
Article https://doi.org/10.1038/s41467-024-45514-6

Dynamicsof activation in thevoltage-sensing
domain of Ciona intestinalis phosphatase
Ci-VSP

Spencer C. Guo 1,2, Rong Shen3, Benoît Roux 1,3,4,5 &
Aaron R. Dinner 1,2,4,5

The Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) is a membrane
protein containing a voltage-sensing domain (VSD) that is homologous to
VSDs from voltage-gated ion channels responsible for cellular excitability.
Previously published crystal structures of Ci-VSD in putative resting and active
conformations suggested a helical-screw voltage sensing mechanism in which
the S4 helix translocates and rotates to enable exchange of salt-bridge part-
ners, but the microscopic details of the transition between the resting and
active conformations remained unknown. Here, by combining extensive
molecular dynamics simulations with a recently developed computational
framework based on dynamical operators, we elucidate the microscopic
mechanism of the resting-active transition at physiological membrane
potential. Sparse regression reveals a small set of coordinates that distinguish
intermediates that are hidden from electrophysiological measurements. The
intermediates arise from a noncanonical helical-screw mechanism in which
translocation, rotation, and side-chain movement of the S4 helix are only
loosely coupled. These results provide insights into existing experimental and
computational findings on voltage sensing and suggest ways of further prob-
ing its mechanism.

Voltage sensing in membrane proteins is an essential biophysical
phenomenon that underlies many physiological processes. Experi-
ments and models suggest that voltage-sensing proteins respond to
changes in the transmembrane potential through the movement of a
transmembrane helix with several positively charged amino acids
(primarily arginines)1–3, but a detailedunderstandingof themechanism
at the atomic level remains lacking. Despite the availability of several
structures of voltage-gated ion channels (VGICs) in their active
states4,5, there are comparatively few structures of VGICs in their
resting states without the perturbing effects of engineered crosslinks
(metal binding sites and disulfide bridges) or toxins6–11.

Like VGICs, the voltage-sensing phosphatase from Ciona intesti-
nalis (Ci-VSP) exhibits sensing currents in response to changes in
transmembrane potential, as well as voltage-regulated enzymatic
activity12–16. Furthermore, crystal structures of the voltage-sensing
domain (VSD) from Ci-VSP in conformations thought to represent the
resting (down) and active (up) states are available17. The down state is
occupiedby thewild-typeprotein at0mVapplied voltage,whereas the
up state is obtained by mutating a basic residue to an acidic one
(R217E), which shifts the voltage dependence. These structures pre-
sent a unique opportunity for elucidating a mechanism of voltage-
sensing in atomic detail using molecular dynamics (MD) simulations.
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Consistent with structures of a number of VGICs4,5,16, Ci-VSD
consists of four transmembrane helices, labeled S1–S4 (Fig. 1). The
voltage-sensing response is mediated by five arginines (R217, R223,
R226, R229, and R232) spaced by three residues along S43,12,16–18; these
are the analogs of the gating arginines in ion channels. These arginines
form salt bridges with acidic side chains acting as countercharges,
which are located on helices S1–S3: D129, E183, and D186. Studies that
manipulate these interactions and corresponding ones in other VSDs
indicate that these interactions are essential for the voltage-sensing
response6,7,19–21. Finally, there is a group of three highly conserved,
bulky hydrophobic residues, I126, F161, and I190, frequently referred
to as the “hydrophobic plug” or “gasket”, which serve as a charge
transfer center for the sensing arginines by focusing the transmem-
brane electric field into a small region22–24. The structures of the down
and up states and simulations suggest that the S4 helix undergoes a
helical-screw mechanism in discrete steps (“clicks”) that couple a
translocation of about 5 Å to a rotation of 60° around the helix axis17,21.
This enables exchange of salt bridge partners between neighboring
arginines. At the same time, the S1–S3 helices differ little in between
the down and up states. There is evidence for states that are one click
in each direction beyond the down and up states (down– and up+,
respectively)13,21,25.

Although there have been previous MD studies of VSDs21,26–33,
direct simulation of the transition between resting and active states at
physiological voltages remains computationally intractable. In ref. 32,
the authors were able to recapitulate the gating cycle of the Kv1.2/2.1
chimera by applying hyperpolarizing or depolarizing potentials of
magnitudes over 300 mV. In these simulations, the S4 helices trans-
located 15 Å and rotated about 120° while the sensing argininesmoved
past a central hydrophobic residue in discrete steps. However, such
strongly applied voltages can impact the mechanism, and the statis-
tical significance of these observations remains unclear from the few
transitions observed duringmilliseconds of simulation time. Enhanced
samplingmethods have been used to compute free energy landscapes
for Ci-VSD21 and the VSD of the Kv1.2 channel33, but such calculations
do not directly provide information about kinetics. Furthermore, they
assume a priori that certain coordinates are important for describing
the mechanism.

Here, we dissect the down-up transition of Ci-VSD at physiological
voltages by analyzing 415 μs of unbiased MD simulations. By applying
recently introduced computational methods34,35 to obtain statistics of
transitions between the down and up states of Ci-VSD36, we elucidate
the kinetics and microscopic events underlying activation. Despite
capturing the apparent two-state behavior of the displacement charge,
the analysis reveals multiple intermediates and deviations from a
canonical helical-screw mechanism. These findings provide insights
into the origins of the complex kinetics of activation measured for
wild-type andmutantCi-VSPs,whichwe set in the context of results for
other voltage-sensing proteins. We conclude by suggesting experi-
ments that can test the computational predictions.

