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Computer vision reveals hidden variables underlying 
NF-B activation in single cells
Parthiv Patel1,2, Nir Drayman1,2, Ping Liu3, Mustafa Bilgic3, Savaş Tay1,2*

Individual cells are heterogeneous when responding to environmental cues. Under an external signal, certain 
cells activate gene regulatory pathways, while others completely ignore that signal. Mechanisms underlying 
cellular heterogeneity are often inaccessible because experiments needed to study molecular states destroy the 
very states that we need to examine. Here, we developed an image-based support vector machine learning 
model to uncover variables controlling activation of the immune pathway nuclear factor B (NF-B). Computer 
vision analysis predicts the identity of cells that will respond to cytokine stimulation and shows that activation is 
predetermined by minute amounts of “leaky” NF-B (p65:p50) localization to the nucleus. Mechanistic modeling 
revealed that the ratio of NF-B to inhibitor of NF-B predetermines leakiness and activation probability of cells. 
While cells transition between molecular states, they maintain their overall probabilities for NF-B activation. Our 
results demonstrate how computer vision can find mechanisms behind heterogeneous single-cell activation under 
proinflammatory stimuli.

INTRODUCTION
Individual cells show unpredictable and highly variable responses 
in a wide range of contexts, from immune signaling to transcrip-
tional activation and to drug response (1–7). For example, follow-
ing stimulation with signaling molecules, a portion of cells in a 
population will strongly activate inflammatory response pathways 
such as nuclear factor B (NF-B) and downstream transcription 
factors, while others will completely ignore the stimulus and will 
not activate (8). Determining the sources of cellular variability is of 
immense importance for fundamentally understanding gene regu-
lation, signaling, immunity, and development, as well as in predicting 
variable drug response and tolerance (9–12). Despite previous demon-
stration of heterogeneous signaling responses in a wide range of 
contexts (8, 13, 14) such as development, immune response, infection, 
and cancer, it remains difficult to explore the molecular and cellular 
mechanisms that drive variable behavior in single cells, and the un-
derlying causes of cellular variability are unknown in many contexts.

Here, we study the NF-B system to investigate the underlying 
sources of cellular heterogeneity using a computer vision approach 
applied to microfluidic live-cell imaging experiments. NF-B is a 
key transcriptional pathway that is activated by many signaling 
molecules involved in immunity (15, 16) and controls the expression 
of hundreds of proinflammatory and cell fate genes (17). Dysregu-
lation of NF-B is implicated under many physiological conditions 
including infection, autoimmunity, and cancer (15, 18). Live-cell 
imaging and single-cell analysis have shown that NF-B activation 
is highly variable in single mammalian cells. When cells are stimu-
lated with signaling molecules [i.e., tumor necrosis factor (TNF) or 
lipopolysaccharide], some of them show complete cytoplasm-to-nucleus 
translocation of the p65 transcription factor (the hallmark of path-
way activation), while others ignore the stimulus and show no 
translocation and no NF-B target gene expression (Fig. 1A). The 

fraction of cells that respond to a stimulus (signaling input) increases 
in a dose-dependent manner (19), and despite this seemingly noisy 
single-cell behavior, NF-B nevertheless manages to mount specific 
responses to different signaling molecules, taking into account their 
concentrations and temporal ordering, and regulates gene expres-
sion in an input-specific manner (3, 13). Despite the plethora of 
research uncovering response relationships to input conditions, it is 
still unclear as to what underlying molecular components or mech-
anisms control variability in NF-B pathway activation alongside 
the input. The accurate functioning of signaling pathways such as 
NF-B is crucial to maintaining healthy immunity and immune de-
velopment, and integration of internal cell state and external stimuli 
is important to understand the functional consequences of noise in 
the system (Fig. 1B). Despite several studies that substantially con-
tributed to our understanding of cellular variability and noise 
(1, 20–24), the ability of NF-B and other signaling pathways to 
accurately interpret complex environmental signals and create spe-
cific gene expression responses is mostly unexplained.

