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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Confinement-induced stabilization of the  
Rayleigh-Taylor instability and transition 
to the unconfined limit
Samar Alqatari1*†, Thomas E. Videbæk1*, Sidney R. Nagel1, A. E. Hosoi2, Irmgard Bischofberger2

The prevention of hydrodynamic instabilities can lead to important insights for understanding the instabilities’ 
underlying dynamics. The Rayleigh-Taylor instability that arises when a dense fluid sinks into and displaces a lighter 
one is particularly difficult to arrest. By preparing a density inversion between two miscible fluids inside the thin 
gap separating two flat plates, we create a clean initial stationary interface. Under these conditions, we find that 
the instability is suppressed below a critical plate spacing. With increasing spacing, the system transitions from 
the limit of stability where mass diffusion dominates over buoyant forces, through a regime where the gap sets the 
wavelength of the instability, to the unconfined regime governed by the competition between buoyancy and 
momentum diffusion. Our study, including experiment, simulation, and linear stability analysis, characterizes all 
three regimes of confinement and opens new routes for controlling mixing processes.

INTRODUCTION
The Rayleigh-Taylor instability arises when a dense fluid sinks and dis-
places a lighter one located below it (1). Of particular interest is the case 
of miscible fluids, where surface tension is negligible and interdiffusion 
of the fluids is important. This is relevant in diverse situations: In 
astrophysics, improved models of the instability in type Ia supernovae 
are needed to estimate the universe’s cosmological expansion (2, 3). 
In nuclear engineering, Rayleigh-Taylor mixing occurs in inertial 
confinement fusion, preventing ignition (4–6). In geophysics, the 
Rayleigh-Taylor mechanism drives the formation of salt fingers (7, 8).

Creating a controlled unstable density-inverted situation is an 
experimental challenge but crucial in a field driven by theory (9–13) 
and simulations (14, 15). Experiments usually involve rapid acceler-
ation of the fluids in a drop tower, rotation, or barrier removal (16–20). 
The latter methods often introduce perturbations due to induced 
vorticity or viscous drag that can dominate instability growth. Here, 
we use a horizontal Hele-Shaw geometry, consisting of two parallel 
plates separated by a thin gap of size b, as illustrated in Fig. 1A. When 
one fluid is injected at low Reynolds number into the gap containing 
a second fluid with which it is miscible, a well-defined protruding 
“tongue” is formed (21–23) where a density inversion can occur.

This geometry allows us to study the Rayleigh-Taylor instability 
with clean initial conditions under confinement. This adds an un-
expected feature: Below a critical plate spacing, bc, the Rayleigh- 
Taylor instability remarkably no longer occurs. This demonstrates 
the existence of an additional important length scale when nearby 
boundaries are present. While stabilization at small plate spacing 
has previously been reported in the Rayleigh-Taylor instability with 
flowing liquids (24), the instability in that case is dominated by the 
flow-induced stretching of the density profile (25). Those flows al-
ter both the wavelength selection and the dynamics of the instability 
compared to the quiescent initial state investigated here.

Here, we analyze the competition between the destabilizing ef-
fect of buoyancy and the stabilizing effects of both momentum and 
mass diffusion. Duff et al. (12) included the effect of mass diffusion 
into the theory of the instability. Aside from the gap spacing b, there 
are two distinct length scales: one, ∞, is associated with momentum 
diffusion and sets the most unstable wavelength for pattern growth 
in the unconfined limit; the other, bc, is associated with mass diffu-
sion and sets the minimum plate spacing for unstable growth. We 
find that at intermediate scales, the gap spacing controls the most 
unstable wavelength, . By varying the confinement length scale, we 
can study the different regimes and tune the relative importance of 
mass and momentum diffusion.

RESULTS
Experiments
In our experiment, the protruding tongue of inner fluid spontaneously 
produces a stratification into three fluid layers with well-defined 
interfaces between them, as shown in Fig. 1B. When the outer fluid 
has a higher density than the inner one, out > in, the upper inter-
face is unstable; when in > out, the lower interface is unstable. For 
our range of plate spacings, injection rates, and fluid viscosities used, 
the Reynolds number is small so that the fluids come to rest almost 
instantaneously, providing clean initial conditions. Cell-like struc-
tures and lines then appear, as shown in Fig. 1C. The alternating 
intensities represent the peaks and valleys of the unstable interface. 
We visualize the evolution of these structures within the gap by 
imaging the cell’s cross section using a confocal microscope. As the 
denser fluid on top sinks into the lighter fluid in the center, the 
encroaching fluid develops the characteristic mushroom shape of 
the Rayleigh-Taylor instability, as shown in Fig. 1D.

