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Sculpting stable structures in pure liquids
Tadej Emeršič1*, Rui Zhang2*, Žiga Kos3*, Simon Čopar3*, Natan Osterman3,4,
Juan J. de Pablo2,5†, Uroš Tkalec1,4,6†

Pure liquids in thermodynamic equilibrium are structurally homogeneous. In liquid crystals, flow and light
pulses are used to create reconfigurable domains with polar order. Moreover, through careful engineering of
concerted microfluidic flows and localized optothermal fields, it is possible to achieve complete control over the
nucleation, growth, and shape of such domains. Experiments, theory, and simulations indicate that the resulting
structures can be stabilized indefinitely, provided the liquids are maintained in a controlled nonequilibrium
state. The resulting sculpted liquids could find applications in microfluidic devices for selective encapsulation
of solutes and particles into optically active compartments that interact with external stimuli.
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INTRODUCTION
Solid materials can simultaneously exhibit distinct structural phases,
which can be manipulated to engineer functionality (1–3). Such struc-
tural phases, and the corresponding grain boundaries and defects, do
not arise in pure liquids at equilibrium (4). On the one hand, liquids
exhibit a number of attractive features, including short relaxation times,
high diffusion coefficients, absolute compliance, and, of course, the
ability to wet surfaces (5). On the other hand, however, imbuing pure
liquids with additional functionality is challenging because of their
inherent homogeneity. Complex behavior is generally encountered in
multicomponentmixtures, be they synthetic or biological. In the partic-
ular case of biological systems, examples of self-organized, transient,
and reconfigurable assemblies include raft domains, droplets, and other
membraneless compartments (6). Such structures, however, are difficult
to manipulate because they occur in out-of-equilibrium situations and
generally involve multiple components that exhibit sharp miscibility
gradients (leading to hydrophilic and hydrophobic domains). Recent
efforts to “print” hydrophobic and hydrophilic domains into liquid
mixtures by relying on the use of surfactant nanoparticles provide a no-
table demonstration of the possibilities afforded by gaining control over
structure in nonequilibrium systems (7). Similarly, active matter with
intrinsic topological defects is of particular relevance in this regard,
where emergent structures can be created in the form of living colonies,
tissues, and their biologically inspired synthetic counterparts (8–12). In
such examples, intrinsic activity leads to motion and transitions be-
tween different rheological regimes.

