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Quantum computational advantage via  
high-dimensional Gaussian boson sampling
Abhinav Deshpande1,2,3†, Arthur Mehta4,5†, Trevor Vincent4, Nicolás Quesada4,6, 
Marcel Hinsche7, Marios Ioannou7, Lars Madsen4, Jonathan Lavoie4, Haoyu Qi4, Jens Eisert7,8,9, 
Dominik Hangleiter1,7, Bill Fefferman10, Ish Dhand11*

Photonics is a promising platform for demonstrating a quantum computational advantage (QCA) by outperforming 
the most powerful classical supercomputers on a well-defined computational task. Despite this promise, existing 
proposals and demonstrations face challenges. Experimentally, current implementations of Gaussian boson sampling 
(GBS) lack programmability or have prohibitive loss rates. Theoretically, there is a comparative lack of rigorous 
evidence for the classical hardness of GBS. In this work, we make progress in improving both the theoretical evi-
dence and experimental prospects. We provide evidence for the hardness of GBS, comparable to the strongest 
theoretical proposals for QCA. We also propose a QCA architecture we call high-dimensional GBS, which is 
programmable and can be implemented with low loss using few optical components. We show that particular 
algorithms for simulating GBS are outperformed by high-dimensional GBS experiments at modest system sizes. 
This work thus opens the path to demonstrating QCA with programmable photonic processors.

INTRODUCTION
We are arriving at an exciting era for quantum computing in which 
quantum experiments are pushing the limits of what is efficiently 
computable by the most powerful classical supercomputers. The first 
major goal for this era is the demonstration of a scalable quantum 
advantage or quantum computational advantage (QCA) (also termed 
“quantum computational supremacy”) over classical computers. QCA 
is important as a probe of the foundations of computer science, 
where it can be seen as an experimental violation of the extended 
Church-Turing thesis, and it also serves as an important bench-
marking tool for comparing near-term experiments on different 
platforms in a fair and consistent manner. The recent groundbreaking 
demonstrations of QCA (1,  2) constitute the first notable experi-
mental evidence against the extended Church-Turing thesis.

Notwithstanding, multiple potential loopholes have been pointed 
out (3–5). QCA will not be marked by a single isolated experiment 
but rather will be established by gradually improving and scaling up 
“high complexity” experiments run over the course of many years, 
which improving classical algorithms will try to simulate. Our con-
fidence that we have arrived in this new era will grow as multiple 
experiments, performed in different physical architectures, inde-
pendently reach this conclusion in a comparable fashion. In this 
way, the goal may be seen as being analogous to Bell inequality 

violations, which were originally conducted in landmark experiments 
starting in the 1970s performed on a variety of different platforms 
but only much later were loopholes closed.

In the same vein, theoretical results about QCA justify the classical 
hardness of simulating an experiment in the realm of asymptotically 
large system sizes. To interpret conclusions from experiments per-
formed at a fixed system size, we should also consider the concrete 
cost of simulating these finite-size experiments using known algo-
rithms. The two lines of inquiry are complementary to each other 
and support each other in a claim that any experiment is likely im-
possible to feasibly simulate with current hardware.

Among different approaches to demonstrating QCA (1, 2, 6, 7), 
photonics provides a promising path as it enables room temperature 
operation, fast gate speeds, and notable potential for scalability (8, 9). 
Arguably, the most feasible approach to demonstrating QCA with 
photonics is to perform the Gaussian boson sampling (GBS) protocol 
(10, 11). This protocol is at the heart of the recent QCA demonstra-
tion performed by a team from University of Science and Technol-
ogy of China (USTC) (2), which used a GBS device with 100 modes 
and an average of around 45 photons. However, GBS has several 
important limitations. On the experimental side, current imple-
mentations of GBS either lack programmability (2) or have high 
loss rates, which could render the system classically simulable (12, 
13). In addition, from a theoretical standpoint, there is a compara-
tive lack of complexity-theoretic evidence for the hardness of GBS 
(5) and an understanding of the classical runtime of concrete algo-
rithms to simulate GBS instances.

In this work, we aim to address these challenges. We close im-
portant theoretical loopholes in the hardness argument for GBS and 
provide evidence for the hardness of classically simulating GBS even 
in the presence of loss. We moreover propose a new, programmable 
architecture for GBS that promises better robustness to loss in a 
near-term experiment and an asymptotic quantum speedup over 
classical algorithms. In addition, our proposed architecture is de-
signed so that it is outside of known regimes where current algo-
rithms can simulate finite-size GBS instances in feasible time, as we 
show through numerical benchmarking.
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We first address the open theoretical questions about GBS, namely, 
hardness in the regime with little overall noise in the form of optical 
loss. More specifically, to provide complexity-theoretic evidence for 
the hardness of approximately simulating GBS, we prove average- 
case hardness of computing output probabilities in the noise-free 
case, formulate the so-called “hiding property” (7) for GBS in terms 
of a random-matrix theory conjecture, and provide analytical and 
numerical evidence for this conjecture. These results bring GBS to 
the level of evidence shared by other QCA proposals such as ran-
dom circuit sampling (RCS) and conventional boson sampling [see 
(6, 7, 12)] up to a mild conjecture in random matrix theory. We 
then show that average-case hardness of computing output proba-
bilities still holds in a regime of high loss rates, building on recent 
results (13), and discuss the implications of this result on the noise- 
regimes in which one may still expect GBS to be hard to simulate on 
a classical computer. These results bolster the evidence for QCA in 
the USTC experiment and also any future GBS experiments.

Given these theoretical results, we then address the programma-
bility versus low-loss trade-off in current architectures. To this end, 
we introduce a new architecture, high-dimensional GBS, using a 
time-domain approach. This architecture can be implemented pro-
grammably with low overall loss while at the same time being hard 
to simulate for the known classical simulation algorithms. The 
hardness of this architecture is borne out by the hardness of com-
puting output probabilities for the lossy, high-dimensional GBS setup. 
These results provide evidence of classical hardness for asymptotic 
system sizes. In the realm of finite system sizes, we take care to avoid 
regimes where the experiment can be tractably simulated (12, 16), 
such as when the linear-optical network has limited connectivity 
[such as one-dimensional (1D) network topology] or when the sys-
tem is too lossy. Our proposed high-dimensional GBS architecture 
voids these algorithms by taking advantage of the enhanced con-
nectivity available in higher dimensions than one.

To this end, we perform benchmarking simulations to estimate 
the cost of high-dimensional GBS against state-of-the-art algorithms 
for simulating GBS and for simulating high-dimensional quantum 
many-body systems (17, 18). These simulations give evidence that 
classically intractable instances of high-dimensional GBS can be 
built in the laboratory with a small number of optical components. 
These advantages make high-dimensional GBS an ideal near-term 
architecture for demonstrating QCA with a programmable photonic 
device. Thus, by addressing the abovementioned shortcomings of 
GBS from the theoretical and experimental perspectives and under-
standing the limits of its classical simulability through both asymp-
totic analysis and finite-size benchmarking, this work paves the way 
toward more “loophole-free” demonstrations of QCA with a pro-
grammable photonic quantum device.

Hardness of approximate GBS
We begin by reviewing and strengthening the hardness argument for 
the task of simulating GBS as introduced in (10, 11). We first intro-
duce the model of GBS and then examine the evidence for the hard-
ness of approximate boson sampling. Two properties are required 
for establishing complexity-theoretic hardness of sampling using the 
standard QCA arguments, namely, hiding and average-case hardness 
of approximating probabilities. Here, we strengthen the results in 
(10, 11) by providing strong evidence for these properties in GBS.  
Specifically, we reduce the hiding property to a highly plausible 
conjecture in random matrix theory, for which we provide analytical 

and numerical evidence. In addition, we provide evidence for approxi-
mate average-case hardness by proving approximate worst-case 
hardness and near-exact average-case hardness of computing the 
output probabilities. Thereby, up to a random-matrix theory con-
jecture, we bring the hardness argument for GBS to the same stan-
dard as that of boson sampling. We then extend the latter results to 
the case of computing output probabilities of noisy GBS, which can 
be well motivated when the noise model describing the experimental 
data is trusted. These results show that the evidence of a quantum 
“signal” remains in the output distribution even in the presence of 
noise. Last, we discuss the implications of these results on the com-
plexity of simulating GBS in the presence of noise.

Recap: GBS
GBS is the computational task of sampling the photon number sta-
tistics of a Gaussian state. Obtaining a sample from a typical GBS 
experiment involves the following steps. First, a general Gaussian 
state is prepared at the input, often taken to be M single-mode–
squeezed vacuum states. These states are then interfered on an 
M-mode linear/optical interferometer containing beam splitters and 
phase shifters. Last, the Gaussian state at the output of the interferom-
eter is impinged on M photon number–resolving (PNR) detectors. 
The resulting pattern of photon number outcomes from the detectors 
is the required sample. Because single-mode–squeezed states can be 
generated and interfered deterministically at room temperatures with 
high rates, GBS is experimentally feasible on large scales already today, 
as evidenced by the recent experiment from USTC (2).

