mechanisms underlying
changes in metabolic function in response to dietary macronutrient com-
position may provide insights into what constitutes a healthy diet and
possible interventions to maintain a healthy metabolic profile. One
mechanism thatmayunderlie the observed changes inmetabolic function is
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changes in gene regulation in metabolic tissues, whichmay lead to changes
in tissue function and overall health. Adipose tissue is a keymetabolic tissue
that is highly functionally dynamic in response tometabolic change13,14 and
is known to have dynamic gene regulation after exposure to high fat diet15.
By investigating gene regulation changes in adipose tissue in response to
differences inmacronutrient composition, we can gain further insights into
the impact of diet on adipose tissue function and possibly undercover
mechanisms underlying previously reported effects of dietary macro-
nutrients on metabolic health.

Many studies that consider gene regulation change focus on gene
expression alone, but it is important to also consider the role of other forms
of gene regulation, such as alternative splicing, in the metabolic response to
diet.Alternative splicing is a fundamental source of functional complexity in
tissues and contributes to tissue identity and development16,17. Alternative
splicing is also a highly regulated process, and its misregulation can lead to
developmental defects and disease18,19. However, in the context of gene
regulation under environmental effects such as diet, splicing remains rela-
tively understudied compared to othermechanisms of gene regulation, such
as transcriptional regulation.

Here, we used the Nutritional Geometry framework to investigate the
effects of dietary macronutrient composition on metabolic function and
gene regulation in the fat pads of male mice. This framework provides
insight into a more complete dietary space than previously considered,
allowing us to determine the impact of each macronutrient singly and in
combination. Using RNA-seq data collected from the fat pads of mice fed
one of ten isocaloric diets ad libitum, we identified extensive differences in
both gene expression and splicing in response to dietary composition and

determined the primary macronutrients driving the observed differences.
The majority of alternative splicing events we identified are in genes whose
expression is not significantly different in response to dietary composition,
highlighting a pervasive and complementary mechanism by which cells
regulate their transcriptome beyond regulation of gene expression. Using
this comprehensive dietary paradigm we are able to cluster the gene reg-
ulation changes on the basis of their functional response to macronutrients
and identify several common patterns of gene regulation associated with
dietary macronutrient composition, providing insight into the effect of
different macronutrients and macronutrient interactions on adipose tissue
function.

Results
Body composition and metabolic health
Tomeasure the impact of dietarymacronutrient composition onmetabolic
health, we fed 60 male mice one of 10 isocaloric diets that differed sys-
tematically in their ratios of protein, carbohydrates, and fat (Fig. 1a, Table 1).
For each mouse, we collected data on body composition, including body
weight, fat mass, and lean mass, as well as other measures of metabolic
health such as glucose tolerance (Supplementary Fig. 1, Supplementary
Data 1). To analyze these data we used a mixture-model framework, where
models were fitted for each metabolic response over the dietary space,
exploring linear, non-linear, and interactive effects of the macronutrients.
Predictions from fitted models were then plotted as a right-angled mixture
triangle with the percent dietary protein on the x-axis, percent dietary
carbohydrate on the y-axis, and percent dietary fat as the distance from the
hypotenuse to the origin20.

Fig. 1 | Metabolic response to dietary macro-
nutrient composition. a A diagram of the experi-
mental setup and data collection. b Surfaces of
metabolic measures across the 10 diets plotted as a
right-angled mixture triangle, with color indicating
the level of the measured variable (red = higher,
blue = lower) and isolines showing the model pre-
dicted response. The diagonal lines are included to
help visualize fat content and are isolines of dietary
fat content. At the origin, dietary fat content is 100%
and it decreases to 0% as you move away from the
origin along the y = x line. n = 6 mice per diet. In a,
the image of amouse was sourced from SciDraw and
was created by Heath Robinson, and is licensed
under a CC-BY 4.0 license. Modifications were
made. The icon of an adipose cell was sourced from
Bioicons and created by Servier, and is licensed
under a CC-BY 3.0Unported License.Modifications
were made.
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Using this framework, we found that dietary macronutrient compo-
sition had a significant impact on body composition and metabolic health
(Fig. 1b). Bodyweight, fatmass, leanmass, and glucose tolerance all differed
significantly across the diets. Body weight and fat mass were both max-
imized on amoderate fat, moderate carb, andmoderate protein diet (diet 7,
Supplementary Table 1) and minimized on a low protein, moderate carb,
high fat diet (diet 1, SupplementaryTable 1).When considering associations
with single macronutrients, body weight was positively correlated with
protein content (r = 0.26, P = 0.043) and negatively correlated with fat
content (r =−0.40, P = 0.0017) whereas fat mass was positively correlated
with carbohydrate content (r = 0.40, P = 0.0015) and negatively correlated
with fat content (r =−0.39, P = 0.0019) (Supplementary Fig. 2).

In contrast, lean mass was positively correlated with protein content
(r = 0.52, P = 2.0e-05) and not correlated with fat or carbohydrate content
(Supplementary Fig. 2). Lean mass was maximized on a moderate protein,
high carb, and low fat diet (diet 5) andminimized on lowprotein diets (diets
1 and 2) (Supplementary Table 1). Glucose tolerance was also impacted by
differences indietarymacronutrient composition (Fig. 1b). The incremental
area under the curve (iAUC) in an oral glucose tolerance test was positively
correlated with protein content (r = 0.40, P = 0.0017) and negatively

correlated with carbohydrate content (r =−0.28, P = 0.033), but not cor-
related with fat content (Supplementary Fig. 2).