Recent advances in the ability to control the competing effects of
confinement and external fields by purposely designed micro-
manipulation tools have enabled seminal studies of nucleation, stability,
and motion of topologically protected configurations in complex fluids
(13–17), which can replace the need for multicomponent mixtures by
creating distinct structural domains within a pure liquid. Liquid crystals
(LCs) represent ideal systems for the study of spontaneous symmetry
breaking, topological defects, orientational ordering, and phase transi-
tions induced by applied stimuli (18). Even the simplest nematic phase,
where the average orientation of rod-likemolecules is characterized by a
nematic director n, exhibits a wide range of switching mechanisms
between uniformly aligned states (19). Nematic LCs (NLCs) can nucle-
ate point and line defects (20) by rapid pressure or temperature
quenches (21) and in the presence of colloidal inclusions (22–25). Re-
cent work has shown that line defects can serve as microreactors in
which to conduct polymerization reactions (26), offering intriguing
prospects for future applications. Thermodynamic and anchoring tran-
sitions, textures, hydrodynamics, and flow instabilities in nematic
mesophases have all been studied over the past decades. However, little
is known about the coexistence and stability of driven orientational
phases and the corresponding defects under geometric confinement.
Recent results on nematic flows in microfluidic environments (27–32)
have raised the possibility of tuning multistable defect patterns, and the
transitions that arise between flow regimes, by controlling the shape of
the channels, the anchoring conditions on channelwalls, the temperature-
dependent material properties, and, most importantly, the shear rate in-
duced by the pressure differential that drives the flow.
RESULTS
Wedemonstrate the creation and dynamicmanipulation of defects and
reconfigurable states in a pure NLC by simultaneous application of
multiple external fields. Oriented polar-phase domains are generated
and controlled through combinations of confinement, flow, and laser
pulses. In contrast to previous reports, where only bulk states of both
homeotropic and flow-aligned phases were considered, we are able to
observe the critical behavior of the phase interface for the first time.
Precision control over the production, growth rate, and shape of the
domains is achieved through a combination of simulations and
experiments that involve flow control and optothermal manipulation
driven by laser tweezers. More specifically, a quantitative analytical
model of the phase interface is proposed to predict the behavior of both
phases from the geometric andmaterial parameters of the experimental
setup. The model is supported by detailed numerical simulations that
include all relevant structural and hydrodynamic details. The insights
provided by our theoretical and computational work are used to design
a responsive system in which ametastable flow-aligned phase is repeat-
edly reconfigured by switching the flow direction, thereby permitting
detailed study of the nucleation of solitons, domain walls, and point
defects, followed by their relaxation dynamics as they seek to return
to equilibrium.
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Distinct domains of a flow-aligned phase of pentylcyanobiphenyl
(5CB) NLC in a linear microchannel are nucleated through a tem-
perature quench with a laser beam. As shown in Fig. 1A, the channel
has a rectangular cross section, and its walls confer perpendicular sur-
face alignment of the NLC (“homeotropic anchoring”) (see Materials
and Methods). The director profile of the initial stationary state
corresponds to a uniformly aligned homeotropic configuration along
the z axis that appears black when observed between crossed polarizers.
When the flow is turned on, the director remains predominantly
aligned perpendicular to the substrate but is slightly deflected in the flow
direction due to flow alignment, changing the birefringent appearance
from black to bright colors that depend on the flow velocity (Fig. 1B).
We name this flow regime the “bowser state,” after the bowed shape of
the director profile in contrast with the flow-aligned state, which wewill
refer to as the “dowser state.” A black isotropic island is created where
theNLC is heated into the isotropic phase by the laser tweezers; after the
light is switched off and the NLC is quenched into the nematic phase,
the initial tangle of defects relaxes into a flow-aligned state, bounded by
a disclination loop (Fig. 1B). The flow-aligned domains then evolvewith
flow (Fig. 1C) and can either grow or annihilate depending on the flow
velocity (movies S1 and S2). The flow-oriented phase, whose director
field in the midplane of the channel is aligned horizontally, changes di-
rection by a half-turn from the bottom to the top of the channel. This
systemrepresents an ideal experimentalmodel of a quasi–two-dimensional
Emeršič et al., Sci. Adv. 2019;5 : eaav4283 15 February 2019
(2D) orientational phase, described by a unit vector field of the
midplane director alignment, as recently reported in the strong flow
regime (v > 100 mm/s) in nematodynamics (30), and it is analogous to
the so-called dowser field in nematostatics, after which we adopted
the name (33).

The dynamics of the director field, described by the in-plane angle ϕ
relative to the x axis, is driven by the elasticity and the flow alignment.
Assuming uniform flow with midplane velocity v along the x axis and
neglecting splay-bend anisotropy, we obtain a linear coupling of direc-
tor and flow velocity

g1 _f ¼ K∇2f� 2ðg1 � g2Þ
ph

v sinf ð1Þ

This coupling is reminiscent of that of the dowser field to the thick-
ness gradient (33–35). The equation can be recognized as a damped
sine-Gordon equation with characteristic length x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kph

2vðg1�g2Þ
q

, where
K is the single elastic constant, g1 and g2 are viscosity parameters, and
h is the height of the channel. Details on the general derivation, in-
cluding the velocity gradient term, which is essential for describing flow
in channel junctions (32), are provided in Materials and Methods.

The flow-aligned dowser state is stable under strong flows but un-
stable in weak flows. The dowser domains are seen to grow and shrink,
depending on the flow velocity, as shown both in experiments (Fig. 2, A,
C and F, and movie S2) and in numerical simulations (Fig. 2, B, D, and
E, and movie S3). We have constructed a quantitative phenomeno-
logical model for the dynamics of the domain size (see Materials and
Methods). In such a model, the growth rate of a circular domain with
radius r is given by

gr _r ¼ 2ðg1 � g2Þðvcosf� vcÞ � 2pT
r

ð2Þ

where T is the disclination line tension and gr is the viscosity parameter
associated with the drag force on moving disclination lines, which are

both assumed to be constant. The critical velocity is vc ¼ p3K
2hðg1�g2Þ. The

stability of a flow-aligned (f = 0) dowser domain is conditioned by the
midplane velocity in the channel, as summarized in the phase diagram
of Fig. 2H. Below vc, all dowser domains are unstable and gradually
shrink in size until they disappear. Above vc, the behavior of dowser
domains depends on their initial size. If the domain size is smaller than

the critical radius rc ¼ pT
ðg1�g2Þ ðv � vcÞ�1, the domain shrinks over time

and annihilates. If r > rc, the domain grows until it reaches the side walls
of the channels and expands along the channel from then on (Fig. 2, A
and B).