In more detail, a typical GBS experiment involves interfering 
M single-mode–squeezed vacuum states with squeezing parameters 
  { r  i  } i=1  M    at an interferometer specified by an M × M linear-optical uni-
tary matrix U. Note that some of the modes can be optionally pre-
pared in the vacuum state, and these can be specified by setting their 
squeezing parameter to zero.

The probability of detecting n1 photons in the first mode, n2 in 
the second, and so on, denoted by n = (n1, …, nM), is

  Pr (n) =    
 ∣Haf( A  n,n  )∣   2 

  ─  
 ∏ j=1  M     n  j   !cosh  r  j  

    

Here,   A =  A   T  = U (    ⊕ i=1  M   tanh ( r  i   )  )    U   T    is the so-called adjacen-
cy matrix of the (pure, zero displacement) Gaussian state (10), and 
An,n is the symmetric matrix of size  N =  ∑ i=1  M     n  i    (i.e., the total pho-
ton number) obtained by repeating the ith column and row of A a 
total of ni times. In particular, if ni = 0, then the corresponding row 
and column is deleted. Last, the Hafnian Haf(·) of a symmetric N × 
N matrix B is given by

  Haf(B ) =   ∑ 
μ∈PMP(N)

      ∏ 
(i,j)∈μ

     B  i,j    

where PMP(N) is the set of perfect matching permutations of N 
elements for even N, i.e., permutations  : [N] → [N] satisfying 
(2k − 1) < (2k), (2k − 1) < (2k + 1). Equivalently, this is the 
set of all N !/(2N/2(N/2) !) = (N − 1) ! ! ways of partitioning the set 
{1,2, …, N} into N/2 subsets of size 2. The Hafnian of a 0 × 0 matrix 
is defined to be 1, and that of an odd-size matrix is defined to be 0, 
which is a manifestation of the fact that squeezed states are supported 
on even photon number states only. By allowing for arbitrary 
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linear- optical unitaries and arbitrary squeezing parameters on each 
squeezer, an arbitrary symmetric matrix A can be encoded (up to 
scaling prefactors) into a Gaussian state. For generic instances, 
the best-known algorithms to calculate Hafnians have a runtime 
scaling as N32N/2, where N is the size of the matrix (14).

Recap: Approximate sampling hardness of boson sampling
Before we state our technical results, we review the main steps of the 
hardness argument for conventional boson sampling as given by 
Aaronson and Arkhipov (7). These steps provide context for the 
hardness results of GBS that we present below.

In a standard boson sampling experiment, instead of interfering 
single-mode–squeezed states at an interferometer as done in GBS, 
an N-photon M-mode Fock state is prepared and evolved under a 
linear-optical unitary and then measured in the photon-number 
basis. The boson sampling task is to, given a linear-optical unitary 
as an input, output samples from the output distribution of a corre-
sponding boson sampling experiment.

Aaronson and Arkhipov showed that it is not possible for a clas-
sical computer to efficiently do this task unless certain complexity- 
theoretic conjectures are false. In particular, they reduced the task 
of approximating the probabilities of outputs to the task of efficient 
sampling, making use of an approximate counting algorithm due to 
Stockmeyer (15). This probability estimation can in turn be related 
to approximating the permanent of a certain submatrix of the linear- 
optical unitary, which is probably hard for a class known as  #𝖯  (16). 
While the Stockmeyer reduction is not efficient, the existence of 
a classical efficient sampling algorithm would imply that  #𝖯 -hard 
problems could be solved using fewer computational resources than 
expected, amounting to an argument by contradiction.

The main difficulty in the hardness argument for boson sampling 
arises when extending it to the setting of approximate sampling. 
Here, the task is to sample from any distribution that is within 
constant-size total variation distance from a given ideal boson sam-
pling distribution. This additional constraint takes into account that 
actual devices are bound to achieve only some finite and typically 
additive precision. In this setting, one may therefore argue for a sepa-
ration of computational power between quantum and classical devices.

Given this constraint, the hardness argument for the task of ap-
proximate sampling must take into account that the constant error 
budget on the distribution can be distributed arbitrarily across all 
outcome probabilities. In particular, this means that any specific 
outcome probability of the actually sampled distribution might 
have a large (constant-size) error when compared to the ideal distri-
bution, which would imply that the sampler cannot be used to esti-
mate the true outcome probabilities. To get around this issue, the 
argument is extended to random problem instances: Via a property 
of the distribution over problem instances called hiding, one can 
then translate typical outcomes of fixed instances to fixed outcomes 
of random instances. This enforces that with high probability, the 
overall constant error budget for the entire distribution is manifest 
in small errors on the individual probabilities that are proportional 
to the inverse size of the sample space, that is,   ∝ 1 /  (    M   N   )    . Technically, 
in standard boson sampling, showing the hiding property boils down 
to showing that the distribution of any small enough submatrix of a 
Haar-random unitary is approximately (in total variation distance) 
an entry-wise complex normal distribution. This implies that all 
collision-free outcomes are (approximately) equally distributed. In 
particular, Aaronson and Arkhipov (7) show that when M ∈ (N5), 

we can “hide” a random Gaussian matrix in a small enough submatrix 
of the large Haar-random unitary by an appropriate procedure 
because all of these submatrices are indistinguishable from random 
Gaussian matrices.

For the approximate sampling task to remain computationally 
intractable, it remains to show that estimating the outcome proba-
bilities up to inverse exponentially small error is  #𝖯 -hard for any 
large-enough fraction of the problem instances—a property called 
approximate average-case hardness. More precisely, given a random 
problem instance, approximating the probability of a given outcome 
must be  #𝖯 -hard with high probability. As evidence toward this 
property, it has been shown that exactly computing those output 
probabilities is, in fact,  #𝖯 -hard on average (and this was a motiva-
tion for boson sampling in the first place), and it is known that esti-
mating them to the required robustness level is worst-case hard. 
However, the hardness of computing those probabilities to a suffi-
ciently large robustness level on average is still unknown. We now 
state our results concerning the hardness of general GBS, followed by 
our proposal for an architecture to perform high-dimensional GBS.

RESULTS
Hiding for arbitrarily many squeezers in GBS
As mentioned above, the property of hiding in boson sampling can 
be translated into a property of the distribution of submatrices of 
random linear-optical unitaries chosen from some distribution. We 
will now show that a similar property about the distributions of 
submatrices occurring in the evaluation of outcome probabilities 
also holds in GBS, provided that a plausible random-matrix theory 
conjecture holds. We focus on the paradigmatic setting in which the 
linear-optical unitary is drawn from the Haar measure, and we fix 
the input state to be such that the first K out of M modes are pre-
pared in single-mode–squeezed states with identical squeezing 
parameter r, and the remaining M – K modes are prepared in the 
vacuum state. Furthermore, we restrict to collision-free outcomes n for 
which ni ∈ {0,1}, giving rise to a total photon number  N =  ∑ j=1  M     n  j   . 
The probability of obtaining such an outcome n can be written as

  Pr (n) =    tanh   N (r) ─ 
 cosh   K (r)

    ∣Haf [ (U  I  K    U   T )  n,n   ]∣   
2
   

Here,   I  K   =  1  K   ⊕  0  M−K    denotes the matrix where   1  K    is a K- 
dimensional identity matrix, 0M − K is an M-K-dimensional all-zero 
matrix, and as before, the notation An stands for the submatrix of 
A corresponding to the entries of n [see below Eq. (1)]. The task of 
estimating output probabilities of GBS, hence, corresponds to esti-
mating ∣Haf((UIKUT)n,n)∣2.

To show the GBS hiding property, we need to characterize the 
distribution of matrices (UIKUT)n,n—of which the Hafnian is 
computed—as induced by the Haar-random choice of U and de-
pending on the scaling relations between K, N,  and M. To ensure 
that for every choice of K, we can restrict to collision-free outcomes, 
we choose the squeezing parameter r such that the average photon 
number  𝔼 [ N ] = K ·  sinh   2   r ∈ o( √ 

_
 M  )  (7). This condition ensures that 

the collision-free outcomes dominate the probability weight.
Here, we formulate the hiding property in GBS in terms of 

random matrix theory and provide strong numerical and analytical 
evidence that it holds regardless of the fraction of squeezed input 
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modes so long as the collision-free condition is satisfied. Observe 
that the matrix   (U  I  K    U   T )  n,n   =  U  n, 1  K      U n, 1  K    

T    can be expressed in terms 
of the submatrix Un,1K of U obtained by choosing rows according to 
n and the first K columns. To show the hiding property, we need to 
relate this distribution over matrices to the distribution of the sym-
metric product XXT of a complex Gaussian N × K matrix X with 
mean 0 and variance 1/M, denoted as X ∼ 𝒢N, K(0,1/M). We provide 
analytical and numerical evidence for the conjecture that these dis-
tributions are indistinguishable for any number of squeezers K 
satisfying N ≤ K ≤ M.
Conjecture 1 [hiding in GBS (informal)]
For any K such that N ≤ K ≤ M and  N ∈ o( √ 

_
 M  ) , the distribution 

of the symmetric product   U  n, 1  K      U n, 1  k    
T    of submatrices of a Haar-random 

U ∈ U(M) closely approximates the distribution of the symmetric 
product XXT of a Gaussian matrix X ∼ 𝒢N, K(0,1/M) in total varia-
tion distance.