Dietary macronutrient composition therefore had diverse impacts on
body composition and metabolic health. Using the Nutritional Geometry
framework, we are able to determine the impact of differences in macro-
nutrient composition alone, in the absence of differences in caloric density.
This allows us to ask more precise questions about the impact of individual
macronutrients on metabolic health without confounding with the energy
density of the diet, as is common in ahigh fat diet context. In this context, we
found evidence for both linear and non-linear effects of dietary macro-
nutrients on various metabolic measures. Body weight and fat mass were
both negatively correlated with fat content, with some interactions with
protein and carbohydrate content as well. On the other hand, leanmass and
glucose tolerance were correlated with protein content but not fat content.
Overall, in an isocaloric context the ratio of dietary macronutrients sig-
nificantly altered the metabolic profiles of these mice.

Changes in gene regulation in response to diet
Tobetter understandhowdifferences indietarymacronutrient composition
led to the observed effects on metabolic health in vivo, we investigated
alterations in gene regulation programs associated with the observed
changes in body composition and metabolic parameters. We performed
RNA-seq in the inguinal fat pads of each of the 60mice tomeasures changes
in gene expression and splicing across the 10 diets. Following quality
assessment, 57 samples were retained for all genomics analyses (n = 5 or 6
per diet). We tested the response of each gene or exon across the macro-
nutrient space, and found that therewere 4308differentially spliced exons in
2615 unique genes (Fig. 2a, Supplementary Fig. 3a, Supplementary Data 2)
and 5644 differentially expressed genes (Fig. 2c, Supplementary Fig. 3b,
Supplementary Data 2). Only 967 genes were both differentially expressed
and differentially spliced, with the majority of genes that underwent gene
regulatory changes being acted on by only one of the two measured
mechanisms (Fig. 2b).

We therefore observed abundant changes in gene regulation in
response to differences in dietary macronutrient composition, with
expression and splicing changes largely occurring in distinct genes,
underscoring how distinct gene regulatory strategies may impact the tran-
scriptome in cells quantitatively (through transcription regulation) and
qualitatively (through differential usage of exons encoding specific protein

Table 1 | Dietary macronutrient composition

Diet Protein (%) Carbohydrate (%) Fat (%)

1 7 33 60

2 7 78 15

3 14 56 30

4 14 26 60

5 21 64 15

6 21 34 45

7 30 40 30

8 35 20 45

9 42 43 15

10 50 20 30

The macronutrient composition of each experimental diet as a percent of total energy.

Fig. 2 | Significant regulatory response to dietary
macronutrient composition. a Volcano plot of
differential splicing changes, plotting the log fold
change between 15% dietary fat and 60% dietary fat.
Blue dots are significant, black are non-significant.
Extreme exons in terms of log fold change or p-value
are labeled. b Venn diagram of differentially
expressed and/or differentially spliced genes.
c Volcano plot of differential expression changes,
plotting the log fold change per percent dietary fat.
Red dots are significant, black are non-significant.
d Venn diagram of the correlation of each differ-
entially spliced exon with the three macronutrients.
e Venn diagram of the correlation of each differen-
tially expressed gene with the three macronutrients.
n = 57 mice.
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domains). This analysis identifies genes and exons that were significantly
impacted by diet, but doesn’t provide insight into what macronutrient or
macronutrients these genes and exons might be responding to. We found
that metabolic measures can have disparate responses to macronutrient
composition (Fig. 1b), and therefore sought to better understand what
macronutrient interactions might be driving the observed changes in gene
expression and splicing.

Correlation between gene regulation changes and individual
macronutrients
Toquantify the impactof individualmacronutrients ongene expressionand
splicing, we calculated the correlation of each differentially expressed gene
or differentially spliced exon with fat, protein, and carbohydrate content.
We found that dietary fat content is the predominant driver of the observed
gene expression and splicing changes (Fig. 2d, e). This was particularly true

for the differential splicing changes, where 4128 differentially spliced exons
in 2510 genes (96% of all differentially spliced exons) were correlated with
dietary fat content (Fig. 2d).Ofnote, thediets in this study containedvarying
amounts of non-digestible cellulose to maintain their caloric density. Cel-
lulose content of the diet is positively correlated with fat content, so it is
possible that some of the gene regulation changes that are correlatedwith fat
content are actually responding to fiber content of the diet. However, due to
the indigestible nature of the cellulose we believe that fat content is themain
driver of the observed gene regulation changes.

Although fat content was the strongest driver of gene regulation
changes, protein and carbohydrate content were also correlated with many
of the changes in gene expression and splicing, often in conjunctionwith fat
content. Gene regulation changes correlated with more than one macro-
nutrient represent 46% of all differentially expressed genes, and 45% of all
differentially spliced exons. While correlations with individual

Fig. 3 | Differential splicing changes clustered into
five distinct groups. a Surfaces generated from the
mean centered and scaled exon usage of each exon
assigned to the cluster, with color indicating the level
of exon usage (red = higher, blue = lower). bThe five
most significantly enriched functional terms for
each cluster. n = 6 for diets 1, 5, 6, 7, 8, 9, and 10 and
n = 5 for diets 2, 3, and 4.
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macronutrients can capture some of the dynamics of this dietary space, they
do not necessarily capture the full response of genes and exons across all
10 diets, especially for gene regulation changes that respond to multiple
macronutrients or interactions between macronutrients. To better capture
these complex dietary responses,we sought to categorize the gene regulation
changes that we observed in terms of their holistic response across the
nutrient space encompassed by the 10 diets, as opposed to focusing on each
macronutrient separately.