Equation 2 canbe integrated analytically to yield the timedependence
of the flow-aligned dowser domain size

t ¼ 1
a

r � r0 þ rcln
rc � r
rc � r0

� �
ð3Þ

wherea ¼ g1�g2
gr

ðv � vcÞand r0 is the initial radius of the loop.We have
fitted Eq. 3 to the experimental data in Fig. 2F and fig. S1 through
parameters a, r0, and rc and obtained good agreement with the model.
From the fitting parameters, a vc of (56.4 ± 1.4) mm/s was determined as
the point where the inverse of the rc reaches zero (Fig. 2G). Fitting over
A

B

C

Fig. 1. Nucleation of orientational phase domains in pressure-driven nemat-
ic microflows. (A) Schematic illustration of a channel with homeotropic
anchoring on the top and bottom surfaces used in the experiment (see Materials
and Methods). IR, infrared; ITO, indium tin oxide. (B) The nematic in a channel
looks black between crossed polarizers in the absence of flow and gains visible
birefringence due to flow-driven director distortion that traps a domain of the
flow-aligned state (also called the dowser state from here on); n denotes the ne-
matic director. Strongly absorbed light of the laser tweezers heats the NLC, creat-
ing an isotropic (Iso) island that is quenched into the nematic (N) phase when the
laser is switched off. The dense tangle of defects coarsens into a single defect
loop that traps a flow-aligned dowser state, identifiable as a green area at low
velocity. (C) The laser-induced nucleation of dowser domains can be automated
and their shape can be dynamically controlled by tuning the flow parameters.
Crossed double arrows indicate the orientation of the polarizers. White empty
arrows in the bottom left corners indicate direction and qualitative velocity of
the flow throughout the paper. Scale bars, 20 mm.
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parameter a yields a similar value (56.8 ± 1.2) mm/s (fig. S2). The critical
velocity, calculated directly from the dimensions of a channel and the
viscoelastic properties of 5CB, is ≈ 42 mm/s. The agreement with both
values obtained from the fit is reasonable, particularly considering the
simplifying assumptions involved in the theoretical model. A separate
analysis, performed on channels of different sizes, reveals a comparable
behavior and fits the model reasonably well (fig. S3).

The dowser domains can be manipulated in various ways through
careful application of the laser tweezers. A preexisting bulk dowser state
may be created upstream by prior quenching or simply by the initial
conditions of the nematic at the influx.One can produce a steady stream
of domains by dissecting the original bulk dowser with a moving laser
spot (Fig. 3A andmovie S4) whose role is to constantly melt the sides of
a phase boundary. A growing domain at higher flow velocity can be
longitudinally split in half by a static laser beam at lower light intensities
Emeršič et al., Sci. Adv. 2019;5 : eaav4283 15 February 2019
(Fig. 3B andmovie S5). One can observe changing birefringent colors as
the domain traverses a light-generated obstacle. The laser tweezers
therefore enable dynamic control over the size, number, and lifetime
of generated dowser domains, which can be further manipulated by pe-
riodic flow velocity modulations. In a uniform flow, the dowser field
aligns uniformly along the flow direction and either grows or shrinks,
depending on the velocity regime. By careful tuning and active control
of the flow, a constant-size domain can be maintained over a period of
tens of seconds (Fig. 3C). Here, the flowing dowser domain is stabilized
in an oscillatory flow, maintained by a sinusoidal modulation of the
driving pressure around the target flow rate (70 mm/s < v < 95 mm/s,
with a period of 3.5 s).