Results
Our goal is to compute kinetic statistics for the transition between the
down and up states and then relate these statistics to specific micro-
scopic events. We rely on a framework called the dynamical Galerkin
approximation (DGA) that assumes only that the dynamics are sto-
chastic and Markovian after a relatively short time34,35. The essential
idea is that long-time statistics (described below) of the down-up
transition can be estimated by combining information from a dataset
of short unbiased MD trajectories, each of which samples a portion of
the VSD activation event. In other words, we can learn the mechanism
of the transition even if no single trajectory connects the down and up
states, as long as conformations belonging to the transition region
between them are adequately represented in the dataset (discussed
further in Methods). This approach dramatically reduces the compu-
tational cost because we do not need to wait for fluctuations that give
rise to a trajectory transitioning between the down and up states,
let alone the many that would be needed to achieve statistical con-
fidence. We exploit the specialized Anton 2 supercomputer37 to gen-
erate a dataset of 415 μs of aggregate simulation at zero (depolarized)
membrane potential. The dataset consists of short trajectories initi-
ated from starting points distributed between the down– and up+
states (homologymodels that shift the sensing arginines one click past
the down and up states17,21).

We describe three statistics used in this study and how we use
them to learn the molecular mechanism. We define them mathemati-
cally and discuss how we compute them in Methods.

• Equilibrium probabilities of states define relative free energies,
which can be used to compute equilibrium averages and
potentials of mean force (PMFs) along selected coordinates.

• The committor is the probability of completing the transition
(i.e., proceeding to the up state before returning to the
down state).

• The reactive current describes the fluxes between states.
These statistics provide key insights into complex conformational

transitions. For example, the PMFallowsus to visualizemetastable (i.e.,
long-lived) states and the barriers separating them. The committor,
because it varies monotonically between zero at the reactant state and
one at the product state, represents a natural coordinate for tracking
the progress of a conformational transition and can be used to identify
the molecular features that correlate with that progress. Finally, the
reactive current yields information about how molecular features
change during a conformational transition. We use it to visualize
transition pathways and quantify their relative contributions.

We first connect our simulations to experimental measurements
via the displacement charge. Next, we show how the committor pro-
vides additional microscopic insight into the kinetics, using a sparse
regression procedure to identify a small set of molecular collective
variables (CVs) useful for modeling activation. Projections of the
reactive currents and free energies onto these CVs enable us to char-
acterize the transition pathways and thermodynamic forces stabilizing
them. The overall workflow is summarized in Fig. 2.

Depolarization

R223

R217

R229R226
D186

E183

D129

R232

Down Up

Polarization
Fig. 1 | Structure of Ci-VSD. Left, down (PDB: 4G80) and right, up (PDB: 4G7V)
states. The side chains of sensing arginines on the S4 helix (gray) which participate
in voltage-sensing, R217 (orange), R223 (lime), R226 (magenta), R229 (cyan), and
R232 (purple), as well as residues that form salt bridges with them (D129, E183,
D186) are rendered as sticks. Nitrogen and oxygen atoms on these side chains are
colored blue and red, respectively. Hydrophobicplug residues (I126, F161, and I190)
are highlighted in yellow.
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The committor reveals intermediates hidden within a single
“click” of the displacement charge
The displacement charge Qd represents the energetic coupling of the
membrane protein system with an external potential38. The change in
displacement charge upon a conformational transition of the voltage-
sensor,ΔQd, also known as the sensing charge (or, in VGICs, the gating
charge), can bemeasured with voltage-clamp electrophysiology3,39. Ci-
VSD was previously found12,17,21 to transfer approximately 1.1 e in going
from the down state to the up state. Our calculations yield a sensing
charge of ΔQd = 0.9 ± 0.3 e, in agreement with previous estimates.

Using DGA, we computed the average Qd as a function of the S4
helix translocation and rotation, and it exhibits discrete values
(Supplementary Fig. 1a), consistent with the idea that the S4 helix
moves by discrete “clicks” (these results can be compared directly
with Fig. 1B of ref. 21). In further support of this idea, the PMF as a
function of Qd (Fig. 3a, black line) exhibits minima at Qd values cor-
responding to the down and up states; these minima are nearly
identical in free energy and are separated by a barrier of less than 0.5
kcal/mol, suggesting both states may be populated in the absence of
an applied potential. Although the simulations are performed at 0
mV, we can mimic the effect of an applied potential, V, by adding a
linear term QdV to the free energy profile38. Relatively mild hyper-
polarizing or depolarizing voltages on the order of ∓ 50 mV are

sufficient to tilt the PMF in favor of the down (and down–) or up (and
up+) states, respectively (Fig. 3a).

To connect with measured kinetics13,14,40–43, we computed an
equilibrium time-correlation function for Qd (Fig. 3b) and fitted it to a
biexponential function with slow and fast time constants of approxi-
mately 59 μs and 0.04 μs, respectively. The slow time constant is
consistent with our ~100 μs estimate of the mean first passage time
between the down and up states (Supplementary Methods and Sup-
plementary Fig. 2). These values are about an order of magnitude
faster than the fast component of fluorescence relaxation of dye-
labeled VSDs, which tracks the charge movement (sensing
current)13,40–43. However, the experimental studies were mainly per-
formed with full-length Ci-VSP containing the phosphatase domain
and linker, which slows down the voltage-activation process40. With
this inmind, our results suggest both the equilibrium averages and the
kinetics are consistent with available data and previous simulations for
Ci-VSD, so we now turn to dissecting themicroscopic dynamics during
activation.

As a first step toward this end, we computed the committor (q+)
for all structures in our dataset. To recap, the committor is the prob-
ability that trajectories initialized from a conformation lead to the up
(i.e., active) state before the down (i.e., resting) state, so the down state
corresponds to q+ = 0 and the up state corresponds to q+ = 1. We used
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Fig. 2 | Computational workflow for this study.
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Fig. 3 | Displacement charge. a PMF computed from DGA along Qd. The free-
energy profiles at nonzero voltages were obtained by adding QdV to the profile
obtained under 0mV (note that differences in free energies between states depend
only on their relative rather than absolute Qd values). The down and up states
correspond to Qd values of − 4.2 ± 0.2 e and − 3.3 ± 0.2 e, respectively. b Time cor-
relation function CQd

ðτÞ= hQdð0ÞQdðτÞi=hQdð0ÞQdð0Þi of the displacement charge.