Clustering analysis of differentially spliced exons
We identified complex gene regulation responses to differences in dietary
macronutrient composition, including many genes and exons that
responded to multiple macronutrients or possibly interactions between
macronutrients. To better partition these complex responses, we can
quantify the response of each differentially spliced exon to macronutrient
composition using the regression coefficients from a mixture model.
Nutritional Geometry then allows these responses to be visualized as
response surfaces (topologies) mapped onto dietary macronutrient space.
We therefore clustered all the differentially spliced exons based on the
regression coefficients for all three nutrients using fuzzy c-means clustering
and visualized each cluster using a response surface generated from the
mean exonusage for all exons assigned to that cluster.Using thismethod,we
canobserve amore representative range of dietary response landscapes than
simple linear correlationswith individualmacronutrients. The results of this
analysis with five clusters are shown (Fig. 3a).

Consistentwith the results from the correlation analysis,we see that the
three largest clusters (clusters 3–5) show a predominant response to fat
content, either positive (clusters 3 and 4, which were closely similar in
topology) or negative (cluster 5). The remaining two clusters capture
interaction effects, namely a positive carbohydrate by negative protein
gradient (cluster 1) and a positive protein bynegative fat gradient (cluster 2).

These interaction effects were not identified as strong signals from the
single-nutrient correlation analyses (Fig. 2d) and would most likely have
been missed had we not considered the full response of each exon across
nutrient space and instead considered one macronutrient at a time, as is
conventional.

We next investigated whether these groups of exons that were
clustered based on their response to diet also fell into shared functions or
pathways. Using functional enrichment analysis21, we found that the
clusters were significantly enriched for distinct functional terms (Fig. 3b).
Cluster 1, which demonstrated a primarily carb by protein gradient, was
enriched for terms related to cell adhesion, such as cell-cell adhesion and
focal adhesion. The protein by fat cluster (cluster 2) was also enriched for
focal adhesion, but showed stronger enrichment for regulation of cell
morphogenesis involved in differentiation and regulation of protein
catabolic processes. In contrast, the exons responding more to fat con-
tent, such as cluster 5, show enrichment for terms related to intracellular
transport and organization.

Overall, we observe distinct functional enrichment in groups of exons
that respond differently to dietary macronutrient composition, demon-
strating the importance of capturing the full dietary response to understand
gene regulation changes in response to diet. Further, most of these genes
would not have been identified as undergoing gene regulation change if we
had considered expression differences alone, emphasizing the need to
consider splicing as well as expression changes when analyzing gene reg-
ulation responses.

Differential splicing of key adipocyte genes
In addition to considering the differential splicing changes at the level of
clusters and functional groups, we also identified individual splicing events
predicted to have significant impact on adipocyte function. These include
differential splicing events in Vegfa and Igf1.

Fig. 4 | Differential splicing of Vegfa and Igf1. a Surface of the centered and scaled
exon usage of Vegfa exon 6. b Diagram of selected Vegfa isoforms. Exon 6 is high-
lighted in pink. c Surface of the centered and scaled exon usage of Igf1 exon 5.

dDiagram of selected Igf1 isoforms. Exon 5 is highlighted in pink. n = 6 for diets 1, 5,
6, 7, 8, 9, and 10 and n = 5 for diets 2, 3, and 4.
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Vegfa regulates angiogenesis, and has been implicated in adipose tissue
response to diet-induced obesity22,23. Specifically, overexpression ofVegfa in
the fat pads of mice leads to increased vascularization and a healthier
phenotype in response to high fat diet23. In our study, we found that exon 6
of Vegfa was differentially spliced in response to dietary composition, and

demonstrated a predominant response to carb and protein content of the
diet (Fig. 4a). Exons 6 and 7 contain heparin-binding domains, and are
known to be differentially spliced to produce isoforms that contain one,
both, or neither domain24 (Fig. 4b). Transcripts lacking exon 6 and 7 pro-
duce a variant of Vegfa that does not bind heparin and is fully soluble,

Fig. 5 | Differential expression changes clustered into five distinct groups.
a Surfaces generated from the mean centered and scaled expression of each gene
assigned to the cluster, with color indicating the level of expression (red = higher,

blue = lower). b The five most significantly enriched functional terms for each
cluster. n = 6 for diets 1, 5, 6, 7, 8, 9, and 10 and n = 5 for diets 2, 3, and 4.
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whereas heparin-binding variants of Vegfa bind to the cell surface and
extracellular matrix, with different isoforms leading to different sites of
angiogenesis25. Therefore, differential splicing of exon 6 in response to
macronutrient composition suggests that changes in dietary carb and/or
protein contentmay lead to changes in the angiogenic potential andpatterns
of fat tissue.

Another key adipocyte gene thatwe identified asdifferentially spliced is
Igf1. Igf1 regulates adipocyte differentiation26,27 and controls the response of
adipose tissue to metabolic stress28. Alternative splicing produces isoforms
of IGF1 that differ in their N-terminus (known as the signal peptide) and
C-terminus (known as the E peptide), which are removed post-
transcriptionally to produce the same mature peptide29. In mice, there are
two main variants of the E peptide based on whether exon 5 is spliced in or
out29 (Fig. 4d). The E peptide that includes exon 5 has been functionally
implicated in IGF1 bioavailability, via more strongly facilitating IGF1
binding to the extracellular matrix than the shorter E peptide30, and
increases the adipogenic potential of bone marrow mesenchymal stem
cells31. Here, we found that exon 5 of Igf1 was differentially spliced in

response to dietary composition, and identified a specific response to the
protein by fat ratio of the diet (Fig. 4c).