The instability is suppressed below a critical plate spacing, as 
shown in Fig. 1E for the same pair of fluids in cells of decreasing gap 
thickness, b; the patterns seen clearly at large plate spacing gradually 
fade until they disappear below a critical spacing, bc. Note that the 
patterns here form preferentially in the direction radial from the inlet. 
This is most pronounced at high viscosity ratio. We believe that this 
feature of the pattern is due to a slight radial dependence of the 

1Department of Physics and The James Franck and Enrico Fermi Institutes, Univer-
sity of Chicago, Chicago, IL 60637, USA. 2Department of Mechanical Engineering, 
Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
*These authors contributed equally to this work.
†Corresponding author. Email: samarq@uchicago.edu

Copyright © 2020 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

hicago on February 20, 2024



Alqatari et al., Sci. Adv. 2020; 6 : eabd6605     18 November 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 6

thickness of the inner fluid tongue, which adds a small slope to the 
interface as compared with a flatter interface at low viscosity ratios 
shown in Fig. 1C. This effect is robust and observed over the range 
of density differences  = ∣ out − in∣ that we can access. For a 
fixed viscosity ratio, in/out ≈ 0.2, bc decreases monotonically with 
, as shown in data with solid symbols in Fig. 1F. The open symbols 
show data for other values of in/out. We represent bc as a bar de-
noting where the system transitions from stability to instability. The 
upper end of these bars indicates the smallest b where we observe 
instability and the lower end denotes the largest b where we do not see 
measurable perturbations. An advantage of using water-glycerol mix-
tures is that their fluid properties are well characterized (26–28). How-
ever, one cannot independently vary one parameter without also 
changing the others. This makes parts of parameter space inaccessible.

Simulations
We take advantage of two-dimensional (2D) simulations to explore 
the parameters governing this stabilization systematically. We validate 
our simulations by replicating the three-layer geometry and complex 
fluid properties of our experimental setup. This results in excellent 
agreement with the experiments, as shown by the red symbols in 
Fig. 1F, where we determine the critical plate spacing bc by incre-
mentally decreasing b until the instability disappears. Our simula-
tions thus accurately model the system and can be used to extract 
information about bc.

The experimental three-layer fluid profile of the Hele-Shaw cell, 
replicated in the simulations, creates a configuration with many relevant 

length scales, including the thickness of each layer. We therefore sim-
plify the geometry to two fluid layers, each occupying half the gap. We 
use an average concentration-independent mass diffusivity, D, and fix 
the viscosity of the fluids such that  = H = L, where H and L de-
note the viscosities of the higher and lower density fluids, respectively.

The simplified simulations again capture the transition to stability 
at a critical plate spacing, as shown in Fig. 2A. As shown in Fig. 2B, 
bc increases with increasing either D or , indicating that diffusion 
of mass and momentum act to stabilize the interface. By contrast, 
increasing  leads to a decrease in bc, indicating that buoyancy forces 
g (where g is the Earth’s gravitational constant) drive the instability. 
We therefore normalize the critical plate spacing by a characteristic 
length formed only from D, , and g

   b   *  ∝   (     D ─ g   )     
1/3

   (1)

Over six decades of density difference, the data collapse with 
bc/b* = 15.0 ± 0.9, as shown in Fig. 2C. This corroborates the hypothesis 
that bc is determined by a competition between buoyancy and the 
stabilizing effects of viscosity and mass diffusion.