Green circleswerecomputed from short trajectories by reweighting to equilibrium.
Solid line represents a biexponential fit with time constants of 59 μs and 0.04 μs.
c PMF projected onto q+ and Qd and along each individual coordinate (above and
right). Contours on the two-dimensional PMF are drawn every 1 kcal/mol. Source
data are provided as a Source Data file.
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the committor to compute a two-dimensional PMF (Fig. 3c), revealing a
qualitativelydifferent picture than the PMFof the displacement charge
alone. There are minima at q+ ≈0.25, 0.50, and 0.75, all with Qd

between −3.5 e and −4 e. The simulations thus suggest that, while the
displacement charge dynamics are essentially two-state, the micro-
scopic dynamics are five-state. Moreover, the highest barrier is about
1.5 kcal/mol relative to the down state. To understand the differences
between the PMFs and to characterize the intermediates and barriers
between the down and up states, we sought to identify molecular
features that correlated with the committor.

Sparse modeling of the committor identifies physically inter-
pretable variables that describe the transition
Following previous work44,45, we sought to identify combinations of
physically intuitive CVs that can describe the dynamics by modeling
the committor in terms of a small number of interpretable molecular
features (Sparse regression). Out of the60 inter-residuedistances used
as input to the committor (Basis set construction), we manually
selected several to track the movements of the side chains of the
sensing arginines (R217, R223, R226, R229, and R232), as well as those
of their acidic salt-bridge partners. These were distances between the
sensing arginine Cζ atoms and the Cγ/Cδ atoms ofD129, E183, andD186
(Fig. 1).We also used the distancebetween theCζ atomofR226 and the
center of mass of F161’s side chain to track the movement of R226
through the hydrophobic plug, which is thought to present a barrier
between the resting and active states23,24,31. We chose F161 instead of

I126 or I190 because it is highly conserved among voltage-sensitive
proteins (corresponding to F290 in the Shaker potassium channel for
example)23. Finally, we included the S4 helix translocation and rota-
tion, given their known role in VSD activation21,29,32,46–48.

We initiallyfit themodel to all pointswithq+∈ [0.2, 0.8]. However,
in analyzing the model, we found that some CVs that we expected to
contribute had small or zero-valued coefficients because the com-
mittor varies non-monotonically with them (e.g., the R226-F161 dis-
tance decreases and then increases as R226 goes through the
hydrophobic plug). Consequently, we divided the reaction into two
stages, one from the down (reactant) state to q+ = 0.5 (i.e., the transi-
tion state ensemble in the sense that conformations with q+ = 0.5 have
an equal likelihood of leading to the down and up states), and another
from q+ = 0.5 to the up (product) state (Sparse regression).

We found that nine CVs contributed significantly to at least one of
the twomodels. They were the S4 helix translocation and rotation and
distances involving R226, R229, and R232 (Fig. 4a, b). To verify that
these CVs are indeed sufficient to express the committor (and hence
represent a useful subspace of variables to analyze), we constructed
coordinates from linear combinations of input variables using the
integrated variational approach to conformational dynamics (IVAC)49,
a method that robustly identifies slow modes of a system. The com-
mittor monotonically follows the first nontrivial IVAC coordinate
(Fig. 4c), suggesting that the down-up transition is fully captured using
our chosen subset of variables. In addition, the committor projection
on the IVAC coordinates has much lower variance compared with the
projection on the S4 coordinates (Supplementary Fig. 3), reflecting the
information gained from tracking the sensing arginines. Given this, we
now interpret the PMF in Fig. 3c in terms of these variables. We first
discuss the S4 helix translocation and rotation and then the side chain
dynamics.

S4-helix translocation and rotation are loosely coupled
The up state crystal structure corresponds to the origin of the
translocation-rotation plane, and the down state crystal structure lies
at approximately (−4.5Å,−60°) (Fig. 5).We can compute the PMFalong
these coordinates from our dataset and compare it directly with the
PMF in ref. 21 obtained using replica exchange umbrella sampling
(REUS). The two PMFs are similar overall but differ slightly near the
down state (Fig. 5a and Supplementary Fig. 4), and there is a prominent
minimum with a depth of about 1–2 kcal/mol near (−5 Å,−10°). This
minimum is also present in the REUS simulations at positive applied
potentials, when up-like states are stabilized21. Structures in this
minimum have the R226 side chain located above the hydrophobic
plug. Because the sampling in these CVs is controlled directly in REUS,
we expect the REUS PMF to be more accurate—DGA slightly under-
estimates the stability of the down state and the barrier to the up state.

We show histograms of translocation and rotation as functions of
the committor in Fig. 5c. These indicate that both variables have
considerable freedom in the down state (q+ = 0). Prior to the transition
state (q+ < 0.5), translocation remains unrestricted, but rotation
becomes restricted and steadily increases towards 0° with the com-
mittor. After the transition state (q+ > 0.5), translocation rapidly
increases to its value in the up state (q+ = 1). These results are con-
sistent with the average committor, the PMF, and the reactive currents
in this plane (Fig. 5a, b). The transition state (q+ = 0.5) appears as a
nearly horizontal white line just below the up state, and the reactive
current is in the vertical direction.

Historically, two mechanisms have been proposed for S4 helix
movement: a helical-screw mechanism in which translocation and
rotation advance together46–48,50,51 and a sliding-helix mechanism in
which the α-helix converts to a narrower 310-helix, allowing it to
translocate independently of rotation7,40. In contrast to the helical-
screw mechanism, we find that the S4 helix is relatively free to trans-
locate back and forth prior to the transition state (Fig. 5c), and it is the

a

cb
S3 S1

D186

E183

F161

R226

R232

R229

D129

S2S4

Fig. 4 | Dependence of the committor on collective variables (CVs).
a Coefficients computed from LASSO regression for points with q+≤0.5 and q+≥0.5.
b Schematic of CVs (S4 helix variables and intramolecular distances) used for
regression. c Committor projected onto the first two nontrivial IVAC coordinates
(tICs) constructed from the CVs in (a). Source data are provided as a Source
Data file.
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restriction of the rotational degree of freedom that determines when
the transition state is crossed. At the same time, we find little 310-helix
content to support the sliding-helix mechanism (Supplementary
Fig. 5), consistent with prior analyses21. The mechanism that we
observe combines the rotation of the helical-screw mechanism with
the translocation of the sliding-helix mechanism, resembling the
action of a barrel slide bolt. In the next section, we elaborate this
mechanism by considering the side-chain dynamics.