Although adipose tissue does express Igf1, it is not themain source of
circulating IGF1. Rather, the main contributor to circulating IGF1 levels
is hepatocytes32. To further support our finding that dietary macro-
nutrient composition significantly impacts Igf-1 splicing and adipose
tissue function, we therefore asked whether Igf-1 splicing in the liver was
also responsive to diet. Using liver samples collected from the same 60
mice in which we assayed adipose gene regulation changes, we used
RNA-seq to measure the impact of dietary macronutrient composition
on Igf-1 splicing in the liver. We found that Igf-1 exon 5 is indeed dif-
ferentially spliced in response to diet in the liver, and responds primarily
to protein content of the diet (Supplementary Fig. 4). The Igf-1 exon 5
splicing surfaces are distinct between adipose and liver tissue, with the
liver splicing displaying a more marked response to dietary protein
content. Notably, in both tissues exon 5 of Igf-1 is responsive to diet and
minimized on low protein diets. This result suggests that there may be
differences in IGF1 bioavailability in response to different dietary

Fig. 6 | Response of BBS genes to dietary fat. a Diagram of the primary cilia, with
BBS genes organized by their role in cilia function. Differentially expressed BBS
genes are highlighted in orange. BBS-associated gene functions adapted from pre-
vious work35,64,65. b Surfaces generated from the expression of each differentially
expressed BBS gene. c Heatmap of the correlation of each differentially expressed

BBS gene’s expression with the cell type proportions estimated by deconvolution.
d Plots of the correlation between food intake (grams per day) and the expression of
Bbs2, Bbs10, and Bbs12. n = 6 for diets 1, 5, 6, 7, 8, 9, and 10 and n = 5 for diets 2,
3, and 4.
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macronutrient compositions in both liver and adipose tissue, potentially
leading to changes in adipose tissue function.

Since neitherVegfanor Igf1were differentially expressed in response to
dietary macronutrient composition, the impact of macronutrient compo-
sition on these biological processes would not have been detected by mea-
suring differential expression. By analyzing differential splicing changes, we
were able to detect gene regulation changes that may alter adipocyte func-
tion and that would have been missed when considering gene
expression alone.

Clustering analysis of differentially expressed genes
Next, we performed fuzzy c-means clustering on the responses of the 5644
differentially expressed genes to capture the differential expression
dynamics across all ten diets. The results of this analysiswithfive clusters are
shown (Fig. 5a). From these five clusters, the largest two clusters show a
strong positive (cluster 4) or negative (cluster 5) fat gradient. This is con-
sistent with the single-nutrient correlation results that identified fat content
as the strongest driver of the observed expression changes (Fig. 2e), aswell as
the splicing clustering results in which the three largest clusters (clusters
3–5) also show a predominant response to fat (Fig. 3a). The remaining three
clusters capture interaction effects between the macronutrients, specifically
fat by protein gradients (cluster 2 showing a negative fat by positive protein
interaction and cluster 3 showing a positive fat by negative protein inter-
action) and a positive carbohydrate by negative protein gradient (cluster 1).
Again, these dietary interactions were not apparent in single nutrient
analyses.

We next investigated whether genes falling into these distinct clusters
based on their response to diet also had distinct biological functions. Using
functional enrichment analysis, we found that the clusters differed not just
in their response to diet but also in their functional enrichment (Fig. 5b).
One particularly strong enrichment signal was for immune function in
genes assigned to cluster 1, possibly representing an inflammatory pheno-
type associatedwith carb and protein content in the diet.We found another
strong enrichment signal for cilium function in cluster 4,where the enriched
categories included cilium organization, cilium assembly, and intraciliary
transport. Differentiating preadipocytes are ciliated, and cilia function is
known to be involved in adipocyte differentiation33,34. The observed gene
expression differences in cilia function could therefore indicate changes in
adipogenic potential in the fat pad in response to dietary fat content.Overall,
these data demonstrate that there are distinct sets of genes that respond
differently to dietary macronutrient composition and carry out distinct
functions in adipose tissue.

Changes in the expression of cilium-associated genes in
response to dietary fat
One of the most striking enrichment signals that arose from the clustering
analysis of differentially expressed genes was the enrichment in cluster 4 for
genes involved in ciliary function (Fig. 5b).Whenwe investigated this signal
more closely, we found that the signal was driven in part by a set of genes
associatedwithBardet-Biedl syndrome (BBS). BBS is anautosomal recessive
ciliopathywith symptoms that include obesity35. At least 19 genes have been
shown to causeBBS,manyofwhich are associatedwith a structure called the
BBSome,which is a protein complex that is involved in protein trafficking to
the cilium36.

In our differential expression analysis, we found that nine BBS-
associated genes were differentially expressed in response to dietary mac-
ronutrient composition. These nine genes have a variety of ciliary-related
functions, including some that are components of the BBSome itself
(Fig. 6a). Eight of the nine differentially expressed BBS-associated genes
were assigned to cluster 4 and one (Ift27) was assigned to cluster 3 (Fig. 5a).
As expected from the clustering analysis, the surface plots for each indivi-
dual gene assigned to cluster 4demonstrated a strong expression response to
dietary fat content (Fig. 6b). This may represent a novel association of BBS
genes with diet-induced metabolic changes, in particular in response to
differences in dietary fat content.

