

advances.sciencemag.org/cgi/content/full/2/10/e1601278/DC1

Supplementary Materials for

The fate of carbon dioxide in water-rich fluids under extreme conditions

Ding Pan and Giulia Galli

Published 12 October 2016, *Sci. Adv.* **2**, e1601278 (2016) DOI: 10.1126/sciadv.1601278

This PDF file includes:

- fig. S1. The vibrational density of states of the 0.9 m Na₂CO₃ solution at ~11 GPa and 1000 K.
- fig. S2. Probability distributions of positions of protons hopping between CO₃²⁻ and H₂O in the Na₂CO₃ solution at 0.2 GPa and 823 K.

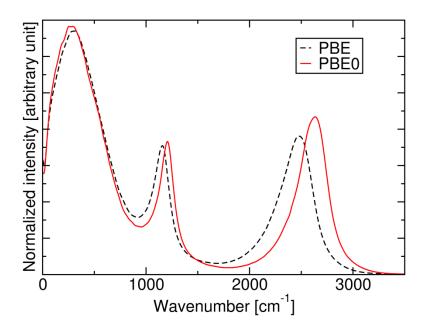


fig. S1. The vibrational density of states of the 0.9 m Na₂CO₃ solution at ~11 GPa and 1000 K. Two exchange-correlation functionals, PBE and PBE0, are compared.

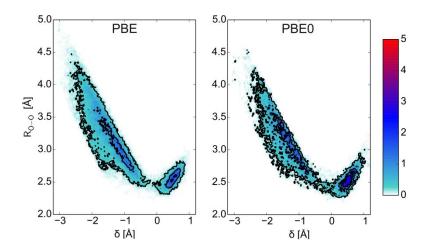


fig. S2. Probability distributions of positions of protons hopping between CO_3^{2-} and H_2O in the Na_2CO_3 solution at 0.2 GPa and 823 K. The unit is \mathring{A}^{-2} . The reaction coordinate R_{O-O} is the distance between the two neighboring oxygen atoms, O_c and O_w , in carbonate ions and water molecules respectively, and δ is the proton displacement R_{Oc-H} - R_{H-Ow} . Two xc functionals were compared: PBE and PBE0.