Transitions between intermediates involve exchange of arginine
salt-bridge partners
The sparse model (Fig. 4a) shows that, in addition to the S4 helix, the
movements of R226, R229, and R232 relative to their salt bridge
partners and the hydrophobic plug are important. We find that they
can account for the structure in Fig. 3c. Moreover, we observe in our
simulations that vertical translocation of the S4 helix can precede or
lag behind the exchange of salt bridge partners by the sensing argi-
nines (Supplementary Fig. 6). That is, changes in the side chains of
R226, R229 (and to some extent R232), translocation, and rotation are
quasi-independent. Here, we describe the successivemovements from
the down state to theminima at q+ ≈0.25, 0.50, and 0.75, and finally to
the up state.

In the down state, R226 and R229 form salt bridges with D186 and
E183, respectively (Fig. 1), while the guanidinium group of R232 forms
hydrogen bonds to phosphate groups of lipids (Supplementary
Figs. 7a and 8a, c), a role previously noted in studies of VSDs26,32,52,53.
The aliphatic part of the R226 side chain is in contact with the
hydrophobic plug.

The transition to theminimumatq+ ≈0.25 involves themovement
of R226’s guanidinium group into the plug so as to interact with the
phenyl side chain of F161 (Fig. 6a, b and Supplementary Fig. 9a,b).

Although cation-π interactions and π-π stacking have been suggested
to stabilize interactions between arginine and phenylalanine
residues23,54–56, the fixed charges in the force field do not directly
represent these (quadrupole) interactions. Instead, this minimum is
primarily stabilized by R226 forming a salt bridge with D129 from the
hydrophobic plug (Supplementary Fig. 9c). Consistent with the dis-
cussion above, making these interactions relies on S4 helix rotation
but not translocation (Supplementary Fig. 10).

The next barrier between the minima at q+ ≈0.25 and q+ ≈0.50 is
very low, and R229 interacts with both E183 and D186 to varying
degrees in this range of committor values (Fig. 6a and Supplementary
Fig. 7a). The transition from the first intermediate minimum to the
second reflects the movement of R232 away from the phosphate
groups of the lipids to interact with E183 (Fig. 6a, Supplementary
Figs. 7a and 10). In the intermediate near q+ ≈0.5 (which can be con-
sidered the transition state ensemble, as noted above), we find sig-
nificant heterogeneity in R229’s conformations: the R229-E183
distance, for example, exhibits two populations, one centered around
4 Å and another from 6 to 10 Å (Fig. 6a and Supplementary Fig. 7b). In
the former, R229 is coordinated to both E183 and D186, whereas in the
latter R229 is only coordinated to D186 (Fig. 6c). Accordingly, R229
forms hydrogen bonds mainly with D186, but also with E183 and lipid
phosphate groups when q+ < 0.5 (Supplementary Figs. 7a and 8). As
discussed earlier, translocation of the S4 helix is relatively uncon-
strained in the intermediate stages of the transition (Fig. 5), with het-
erogeneity seen in transition state structures.

The transition to the minimum at q+ ≈0.75 requires R229 to dis-
sociate from E183 and R232 to interact with D186 (Fig. 6a, d and Sup-
plementary Fig. 10). The barrier separating theminima at q+ ≈0.50 and
q+ ≈0.75 results from the exchange of the two salt bridges with R229
and R232. Furthermore, after the transition state q+ ≈0.5, S4 helix

a

b

c

Fig. 5 | Role of the S4 helix. a PMF as a function of S4 helix translocation and
rotation. Reactive currents are shown as a vector field with opacity indicating the
magnitude of the vector. Contours are drawn every 1 kcal/mol. b Average com-
mittor as function of S4 helix translocation and rotation. Approximate definitions
of the down and up states for the committor calculations are marked with white
ellipses. c Distributions (violin plots) of S4 helix translocation and rotation as a

function of committor. Each violin is obtained by binning structures with the
indicated q+ ± 0.05 (i.e., the first violin contains structures with q+∈ [0.15, 0.25]).
The median and upper/lower quartiles are denoted with dashed and solid lines,
respectively. Approximate values of translocation or rotation in the down and up
states marked by gray bars. Source data are provided as a Source Data file.
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translocation begins increasing (Fig. 5b and Supplementary Fig. 10),
and the completion of this process results in the final transition to
q+ = 1. In some structures with high committor values, R226 extends to
interact with S158 and T197 (Supplementary Fig. 7c).

Discussion
In this paper, we applied recent advances in methods for computing
kinetic statistics to elucidate themechanismof the down-up transition
of Ci-VSD. In contrast to previous studies of voltage-sensing proteins,
which have focusedmainly onmetastable states of the voltage-sensing

domain21,29,32,33, our approach allows us to dissect the microscopic
events underlying a single “click”.

As summarized in Fig. 7, the down-up transition proceeds through
a stepwise mechanism in which the S4 helix "walks" with its positively-
charged amino acids along the negatively-charged salt bridge partners
like a caterpillar on a rugged landscape (Supplementary Movie 1). The
overall displacement of the helix and the rearrangements of the side
chains are only loosely coordinated. The movements of R226, R229,
and R232 do not follow a strict sequence, though steric interference
prevents them frombeing totally independent. From thedown state to

R226

R232

F161

E183

D129

R229D186

a

b c d

Fig. 6 | Role of sensing arginine salt bridges and structure of the intermediates.
a Distribution of salt-bridge distances as a function of committor. Each violin is
obtained by binning structures with the indicated q+ ± 0.05 (e.g., the first violin
contains structures with q+∈ [0.05, 0.15]). The median and upper/lower quartiles

are denotedwith dashed and solid lines, respectively.b–d Selected structures from
the intermediates at q+ ≈0.25, q+ ≈0.5, and q+ ≈0.75 from k-medoids clustering.
Source data are provided as a Source Data file.
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q+ ≈0.25, rotation of the S4 helix allows R226 to detach from D186,
move through the hydrophobic plug, and form a salt bridge with D129
(Fig. 7a, b). At q+ ≈0.5, where the system has an equal likelihood of
proceeding forward andbackward, R229 delocalizes and interactswith
both E183 and D186, while R232 detaches from the lipid phosphate
head groups and forms a salt bridge with E183 (Fig. 7c). At q+ ≈0.75,
R229 forms a salt bridge toD186 andR232 interacts with both E183 and
D186 (Fig. 7d). Finally, the S4 helix must translocate to its up state
position while R229 enters the plug to occupy the position of R226 in
the down state (Fig. 7d, e).