The challenge in understanding the cause of heterogeneous re-
sponses in signaling and gene regulation is a classic observer effect 
problem: We can only identify the responding (i.e., activated) cells 
after we stimulate the cell population with signaling molecules, which 
will inevitably perturb the cellular states that we wish to examine. 
Many signaling pathways, including NF-B, contain multiple feed-
backs that, upon exposure to an external signal, rapidly change the 
molecular composition of the pathway (25), which fundamentally 
limits the accuracy and power of repeat stimulation experiments 
(8, 26). This presents a fundamental difficulty in determining how 
preexisting cell-to-cell differences affect the probability of any given 
cell to respond to a stimulus, especially in short-term cell states that 
arise from systemic changes in negative and positive feedback regu-
lation. One way to circumvent this problem is by use of mathematical 
modeling (27, 28). Modeling of pathway dynamics can reveal im-
portant insights and general patterns of noisy events and can offer 
many plausible explanations for cellular heterogeneity (29) but is 
bound by the underlying assumptions of the models or requires 
monitoring multiple components of the system for validation (30). 
Because of these experimental and theoretical limitations, molecular 
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mechanisms underlying important cellular behaviors such as vari-
able drug response, digital pathway activation, and signal tolerance 
are limited and often unclear (8, 31–33).

To study the molecular mechanisms behind variable NF-B ac-
tivation in single cells, we adopted an image-based machine learn-
ing approach to predicting which individual cells will activate the 
NF-B pathway in response to an inflammatory stimulus. On many 
occasions, machine learning algorithms have been shown to exceed 
human decision-making on complex game problems (34, 35). 
Machine learning has also previously been used to extract patho-
physiological outcome predictions from images of tissue and inform 
classification of differentiation, disease state, and infection (36, 37). 
By imaging living cell morphologies before, during, and after chemical 
stimulation, we were able to use the cell image before stimulation to 
predict whether that cell will activate the NF-B pathway. We de-
veloped an image-based support vector machine (SVM) to predict 
outcomes of chemical stimulation in individual cells (see the Sup-
plementary Materials). Our computer vision–based method classi-
fies cells into responding and nonresponding groups based solely 
on the unperturbed cell’s image and is able to predict which cells 
will respond to or ignore TNF stimulation with 79.4% accuracy. 
As this prediction is performed on cells that are not chemically 

stimulated, our approach allows studying how the cell’s unperturbed 
state differs between responding versus nonresponding cells.

RESULTS
Machine learning predicts single-cell NF-B activation 
from prestimulation images
To develop a predictive machine learning model for NF-B activation 
in individual cells, we first performed live-cell stimulation experiments 
to generate a reference dataset. We used a high-throughput microfluidic 
cell culture platform (38) to chemically stimulate and quantitatively 
measure NF-B response in cultured mouse fibroblast cells (Fig. 1, C to E). 
These cells express p65-dsRed and histone 2B (H2B)–green fluorescent 
protein (GFP) fluorescent reporters (8) to track NF-B nuclear translo-
cation in real time. In activated cells, cytoplasmic NF-B (p65) rapidly 
moves into the nucleus in a digital fashion (8). Cells were first imaged 
unperturbed for 1.5 hours, stimulated using the automated microfluidic 
system with TNF (0.1 ng/ml), and monitored for 6 hours. Custom im-
age analysis software was used to track the nuclear localization of p65 
and assign a label to each cell (activated versus not activated) (38).

To determine the characteristics of single cells that are responsible 
for activation, we then assigned representative features for single-cell 

Fig. 1. Prestimulation cell images can be used to generate a predictive model for NF-B activation. (A) Under TNF stimulation, a fraction of individual cells persists 
in an unactivated state and do not show nuclear NF-B localization, while others activate and NF-B transcription factor p65 accumulates in the nucleus. Example images 
show activated cells, indicated with red check marks. (B) Analysis of single cells under constant dose of TNF shows variable single-cell activation in the population: A given cell 
may or may not respond to the TNF stimulus. It is unclear whether single-cell variability is due to purely stochastic processes (i.e., if a given cell can randomly achieve ac-
tivated state) or whether it is deterministic where only sensitive cells activate under the TNF input. (C) We use microfluidic cell culture to stimulate cells with TNF signals and 
image the nuclear localization of NF-B over time in single cells. Analysis of individual cells reveals NF-B localization traces [TNF stimulation (0.1 ng/ml) shown on the 
right; stimulation starts at t = 0]. (D) Single-cell traces reveal heterogeneous activation and subpopulations of active and inactive cells. (E) We record prestimulation images 
of mouse 3T3 fibroblast cells that express p65-dsRed and histone 2B (H2B)–green fluorescent protein (GFP) reporters and feed them into our machine learning pipeline.