Note that Eq. 1 is analogous to the Rayleigh number for the 
Rayleigh-Bénard instability (29) typically used to denote the balance 
between thermal diffusion and bouyancy in systems with a tempera-
ture gradient: Ra = gl3/Dt. Here, l is a characteristic length scale 
and Dt is the coefficient of thermal diffusion (30). In our system, 
mass diffusion, D, replaces the stabilizing role of thermal diffusion 

Fig. 1. Confinement induces stabilization. (A) Hele-Shaw cell with gap thickness 0.05 < b < 1.2 mm and b ≪ L. (B) Density profile within a segment of the gap. Top: 
Initial density profile after injection of the inner fluid. Bottom: When the outer fluid is denser, the top interface becomes unstable; when the inner one is denser, the bottom 
interface becomes unstable. (C) Temporal evolution of the Rayleigh-Taylor instability, viewed from the bottom with b = 1.18 mm and fluids with out = 1150 cP, in = 32.4 cP, 
 = 0.0069 g/cm3, and an effective interfluid diffusion coefficient D = 2.8 × 10−6 cm2/s. t = 0 is when injection ceases. (D) Time series of the instability viewed with a con-
focal microscope, for fluids with out = 610 cP, in = 101 cP,  = 0.031 g/cm3, and D = 0.52 × 10−6 cm2/s. (E) Decreasing the gap thickness (b= 406, 330, and 241 m) for a 
fixed set of fluids (out = 29 cP, in = 5.0 cP,  = 0.070 g/cm3, and D = 2.92 × 10−6 cm2/s) leads to the disappearance of the instability at small enough plate spacings. (F) The 
critical plate spacing, bc, for pairs of miscible fluids versus the density difference . Black symbols denote experimental results, and red symbols are from simulations.
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in the Rayleigh-Bénard instability. Chandrasekhar (29) determined 
the critical Rayleigh number for a bounded geometry as Rac = 1707.8, 
below which no convection cells appear. If we use our expression 
for b*, but using Dt instead of D, the critical length scale for the 
Rayleigh-Bénard problem is l/b* ≈ 12, which is similar to bc/b* = 
15.0 ± 0.9 that we find for our instability. Although the system that 
we consider does not have continual driving required to sustain 
long-lived convective cells, the mechanisms responsible for the sta-
bility are similar in these two systems and it is reasonable that they 
have similar length scales governing the transition to stability.

To investigate the case where the fluids have different viscosities, 
we determine bc as a function of the viscosity ratio, H/L, while 
holding the average viscosity, 〈〉, constant. With b* ≡ (〈〉D/g)1/3, 
the data again collapse to bc/b* = 13.8 ± 0.6, as shown in Fig. 2D. We 
conclude that the viscosity ratio does not substantially affect bc.

When located in the middle of the gap, the interface is equally 
sensitive to both boundaries. To determine the effect of each boundary 
separately in the simulations, we locate the interface at different 
heights from the bottom plate, cb, with 0 < c < 1, as shown in Fig. 3A. 
The inset of Fig. 3B shows that cbc/b* has a symmetric minimum 
at c = 0.5 independent of . As c approaches either 0 or 1, the 
confinement-induced stabilization increases, suggesting that, as 
one might expect, the thinner layer has a greater importance than 
the thicker one. As cb → 0, cbc/b* plateaus at 4.5 ± 0.4 (Fig. 3B). This 
is the value associated with only one boundary. As c increases, 
cbc/b* increases as the interface becomes more influenced by the 
upper boundary as well.

Linear stability analysis
To probe confinement effects above bc, we measure the spontaneously 
selected instability wavelength, , versus the plate spacing. Figure 4A 
shows /b* versus b/b*. The red dashed line indicates bc below which 
no instability exists. Above that cutoff,  initially grows linearly with 
b until it plateaus to a constant.

To understand this plateau at large b, we consider the linear sta-
bility analysis by Duff et al. (12) in the absence of confinement. The 
instability growth rate (in terms of the wave number k = 2/) is

  n =  √ 
______________

  Agk / (A, t ) +     2   k   4    − ( + D )  k   2   (2)

where A = (1 − 2)/(1 + 2) is the Atwood number,  ≡ (1 + 2)/
(1 + 2) is the average kinematic viscosity, and  is a function of A, k, 
and the interface thickness   =  √ 

_
 2Dt   . Initially, before the interface 

has significantly diffused, k ≪ 1 and  ≈ 1 for all Atwood numbers. 

Fig. 2. Control parameters for stabilization probed in a simplified system. (A) Initial and final states for two-layer 2D simulations at b = 0.8 mm (unstable) and b = 
0.5 mm (stable). (B) The critical plate spacing bc versus  for a range of viscosities and diffusion coefficients. (C) Normalizing bc with b* = (D/g)1/3 collapses the data 
to bc/b* = 15.0 ± 0.9. (D) bc/b* as H/L is varied while keeping 〈〉 constant.