Although the free-energy landscape along the displacement
charge appears two-state, our committor-based analysis reveals the
presence of metastable intermediates. These intermediates may help
explain the multi-exponential kinetics of fluorescence relaxation
measured for labeled VSDs13,40–43. Given that the PMFs are relatively
shallow, even under applied transmembrane potentials of ±150 mV21,
there could also be contributions from transitions involving the down–
and up+ states, which could introduce additional timescales. Regard-
ing the kinetics, it is important to note that our estimates of the acti-
vation timescales are systematically too fast. This may reflect a
breakdown in the Markov assumption underlying the DGA calcula-
tions, limitations of the choice of basis, insufficient sampling, and
limitations of the force field. The first two could be addressed by
including non-Markovian effects57,58 in the DGA calculations or by
applying nonequilibrium sampling methods59.

Despite the potential issues, we expect that our simulations
represent the microscopic structures and dynamics of Ci-VSD close to
0 mV reasonably well. We consequently expect the “caterpillar”
mechanism that we describe to hold for mildly depolarizing and
hyperpolarizing voltages. This mechanism represents a notable
deviation from a canonical helical-screw model in that translocation,
rotation, and side-chain movements are only loosely coupled. While
we are not aware of a previous study that explicitly describes such a
mechanism, some decoupling of the S4 translocation, rotation, and
side-chainmovements has been noted in passing for simulations of Ci-
VSD21 and Kv1.227,29.

Another striking feature of our simulations is the relatively low
barrier between the down and up states in Ci-VSD compared with, for
example, the barrier between the δ and ε states of the Kv1.2 channel
(5 kcal/mol)33. Given Ci-VSP’s sequence divergence from VGICs and
comparatively slower gating kinetics12,17,18,24,40,60, we believe the differ-
ence in barrier height is genuine and not an artifact of different

computational approaches. The lower barrier could furthermore be
partially attributed to the lack of 310 helix formation7,21.

We expect that R226’smovement through the hydrophobic plug
is facilitated by its ability to make a salt bridge with D129 while in
contact with the I126 and F161 side chains (Supplementary Fig. 9c).
Mutagenesis experiments in Ci-VSD61,62 and closely related voltage-
gated proton channels63 support the idea that D129 is essential for
voltage-dependence. In contrast, VGICs generally have a polar but
uncharged amino acid at the site corresponding to D12916,64, pre-
venting formation of an analogous interaction and leading to a sig-
nificant dielectric barrier65. Perhaps relatedly, in VGICs, reducing the
hydrophobicity of gating-pore residues by mutation accelerates
activation upondepolarization65, whereas in Ci-VSP kinetics aremore
closely correlated with the sizes of side chains of hydrophobic-plug
residues24,66. The closer spacing of the acidic residues in Ci-VSD
compared with VGICs may also explain how the arginine side chains
can make salt bridges without the S4 helix needing to convert to a
310-helix near the hydrophobic plug, as in the sliding-helix
mechanism7,21,30,67.

Experimentally, it may be possible to validate the proposed
mechanism by correlating movements of a fluorescent label (e.g.,
attached to a G214C mutation on the S3-S4 linker) to S4 helix
movement and/or displacement charge changes13,14,25,40,62,68, or while
perturbing residues implicated in key rearrangements. For example,
the importance of R226 side-chain reorientation during early stages
of activation suggests that limiting rotation of the χ1 dihedral angle
(perhaps by introducing an unnatural arginine congener69) might
alter the kinetics of activation or block it entirely. Other residues not
analyzed in detail, such as S158 andT19721 (Supplementary Fig. 7c), as
well as W18225,68, may modulate intermediate states of the activation
process by interacting with the sensing arginines, and their role
could be tested by observing the effect of mutations on activation
kinetics.

Notably, the physically interpretable low-dimensional model of
the committor did not require distances to the sensing arginines
R217 and R223. R217’s interactions with negative countercharges
such as D129, D136, and D154 correlate only weakly with the com-
mittor and are heterogeneous in the transition state (Supplementary
Fig. 7b). Our results are consistent with prior suggestions that R217
primarily participates in activation by modulating the electric field
rather than through salt-bridge formation18, although its role may be
different in the transition between the down– and down states owing

D186 R229

E183

R226
D129

R217
S4 S1

S3 S2

F161
R223

a b c d e

PM
F

down up

R232

Fig. 7 | Schematic of the mechanism of the down-up transition in Ci-VSD.
Sensing arginines and countercharges are depicted as sticks; hydrophobic plug
residues are depicted as shaded yellow circles. a In the down state (q+ = 0), R223
forms a salt bridge with D129 above the hydrophobic plug. R226 is hydrated, while
R229 interacts mainly with E183 and D186, and R232 coordinates to POPC head-
groups. b First (q+ ≈0.25), R226 rotates upwards as the S4 helix rotates, which

allows it to cross the hydrophobic plug and begin forming a salt bridge with D129.
cNear the transition state (q+ ≈0.5), R226 interacts with D129, while R229 interacts
with both E183 and D186. d Beyond the transition state (q+ ≈0.75), R229 detaches
from E183, and R232 interacts with both E183 and D186. e The S4 helix translocates
to its final up state position (q+ = 1).
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to its proximity to D129 and the hydrophobic plug in the down–
state. On the other hand, R223 tends to form salt bridges with D129.
Relative to R226, R223’s salt-bridge distances are less predictive of
the committor and its contribution to the displacement charge is
small, consistent with its exposure to solvent in the extracellular
crevice of Ci-VSD. Prior studies that mutated this amino acid to
cysteine or histidine18,21 suggested that R223may play a larger role in
transitions involving the down– and up+ states of Ci-VSD. Compu-
tationally, it would therefore be interesting to study these other
transitions, as well as the down-up transition in the presence of
applied fields.