Many BBS genes are known to be upregulated during adipocyte
differentiation37. It is therefore possible that the increase of BBS gene
expression in response to dietary composition represents a change in cell
type composition of the fat pads, withmore differentiating preadipocytes
present in diets with high fat content.We therefore sought to determine if
there were changes in cell type composition associated with changes in
BBS gene expression. All analyses in this study were done in bulk tissue
samples, and we do not have direct access to measurements of cell type
composition of the tissue. Using the dampened weighted lease squares
(DWLS) method38, we performed cellular deconvolution to computa-
tionally estimate the cell type composition of each bulk tissue sample
based on bulk gene expression and a reference single-cell RNA-seq
dataset of mouse adipose tissue39. We found that there were significant
differences in predicted cell type composition in response to dietary
composition, including a change in the estimated proportion of adipo-
cyte progenitor cells that was predominately associated with protein
content in the diet (Supplementary Fig. 5).

We next asked whether BBS gene expression was correlated with cell
type composition. We limited this analysis to the five cell types that were
identified at >1% frequency in at least one sample.We found that therewere
correlations between BBS gene expression and predicted cell type compo-
sition (Fig. 6c). In particular, seven of the nine differentially expressed BBS
genes were positively correlated with mAd3 proportion and negatively
correlatedwithmAd5proportion. Although this correlationmay suggest an
association between BBS gene expression and these specific adipose sub-
clusters, it may also simply be due to the fact that both BBS genes and the
proportion of adipocyte subclusters are independently correlated with fat
content in the diet. Thesemouse adipocyte subclusters have previously been
identified as responding to high fat diet, with mAd3 proportion reduced
after high fat diet andmAd5 increased39.Here,we saw anegative association
between mAd5 proportion and fat content, and a positive association
between mAd3 proportion and fat content (Supplementary Fig. 5). Given
that our diets were isocaloric, our results suggest that these adipocyte sub-
clusters may be responding to caloric density rather than fat content in the
high fat diet context. Notably, none of the differentially expressed BBS genes
were associated with the predicted proportion of adipocyte progenitors,
suggesting that the observed gene expression changes are not due to a
change in cell type composition.

To complement and extend these results based on computational
deconvolution of cell type composition, we also performed single-nucleus
RNA-seq in adipose tissue fromonemouse fromadietwith high fat content
(diet 4, 60% fat) and onemouse from a diet with low fat content (diet 7, 30%
fat).After anchoring the resulting single-nucleus datasets to the same single-
cell atlas that was used for deconvolution39, we identified clusters associated
with all of the major cell types we expected to find in adipose tissue, such as
adipocytes, adipose stem and progenitor cells (ASPCs), immune cells, and
mesothelial cells (Supplementary Fig. 6a). We do observe some differences
in cell type composition between these two samples,most notably a decrease
in the proportion of total cells identified as adipocytes in the diet 7 sample as
compared to diet 4.

To assess the expression of the differentially expressed BBS genes in
each sample and cluster, we calculated a BBS expression score based on the
sumof the normalized, centered, and scaled expression across the nine BBS-
associated genes of interest.As expected from thebulk expression results,we
see that the BBS genes are overall more lowly expressed in the diet 7 sample
than in diet 4 (Supplementary Fig. 6b), with a particular depletion of BBS
gene expression in the adipocyte and mesothelial cell clusters in diet 7.
Overall, these results suggest that BBS gene expression is lowered inmultiple
cell types, including adipocytes and ASPCs, in response to differences in
dietary fat content, possibly leading to altered adipogenic potential in
response to diet.

Finally, some BBS genes, such as Bbs240, Bbs1041, and Bbs1242, are
associated with changes in food intake. We therefore tested the association
between the expression of these BBS genes and the food intake of each
individual mouse. We found that there were no significant correlations
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(Fig. 6d), suggesting that in this context BBS gene expression is not a sig-
nificant driver of food intake.

Altogether, our results indicated that the observed changes in BBS gene
expression may regulate ciliary function in response to dietary macro-
nutrient composition, which does not appear to be caused by changes in cell
type composition in adipose tissue.This suggests a possiblynovel role for the
BBSome and other BBS-associated genes in response to diet.

Discussion
In this study, we aimed to use the Nutritional Geometry framework to
dissect the effects of dietary composition and interactions between macro-
nutrients on gene regulation in adipocytes. By using ten isocaloric diets that
cover a large range of themacronutrient space, we could precisely assign the
observed gene regulation changes to specific macronutrient gradients and
control for effects of caloric density and energy intake. Using this frame-
work, we have generated a comprehensive analysis of gene regulation
changes in fat tissue in response to differences in macronutrient composi-
tion, and identified key changes that may be important for adipocyte
biology.

Our results illustrate the power of the Nutritional Geometry frame-
work to identify patterns of regulation beyond linear relationships with
single macronutrients. Using RNA-seq data from a broad range of diets, we
are able to quantify the holistic response of each gene regulation change to
macronutrient composition andcluster the gene regulation responses across
nutrient space. This clustering analysis identified a positive carbohydrate by
negative protein gradient (cluster 1) and a positive protein by negative fat
gradient (cluster 2) as key patterns in both the differential splicing and
differential expression analyses (Figs. 3a, 5a). Interaction effects such as
these would be difficult or impossible to identify from single nutrient ana-
lyses or a standard high fat diet paradigm. Clustering gene regulation
responses across the nutrient space encompassed by these 10 diets therefore
allows for more precise interpretation of response to diet than was pre-
viously possible.