We provide a formal statement of the conjecture in the Supple-
mentary Materials. There, we also discuss regimes in which the con-
jecture is known to be partially true (7, 17) and provide numerical 
evidence for it. Proving this conjecture is an open research problem 
in random matrix theory.

Conjecture 1 characterizes the distribution of the symmetric prod-
uct of N × K submatrices of Haar-random unitaries. In turn, the 
Hafnian of such symmetric products determines the output distri-
bution of GBS. While in standard boson sampling, the hiding prop-
erty amounts to hiding a small N × N Gaussian matrix in a large 
M × M Haar-random unitary matrix, in GBS, it amounts to hiding 
a small N × N symmetric Gaussian matrix XXT in a large symmetric 
unitary matrix UIKUT for any K ≥ N. This means that any particular 
submatrix cannot be distinguished from any other such submatrix 
of the same size, enforcing the constant error budget to be roughly 
equally distributed across all outcomes.

In particular, the conjecture implies that the hiding property can 
be achieved with any number K of input squeezers as long as the 
average total photon number is sufficiently small. In turn, the average 
total photon number is determined by the total amount of squeez-
ing across all input squeezers. Intuitively, this is due to the fact that 
the output of a Haar-random unitary does not depend on any fixed 
input state. The average output state is a product of identical ther-
mal states whose average photon number is determined by the total 
input squeezing. However, the number K is still crucial for the esti-
mation task as it determines the rank of the matrix (UIKUT)n,n. 
Since the complexity of computing the Hafnian of a matrix depends 
on the rank of that matrix (14), K should be chosen such that it is at 
least N. Note that the USTC experiment (2) used K = M/2 many 
squeezers, so our results are directly applicable there, strengthening 
the arguments for their QCA demonstration.

More generally, we consider three regimes of interest and provide 
evidence for Conjecture 1 in the Supplementary Materials. First, the 
highly sparse regime in which the total number of modes scales as 
M = (K5), and the number of photons is equal to the number of 
squeezers, N = K, features provable hiding results due to (7). Realistic 
experiments and proposals today operate in the regime K = cM, 
meaning that a constant fraction c of the input modes is squeezed. 
In this regime, the result in (17) provides analytical evidence for 
hiding in the asymptotic limit as long as the input squeezing is such 
that  N ∈ o( √ 

_
 M   / log M) . Last, we also consider the intermediate re-

gime of how M scales with K between these two extremes and give 
numerical evidence for hiding in this general case.

Let us note that we do not expect Conjecture 1 to hold for large  
N ∈ ( √ 

_
 M  ) . In this case, it is known that hiding fails for standard 

boson sampling (18, 19).

Average-case hardness of computing GBS probabilities
As outlined earlier, the question of hardness of approximate sam-
pling boils down to whether it is  #𝖯 -hard to approximate most out-
put probabilities. We now show the average-case hardness of this 
task when the allowed additive approximation error is exponentially 
small, using techniques from (13). We have established that the out-
put probabilities of GBS are given in terms of ∣Haf((UIKUT)n, n)∣2. 
By virtue of the previous discussion and more precisely, Conjecture 1, 
the distribution over the N × N matrices (UIKUT)n,n for Haar ran-
dom U is well approximated by complex, symmetric Gaussian 
matrices XXT. Hence, to show the average-case hardness of com-
puting output probabilities of GBS, it suffices to consider the fol-
lowing problem

(, ϵ)-Squared-Hafnians–of-Gaussians.
Input A matrix XXT with X ∼ 𝒢N, K(0,1/M).
Output ∣Haf(XXT)∣2 to additive error ϵ, with probability ≥ over 

the distribution 𝒢N, K(0,1/M).
To complete the argument that an efficient classical approximate 

sampling algorithm for GBS cannot exist, it remains to prove the 
#P-hardness of (, ϵ)-Squared-Hafnians-of-Gaussians as formalized 
by the following approximate average-case hardness conjecture.
Conjecture 2
The (, ϵ)-Squared-Hafnians-of-Gaussians problem is  #𝖯 -hard for 
any  ϵ = O(N ! tanh   N  (r)/( cosh   K  (r)  M   N ))  and any constant  > 3/4.

A proof of Conjectures 1 and 2 would imply that approximate 
sampling from a random, general GBS instance, is hard on average. 
Let us see how. Assume that there exists a classically efficient sam-
pler O that samples from an associated distribution whose output 
probability for outcome i is given by qi. From the promise that this 
distribution is -close in total variation distance to the target distri-
bution, we have ∑i ∣pi − qi∣ ≤ 2, where pi is the corresponding 
output probability of the target distribution. Choose a photon number 
N so that Conjecture 1 is satisfied. Among the space of all outcomes 
with N total photons, for a randomly chosen outcome i, we have

    Pr  
i
    [   ∣  p  i   −  q  i   ∣ ≤   2k ─ 

 (    M + N − 1                N   )  
   ]   ≥ 1 −   1 ─ k     (1)

Assuming Conjectures 1 and 2, with probability at least 3/4, pi is 
 #𝖯 -hard to compute to additive error    ϵ ′   = O (     

N ! _ 
 M   N 

  )    . Therefore, with 
probability at least 3/4(1 − 1/k), it is also  #𝖯 -hard to compute qi to 
within error   ϵ ′   +   2k _  (    M + N − 1                N   )    = O(exp [− Nlog N − (N)])  assuming M = 
(N2). On the flip side, the Stockmeyer algorithm (15) allows us to 
compute the output probability of an arbitrary outcome qi to within 
inverse-multiplicative polynomial precision. Furthermore, by the 
Markov inequality, most outcomes qi cannot be much larger than 
  1 /  (    M + N − 1                N   )    

    Pr  i    [    q  i   >   l ─ 
 (    M + N − 1                N   )  

   ]   ≤   Pr (N) ─ l   ≤   1 ─ l     (2)

where the quantity Pr (N) is the probability of seeing N total pho-
tons. This means that with probability at least 1 − 1/l, qi can be 
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computed to additive error O(l exp [−N log N − (N)]) using a   
BPP    NP   O    machine running the Stockmeyer algorithm. Therefore, setting 
l = 4k, a  PH  algorithm can solve with high probability a problem that 
is average-case  #𝖯 -hard. This collapses the polynomial hierarchy.

Note that since we have phrased Conjecture 2 in terms of addi-
tive error instead of multiplicative error, we do not explicitly need 
an anticoncentration condition of the form   Pr  X    [  p  0   ≥   (    M + N − 1                N   )     −1 ]  
≥  for some constant  > 0, as is often conjectured for permanents 
(7). Nevertheless, it is possible that Conjecture 2 already implies a 
weak form of anticoncentration. Informally, an anticoncentration 
condition states that on a large fraction of the instances, the output 
probabilities are large enough so that a trivial algorithm for com-
puting the probabilities that outputs “0” is not sufficient to solve the 
(, ϵ)-Squared-Hafnians-of-Gaussians problem. This is because in 
order for Conjecture 2 to be true, it is necessary for the trivial algo-
rithm to fail with high probability.

As in all other known proposals for demonstrating QCA, this 
approximate average-case hardness conjecture remains open. None-
theless, just like in other proposals, it turns out that one can give 
evidence for Conjecture 2. Namely, we can prove a weaker version 
of the conjecture with a smaller robustness level ϵ = O(exp [−6N 
log N − (N)]) as opposed to ϵ = O(exp[−N log N − (N)]) in 
Conjecture 2.
Theorem 3
The (, ϵ)-Squared-Hafnians-of-Gaussians problem is  #𝖯 -hard un-
der  PH  reductions for any ϵ ≤ O (exp [−6N log N − (N)]) and any 
constant  > 3/4.

We provide a detailed proof of Lemma 3 in the Supplementary 
Materials. The technique we use in the proof is a worst-to-average 
case reduction [see (7)]. That is, by assuming access to an oracle for 
the (, ϵ)-Squared-Hafnians-of-Gaussians problem, we show that 
one in fact approximate Haf(XXT) for any matrix X ∈ ℂN × K. This 
latter task is  #𝖯 -hard in the worst case as we show in the Supple-
mentary Materials. At a high level, the worst-to-average case reduc-
tion relies on the fact that ∣Haf(XXT)∣2 is a low degree (of degree 
2 N) polynomial over the entries of the matrix X. This allows us to 
use the oracle to perform polynomial interpolation. Therefore, by 
combining this observation with the techniques in (7, 13, 20), we 
obtain a worst-to-average case reduction for exactly computing the 
output probabilities.

Together, our results on the hiding property and the approximate 
average-case conjecture in GBS strengthen the evidence for the 
hardness of approximately simulating GBS in terms of the total 
variation distance to the ideal output distribution. Given our results, 
GBS is now on par with the other leading QCA proposals in terms 
of complexity-theoretic evidence for approximate sampling hardness 
(6, 7, 12, 13, 20, 21), up to a plausible conjecture in random matrix 
theory—for which we provided theoretical and numerical evidence. 
To achieve a demonstration covered by those complexity-theoretic 
results, however, the loss rate at every element of the linear-optical 
circuit must scale inversely with the total number of these elements—a 
daunting challenge from an experimental perspective.