Methods
We compute statistics from MD simulations using the dynamical
Galerkin approximation (DGA)34,35. The aim of DGA is to formulate and
solve an operator problem for these statistics as a linear system of
equations. The theoretical framework is based on transition path
theory36 and only assumes that the dynamics are Markovian within a
user defined time interval termed the lag time (t below). The key
advantage of this approach is that estimating the terms in the linear
equations requires only short trajectories (on the order of the lag time)
rather than ones recapitulating full transition paths from the down
state to the up state. The main challenge is ensuring that the short
trajectories in the aggregated simulation dataset adequately sample all
parts of the desired transition (see Simulation details and adapative
sampling procedure).

The resulting estimates of the statistics depend onmany variables
(the inputmolecular features to thebasis functions) and so to interpret
them, we use sparse regression to identify the most important col-
lective variables (CVs) for describing the conformational change.
Readers who wish to obtain an overview of the DGA framework
without delving into the mathematical details need only skim Key
statistics, Dynamical Galerkin approximation, and Basis set
construction.

Key statistics
As described in Results, we use three statistics to understand the
mechanism of the down-up transition: the equilibrium probability, the
committor, and the reactive current. The equilibrium distribution (or
more precisely, its ratio to the sampling distribution, w) and the
committor, q+, satisfy equations of transition operators, which
describe how averages of functions of the configuration evolve under
the dynamics. The reactive current, JξAB, can be computed from
the equilibrium distribution and the committor. In this section, we
define the operators mathematically and present key equations for
these statistics.

For aMarkov processX(t), the transition operator T t is defined as

T t f ðxÞ=E½ f ðXðtÞÞ jXð0Þ=x�, ð1Þ

where f is an arbitrary function of the coordinates X(t), and E denotes
an expectation. The transition operator evolves the average of f (over
multiple random realizations of X) for a lag time t, conditioned on
starting at x.

The PMF is the free energy as a function of specific coordinates.
We can obtain the free energy from the negative logarithm of the
equilibrium distribution π(x) (which is proportional to the Boltzmann
weight in the canonical ensemble). Specifically, we introduce a weight
factorw(x) that relates the sampled data distribution μ(x) (which need
not be drawn from π) to π(x):

Z
f ðxÞπðxÞdx=

Z
f ðxÞwðxÞμðxÞdx: ð2Þ

Because π(x) is the equilibrium distribution, by definition it
must not change over time or, in other words, upon application of
the transition operator. The weight factor can be shown35,70 to
satisfy

ðT tÞyμwðxÞ=wðxÞ, ð3Þ

where ðT tÞyμ is the μ-weighted adjoint of T t . We solve this equation
using DGA as described below.

The committor q+(x) is defined as the probability of reaching the
product state B (here the up state) before returning to the reactant
state A (here the down state), conditioned on starting at x. In this
sense, it is a perfect reaction coordinate (measure of progress) for a
stochastic reaction36. Because of the boundary conditions q+(x) = 0 in
A and q+(x) = 1 in B, the committor is governed by amodified transition
operator

St f ðxÞ=E f X t ^ TA∪B

� �� � ��X 0ð Þ=x� �
, ð4Þ

where TA∪B = minft ≥0 jXðtÞ 2 A∪Bg is the first time X enters A∪B
and t ^ TA∪B � minft,TA∪Bg. The transition operator St corresponds
to terminating the dynamics when A or B is entered. The committor
satisfies35

q+ ðxÞ=
Stq + ðxÞ x 2 ðA∪BÞc
0 x 2 A

1 x 2 B:

8><
>: ð5Þ

Crucially, (5) holds for any lag time t, so in principle we can obtain q+
from simulations that are much shorter than the transition time
(i.e., t≪ TA∪B).

Finally, the reactive current measures the flux of reactive prob-
ability density, the probability of observing a reactive trajectory tran-
sitioning fromA to B36,71. The reactive current ismost easily interpreted
after projecting onto a subspace of CVs, ξ(x), yielding a vector field
JξABðsÞ that summarizes how reactive trajectories flow through ξ(x) = s.
It was shown previously that the projected reactive probability current
satisfies35,59

JξABðsÞ=
Z

JABðxÞ � ∇ξðxÞδðξðxÞ � sÞπðxÞdx, ð6Þ

where JAB is the reactive flux in the space of original coordinates. As in
previous work, we smooth all reactive currents with a Gaussian kernel
density estimate of width 1 bin.

Dynamical Galerkin approximation
In DGA, we write the statistic of interest, such as w or q+, as a linear
combination of basis functions ϕi(x) with coefficients vi:

f ðxÞ= γðxÞ+
XN
i= 1

viϕiðxÞ: ð7Þ

Here, γ(x) is a “guess” function chosen to satisfy the boundary
conditions, so ϕi(x) = 0 for x∈ A∪ B. Note that solving for
the weight factor w, unlike q+, does not require any explicit
boundary conditions. After substituting the ansatz in equation
(7) into the appropriate operator equation [e.g., equation
(5) for q+], multiplying by another basis function ϕj, and inte-
grating over the sampled distribution μ(x), we obtain the linear
system

ðCt � C0Þv= � ðrt � r0Þ, ð8Þ

Article https://doi.org/10.1038/s41467-024-45514-6

Nature Communications |         (2024) 15:1408 8



where

Cij
t =
Z

ϕiðxÞStϕjðxÞμðxÞdx ð9aÞ

r j
t =

Z
ϕjðxÞStγðxÞμðxÞdx: ð9bÞ

We can then estimate the integrals in equation (9) from averages over
an ensemble of simulations (that can be much shorter than the tran-
sition time, as mentioned above). Indexing simulations by
m = 1, 2, . . . ,M,

Cij
t ≈

1
M

XM
m= 1

ϕiðXmð0ÞÞϕjðXmðt ^ TA∪BÞÞ ð10aÞ

r j
t ≈

1
M

XM
m= 1

ϕjðXmð0ÞÞγðXmðt ^ TA∪BÞÞ: ð10bÞ

Given these quantities, equation (8) can be solved for v, which can be
used to reconstruct f through equation (7).