We also showed that both expression and splicing in fat tissue are
dynamic in response to environmental change such as dietary composition,
and that they act on largely separate gene sets (Fig. 2). Many studies of gene
regulatory responses focus solely on gene expression changes, and in doing
so may miss a great deal of impactful regulatory changes that are due to
alternative splicing. Here, we see large changes in the transcriptome in
response to macronutrient composition that are regulated at the level of
alternative splicing and would not have been detected by looking at gene
expression alone.Of note, it is possible that the lack of overlap between gene
expression and splicing changes is due to lower power to detect changes at
the splicing level than at the expression level. However, if that were the case
we would expect the splicing results to largely be a subset of the expression
results, whereas we identify more genes that are acted on solely by splicing
than genes that are impacted by both splicing and expression.We therefore
conclude that these findings suggest that thousands of differentially spliced
exons represent a concerted cellular response to dietary composition that
impacts the transcriptome in amechanism independent of gene expression,
highlighting the importance of giving further consideration to the role of
alternative splicing in adipocyte biology and in the response of other tissues
to dietary composition.

Our results also have implications for the interpretation of the effects of
genetic variants onmetabolic traits anddiseases.Metabolic disorders suchas
obesity and diabetes are complex diseases, with both genetic and environ-
mental components43,44. When considering the contribution of genetics to
these diseases, previous studies have demonstrated that splicing quantitative
trait loci (sQTLs) play an important role in disease risk and etiology45–47.
While some genetic variants have been associatedwith gene expression and
metabolic traits48–51, the functional impact of most GWAS variants asso-
ciated with metabolic disease remains uncharacterized52–54. We found that
splicing is highly dynamic in response to dietary composition, including
alternative splicing changes that may have significant impacts on adipocyte
biology. One possiblemechanism underlying these uncharacterizedGWAS

variants is therefore that theymodulate splicing, but not gene expression, in
response to environmental inputs such as diet. These results highlight the
role of splicing in the response of adipose tissue to dietary composition, and
provide a foundation from which to consider the impact that genetic var-
iation may have on these processes.

Further research will be required to determine the similarity between
the changes seen here and the gene regulatory impact of differences in
macronutrient composition in humans. Of particular interest is determin-
ing whether there may be any genotype by environment interactions gov-
erning these responses in humans, with implications for public dietary
guidelines and personalized medicine approaches. Of note, this study was
conducted in only youngmale mice of a single strain, and future studies are
needed todeterminewhether these results replicate fully in both femalemice
and humans.

Finally, although the diets used in this studywere isocaloric per gramof
food (i.e. all of the diets had the same energy density), the mice were ad
libitum fed and there was variation in food intake (and therefore energy
intake) across thediets, as show inFig. 1d inCrean et al.55. In particular,mice
on the lowest protein diets (7% of energy from protein) showed increased
food intake, as previously reported9,56. Although we cannot rule out the
possibility that some of the gene regulation changes we see are due to
differences in energy intake between the diets, food intake was not sig-
nificantly correlated with fat content (Supplementary Fig. 7), which we
identified as the strongest driver of gene regulation changes in this study. As
this study focused on isocaloric diets, further research is necessary to con-
sider the impact of energy level on these processes.

Overall, this study utilizes the Nutritional Geometry framework to
expand our understanding of the impact of macronutrient composition on
metabolic function and gene regulation in adipose tissue.We find that both
expression and splicing arehighly dynamic across thedietary space, and that
considering multiple modes of gene regulation change provides novel
insights into the processes underlying the metabolic response to macro-
nutrient composition.

Methods
Animal husbandry
C57BL/6 J male mice (n = 60), housed in the Charles Perkins Centre
(Sydney, Australia) animal facility (24-26◦C, 44-46% humidity, 12 h day/
light cycle), were used in this study. Four-week-old mice were purchased
from the Animal Resources Centre (Murdoch, Australia) and allowed to
acclimate for 3 days before being randomly assigned to dietary treatments.
Food and water were supplied ad libitum, mice were weighed weekly, and
health checks performed at least twiceweekly.Micewere anaesthetizedwith
sodium pentobarbital (100mg/kg) and culled at 21 weeks of age for tissue
collection. Gonadal white adipose tissue deposits and liver tissue deposits
were weighed, snap frozen in liquid nitrogen, and stored at -80◦C until
furtheruse.All procedureswere reviewed and approved by theUniversityof
Sydney animal ethics committee (project number 2019/1610). We have
complied with all relevant ethical regulations for animal use.