Ourmodel, as expressed in Eq. 1, predicts that, when the flow direc-
tion is reversed, the previous equilibrium state becomes the least favor-
able, leading to a rapid reversal of orientation. Figure 3D and movie S6
A C

B

F G

H

D E

Fig. 2. Dynamic evolution of dowser field domains in stationary nematic microflows. (A to D) Growing and shrinking flow-aligned dowser domains in experiments
and numerical simulations, captured at two different flow velocities. In (B), one can observe the varying profile of the half-integer disclination loop in the xz plane, which
serves as a phase boundary and stabilizes the dowser domain. Empty white arrows indicate the qualitative magnitude and direction of flow. (E) Loop lifetime,
determined from numerical simulations in the shrinking regime (D). The lifetime diverges at a certain critical pressure gradient that is proportional to the critical
velocity. Note that the scale in simulations is orders of magnitude smaller than that in experiments. (F) Time dependence of the loop radius for different values of
flow velocity. For shrinking loops, a theoretical model (Eq. 3) is fitted to the data points. The fitting function is shown by the bold lines. The theoretically predicted
growth does not apply to growing loops, as their growth is confined by the channel walls. (G) Critical velocity extracted from the fit parameter 1/rc, obtained for loop
annihilation at different velocities. A linear fit is used to determine the critical velocity at (56.4 ± 1.4) mm/s. (H) Phase diagram for shrinking (blue) and growing (orange)
loops, separated by the curve for rc as obtained from the fit in (G). Some shrinking loop data points lie above the critical curve, due to loops that are still in the transition
process after the quench and were thus omitted from the fit in (F). Scale bars, 20 mm.
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show a dowser domain in an alternating flow where flow reversal can
be observed twice per period (−90 mm/s < v < +90 mm/s with a period
of 2.0 s). When the velocity drops below the critical value, the domain
begins to shrink. As the flow reverses, the reorientation begins at the
leading and trailing points of the domain, creating reorientation fronts
that propagate inward (Fig. 3D). The part with the old orientation is
energetically unfavorable, causing it to shrink to a narrow 2p soliton.
When the velocity passes vc, the domain starts to grow again, leading
to disappearance of solitons through discontinuous director rearrange-
ment (fig. S4). The soliton size is set by the characteristic length x
from the sine-Gordon equation, which becomes very small under
strong flows.

The line tension equation Eq. 2 holds locally and describes the cur-
vature flow of the dowser domain boundary. When the dowser orien-
tation f is not alignedwith the flow, the domain growth rate varies along
the boundary and may even change sign. Figure 3D shows invagina-
tions that appear in the dowser domain, where the soliton extends to
the boundary. The boundary of the domain is thus controlled by the
internal orientation, leading to noncircular shapes that are reminis-
cent of living cells during division. In Fig. 3E, one can appreciate that
bulbous parts appear on the shrinking domains; these are due to small
residual flows that cause a difference in line tension between regions
with different director orientations.

The dowser state, being a polar unit vector field, supports the exis-
tence of point defects with an integer winding number, which appear in
pairs, connected by a soliton. As shown in Fig. 3E andmovie S7, turning
Emeršič et al., Sci. Adv. 2019;5 : eaav4283 15 February 2019
off the flow increases the characteristic length with decreasing velocity,
allowing us to observe the detailed structure of the soliton. In this simple
case, the sine-Gordon equation can be solved analytically, giving the
transverse profile of the soliton as f(y) = 4 arctan e±y/x (inset in Fig.
3E), analogous to the soliton profile seen in the dowser field under
the cuneitropism effect (33). In addition to defect pairs, closed circular
solitons may appear during oscillatory flow (fig. S4).
DISCUSSION
In close analogy to other heterogeneous mixtures with phase boundary
interfaces, such as fogs and aerosols, microfluidic droplets, fluids at the
triple point, and the nematic-isotropic phase transition itself, surface
tension plays a crucial role in controlling the “evaporation” and growth
of the low-energy phase, depending on the curvature of the interface. In
the system presented here, the phases have different symmetries, are
topologically incompatible, and exhibit what is essentially a first-
order phase transition. The dowser state is orientationally anisotropic,
with its own elastic behavior, topological defects, and solitons, whereas
the bowser state is effectively isotropic and simple in the simplified 2D
view. The dowser-phase orientation couples with the velocity field and
can have either lower or higher energy than the bowser, depending on
its orientation. In this way, the shape, splitting, and coalescence of do-
mains can be controlled.