Hardness of computation of output probabilities 
for noisy GBS
We now go one step further and assess how the complexity-theoretic 
argument for sampling hardness is affected by more realistic noise 
levels, particularly, in terms of photon loss. In terms of scaling, 
any constant loss rate of the individual optical elements can lead to 

the output distribution rapidly approaching a classical distribution. 
We now show that, nonetheless and unexpectedly, an evidence 
of a quantum signal remains even in the presence of significant 
loss. We then discuss to what extent and in which regimes such a 
quantum signal might lead to the hardness of simulating a lossy 
GBS experiment.

One of our main results is the average-case hardness of comput-
ing the noisy output probability of a random GBS instance, which 
we obtain by using similar arguments to recent work of Bouland et al. 
(13) but now extended to the GBS setting. Our results are valid for 
any noise model that is local, stochastic, and is error detectable us-
ing linear optics. More specifically, we consider a setting where the 
noise acts locally after every gate and is of the E form

   N  i   [  ] = (1 −    i   )  +    i    E  i   [ ]  

where stochasticity requires   E  i    to itself be a valid channel (i.e., a 
completely positive trace preserving map) with no identity 
component.

Consider the following problem.
(ϵ, )-NoisyGBS-Probability.
Input A noisy GBS instance, consisting of the linear-optical uni-

tary U on M modes chosen from the Haar measure H, the squeezing 
parameters at the input, a description of the noise channels with 
parameters i, and a description of a collision-free outcome n with 
 N = 𝗉𝗈𝗅𝗒(M)  total photons. Let   =  max  i       i   .

Output With probability  over instances, an estimate of the 
quantity Pr (n) to additive error ϵ, where Pr (n) is the probability of 
obtaining outcome n.

With probability 1 − , an arbitrary output.
In the above definition, we take  = 1 to mean the worst-case 

problem. We prove the following statement of average-case hardness 
of computing noisy probabilities.
Theorem 4
There exists a noise threshold * and a sufficiently large polynomial 
such that the problem (ϵ, )-NoisyGBS-Probability is  #𝖯 -hard under  
PH  reductions for any constant  > 3/4,  ≤ *, and  ϵ ≤  2   −𝗉𝗈𝗅𝗒  .

There are two parts to the proof. The first part is a proof of 
worst-case hardness of the problem (when  = 1) and the second a 
worst-to-average case equivalence. For worst-case hardness, it turns 
out that because of a result of Fujii (22), it suffices for the noise 
channel to be a convex combination of the lossless and lossy chan-
nels and to be able to error-detect it. These conditions are both met 
for optical loss since it is a convex combination of the channels cor-
responding to no photon loss, single-photon loss, and so on (23). 
Moreover, optical loss can also be detected and corrected using only 
linear-optical operations and photodetection with high thresholds 
(9). In Fujii’s argument, one postselects on the error-free outcome 
of an error-detection code and obtains noiseless universal gates for 
the class of postselected quantum computation,  𝗉𝗈𝗌𝗍𝖡𝖰𝖯 . This 
argument can apply to the optical case as well since linear optics 
with postselection is universal for quantum computing (24).

For the worst-to-average case equivalence, all we need is for the 
polynomial structure in the problem to be preserved. This can be 
satisfied for any local noise model. Preserving the polynomial struc-
ture of the output probability enables us to continue to use the same 
proof techniques as earlier.

Before moving on, we again remind the reader that we consid-
ered the hardness of computing output probabilities. While these 
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are not tasks that are feasible for any realistic quantum device, our 
results nevertheless indicate that there is a computationally intrac-
table (but exponentially small) “quantum signal” present in the system.

The complexity of noisy and approximate GBS
We now discuss the implications of the hardness result for comput-
ing noisy GBS probabilities on the complexity of sampling from the 
output distribution of noisy GBS. An immediate implication of this 
result is that it is classically hard to exactly sample from the noisy 
distribution of a worst-case GBS experiment. This is because the 
quantum signal is still present in the distribution, so the argument 
based on Stockmeyer’s algorithm is valid. Thus, in the idealized sit-
uation in which loss is the only source of noise of an experimental 
system and the exact loss rate is known, simulating a worst-case 
GBS experiment is classically intractable. Note that loss rates can be 
inferred from standard optical tomography procedures such as that 
in (25). Given that this result links the hardness of simulating the 
noisy experiment to an exponentially small quantum signal in the 
form of output probabilities, it is crucial that the noise model accu-
rately captures the working of the device.

We remark that an alternative proof establishing the classical 
hardness of exact sampling could possibly be made using a post-
selection argument similar to the one outline in section 4.2 of (7). 
As noted in (7) however, this approach has not been shown to pro-
vide a viable path toward the goal of showing hardness of approximate 
sampling. By establishing the average case hardness of approximating 
output probabilities, Theorem 4, takes a substantive step toward 
establishing the hardness of approximate sampling, even in the 
presence of noise.

We now discuss the more realistic situation in which loss is the 
predominant, but not the sole, source of noise in a photonic exper-
imental system. What can we say about the hardness of approximate 
sampling in such a situation? To begin with, let us draw on some 
intuition from RCS schemes acting on n qubits. Here, the additive 
error incurred in estimating output probabilities using the Stockmeyer 
algorithm is O(2−n) with high probability (since this is the size of a 
typical output probability in an RCS experiment). In the presence of 
uncorrected noise, an error of O(2−n) in the noisy output probability 
can be too large for hardness. For example, there is evidence that with 
gate-wise depolarizing noise, the probabilities will deviate from 
uniform by merely O(2−m), where m [typically (n)] is the total 
number of gates (6). This means that approximate-sampling hard-
ness cannot be shown using these techniques since it is not hard to 
approximate the noisy probabilities any more. In this regime, the 
noisy distribution is exponentially close in total variation distance 
to the uniform distribution, rendering the approximate sampling 
task for the noisy distribution classically simulable.

In the case of noisy GBS, the dominant noise model, namely, 
loss, leads to the vacuum state for a sufficiently deep network, which 
is again a distribution that is easy to classically sample from (similar 
to the uniform distribution in qubit RCS schemes). However, if we 
postselect on a certain minimal number of photons surviving, the 
distribution need not be easy to simulate. This postselection is effi-
cient when the depth of the circuit scales poly-logarithmically in the 
number of modes. In this case, the quantum signal will be large 
enough so that even with an inverse exponential error, deviations 
from the easy distribution can be detected.

This excludes the simulation algorithm that samples from an 
easy-to-simulate distribution such as the one uniform on every 

photon number sector with every sector sampled according to the 
ideal photon number distribution. Ruling out trivial algorithms is a 
necessary condition for approximate average-case hardness to hold. 
In summary, our results indicate that there might be ‘room in the 
middle’ in terms of gate depth and noise rates, where hardness of 
sampling might hold. This intuition lies at the heart of the high- 
dimensional architecture (presented below). This architecture is 
designed in such a way that only as few gate applications as neces-
sary for hardness are executed, so that the leeway for noise to ruin 
the hardness of sampling is minimized. We stress, however, that 
at the moment, existing proof techniques do not suffice to make a 
claim of this nature. In certain regimes of noisy GBS, approximate 
sampling is known to be classically efficient (26).

High-dimensional GBS and evidence for hardness
The discussion thus far here and in the literature has focused on the 
hardness of GBS with unitary transformations drawn randomly from 
the Haar measure. This requires implementing arbitrary unitary trans-
formations, an onerous requirement experimentally. Reference (2) 
did not meet this requirement of being able to implement arbitrary 
unitary transformations as a result of the interferometer being a 
fixed nonprogrammable device. Furthermore, there is reason to 
believe that in the absence of error-correction methods for linear 
optics, scaling arbitrary programmable interferometers to large 
numbers of modes is infeasible. This is because implementing an 
arbitrary unitary transformation requires decomposing it into beam 
splitters and phase shifters, and assuming that they are all applied 
locally, this leads to a deep optical circuit, whose depth linearly scales 
with its size. Since photon loss scales exponentially with the circuit 
depth, these models necessarily become efficiently simulatable clas-
sically for sufficiently large numbers of modes (26, 27).

On the other hand, naively reducing the depth without giving up 
gate locality is not an option for QCA either. This is because shallow 
1D circuits comprising local interactions with logarithmically scaling 
depths can be efficiently simulated classically as these do not gener-
ate enough long-range entanglement (26–28).

These results motivate a demonstration of QCA on random op-
tical circuits with shallow depth but with gates that are long-range 
in 1D, for example on circuits with local interaction in higher than 
one dimensions. In such a setting, a potentially reduced amount of 
complexity due to the reduced depth would be compensated by the 
large long-range entanglement generation thanks to the inclusion 
of long-range interactions. Therefore, such architecture would suffer 
less noise buildup but still remains intractable for classical computers. 
Models with shallow-depth but with long-range (in 1D) interac-
tions provide a natural approach to demonstrating QCA in qubit 
systems (29).