Diets
Ten treatment diets, manufactured by Specialty Feeds (Glen Forrest, Aus-
tralia), were designed to include ingredients of AIN-93G in varying pro-
portions to cover the full range of physiologically viable macronutrient
intake space (Fig. 1). Non-digestible cellulose was included at varying
amounts to maintain the net metabolizable energy of diets at 14.7MJ/kg
(3.5 kcal/g). Micronutrient content was equal across diets. Protein content
was exome-matched to the Mus musculus genome57, achieved by mixing
casein and whey protein isolates supplemented with leucine, threonine,
methionine, tyrosine, phenylalanine, tryptophan, alanine, aspartic acid,
arginine, glycine, histidine and serine. Omega 3 to omega 6 fatty acid ratio
was maintained at 1:3.7 using a combination of soybean oil, linseed oil and
lard, with saturated fats making up 23.2% of dietary fats. Carbohydrate
sources included wheat starch, dextrinised starch and sucrose at a ratio of 4:
1.3: 1. Individual food intake was measured at 16 and 20 weeks of age by
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weighing food before and after a 24- h feeding period. Beddingwas changed
at the start of intake measures and sifted for food crumbs at the end of the
feeding period to obtain as accuratemeasures of food consumed as possible.

Body composition and metabolic phenotyping
Metabolic phenotyping was completed at 18 weeks of age. Body composi-
tion was measured using an EchoMRI-900-A130 (EchoMRI, Houston,
USA).Oral glucose tolerance testswere performed after 4 h of fasting. Blood
samples were obtained by tail tipping and blood glucose measured using a
clinical glucometer (Accu-Chek Performa, Roche Diagnostics Australia Pty
Ltd).Glucose (2 g/kg leanmass)was administered via oral gavage and blood
glucose wasmeasured at baseline, 15, 30, 45, 60 and 90min. Blood from tail
tipping was also used to measure blood insulin at baseline, 15 and 30min,
using an enzyme-linked immunosorbent assay (ELISA) following manu-
facturer’s instructions (Crystal Chem IL).

Bulk RNA extraction and sequencing
Fat tissue was lysed with a 20 G needle in Trizol (Life Technologies,
#15596018) and total RNA was extracted using the Zymo Direct-zol RNA
Miniprep kit (Zymo, #R2052). RNA quantity and quality were measured
using the Agilent 2100 Bioanalyzer (Agilent). RNA-seq libraries were gen-
erated from 1 μg of total RNAusing theNEBNext Ultra II Directional RNA
library prep kit (NEBNext, #E7765) and NEBNext Poly(A) mRNA mag-
netic isolation module (NEBNext, #E7490) with a size selection step to
generate 300 bp inserts. The libraries were sequenced using an Illumina
NovaSeq 6000 machine (Illumina) with 100 bp paired end reads. Samples
were sequenced to an average depth of 84,769,220 reads per sample
(54,667,206–209,155,949).

10 - 20mg of flash-frozen liver tissue was disrupted using a Dounce
homogenizer in ice-cold homogenization buffer (250mM sucrose, 25mM
KCl, 5mMMgCl2, 20mMTricine pH7.8). The homogenatewasmixed 1:3
withTri-Reagent (Zymo) and passed through a 20g-syringe 10X. TheZymo
Direct-zol RNA Microprep kit (Zymo) was used to isolate total RNA
according to the manufacturer’s recommendations. RNA integrity and
concentration was assessed with the Agilent BioanalyzerNano kit (Agilent)
and 1 ug of mRNA was reverse transcribed and amplified using the NEB
Ultra II Directional RNA library prep kit (NEBNext). Sequencing was
performed on an Illumina NovaSeq 6000 (Illumina) with 50 bp paired end
reads. Samples were sequenced to an average depth of 25,421,980 reads per
sample (11,447,079 – 54,008,386).

Response surfaces
Response surfaces were created by fitting a series of mixture models (a.k.a,
Scheffe’s polynomials) to each response variable in R using the mixexp
package.We started byfitting a nullmodel (i.e., intercept only; y ~ 1), before
also fitting a linear and a non-linearmixturemodel, equivalent to equations
1 and 2 in Lawson and Willden58. We then selected among models using
Akaike Information Criterion, where the simplest model (i.e., fewest terms)
within 2 points of the minimal AIC score was selected. In the event that a
non-nullmodelwas favoredwe infer an effect of the diet composition on the
outcome of interest. To visualize the effects to diet composition we created
response surfaces by taking the predicted values from AIC-favored models,
and projecting them in to the right-angle mixture triangle (RMT) compo-
sitional space20. AIC values and a summary of the selected model are pro-
vided for all variables in Supplementary Data 3.

Differential expression and splicing analysis
RNA-seq reads were aligned to the GRCm39 genome using STAR two-pass
mapping59 and read counts per gene were quantified. For the adipose tissue
samples, on average 93.67% of reads per sample uniquely mapped to the
genome, with a range of 89.39%–94.53%, resulting in an average of
79,365,634 mapped reads per sample (51,015,437–196,899,410). For the
liver tissue samples, on average 83.82% of reads per sample uniquely
mapped to the genome, with a range of 78.91%–90.20%, resulting in an
average of 21,322,851 mapped reads per sample (9,577,376–43,882,813).

Sample quality was assessed using principal components analysis (PCA)
and three samples were removed from all genomics analyses in adipose
tissue. To test for differential expression, we used edgeR60 and treated the
percent fat and percent carbohydrates in the diets as continuous variables,
testing the model~percent fat+percent carbohydrates. As the percent fat,
carbohydrates, and proteins in each diet always sum to 100 the third
macronutrient is redundant. Genes with an FDR < 0.05 in this analysis were
considered significantly differentially expressed. To test for differential
splicing, we used DEXSeq61 and exons with an FDR < 0.05 in this analysis
were considered significantly differentially spliced. In the liver analysis,
RNA collection date was included as a covariate. When considering the
overlap between differential expression and splicing, genes with at least one
significantly differentially spliced exon were considered to be differentially
spliced.