As the dowser field also couples to external magnetic and electric
fields, as well as the gradients of the channel thickness, we suggest that
A B D E

C

Fig. 3. Systematic reshaping of dowser domains under laser action and oscillatory flows. (A) Moving the laser beam transversely across the bulk dowser pinches
off a uniform “train” of the domains. (B) A static beam at a low power of 80 mW generates a small isotropic region that cuts a large dowser domain longitudinally in half.
(C) The shape and size of the domain can be maintained over long time and length scales by periodically modulating the driving pressure around the value that
induces the desired average flow rate. (D) Under an alternating flow, a dowser domain reverses orientation every time the flow direction is changed. The reorientation
creates surface point defects and realigning fronts, visible under the microscope as a rapid color change. The energetically unfavorable “old” orientation shrinks into a
narrow 2p soliton and pinches the domain boundary (black arrows). (E) Sufficiently rapid flow reversal creates point defect pairs connected by solitons. With the flow
turned off, the characteristic length goes to infinity, and the solitons expand, revealing their signature profile in transmitted light intensity (inset). In a slow residual flow,
flow-aligned parts shrink more slowly than parts with unfavorable orientation. Scale bars, 20 mm.
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combinations of these external cues could offer exceptional possibilities
for shape control, flow steering, and optical tuning. As the response to
the external stimuli is directly and clearly observable through bi-
refringence, it could also be used to measure the viscoelastic and rhe-
ological properties of thematerial itself. The dowser domains, readily
produced in large quantities and sizes with laser tweezers, are anal-
ogous to droplets and shells and can serve similar purposes. It should
be possible, for example, to create nested domains for the production
of 2D shells with an enclosed volume of the dowser phase. It should
also be possible to conduct chemical reactions in such domains or
sequester different components according to orientational or di-
electric affinity (as opposed to hydrophobic/hydrophilic contrast),
as recently shown for defects around microparticles (26). One could
envision a 3D printing system for liquids in which complex out-of-
equilibrium structures are created and stabilized by relying on the
principles outlined here. Last, the models obtained here from
experiments with standard thermotropic LCs could be readily applied
to active and biological materials with nematic behavior. Controlling
alignment and separation into isolated orientational domains may be
seen as a technical tool with potential for applications in biophysics,
chemistry, and chemical engineering.
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MATERIALS AND METHODS
Materials and experimental procedures
We used a single-component nematic material 5CB (SYNTHON
Chemicals), which has the nematic phase in temperature range
18°C < T < 35°C, in all of our experiments. The microfluidic chan-
nels had a rectangular cross section, with height h≈ 12 mm, width w =
100 mm, and length L = 20 mm. The channels were fabricated out of
polydimethylsiloxane (PDMS; SYLGARD 184, Dow Corning) reliefs
and indium tin oxide (ITO)–coated glass substrates (Xinyan Technol-
ogy) by following standard soft lithography procedures (30). The ITO
coating was used as an absorber of the infrared (IR) laser light and
provided very good control for the local heating of 5CB. The channel
walls were chemically treated with 0.2 weight % aqueous solution of sil-
ane dimethyl-octadecyl-3-aminopropyl-trimethoxysilyl chloride (abcr
GmbH) to induce strong homeotropic surface anchoring for 5CB
molecules (30). The microfluidic channels were filled with 5CB in
its isotropic phase and allowed to cool down to nematic phase at
room temperature before starting the flow experiments. We drove
and precisely controlled the fluid flow by using a pressure-drivenmi-
crofluidic flow control system (OB1, Elveflow). We applied and varied
flow rates in the range 0.05 to 1.50 ml/hour corresponding to a flow
velocity v, ranging from 5 to 250 mm/s. In some experiments, the ne-
matodynamics was controlled by adjusting time-dependent flow
driving using built-in flow profile routines of the microfluidic con-
troller. The characteristic Reynolds number Re = rvl/h for 5CB having
effective dynamic viscosity (32) h ≈ 50 mPa⋅s ranged between 10−6

and 10−4. Here, r ≈ 1.024 kg/m3 is the material’s density, and l =
4wd/2(w + h) ≈ 21 mm is the hydraulic diameter of the channels.
The corresponding Ericksen number Er = hvl/K, withK = 5.5 pN being
the 5CB single elastic constant approximation, varied between 0.8 and
40. All the experiments were conducted at room temperature.