When the basis functions are indicator functions on sets of
configurations, DGA is equivalent to using anMSMwith appropriate
boundary conditions to compute dynamical statistics. DGA can thus
be viewed as a generalization of MSMs to arbitrary basis sets. As
such, the data requirements for DGA can never be more than for
MSMs, and they can be less if a basis better than indicator functions
can be found34,35. As we discuss further in Basis set construction, we
employ theMSM (indicator) basis set for computing the equilibrium
probability, and a modified pairwise distance basis set35 for the
committor.

State definitions
To perform committor calculations, we need to define which struc-
tures are in A and B, or the down and up states, respectively. We
defined the down state as

d +4:24Å

1:1 Å

 !2

+
θ+ 56:95°

8°

� �2

< 1

and the up state as

d +0:506Å

0:84Å

 !2

+
θ� 3:94°

7:6°

� �2

< 1,

where d and θ are the S4 helix translocation and rotation, respec-
tively. The centers and radii of the ellipses were obtained from
several nanoseconds-longMD simulations initialized from the down
and up states, rather than the crystal structures, since we wanted to
include typical fluctuations. Visual inspection of the structures
and trajectories showed that S4 helix movements often preceded or
lagged behind the movements of arginine side chains, so we
chose to include cutoffs on these distances as well. These are
listed in Supplementary Table 1. To test for the possibility that our
results depended on the choice of cutoffs, we altered the cutoffs
and found that the qualitative features of the committor were
preserved.

Basis set construction
For the committor calculations, we used a basis set built from pairwise
intramolecular distances35. The distances are based on two groups of
residues: (1) R217, R223, R226, R229, andR232 and (2) D129, D136,D151,

D164, E183, andD186.We include all intergroup distances between the
Cα atoms, aswell as all distances between the arginineCζ atoms and the
aspartate/glutamate Cγ/Cδ atoms of these residues. This yields
(5 × 6) + (5 × 6) = 60 distances. We also tested including other pairwise
distances, such as those involving residues in the hydrophobic plug,
but these did not change the committor significantly.

Briefly, we constructed the basis functions by first computing the
Euclidean distance for each configuration x to the boundary of state A
or state B, yielding dA and dB (the dependence on x is left implicit).
Then, we define a function hðxÞ=dAdB=ðdA +dBÞ2, which obeys the
boundary conditions by construction, and setϕi(x) = xih(x) where xi is
the ith component of the 60-dimensional coordinate vector. Finally,
weuse singular valuedecomposition towhiten thebasis functions. The
guess function is γðxÞ=d2

A=ðd2
A +d

2
BÞ, which also satisfies the boundary

conditions by construction.
For the weight factor, w, a basis of indicator functions (corre-

sponding to anMSM)wasused, since the distance basis tended to yield
noisier results. Instead of the 60 salt-bridge distances, we used the
minimum heavy-atom distance between each residue in the S4 helix
and each residue in the S1–S3 helices (1924 distances in total). We
reduced the feature vector to 10 dimensions using the integrated
variational approach to conformational dynamics (IVAC)49 and then
clustered the MD structures with mini-batch k-means (k = 200), as
implemented in scikit-learn 1.2.172. Each cluster was converted into an
indicator basis function.

Simulation details and adaptive sampling procedure
The startingpoint for our simulationswas the crystal structure of theup
state (PDB ID 4G7V)17. We added hydrogens to this structure and
embedded it into a palmitoyl oleyl phosphatidylcholine (POPC) lipid
bilayer approximately 78 Å × 78 Å in area, with 86 and 88 lipids in the
outer and inner leaflets, respectively. Titratable residues were assigned
their default protonation states at pH 7. The orientation and relative
position of the protein inside themembrane was adjusted according to
the prediction from the orientations of proteins in membranes (OPM)
database73.We thenusedVMD1.9.474 to solvate the system in0.1MNaCl
aqueous solution so that it was electrically neutral. There were 20 Na+

and 19 Cl− ions, for a total of 56,582 atoms. The system setup is sum-
marized in Supplementary Table 3.

For consistency with a previous simulation study of Ci-VSD21, we
used the CHARMM36m force field75 for the protein, phospholipids,
and ions, and the TIP3P model76 for water molecules. We used the
hydrogen mass repartitioning scheme77 and a time step of 4 fs.
All simulations were carried out in an isothermal-isobaric ensemble
(300 K, 1 atm) with periodic boundary conditions and without an
applied voltage. The temperature and pressure were controlled using
the Nosé-Hoover thermostat and the semi-isotropic MTK barostat,
respectively78–80. Long-range electrostatic interactions were calculated
using the u-series method81, and van der Waals interactions were
truncated at a cutoff distance of 9 Å.

To construct a dataset that adequately sampled the transition,
we employed a two-stage approach (Fig. 2). First, we drew initial
conditions uniformly from equilibrated REUS windows in the space
of S4 helix CVs21. The coordinates, corresponding velocities and
periodic boundary parameters were used to initialize Anton
2 simulations37. From these initial conditions, we performed
230 simulations of 1 μs and 7 simulations of 10 μs for a total of 300
μs. Because these data were insufficient to converge the committor,
we expanded our dataset by sampling adaptively. Specifically, we
selected structures with estimated committor values near q+ = 0.5
and with under-sampled values of the S4 helix and salt-bridge
distance CVs.