Macronutrient correlation
To identify genes or exons with a significant correlation with individual
macronutrients, we calculated the Pearson’s correlation between the
expression of each differentially expressed gene or the exon usage of each
differentially spliced exon and the percentage of each macronutrient in the
diets. Multiple test correction was performed and correlations with FDR <
0.05 were considered significant.

Fuzzy c-means clustering
Two separate clustering analyses were performed, one for differentially
expressed genes and one for differentially spliced exons. All genes that were
significantly differentially expressed or exons that were significantly dif-
ferentially spliced were included. Genes and exons were clustered based on
their model coefficients from fitting the model ∼ 0þ percent fat þ
percent carbohydratesþ percent protein in edgeR. Model coefficients were
centered and scaled to account for differences in expression across genes.
Using the e1071 package in R, fuzzy c-means clustering was performed on
the centered and scaled model coefficients for every differentially expressed
geneor everydifferentially splicedexon.Genes or exonswere assigned to the
cluster for which they had the highest membership. Functional enrichment
analysis of the gene sets associated with each cluster was performed using
Metascape (http://metascape.org, 21).

Cell type deconvolution of bulk tissue samples
To estimate the cell type proportions of each bulk tissue sample, we per-
formed cellular deconvolution based on gene expression signatures using
the DWLS method38 and a single-cell atlas of mouse white adipose tissue39.
Any cell type that was estimated at > 1% proportion in at least one sample
was considered in further analyses. To determine the relationship between
BBS gene expression and cell type proportion, Pearson’s correlation with
two-sided hypothesis testing was calculated between each differentially
expressed BBS gene and each estimated cell type. Multiple test correction
was performed via FDR estimation.

Single nucleus extraction and sequencing
Nuclei were isolated from 200–300mg of flash-frozenmouse white adipose
tissue according to Van Hauwaert, E. L. et al.62. Briefly, adipose tissue was
finely minced on a petri dish in nuclei isolation buffer (NIB, 250mM
sucrose, 10mM HEPES, 1.5 mMMgCl2, 10mM KCl, 0.001% triton x100,
0.2mMDTT, 0.5U ul RNase inhibitor).Minced tissue was disruptedwith a
Dounce homogenizer in NIB, filtered through a 70 um cell strainer and
nuclei isolated from contaminating lipids and cellular debris by differential
centrifugation. Nuclei were suspended in nuclei resuspension buffer (NRB,
1 xPBSwith 1%BSA, 2mMMgCl2, and 0.04U/ul RNase inhibitor) for 10X
genomics. All steps were performed rapidly on ice and all reagents were ice-
cold. The resulting suspensions were processed using the Chromium Next
GEM Single Cell 3’ Kit v3.1 according to the manufacturer’s instructions
(10X Genomics). Barcoding was performed using the Chromium Con-
troller (10X Genomics) and sequencing was performed on an Illumina
NovaSeq X (Illumina) with 100-bp paired end reads.
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FASTQfiles derived fromsequencingwere aligned toGRCm38/mm10
genome using 10X Cell Ranger v7.1.0. (10X Genomics). Filtered counts
matrices were inspected and then re-filtered for minimum total read count
of 1500 Unique Molecular Identifiers (UMIs) per nucleus. After filtering,
18,101 cells from the sample from diet 4 and 11,727 cells from the sample
from diet 7 were retained for analysis. Count matrices for both sample data
sets and for reference nuclei from Emont et al.39 were normalized and
regressed for cell cycle (s.score, g2m.score) and mitochondrial read per-
centage using the SCTransform algorithm included as a part of the Seurat R
Package63. Reference nuclei were subset to include only murine nuclei
derived from perigonadal adipose tissue of male mice fed chow diets. Cell-
type labels for the two diet samples were learned using the reference dataset
using Seurat’s FindTransferAnchors and MapQuery functions. UMAP
projections were generated using the first 30 principal components of gene
expression computed on the normalized reference dataset.

For each sample data set, BBSome gene expression scores were cal-
culated as the sum of normalized, centered, and scaled expression across
nine BBS-associated genes of interest (Bbs1, Bbs2, Arl6, Bbs9, Bbs10, Bbs12,
Mks1, Ift27, and Ift74) and plotted by the learned cell type groups for
each diet.

Statistics and reproducibility
Biological replicates were employed in this study, using n = 6 per diet for all
metabolic measures and the liver genomic analyses and n = 5 or 6 per diet
for the bulk adipose genomic analyses (n = 6 for diets 1, 5, 6, 7, 8, 9, and 10
andn = 5 fordiets 2, 3, and4). Statistical analyseswereperformedusingR (v.
4.1.1), specifically the DEXSeq (v 1.40.0), edgeR (v 3.36.0), e1071 (v 1.7–9),
mixexp (v 1.2.7), and seurat (v 5.0.0) packages. In the differential expression
analysis, lowly expressed genes were filtered out (<10 reads in 53 or more
samples) and in the differential splicing analysis, lowly expressed exonswere
filtered out (<10 reads across all samples). All data exclusions were per-
formed before performing any analyses. Correlations were measured using
Pearson’s correlation. Results with an FDR < 0.05 were considered
significant.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All RNA-seq data generated by this study is available through SRA (bulk and
snRNA-seq adipose samples: PRJNA987348, liver samples: PRJNA1043119).
All other source data have been provided in the Supplementary Information
and Supplementary Data.
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