Polarized light microscopy, laser tweezers, and
image acquisition
The flow regimes, reorientation dynamics, and flow-driven deforma-
tions of 5CB in microchannels with homeotropic surface anchoring
Emeršič et al., Sci. Adv. 2019;5 : eaav4283 15 February 2019
were studied by polarized light microscopy (Nikon, Eclipse Ti-U,
equipped with CFI Plan 2× and 10× objectives). The samples were
observed between crossed polarizers in transmission mode. In addi-
tion, we used a laser tweezers setup build around the inverted optical
microscope with an IR fiber laser operating at 1064 nm as a light
source and a pair of acousto-optic deflectors driven by a computerized
system (Aresis, Tweez 200si) for precise laser beam manipulation.
The laser power was varied between 20 and 200 mW in the sample
plane, and the Gaussian beam profile was primarily used for local
heating of the NLC above its clearing temperature. Full high-definition
color videos were recorded at a frame rate of 30 frames per second
using a digital complementary metal-oxide semiconductor camera
(Canon, EOS 750D), attached by a C-mount compatible adapter
(LMScope) to the microscope. The image analysis was performed
using the software ImageJ.

Numerical simulation details
The bulk free energy of the NLC, F, is defined as

F ¼ ∫V f bulkdV þ ∫∂Vf surf dS
¼ ∫Vð f LdG þ f el þ f DÞdV þ ∫∂V f surf dS

ð4Þ

where fLdG is the short-range free energy, fel is the long-range elastic
energy, fD is the laser-induced dielectric interaction energy, and
fsurf is the surface free energy due to anchoring. fLdG is given by a
Landau–de Gennes expression of the form (18)

f LdG ¼ A0

2
1� w

3

� �
TrðQ2Þ � A0w

3
TrðQ3Þ þ A0w

4
ðTrðQ2ÞÞ2 ð5Þ

Parameter w controls the magnitude of q0, namely, the equilibrium

scalar order parameter via q0 ¼ 1
4 þ 3

4

ffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

3w

q
. The elastic energy fel is

written as (using Einstein summation rule)

f el ¼
1
2
L1ð∂kQijÞð∂kQijÞ þ

1
2
L2ð∂kQjkÞð∂lQjlÞ

þ 1
2
L3Qijð∂iQklÞð∂jQklÞ þ

1
2
L4ð∂lQikÞð∂kQjlÞ ð6Þ

where ∂i indicates a spatial derivative over the ith coordinate. If the sys-
tem is uniaxial, the L’s in Eq. 6 can be mapped to the Frank elastic con-
stants K ’s via

L1 ¼ 1
2q20

K22 þ 1
3
ðK33 � K11Þ

� �
;

L2 ¼ 1
q20

ðK11 � K24Þ;

L3 ¼ 1
2q30

ðK33 � K11Þ;

L4 ¼ 1
q20

ðK24 � K22Þ ð7Þ

By assuming a single elastic constant K11 =K22 =K33 =K24 ≡K, one
hasL1 ¼ L ≡ K=2q20 and L2 = L3 = L4 = 0. Pointwise,n is the eigenvector
associated with the greatest eigenvalue of the Q-tensor at each lattice
5 of 8
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point. The free energy associated with anisotropic dielectric constants
reads

f D ¼ � 1
2
e0eijEiEjdV

where e0 is the vacuum permittivity constant and eij is the dielectric
permittivity tensor related to the Q-tensor as

eij ¼ �edij þ 2
3
ðejj � e⊥ÞQij

in which e|| and e⊥ are the permittivities parallel and perpendicular to
the nematic director, respectively.

To simulate NLC’s flowing dynamics, a hybrid lattice Boltzmann
method is used to simultaneously solve a Beris-Edwards equation and
a momentum equation that accounts for the backflow effects. By intro-
ducing a velocity gradient Wij = ∂ivj, a strain rate u ¼ 1

2 ðWþWTÞ, a
vorticity tensor w ¼ 1

2 ðW�WTÞ, and a generalized advection term

SðW;QÞ ¼ ðxu� wÞðQþ I=3Þ þ ðQþ I=3Þðxuþ wÞ
�2xðQþ I=3ÞTrðQWÞ ð8Þ

one can write the Beris-Edwards equation (36) according to

ð∂t þ v⋅∇ÞQ� SðW;QÞ ¼ GH ð9Þ

where ∂t is a partial derivative over time. The constant x is related to the
material’s aspect ratio and relates to the alignment parameter in the
Ericksen-Leslie-Parodi theory l ¼ � g2

g1
¼ ð2þ q0Þx=3q0. G is related

to the rotational viscosity g1 of the system byG ¼ 2q20=g1 (37). Themo-
lecular field H, which drives the system toward thermodynamic equi-
librium, is given by

H ¼ � dF
dQ

� �st
ð10Þ

where […]st is a symmetric and traceless operator.When velocity is ab-
sent, i.e., v(r)≡0, the Beris-Edwards equation (Eq. 9) reduces to the
Ginzburg-Landau equation

∂tQ ¼ GH

To calculate the static structures of ±1/2 defects, we adopted the
above equation to solve for the Q-tensor at equilibrium.