Fig. 3. Relevant length scale for confinement. (A) Schematic of simulated inter-
face located at height cb in the gap; 0 < c < 1. (B) Distance to the lower wall, cbc/b*, 
at the critical stability point versus c. At low c, cbc/b* = 4.5 ± 0.4, independent of . 
Inset: bc/b* increases as the interface approaches either boundary.
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For liquids, it is typical that  ≫ D. In this limit, Eq. 2 yields the 
most unstable wavelength

      ∞   ≡  ∣  dn/dk=0   ≈ 4   (         
2  ─ gA   )     

1/3
  =  2   8/3     [         2  A ─ 

g  ()   2 
   ]     

1/3

   (3)

where  = 1 = 2. ∞ corresponds to the plateau of the measured 
wavelength, as shown in Fig. 4B where we normalize b and  with 
∞. The onset of the plateau occurs when b ≈ ∞. Thus, ∞ sets the 
scale beyond which the instability no longer feels the confinement. 
We note that ∞ is fairly insensitive to mass diffusion and governed 
only by the competition between momentum diffusion and 
buoyancy. In the unconfined limit, the instability growth rate is 
always large enough that the time scale for dynamics is shorter than 
for mass diffusion.

To account for the confinement-dominated intermediate regime, 
we add in additional boundary conditions to Chandrasekhar’s un-
confined linear stability analysis (9, 31) (see the Supplementary 
Materials). This modified theory, shown by the dashed-dotted line 
in Fig. 4B, is in excellent agreement with the data and yields  ≈ 1.28b 
for b < ∞. This analysis further shows that decreasing b leads to a 
decreasing growth rate; when b approaches bc, the time for growth 
becomes of the same magnitude as the characteristic time for diffu-
sion. At small enough gaps, the interface between the fluids diffuses 
before the instability can grow by buoyant forces.

DISCUSSION
Accounting for mass diffusion in the linear stability analysis intro-
duces a second characteristic length that is not present when only 

viscosity is considered: a cutoff wavelength at which the growth rate 
approaches zero, cutoff = ∣n = 0

     cutoff   ≈ 2   (     2D ─ gA   )     
1/3

  =  2   5/3     (     D ─ g   )     
1/3

   (4)

cutoff, marking the transition between stable and unstable modes, is 
the smallest unstable wavelength allowed. cutoff scales in the same 
way as b*. Our interpretation of bc as the result of a competition 
between driving and stabilizing forces is thus consistent with the 
theoretical prediction of a cutoff wavelength in an unbounded, mis-
cible system. Only by going to a confined system though does this 
length scale become accessible.

The Rayleigh-Taylor instability for miscible fluids in confinement 
is thus characterized by two independent lengths: (i) bc sets a mini-
mum length scale for the instability and is dominated by mass dif-
fusion; (ii) ∞, dominated by momentum diffusion, gives the scale 
beyond which the system no longer feels the confinement. In between, 
the wavelength is controlled by b. Varying the plate spacing allows 
one to approach one or the other limit systematically.

In conclusion, the presence of a wall close to a two-fluid interface 
decreases the most unstable wavelength and slows down the instability 
growth. Varying confinement could provide a novel means for con-
trolling mixing in miscible fluids; it allows a transition between purely 
diffusion-dominated mixing to a much faster instability-dominated 
mixing. Such a transition is similar to the switch from laminar diffusion 
to convective mixing at a critical value of the Rayleigh number in the 
Rayleigh-Bénard instability (24, 30). Stabilization from confinement 
might be exploited in systems where instabilities are detrimental, such as 
in inertial confinement fusion where instabilities can prevent ignition (32).