In the initial dataset, we observed that some simulations did not
diverge significantly from their initial structures on the timescale of
hundreds of nanoseconds, suggesting that there were degrees of
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freedom preventing fast equilibration of the desired CVs. Steering the
system toward the the down or up state and back prior to running
unbiased dynamics seemed to ameliorate this issue. These steered
molecular dynamics simulations82,83 were performed with a mild har-
monic restraint on selected salt-bridge distances and on the root-
mean-squaredeviation (RMSD) to either the downorup state.Weused
PLUMED 2.783 and AMBER2084–86 to perform these simulations. From
the final structures we initialized 115 additional 1 μs simulations on
Anton 2. In total, we accumulated 415 μs of trajectories, with coordi-
nates saved every 0.1 ns.

Collective variables
We computed the intramolecular distances used as inputs to DGA
using PyEMMA 2.5.1287 and MDTraj 1.9.788. Hydrogen bonds were
computed with a donor-acceptor maximum heavy-atom distance of
3.5 Å and a minimum angle cutoff of 120° using the Hydro-
genBondAnalysis module in MDAnalysis 2.4.289,90. For salt-bridge dis-
tances between sensing arginines and acidic residues, we compute the
distance between the Cζ of arginine (the terminal carbon in the gua-
nidinium group) and the Cγ/Cδ of aspartate/glutamate (the carbon in
the carboxylate group). Between arginines and countercharges, we
take theNϵ and bothNη atoms of the guanidiniumgroup as donors and
Oδ/Oε atoms of the carboxylate group in aspartate/glutamate as
acceptors. For lipids, we choose the oxygens of the phosphati-
dylcholine headgroup in POPC as hydrogen bond acceptors.

The S4 helix translocation (d) and rotation (θ) were computed
with respect to the up state after aligning the Cα atomsof helices S1–S3
to their positions in the up state crystal structure so as tominimize the
RMSD. The translocation was computed using the distanceZ function
in the Colvarsmodule of NAMD91. This function computes the distance
along a projection of one vector onto another. In our case, the first
vector was one connecting the centers ofmass of Cα atoms of residues
217–233 in the structure of interest and the up state crystal structure,
and the second vector was the principal inertial axis of these atoms in
the up state crystal structure. The rotation was computed using the
function spinAngle, measuring the angle of the rotation around the
local helical axis of the Cα atoms of residues 217–233, with respect to
the positions of these atoms in the up state crystal structure.

We computed the displacement charge, Qd, according to the “Q-
route”38:

Qd =
X
i

qi
zðuÞi + Lz=2

Lz

 !
, ð11Þ

where qi are charges, zðuÞi are unwrapped z-coordinates (i.e., without
applying periodic boundary conditions), and Lz is the length of the
simulation box along the z-axis (with the membrane parallel to the
xy-plane).

Sparse regression
To identify a small number of variables that are important for the
dynamics, wemodeled the committor using LASSO44,92 (least absolute
shrinkage and selection operator) as implemented in scikit-learn 1.2.172.
LASSO is a form of linear regression in which the loss is the sum of a
least-squares term and a penalty term that encourages sparsity of the
model coefficients βi:

LLASSO =
X
k

ðβ>xðkÞ � q + ðxðkÞÞÞ2 + λ k βk1, ð12Þ

where ∥β∥1 =∑i∣βi∣ is the ℓ1 norm and λ is a hyperparameter controlling
the penalty strength. In (12), x(k) is a vector of features for the kth data
point andq+(x(k)) is the corresponding committor value. Prior tofitting,
the data are standardized by removing the mean and normalizing to
unit variance.

To overweight the transition region, where we expect the com-
mittor to be most informative, we sampled 100,000 points weighted
by πq+(1 − q+), which has a maximum at q+ = 0.5. As discussed in
Results, our initial analysis suggested that the committor dependsnon-
monotonically on some variables. To capture these relationships with
LASSO, we split our dataset into points with q+ ≤ 0.5 and q+ ≥ 0.5 and
then used an inverse sigmoid transform to map the DGA-estimated
committor to the entire range (−∞,∞) so that the LASSO-predicted
committors were constrained to the appropriate range [either (0, 0.5)
or (0.5, 1.0)]. For the former, we chose the transformation
ln½2q + =ð1� 2q + Þ�, and, for the latter, we instead used the transfor-
mation ln½ð2q + � 1Þ=ð2� 2q+ Þ�. Although DGA can yield q+ values
outside the range [0, 1], we clipped them to this range before applying
the transformation.

As λ varies, there is a tradeoff between sparsity and accuracy.
Here, we chose λ = 0.02 for points q+ ≤ 0.5 and λ = 0.03 for points
q+ ≥ 0.5 because they appeared to yield reasonably sparse repre-
sentations while maintaining relatively good fits of the committor
(R2 ≈ 0.7) given the linear form (Supplementary Fig. 11). Non-linear
functions of the features, such as a polynomial or a neural network
function, likely would better describe the committor. However,
we used a linear model in the interest of maximizing
interpretability.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The PDB files for the down and up states of Ci-VSDwere obtained from
wwPDB under accession codes 4G80 and 4G7V, respectively. The tra-
jectory data without lipid or water coordinates, together with simula-
tion parameters and initial and final structures of trajectories have
been deposited in Zenodo under accession code 10.5281/zenodo.
7502083. The raw simulation data have not been deposited due to
their size; access can be obtained by contacting the authors or the
Pittsburgh Supercomputing Center (PSC). Source data (CVs and
results of DGA calculations) are provided with this paper.

Code availability
Molecular dynamics simulation data were generated using the Anton 2
machine (code not publicly available; resource handled through the
PSC) and AMBER20 with PLUMED 2.7. Analysis was performed using
MDAnalysis 2.4.2, MDTraj 1.9.7, PyEMMA 2.5.12, scikit-learn 1.2.1, VMD
1.9.4, and IVAC along with custom scripts written in Python/Jupyter
notebooks and tcl. A package for computing kinetic statisticswithDGA
is available at https://github.com/dinner-group/dgamem. Custom
code is available at https://github.com/dinner-group/ci-vsd.
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