Homeotropic anchoringwas implemented through aRapini-Papoular
expression (18) that penalizes any deviation of the Q-tensor from Q0,
namely, a surface-preferred Q-tensor. The associated free-energy expres-
sion is given by

f surf ¼
1
2
WðQ�Q0Þ2 ð11Þ

The evolution of the surface Q-field is governed by (31)

∂Q
∂t

¼ �Gs �Ln⋅∇Qþ ∂f surf
∂Q

� �st� �
ð12Þ
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where Gs = G/xN with xN ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
L1=A0

p
, namely, nematic coherence

length. The above equation is equivalent to the mixed boundary condi-
tion given in (38) for steady flows.

The momentum equation for the nematics is written as (37)

rð∂t þ vj∂jÞvi ¼ ∂jPij þ h∂j ∂ivj þ ∂jvi þ ð1� 3∂rP0Þ∂kvkdij
	 


ð13Þ

The stress P is defined as

Pij ¼ �P0dij � xHikðQkj þ
1
3
dkjÞ � xðQik þ

1
3
dikÞHkj

þ 2xðQij þ
1
3
dijÞQklHkl � ∂jQkl

dF
d∂iQklþQikHkj � HikQkj

ð14Þ

where h is the isotropic viscosity, and the hydrostatic pressure P0 is
given by

P0 ¼ rT � f bulk ð15Þ

The temperature T is related to the speed of sound cs byT ¼ c2s .
We solve the evolution equation (Eq. 9) using a finite difference
method. The momentum equation (Eq. 13) is solved simulta-
neously via a lattice Boltzmann method over a D3Q15 grid (39).
The implementation of stress follows the approach proposed by
Guo et al. (40). Our model and implementation were validated
by comparing our simulation results to predictions using the
Ericksen-Leslie-Parodi theory (41). The units are chosen as
follows: The unit length a is chosen such that unit length a = xN
= 7 nm, viscosity g1 = 0.07 Pa⋅ s, and elastic constants splay K11 =
6 pN, twist K22 = 3.9 pN, bend K33 = 8.2 pN, and saddle-splay K24 =
7 pN, mimicking the material properties of 5CB. We refer the
reader to (31) for additional details on the numerical methods
used here.

Dowser field orientation
To derive an effective 2D theory of a dowser state, we took the ansatz for
the dowser profile of the director field

n ¼ dsin
zp
h

� �
þ ez cos

zp
h

� �
ð16Þ

where the unit vectord is a dowser orientational field in the xyplane, z is
the vertical position in the channel of height h, and ez is a unit vector
along the z direction. A Poiseuille flow profile is assumed

vðzÞ ¼ 4 1� z
h

� � z
h
v ð17Þ

where v is a vector field in the xy plane of the channel. Given that we are
interested only in the behavior of thedirector field,wewrite the dissipation
function, omitting the terms that do not include time derivatives of n (42)

D ¼ a2 _ninj∂jvi þ a3 _ninj∂ivj þ 1
2
g1 _ni _ni ð18Þ
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where a2 ¼ 1
2 ðg2 � g1Þand a3 ¼ 1

2 ðg2 þ g1Þare viscosity coefficients in
the Ericksen-Leslie-Parodi formulation of nematodynamics and a dot
indicates the time derivative, assuming that entire vertical profile advects
with themidplane velocity v. Total dissipation in the system is given as a
volume integral over the dissipation function D. Since the director and
the velocity profile in the z direction are fixed by Eqs. 16 and 17, respec-
tively, we are free to perform the integration over the z axis, obtaining
effectively a dissipation function D2D = ∫Ddz of 2D processes

D2D ¼ a2h _didj∂jvi
1
3
þ 1
p2

� �
þ a2 _di vi

2
p

þa3h _didj∂ivj
1
3
þ 1
p2

� �
þ g1

4
h _di _di ð19Þ

Next, we write the elastic free-energy density of a dowser struc-
ture in a single elastic constant (K) approximation f el ¼ K