Fig. 4. From stability to open space. (A) Dependence of  on b for a range of fluid parameters (legend) from simulations. Linear stability analysis accounting for confine-
ment predicts  ≈ 1.28b for b* < b < ∞ (gray dashed line). The red dashed line denotes the minimum b before stability at b/b* ≈ 15. Error bars represent the discretization 
error from the wavelength being an integer fraction of the channel width. (B) Normalization with ∞ collapses all data. The transition to the unconfined limit occurs when 
b ≈ ∞ (red dashed line). Results from the linear stability analysis are shown by the black dashed-dotted line.
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MATERIALS AND METHODS
Experimental
The glass plates used in our Hele-Shaw experiments are of diameter 
28 cm and thickness 1.9 cm. A uniform gap between the plates is 
maintained using spacers of thickness b = [0.05,1.2] mm placed 
along the perimeter of the cell. We use miscible fluids composed of 
glycerol-water mixtures with viscosities between 0.932 and 1078 cP 
and densities between 0.997 and 1.258 g/cm3 at 23°C. Fluid viscosities 
and densities are measured using an SVM 3001 viscometer (Anton 
Paar). To differentiate the fluids, we dye one of them with Brilliant 
Blue G (Alfa Aesar). We first inject an outer fluid through a hole in 
the center of one of the plates and then inject another inner fluid. 
We image the patterns from the bottom of the cell with a Prosilica 
GX3300 camera at frame rates ranging from 0.01 to 14 frames/s.

We use confocal microscopy (Caliber I.D. RS-G4 confocal micro-
scope) to visualize the structure within the gap inside a rectangular 
Hele-Shaw cell of size 2.5 cm by 7.5 cm and plate spacing b = 1.14 mm. 
The inner fluid is dyed with Rhodamine B (Sigma-Aldrich) at a 
concentration of 2 M. As a single stack with 31 z slices takes about 
30 s to capture, we use higher-viscosity fluids to slow down the dy-
namics, so that the instability takes 6 min to appear with full devel-
opment occurring after 15 min. Our acquisition rate is then fast 
compared to the dynamics that we wish to capture.

Numerical
We complement the experiments with 2D numerical simulations of 
the cross section of the Hele-Shaw cell. We model the two miscible 
fluids as a mixture with mass concentration i = [0, 1]. Using COMSOL, 
we solve the Stokes equations for creeping flow coupled with Fick’s 
law for diffusion

    

ρ∇ · u = 0

    ∇  · [− pI + η(∇ u +  (∇ u)   T  ) ] + ρg = 0    
 ρ   ∂  ω  i   ─ ∂ t   + ∇  ·  j  i   + ρ(u · ∇ )  ω  i   = 0

   (5)

where

   
 j  i   = − ρD∇ ω  i   −  ρω  i   D   ∇  M  n   ─  M  n     +  ρω  i    Σ  

k
       M  i   ─  M  n     D∇ x  k  

     
           M  n   =   (   Σ  

i
       ω  i   ─  M  i  

   )     
−1

 
    

(6)

 is the mixture density, u is the flow velocity, p is the pressure,  
is the mixture dynamic viscosity, D is the mixture diffusion coeffi-
cient, Mi is the molar mass of species i, and xk is the molar fraction 
of species k. The cross section of the Hele-Shaw cell is a rectangular 
domain of height b and width L = [10,16]b, large enough for the 
dynamics to be independent of the domain size. We impose no-slip 
and no-flux boundary conditions at the top and bottom of the 
domain and periodic boundary conditions on the left and right. We 
follow (26) in modeling  as a linear interpolation between the two 
fluid densities. The fluid interface is perturbed using a smooth random 
function and smoothed with an error function. The initial interface 
thickness is  ≤ 0.01b and the perturbation amplitude is a ≲ . The 
mesh size x is a fraction of a, uniformly spaced around the inter-
face where dynamics are pertinent. With time, the unstable interface 
chooses a wavelength independent of L.

We validate the model by comparing the simulation results to 
experiments performed under identical conditions, using the same 
fluid parameters and replicating the three-layer fluid profile within 
the gap. We use empirical formulas for both the interfluid diffusivity 
(27) and the viscosity (28) of glycerol-water mixtures as a function 
of the local mixture concentration, i. Such care needs to be taken 
to achieve agreement between the simulations and the experiments.

We then run another set of simulations, simplifying the geometry 
to two fluid layers with a single interface so that we can probe the 
effect of the interface location systematically. In addition, we sim-
plify the fluid parameters, replacing the concentration-dependent 
diffusivity and viscosity with a constant average diffusivity, D, and a 
viscosity that interpolates linearly with the local concentration, i. 
The empirical relations are asymmetric with respect to i, which leads 
to a drift in the location of the fluid interface as the system diffuses. 
The simplification of the fluid parameters is necessary to decouple 
the effect of the interface location from that of the fluid properties.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/47/eabd6605/DC1
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