We address the challenge of the low-loss versus depth trade-off 
by introducing high-dimension GBS, where programmable nonlocal 
gates are exploited to generate entanglement between distant modes. 
We show how high-dimensional GBS can be implemented scalably 
using optical delay lines. Before presenting the new architecture, 
let us recall the relevant notation on GBS and discuss its physical 
implementation.

A programmable architecture for high-dimensional GBS
Now, we are ready to introduce high-dimensional GBS: A sampling 
task that retains the programmability of the photonic device can 
reduce decoherence to a level that prevents classical simulability and 
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in which large amounts of multipartite entanglement can be gener-
ated. The last two requirements are to some extent at odds with each 
other: Specifically, achieving long-range interactions in fixed linear 
1D geometries requires finding intermediary quantum systems to 
mediate interactions between far separated regions, which can lead 
to information leaking into the environment and require more chal-
lenging experimental conditions than all-optical experiments. A way 
around this challenge is to consider two- or higher-dimensional 
geometries where quantum systems can interact with each in more 
than one direction. While the Google QCA experiment (1) involved 
interactions in 2D, our proposal can leverage photonics to imple-
ment distant nonlocal interactions, which can be equivalently con-
sidered as interactions in two or even higher than two dimensions.

More specifically, we show how the idea of using local interac-
tions in high-dimensional spaces to generate large amounts of 
multipartite entanglement can be naturally imported into photonic 
quantum computing by using optical delay lines and fast, program-
mable optical switches. Before formally stating the problem of 
high-dimensional GBS, we provide intuition for how to construct 
high-dimensional lattices using minimal optical resources. For the 
sake of concreteness and ease of visualization, we consider the gen-
eration of a lattice of size a = 3 in D = 2 dimensions where the vertices 
represent modes, and the edges represent two-body gates. A quan-
tum circuit to achieve this connectivity and a representation of the 
obtained lattice are shown in Fig. 1 (A and B), respectively. Note 
that when the bosonic modes are represented as wires in a usual 
quantum circuit diagram, the gates needed to prepare the state are 
highly nonlocal. This is because circuit diagrams provide a repre-
sentation where the modes are arranged linearly (in this case, in the 
vertical direction of the page). To show how optical delays provide 
a natural way to program short and long ranged interactions, con-
sider first our temporal modes (pulses) prepared in squeezed vacuum 
states arranged one after the other, traveling along a single spatial 
mode, as schematically shown in Fig. 1C.

We first consider how to achieve nearest-neighbor interactions 
using a delay line whose length equals the separation between the 
pulses. As mode i is in the delay line about to exit it, it will interfere 
with mode i + 1, which is about to enter the delay line. The beam 
splitter mediating the interaction between these two modes can be 
programmed, allowing us to effect two-mode gates between nearest 
neighbors. Such programmable and fast (i.e., with less than 50 ns 
spacing) beam splitters have been demonstrated using electro-optic 
modulation and have been used in the application of photonic quan-
tum walks in the time domain (33, 34).

Now, consider the second delay line, whose length is a = 3 times 
the separation between the pulses. In this case, as mode i is getting 
ready to exit the delay line, it will interfere with i + a in the beam- 
splitter gate keeping the delay line. This configuration allows inter-
actions with range a = 3 between the modes in the quantum circuit 
diagram in Fig. 1. Note that this construction generalizes in a natural 
way to D dimensions. In particular, nearest-neighbor interactions 
in a D-dimensional space with a lattice points per dimension (cor-
responding to gates with range aD − 1 in a circuit diagram) can be 
implemented using a circuit with D optical delay lines implementing 
delays by amounts {1, a, a2, …, aD − 1}. If the light is made to pass 
through D such multiple delay lines, with C passes, then the effec-
tive transformation is composed of C cycles of local interactions in a 
D-dimensional lattice or equivalently, C cycles of up to aD − 1- range 
gates in a circuit diagram.

Having provided a quantum optical implementation of high- 
dimensional GBS, we are now ready to formalize it by specifying 
four quantities: the squeezing parameter r, the lattice dimension D, 
the lattice size a, and the number of cycles C. An (r, a, D, C)–
high-dimensional GBS instance is constructed as follows:

1) Prepare M ≔ aD single-mode–squeezed vacua ∣r⟩⊗M.
2) For  = 1, apply a beam-splitter V to mode i and i + , where 

i ∈ [0, M − ].
3) Repeat step 2 for  = ad for d = 0, …, D − 1.
4) Repeat steps 2 and 3 for a total of C times.
Having a physical architecture to implement high-dimensional 

GBS, we can now write down a loss budget to account for the bulk 
of the decoherence affecting our system. Assume that the photon- 
number detectors used to probe our quantum state are limited by a 
rate of  detections per second, for example, as a result of the detec-
tors dead times. From this time scale, we deduce a length scale 𝓁 = 
v/, where v is the speed of light in the delay lines. We associate with 
the length scale an energy transmission constant unit − length, which 
is simply the total energy transmission resulting from a propagation 
over a total length of 𝓁.

Let us first study the case C = 1. In this case, every mode will 
traverse D beam splitters (to access the D different delay lines) and 
will propagate a total distance of  𝓁 ×  ∑ i=0  D−1     a   i  = 𝓁 ×   a   D  − 1 _ a − 1   ≈ 𝓁  a   D−1   if 
a ≫ 1. We can approximate the total transmission to scale roughly as

   =   BS  D     unit−length   a   D−1    =   BS  D     unit−length   M   1−1/D     

where BS is the beam-splitter transmissivity for programmable beam 
splitters based on electro-optic modulation. Note that in this case, 
the loss scales subexponentially with the total number of modes. To 
allow two or more circulations, one can consider C ≥ 2 copies of the 
original D delay lines, giving now an updated loss budget in which 
the modes traverse a length proportional to CaD − 1 = CM1 − 1/D and 
will pass through CD beam splitters, still leading to subexponential 

A B C

Fig. 1. Different representations of a D = 2D optical delay GBS instance with 
lattice size a = 3. (A) Circuit representation. The vertical lines with dots at the end 
represent beam splitters. (B) Bidimensional lattice representation. The vertices of 
the lattice represent the modes, while edges represent beam splitters. (C) Optical 
circuit representation. The modes are defined by time-bins traveling in a wave-
guide. The horizontal gray slabs at the bottom of the delays represent the beam 
splitters. The number of cycles C in a high-dimensional GBS instance corresponds to 
applying multiple times the gates contained in the green-dotted box in (A). This 
action physically maps to using concatenating C copies of the delays encircled in 
the green box in (C). Note that for simplicity, we have not shown the photon-number 
detectors used to probe the quantum state at the end of the circuit.
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loss accumulation. An alternative to these C copies of the delay lines 
is to consider a recirculation loop similar to that proposed in (30), 
which reroutes the output of the last delay line into the input of the 
first one. The delay line used to implement the recirculation loop 
holds any modes that are not interfering inside the delay lines. If the 
recirculator has a loss per unit length unit − recirc, the net loss scales 
as    unit−recirc  

L    where  L =  a   D  −  ∑ i=1  D−1     a   D  = (M) . Thus, depending on 
the exact setting, for a fixed C, the losses scale either exponentially 
(using recirculators) or subexponentially (considering multiple copies 
of the D loops) with the number of modes.

We note that with current fiber-optic and photon number–
resolving technology, unit − length can be as high as 0.998; BS values 
of 0.9 are expected or are observed in state of the art experiments 
such as in (31). With these, the transmission of an interferometer with 
parameters (a = 15, D = 2, C = 2) can be above 0.70 and above 0.74 
for (a = 6, D = 3, C = 1). These values promise an order or magni-
tude or more enhancements in loss values as compared to those 
expected in fully programmable GBS devices (32). As noted in (33), 
interferometers implemented using loops will typically have unbal-
anced losses. The numbers quoted above assume the lossiest inter-
ferometer implementable in a loop-based system, which is precisely 
the one in which each and every mode is fully transmitted into 
each loop.

From the formal description of high-dimensional GBS, the cova-
riance matrix of the generated Gaussian state can be calculated in 
the usual manner. In particular, we only need to specify the unitary 
matrix describing steps (2) to (4) above. This unitary matrix is given by

  U =   ⊗  
c=1

  
C
     ⊗  

d=0
  

D−1
    ⊗  

i=0
  

M− a   d 
   B  i,i+ a   d   (V)  

where Bi,j(V) is an M × M unitary matrix that acts like the locally 
Haar-random beam-splitter V in the subspace of modes i and j and 
like the identity elsewhere. We denote by 𝒰 the ensemble of linear- 
optical unitaries applied this way. In Fig. 2, we show heatmaps of 
the unitary matrices associated with two typical instances from the 
distribution 𝒰 over high-dimensional GBS instances. Note that the 
structure of circuits considered allows for light from the first mode 
to be observed in any of the later modes, which leads to a large light 
cone that is somewhat different from the efficiently simulable circuits 

considered recently in (34). From the description of the unitary ma-
trices and the squeezing parameters, we obtain that the complex- 
valued adjacency matrix (as defined above) of the Gaussian state is 
dense, full-rank, and given by A = tanh (r)UUT.