2 ½ð∇:nÞ2 þ
ð∇� nÞ2�, which can again be integrated over the z axis f2D = ∫feldz,
obtaining

f 2D ¼ K
2

h
2
ð∇:dÞ2 � pð∇:dÞ þ h

2
ð∇� dÞ2 þ p2

h

� �
ð20Þ

Wewrite dowser field as d = (cos f, sin f) and follow the Lagrange
formalism for f angle ∂i

∂f 2D
∂ð∂ifÞ �

∂f 2D
∂f ¼ ∂D2D

∂ _f , obtaining the master
equation for the dowser orientation

_f ¼ K
g1

∇2fþ Kp
g1h

ðd⋅∇Þfþ 2
1
3
þ 1
p2

� �
wxy

� 2l
1
3
þ 1
p2

� �
ðuxx sin 2f� uxy cos 2fÞ

� ðlþ 1Þ 2
ph

ðvx sin f� vy cos fÞ ð21Þ

Effective free energy of dowser domains
The time derivative of the dowser orientation can also be viewed as a
relaxation under the effective potential U that depends on the velocity
field. The equation of motion in that case is

g1
2
h _f � hg1

1
3
þ 1
p2

� �
wxy ¼ ∂i

∂f 2D
∂ð∂ifÞ �

∂U
∂f

ð22Þ

The master equation for _f is recovered for

∂U
∂f

¼ �g2h
1
3
þ 1
p2

� �
ðuxx sin 2f� uxy cos 2fÞ

�ðg2 � g1Þ
1
p
ðvx sin f� vy cos fÞ ð23Þ

Integrating the above equation over f leads to

U¼ g2h
2

1
3
þ 1
p2

� �
ðuxx cos 2fþ uxy sin 2fÞ

þ ðg2 � g1Þ
p

ðvx cos fþ vy sin fÞ þ C
ð24Þ
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which can be written in a covariant form

U ¼ g2h
2

1
3
þ 1
p2

� �
dud⊺ þ ðg2 � g1Þ

p
v :dþ C ð25Þ

where a constant C is not dependent on ϕ. C has to vanish at v = 0 and
must be at least quadratic in v to preserve the invariant form. Since we
are interested only in the linear response to the velocity field, we can
set C = 0.

Using the effective potential U, we can phenomenologically
construct an effective free energy F of a dowser state in microfluidic
confinement in contact with a homeotropic nematic state (with ansatz
n = ez)

F ¼ ∫
dowser
area

ðf 2D þ UÞdSþ ∫
dowser
edge

Tdl ð26Þ

where T is the line tension of a nematic disclination (18). Specifically,
we are interested in the free energy of circular dowser domains with
homogeneous alignment of the dowser vector d in a flow field that is
homogeneous in the xy plane. This substantially simplifies the expres-
sion for the free energy

F ¼ �ðg1 � g2Þðv :d� vcÞr2 þ 2pTr ð27Þ

where vc ¼ p3K
2hðg1�g2Þ. The dynamics of the loop growth or annihilation

is given by

gr _r ¼ � 1
r
∂F
∂r

ð28Þ

where the viscosity parameter gr is due to a drag force on a moving
disclination line. The line tension contribution becomes dominant at
small radii, leading to universal annihilation behavior of shrinking
loops (fig. S1).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/2/eaav4283/DC1
Fig. S1. Universality of the dowser domain annihilation dynamics at small radii.
Fig. S2. Velocity dependence of parameter a from Eq. 3 for the dowser domain size, as
extracted from Fig. 2F.
Fig. S3. An independent study, performed in 400-mm-wide and 15-mm-deep channels, shows
equivalent behavior of dowser domain dynamics as is discussed in the main text.
Fig. S4. Dowser field relaxation dynamics.
Movie S1. Laser tweezers-induced nucleation of the dowser domains in a pressure-driven
nematic microflow.
Movie S2. Expansion and contraction of laser-nucleated dowser domains in a moderate
nematic microflow.
Movie S3. Growing and shrinking dowser domains in numerically simulated nematic
microflows.
Movie S4. A steady stream of dowser domains is produced by chopping the bulk dowser state
with a moving laser spot.
Movie S5. A growing dowser domain is longitudinally split into two by a static laser spot.
Movie S6. Dowser domain reconfiguration under an oscillatory flow.
Movie S7. Relaxation dynamics of dowser domains after shutting off the flow.
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