While implementing a time-domain reconfigurable loop archi-
tecture as described above is not a straightforward task, several groups 
have performed experiments with tens of modes interfering in time- 
domain multiplexed configurations. These include time-bin (35) and 
temporal-to-spatial–encoded (36) boson sampling experiments (35) 
and controllable photonic random walk over multiple time-bins 
(37, 38). Moreover, recent experiments have shown that it is possible 
to operate with very high phase stability (39), high quantum-efficiency 
photon-number detection (40), and very low loss reconfigurable 
interferometric elements (41).

Last, for the purpose of calculating outcome probabilities, squeezed 
states can be considered in the Fock basis as qudits that are entangled 
by the beam-splitter operations. This process, as with any other 
quantum circuit, can be represented as networks of tensors (42). In 
more detail, here, the qudits are initially single-index tensors (vectors) 
that are contracted with four-index tensors representing the 
beam splitters to build an open tensor network (TN), which can 
then be contracted to obtain the tensor of the final state. The TN 
representing the state can be used to calculate probability ampli-
tudes of measurements when the output indices of the TN are 
contracted with vectors representing measurement outcomes. 
Similar TN-based techniques have been successful at delineating 
the QCA frontier in the context of RCS, and together with 
Hafnian-based methods, these will serve a similar purpose for 
high-dimensional GBS.

Hardness for computing noisy probabilities in  
high-dimensional GBS
Here, we now argue for the hardness of computing output probabilities 
for the noisy, high-dimensional GBS setup. In particular, we show 
that hardness is present even in shallow depth noisy high-dimensional 
GBS architectures. This is in contrast to the results discussed earlier, 
where no restriction is made on the depth.

To do this, we simply observe that the previous argument for 
worst-case hardness, which depends on the noise being local and 
error detectable, continues to hold for the limited-depth setup (43). 

Fig. 2. Absolute values of the entries of the unitary matrices associated with two high-dimensional GBS instances drawn from U. On the left, we show an (a = 6, 
D = 3, C = 1) instance, and on the right, we show an (a = 15, D = 2, C = 2) instance. Note that we explicitly color the zero entries of the unitary white; thus, the color scale is 
discontinuous at this end.
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For average-case hardness of computing noisy probabilities, we again 
use a worst-to-average case reduction. However, the polynomial 
interpolation in this case is different since a random instance is not 
Haar-distributed any more, but rather according to 𝒰, the distribu-
tion over random instances of high-dimensional GBS. To explain 
further, consider the usual interpolation X(t) = (1 − t)X + tY, where 
X(0) = X is drawn from 𝒰, and X(1) = Y is the matrix corresponding 
to a worst-case high-dimensional GBS instance. In this case, there is 
no guarantee that the interpolated matrices X(t) also correspond to 
high-dimensional GBS instances of small depth. We get around this 
issue by choosing a gate-wise interpolation that is similar to that 
seen in RCS (12, 21).

We first define the problem of computing output probabilities of 
a restricted-depth high-dimensional GBS architecture.

(ϵ, )-HighDimensional-NoisyGBS-Probability.
Input A noisy GBS instance drawn from 𝒰 that can be imple-

mented in D dimensions with a constant number of cycles C = O(1) 
with noise parameter , and a description of a collision-free outcome 
n with N = poly(M) photons.

Output With probability  over instances, an estimate of Pr (n) 
to additive error ϵ.

With probability 1 − , an arbitrary output.
Similar to the previous results, we can again obtain an average- 

case hardness result that we state here and prove in the Supplemen-
tary Materials.
Theorem 5
There exists a noise threshold * and a sufficiently large polynomial 
such that the problem (ϵ, )-High-Dimensional-NoisyGBS-Probability 
is  #𝖯 -hard under  PH  reductions for any constant  > 3/4, eta ≤ *, 
and  ϵ ≤  2   −𝗉𝗈𝗅𝗒  .

QCA frontier for high-dimensional GBS
The evidence presented above for the hardness of high-dimensional 
GBS comes from complexity-theoretic arguments, which are asymp-
totic in nature, i.e., they only specify how the hardness of a certain 
computation scales as the problem size is increased. For a finite-sized 
device, we now address a complementary but more immediate 
question: How much actual computational power would a classical 
adversary need to generate samples similar to those from finite-sized 
noisy GBS devices?

This question can be addressed with different assumptions about 
the classical adversary. The experiment can be benchmarked either 
against simulations that try to match a reasonable model of the ex-
periment (constrained adversary) or against simulations that merely 
try to spoof a given test (unconstrained adversary). The latter ap-
proach would be more rigorous as it requires making fewer as-
sumptions, but coming up with good spoofing methods is a problem 
beyond the scope of this work and should be seen as an ongoing 
community effort (5). Similar to the approach of the Google and 
USTC supremacy experiments (46, 47), we focus on the former ap-
proach—with a classical adversary producing samples according to 
a noisy model distribution—because these samples are likely to per-
form no worse than the actual device in suitable verification tests. 
In other words, we assume a specific model of the imperfect GBS 
device, and we demand that the classical adversary generate samples 
that have a probability distribution that is sufficiently close in total 
variation distance to the probability distributionof this model. We 
note, however, that the chosen model might not have been verified 
against the actual experiment as this sample-efficient noise-model 

verification of QCA experiments is a challenging problem, especially 
for boson sampling and GBS.

We perform this benchmarking by simulating high-dimensional 
GBS with state-of-the-art algorithms on the current best supercom-
puters. In particular, we consider the fastest algorithms based on 
computing probability amplitudes via Hafnians and via TN contrac-
tions. The former, Hafnian-based algorithms have been optimized 
for simulating GBS and are not restricted to high-dimensional GBS 
(44). The latter TN algorithms are well-suited for high-dimensional 
qubit circuits with shallow depth (45). We note that Qi et al. (28) 
also provide a path to simulating lossy GBS if the losses scale expo-
nentially with the system size, but these results are not applicable for 
high-dimensional GBS, where the losses can scale subexponentially. 
By benchmarking against these algorithms, we demonstrate that high- 
dimensional GBS experiments feasible with current optical technology 
are well beyond the reach of the biggest supercomputers.

DISCUSSION
In this work, we have proposed a new experimental architecture for 
GBS and provided asymptotic evidence for the hardness of GBS in 
this specific context, bridging the gap between theory and experi-
ment. We have also benchmarked today’s best-known algorithms at 
simulating such an experiment, obtaining complementary evidence 
that a reasonably sized setup would outperform classical supercom-
puters at this task. Still, some theoretical questions are outstanding.

1) We have been able to show that two plausible conjectures 
in random matrix theory allow us to obtain the hiding property for 
a noiseless GBS setup, without restrictions on the number of active 
modes. Can we obtain a similar hiding property for the high- 
dimensional GBS setup introduced here? Is this also possible in 
the presence of noise? Answering these questions is crucial for 
extending the hardness of computing output probabilities to the 
hardness of approximate sampling from experimentally realizable 
distributions.

2) Informally, the anticoncentration conjecture for boson sam-
pling (or GBS) states that the output probability of a random in-
stance is unlikely to be very small. If this conjecture was true, then 
now-standard arguments can show that the output probability cor-
responding to an approximate sampler is, with high probability, a 
good multiplicative estimate to the ideal output probability. Prov-
ing this conjecture true, in either the case of boson sampling or 
GBS, would give increased evidence to support the goal of proving 
QCA via photonics. A proof of such a conjecture is challenging due 
to the fact that tools of unitary designs (46) are presumably unavail-
able in the bosonic setting (7).

3) Notwithstanding, it would be insightful to compute the second 
moments   𝔼  X∼G(0,1/M)   ∣Haf(X  X   T )∣   

4
   for the distribution we have found 

to characterize GBS problem instances. These moments thus char-
acterize the so-called collision probability of seeing the same out-
come twice in an experiment, which in turn can be related not only 
to anticoncentration but also the verifiability of approximate GBS 
from samples, thus shedding some light on the structure of the GBS 
output distribution.

4) An important task in demonstrating QCA is to verify that the 
performed experiment indeed contains a nontrivial quantum signal 
that cannot be efficiently spoofed. The Google QCA demonstration 
relied on linear cross entropy benchmarking fidelity, and the USTC 
experiment used a heavy-output generation (HOG) ratio test as an 

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

hicago on February 13, 2024



Deshpande et al., Sci. Adv. 8, eabi7894 (2022)     5 January 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 14

alternative path to verifiable hardness. Whether the HOG-ratio test 
can be spoofed efficiently by a classical adversary such as the algo-
rithms considered in (4, 5) is an open problem.

5) The recent result in (34) presents a classical algorithm for the 
simulation of high-dimensional boson sampling experiments in 
certain regimes. As described, this algorithm is not applicable to the 
architecture we propose here. Extending the algorithm to be relevant 
to the present architecture is an open problem.

6) With current optical technology, loss is the dominant source 
of noise in any GBS experiment. Consequently, we were motivated 
to obtain hardness results for computing the output probabilities of 
a GBS experiment in the presence of significant photon loss. It is 
natural to investigate whether similar hardness results can be obtained 
in the presence of other possible sources of experimental noise, such 
as mode mismatch, multiple Schmidt modes, interferometer phase 
drift, and detector dark counts.

7) It is a challenge to the community, after all, to relate boson 
sampling closer to practically important computational tasks and to 
identify new applications.

In summary, this work brings the demonstration of QCA on a 
programmable photonics device closer to reality. It addresses previ-
ously outstanding theoretical challenges in the field by providing 
stronger evidence for the hardness of GBS. Crucially, we have pre-
sented a novel architecture for high-dimensional GBS using optical 
delay lines that promises low levels of noise without compromising 
on its programmability. We benchmarked this architecture against 
the best available classical simulation algorithms and found that 
already, experiments involving a moderate number of modes are far 
beyond reach for those algorithms.

We close by briefly commenting on the experimental prospects 
of realizing high-dimensional GBS. Since high-dimensional GBS can 
be implemented in the time domain according to the scheme pre-
sented in Fig. 1, only a single squeezer and a single detector are 
required. If multiple detectors are available, these can be demulti-
plexed using optical switches to increase the effective repetition rate 
of the experiment and reduce the length of the delay lines. Especially 
promising is the case of D = 3, a = 6, C = 1, which can be implemented 
with only three optical delay lines and three each of reprogrammable 
beam splitters and phase shifters. Assuming reasonable values of 
squeezer out-coupling losses, free space to fiber coupling loss, and 
detector efficiency (39–41, 47), we estimate that such a setup can be 
built using current optical technology with around 40% transmis-
sion, higher than that enabled by the ultralow nonprogrammable 
loss interferometer in the USTC experiment. Such a setup would 
enable the largest demonstration of QCA, yet with a mean detected 
photon number of 80 in a programmable device with 216 total modes. 
We hope that this work stimulates these developments.

MATERIALS AND METHODS
Computational task: Sampling from lossy GBS with finite 
Fock cutoff
Before looking into concrete strategies for the simulation of GBS, 
we detail the computational task performed by the GBS device and 
discuss some differences between the task and our simulation. The 
experimental device samples from a lossy GBS distribution with a 
finite Fock-basis cutoff, which results from detector limitations. To 
identify a range of parameters where this task is hard to simulate 
classically, we benchmark it against classical simulations. The 

simulations that we compare are somewhat different from the exact 
task performed by the experiment but in such a way that is advanta-
geous to the classical simulations, thus providing stronger evidence 
for the large computational cost of high-dimensional GBS. We now 
discuss these differences.

The first point of difference is the Fock cutoff, i.e., the number of 
Fock or photon-number levels considered in each mode. Both 
Hafnian and TN simulations are performed in Fock basis, and their 
performance is thus sensitive to the Fock cutoff. This cutoff must be 
chosen carefully because the squeezed state inputs in GBS have 
nonzero support on high Fock numbers (which could be infinite in 
the ideal case) (44). For Hafnian-based simulations, the Fock cutoff 
c will lead to a constant prefactor 2c (2c/2) in the runtime for calcu-
lating mixed-state (pure state) probabilities that would appear in 
sampling methods. Similarly, for TN simulations, this cutoff sets 
the qubit dimension in the calculation, which is also the base of the 
exponential function describing the time and space cost of contract-
ing the TN. Note that squeezed states of light require that we use 
local Hilbert spaces with at least dimension 3 since truncating a 
squeezed state to the first two levels of the Fock ladder will project it 
into the vacuum as 〈1 ∣ r〉 = 0. Furthermore, using a Fock cutoff of 
3 in the beam-splitter gates leads to highly inaccurate simulations as 
the beam-splitter transformations on a limited Fock subspace no 
longer preserve photon numbers. In other words, choosing higher 
Fock cutoffs will lead to more accurate but more expensive simula-
tions. Hence, we use a cutoff of 4 to give a conservative estimate on 
the computational cost, although this cutoff would lead to inaccu-
rate classical simulations.

A second point of difference is that our simulations deal with the 
case of simulating pure states with photon numbers equal to the lossy 
distribution. This is a reasonable simplification since, as shown in 
(48), simulating pure or mixed state GBS has the same complexity 
as calculating a number of pure-state probability amplitudes pro-
portional to the number of modes in the system.

Before describing the effect of loss on the two simulation methods, 
we discuss the effect of loss on the number of detected photons. In 
Fig. 3, we plot the lossless and lossy (transmission  = 0.5 ≈3 dB loss) 

Fig. 3. Distribution of the total photon number for M = 216 single mode–squeezed 
states with squeezing parameter r = 0.8. We assume a total transmission of 
 = 0.5 (corresponding to roughly 3 dB of loss) for the lossy distribution. Note that 
the lossless distribution has no support on odd numbers of photons, which explains 
why visually it looks as if it has more area under the curve.
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distribution for M = 216 modes and squeezing parameter r = 0.8. 
These parameters have been chosen to correspond with an (r = 0.8, 
a = 6, D = 3, C = 1) high-dimensional GBS instance with experimen-
tally reasonable loss budgets. The squeezing parameter r = 0.8 is 
chosen to be within reach of current sources of single-Schmidt mode 
degenerate squeezed light (49). Note that the lossy distribution has 
smaller mean and variance than the lossless one (50), indicating that 
it becomes easier to simulate a lossy distribution as the transmission 
 is decreased. For example, the outcome with the highest probability 
in the lossless distribution

    n   *  = 2⌊ (     M ─ 2   − 1 )    sinh    
2
   r⌋ = 168   (3)

has a probability of 7.28 × 10−8 under the lossy distribution. The 
leftward shift of this distribution will, in general, be present when-
ever loss acts on a pure state. For M identical squeezers (with 
squeezing parameter r) undergoing loss by energy transmission , 
the mean and variance contract at least proportionally to 

  𝔼(n ) = M  sinh   2   r, Var(n ) = M  sinh    2   r(1 +  [ 1 + 2  sinh    2   r ] )  

confirming our intuition and, moreover, showing that the prevailing 
sources of decoherence in photonic sampling problems behave differ-
ently from the ones in RCS implemented in superconducting cir-
cuits, where noise makes the output probability distribution become 
uniform (6).

We now focus on the case of Hafnian-based algorithms. The cost 
of calculating the relevant probabilities depends only on the num-
ber of photons detected. Calculating a photon-number probability 
 Pr ( n ̄  )  of a mixed state is roughly quadratically more expensive than 
calculating a pure state probability of an event with the same num-
ber of photons (51). However, the cost of sampling pure and mixed 
states is similar. This is because lossy GBS states are classical mix-
tures over a displacement parameter of pure Gaussian states. There-
fore, it is possible to sample from a lossy state by sampling from the 
convex hull parametrized by the displacement parameter and then 
sampling from the pure state. Thus, sampling lossy GBS states has 
similar computational cost as sampling pure states with the same 
number of photons.

Likewise, for the TN-based algorithms, the cost for mixed state 
calculations would scale at least quadratically worse as compared to 
pure state calculations. This is because twice as many tensors are 
involved in a mixed state calculation, analogous to the quadratic 
overhead of keeping track of the density matrix as compared to a 
pure state. Note that for noisy RCS of qubits, one can trade fidelity 
for sampling speed (52). As opposed to GBS, this improvement is 
possible because in RCS, the amplitudes of the different Feynman-like 
paths that appear when slicing through two-body gates in the cir-
cuit are comparable. Moreover, this improvement is useful as long 
as the Schmidt-rank of the two-body gates used to generate entangle-
ment is small, which is not the case for the beam splitter. Further-
more, the state vectors associated with two different paths are 
approximately orthogonal.

A final point of difference between our simulations and the actual 
experiment is that while our runtime estimates are for the calcula-
tion of the GBS probabilities, an actual experiment samples from 
this distribution. Despite this difference, our simulations allow 

a fair benchmarking of the quantum device because current 
state-of-the-art algorithms have similar complexities of sampling 
and calculating probabilities. We moreover give the classical 
adversary an extra advantage in that we allow it to assume that 
only pure-state output probabilities need to be calculated for sam-
pling, as opposed to the quadratically slower mixed-state output 
probabilities since, as explained above, mixed-Gaussian states are 
convex mixtures of pure ones.

In summary, we provide maximal advantage to a classical adver-
sary by choosing a low Fock cutoff, by performing pure state simu-
lations with low photon numbers, and by estimating time for 
computation rather than sampling (which is at most polynomially 
slower using currently known methods). This advantage ensures that 
despite improvements in the classical algorithms, the space of 
parameters that are hard to simulate classically remains so.

Hafnian-based algorithms
Consider now the probability amplitudes of n-photon events by eval-
uating the Hafnian. Similar benchmarkings have been performed in 
the past for the calculation of permanents (53) (relevant to boson 
sampling) and Torontonians (54) (relevant to GBS with threshold 
detectors). For either of these two tasks, the time complexity of cal-
culating a probability corresponding to an n-photon event scales 
like O(poly(n)2n), which is quadratically worse than for GBS, which 
scales as O(poly(n)2n/2). For the case of boson sampling, this differ-
ence stems from the fact that any probability amplitude with n photons 
maps exactly to a GBS instance with 2n photons. For the case of thresh-
old detection, it stems from the fact that one cannot assign probability 
amplitudes to a measurement that is not rank-1, like the positive 
operator-valued measure representing a “click,” which is a coarse- 
graining of all the projectors with nonzero photons. In any case, for 
either of these tasks, benchmarks up to n = 50 have been carried out 
requiring on the order of 2 hours for boson sampling using Tianhe-2 
(53) and on the order of 20 hours for GBS with threshold detectors 
in Sunway TaihuLight (54).

If the matrix has no special property, such as being low rank, 
nonnegative, banded, or sparse, then the best known algorithms to 
calculate the Hafnian will scale like O(n32n/2) for a matrix of size n × n. 
The adjacency matrices generated in high-dimensional GBS do not 
have any of these properties. In Fig. 4, we show the results of our 
benchmarking by implementing the Hafnian algorithm from (14) 
using a task-based approach implemented in (55). Even for shared- 
memory CPU architectures, our new task-based implementation 
achieves a speed up of about 5× with respect to the current OpenMP 
implementation described in (56).

On the basis of these benchmarks, we estimate that Fugaku, among 
the current most powerful supercomputers in the world, would re-
quire around 14 hours to compute the Hafnian of a 100 × 100 matrix. 
Thus, if the total photon-number distribution of a given GBS setup 
has significant support past 100 photons, there will be a proportionally 
significant number of probability amplitudes that will require at 
least 14 hours in Fugaku to be computed.

We can get an estimate of the average time it would take to gen-
erate a sample by averaging the time it takes to generate a sample 
with n photons over the probability distribution of n photons. Using 
the same averaging procedure but applied to clicks instead of 
photons and assuming an overhead of 100 between computing 
probabilities and generating samples, the authors of (2) estimate that 
Fugaku would require around 1.9 × 1016 s to generate roughly 
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the number of samples that their experiment produces in 200 s at 
megahertz clock speeds.

For the lossy instance considered in Fig. 3, we find that, on average, 
Fugaku would require   F  amplitudes/samples    ∑ n=0   n  max       p  lossy  (n)  c  Fugaku    n   3   2   n/2  ≈ 
4 × 1  0   7   s to generate one sample. In this estimate, we do not extend 
the sum to all possible photon numbers but only up to those that 
have a chance of more than 10−7 to occur, which happens at nmax = 166 
and, moreover, assumes a reasonable overhead of Famplitudes/samples = 100 
for the calculation of probability amplitudes versus samples. As 
noted earlier, the complexity of generating a sample for a mixed or 
pure Gaussian state is proportional to that of calculating a probability 
amplitude (48) and the number of modes (in our case, 216), thus, 
using a factor of 100 is likely an underestimate.

To match the number of samples generated in seconds in a quan-
tum device operating at 10 KHz would require 6.8 × 1015 s. Thus, 
the computational cost of an (r = 0.8, a = 6, D = 3)–high-dimensional 
GBS instance, with 3 dB of loss is on par with the expected classical 
complexity of the USTC experiment with the added advantage of 
being programmable and much closer to the collision-free regime: 
The expected classical complexity of an experiment, such as the one 
just described, is similar to the expected time complexity of the 
USTC experiment (2). However, besides the obvious disadvantage 
of programmability, their experiment is much farther away from the 
collision-free regime, in which computational complexity theoretic 
results guarantee the intractability of GBS.

For example, if the USTC experiment had been performed with 
PNR detectors, we would find that their photon number distribu-
tion has mean and standard distribution 83.3 ± 20.1 over 100 modes 
[where we assume the squeezing parameters quoted in (2) and a net 
transmission of  = 0.3]. Note that even within the first SD, one is 

already beyond the total number of modes. This should be contrast-
ed with a distribution such as the one in Fig. 3, for which we find 
85.2 ± 13.9 over 216 modes.

TN methods
Another promising method to calculate the probability amplitude 
of high-dimensional GBS is using TN contractions. This has been 
the strategy of choice for classical adversaries to superconducting 
circuits performing RCS (52, 57).

In this section, we find that TN algorithms can simulate 2D lossy 
GBS experiments on 200 modes in a reasonable amount of time. This 
motivates going to a higher dimension, D = 3. We find that after 
making several allowances to the classical algorithm and accounting 
for tremendous improvements in classical hardware, one of the fastest 
supercomputers in the world, Fugaku, would take ∼1020 s to simu-
late a 3D experiment on 216 modes running for 200 s.

Any given quantum circuit can be written as a network of ten-
sors such that each input quantum state is a rank-1 tensor, each gate 
acting on 𝓁 components is a rank-2𝓁 tensor, and each measurement 
operator is a rank-1 tensor (45). The probability amplitude for the 
quantum circuit can then be calculated by contracting the TN, i.e., 
by summing over all the indices of the TN. However, there are mul-
tiple different orderings (paths) in which the different indices of a 
TN can be contracted, which influence the contraction runtime. For 
some of the first classical benchmarking proposals of random 
circuits, the contraction paths were handpicked by the researchers 
(58). More recently, excellent randomized algorithms have been 
introduced to find contraction paths that have been shown to im-
prove on previous results (45).

A second important practical consideration for TN contraction 
is that there is a trade-off between space and time complexity. That 
is, one can speed up substantially the contraction of a TN at the 
expense of assuming access to large amounts of memory. A systemat-
ic way to reduce the memory footprint of a TN contraction (at the 
expense of decreasing the speed of the computation) is to use a tech-
nique known as slicing, also known as variable projection or bond 
cutting (58).

Unlike for Hafnian methods where one does not need to specify 
much of the structure of the circuit, this information is vital in un-
derstanding the performance and limitations of TN simulations. As 
before, we fix the squeezing parameter r = 0.8 and assume net end-
to-end transmission of  = 0.5. With these parameters and first 
assuming D = 2, we need at least a = 14 lattices sites per dimension 
to get to a mean photon number at the detectors (i.e., after loss) of 
 𝔼(n ) ∼ 80 . For a single-cycle C = 1, we use a TN contraction algo-
rithm called cotengra (45) together with Fugaku’s LINPACK bench-
mark to find that this supercomputer would require less than 100 s 
to contract the TN. Thus, for 2D instances up to this size, it is nec-
essary to consider more than one cycle, implying the construction 
of either D extra delay lines or adding a circulator, both of which 
will adversely affect the net transmission.

This motivates considering the next dimension, D = 3. For this 
case, and fixing the number of cycles to C = 1, we find that we 
need at least a = 6 to have a mean photon number on the order of 
80 at the detectors, which would provide a nontrivial support on 
photon numbers that are beyond the reach of the Hafnian algo-
rithms described above. In Table 1, we show the time it would 
take Fugaku to contract different 3D GBS circuits for different 
lattice sizes.

Fig. 4. The time cost of calculating a Hafnian of size n in double precision. The 
stars indicate actual sizes computed in the Niagara supercomputer (60). The blue 
line is a fit to tNiagara(n) = cNiagaran32n/2 with the only fitting parameter cNiagara = 5.42 × 
10−15 s. The standard deviation of fitting parameter cNiagara is 1.2 × 10−16 s, which 
would give error bands thinner than the width of the line. We find an equivalent 
expected time in Fugaku, among the most powerful supercomputers, by considering 
the ratio of their Rmax scores (maximal LINPACK performance achieved) giving their 
performance in number of floating point operations per second. The conversion 
factor between the left scale for Niagara and the right scale for Fugaku is the ratio 
of Rmax values of Fugaku and Niagara, or equivalently, cNiagara/cFugaku = 122.8. Note 
that since the computation of Hafnians can be broken into the independent calcula-
tion of an exponential number of summands (known as an embarrassingly parallel 
computation), this scaling is expected to be quite accurate.
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Note that even allowing for a hypothetical scenario in which the 
random access memory (RAM) of each of its nodes has been ex-
panded by about 19 orders of magnitude, it would take Fugaku on 
the order 2.11 × 1014 s to calculate a contraction with a minimal 
(and highly inaccurate) cutoff of 4. In reality, it is infeasible to fit the 
computation in the memory or even the hard disks of individual 
nodes, so slicing would be required, which can lead to astronomical 
overheads over this idealized estimate. Even without this overhead 
and assuming that generating a sample is as expensive as calculating 
a probability, simulating a 200-s 10-kHz experiment would require 
over 4 × 1020 s. Of course, we remind the reader once more that a 
direct calculation of output probabilities is not what the experi-
ment does but only what one model of the experiment, and 
there may be more efficient methods for simulating a verifiable 
experiment.

On the basis of the evidence presented above, a high-dimensional 
GBS instance with squeezing parameter r = 0.8, in D = 3 dimensions, 
with a = 6 modes per dimension or a total of 216 modes and a single 
cycle C = 1 is well beyond the capabilities of current simulation 
methods based either on Hafnian calculations or TN contractions, 
even when losses of around 3 dB ( ∼ 0.5) are present. This im-
mense computational gap is present even after the fact that we allow 
the classical computer to ignore substantial overheads in terms of 
cutoff, number of modes, and samples-to-amplitudes conversion. 
These experimental parameters we propose are within the reach 
of current photonics technology, and their implementation using 
time-domain multiplexing can be achieved with a significantly re-
duced number of components. Note that after this submission, we 
became aware of a recent work (59) on an upgraded version of the 
experiment done in (2).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi7894
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