D
ow

nloaded from
 https://w

w
w

.science.org on February 19, 2024



Patel et al., Sci. Adv. 2021; 7 : eabg4135     22 October 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 11

images and analyzed predictor correlations (see the Supplementary 
Materials) on our defined cell features (Fig. 2A) in a single dosage 
dataset (fig. S1). We also expanded the experimental dataset from a 
single TNF dose to a range of doses and reported their individual 
accuracies (0.005 to 5 ng/ml; n = 3456; fig. S2A). Analyzed together 
using the SVM algorithm, the total accuracy is 79.4%. We also tested 
an alternate cell activation criterion using different single-cell p65 
trace patterns as categories (fig. S3A) on a single dose (0.05 ng/ml) 
and found that while some trace patterns are able to be classified by 
the model, this does not generally hold and has lower accuracy than 
binary classification (fig. S3B). For our binary classifier labeling, we 
use a mean nuclear p65 peak height threshold of 500 (nuclear p65peak − 
nuclear p65t=0) (fig. S4A). We also tested with different machine 
learning models (table S1) and using different thresholding values 
for activation based on peak height and chose our threshold to bal-
ance the sample number and prediction accuracy of activated cells. 
While both convolutional neural network (CNN) and tree classifiers 
are able to classify activation more accurately than the SVM, feature 
analysis for both CNN and tree classifiers is typically inaccessible or 
difficult. Overall, we can accurately predict individual cells’ TNF 
response from their prestimulation images, which strongly suggests 

the existence of deterministic causes underlying NF-B response in 
single cells.

Leaky NF-B localization is the primary predictor of  
single-cell activation
To understand the characteristics that underlie activation, we then 
identified a subset of highly predictive features that correlate with 
the cell’s likelihood to become activated, including the basal (pre-
stimulus) level and SD of nuclear NF-B and several texture features 
(Fig. 2B). Using these features, cells can be visualized by uniform 
manifold approximation and projection (UMAP), which present 
“TNF-sensitive” and “TNF-resistant” cell regions (Fig.  2C). Each 
point on the UMAP projection represents a cell that occupies a par-
ticular state with different amplitudes for the image features that we 
previously determined. The UMAP plot shows cells segregated 
through variables unrelated to activation; we found that features re-
lating to size and sum of protein are responsible for creating this 
divide (fig. 4B). Analysis of the contribution of individual cell 
morphology features to the prediction revealed that most of the 
variation in single-cell predictions is explained by a single feature, 
the nuclear p65-dsRed levels before stimulation (r = 0.62), which 

Fig. 2. Machine learning predicts NF-B activation in single cells from prestimulation images. (A) We generate descriptive traits for each single-cell image and 
analyze correlations between prestimulation traits and NF-B activation probability. (B) Using a subset of highly predictive features (n = 8), uniform manifold approximation 
and projection (UMAP) corroborates the clustering of a highly predictive fraction of cells that are TNF sensitive and TNF resistant. The cells indicated with red dots have 
high probability of activating NF-B under TNF stimulation. (C) We determined the top feature of activation probability to be the mean nuclear fluorescence of the NF-B 
(p65-dsRed) signal in the nucleus before any exposure to TNF. The plot shows the correlation of traits to single-cell activation probability, with log(fold change) of traits 
from predicted active cells to predicted inactive cells on the x axis and significance of difference on the y axis determined by t test. Other highly predictive features include 
the SD of nuclear p65, mean nuclear phase intensity, major axis length and a texture feature describing information measure of correlation in the nucleus, and aggregative 
image features such as Otsu dimension, and Segmentation-based Fractal Texture Analysis (SFTA) (***P = 0.001). (D) UMAP plots of several highly predictive features 
determining NF-B activation in single cells.
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showed a significant difference between TNF-sensitive and TNF- 
resistant cells.

While nuclear p65 was the most significant, we also explore the 
relationship between different features to see the effect of coupling 
on our variables: Despite the very significant P values for many fea-
tures, often times, many features are coupled in nonlinear ways. 
While a large amount of variance can be explained using nuclear 
NF-B, additional features increase the prediction for different cell 
states (fig. S5, A and B). The combination of p65, H2B, and phase 
features can all be used in one decision tree to isolate a subpopula-
tion of inactive cells (fig. S5D). To understand some of the underlying 
processing occurring within the algorithm, we looked into correla-
tions in this subpopulation. Dissecting this highly coupled sub-
population from fig. S5D, in turn, showed remarkable correlation 
with many features that gave high P values but did not have high 
fold changes.

Although nuclear p65 before stimulation was the most predic-
tive feature for cell activation, nuclear texture features and H2b 
channel features are also highly predictive components of the clas-
sifier. To investigate whether other variables were acting as proxies 
for nuclear p65, we look to see whether we could substitute phase 
image alone for biological markers in the other channels (accuracy, 
73%; fig. S5C and table S1). While some of the features did show 
high correlation (Otsu: r = 0.600), many other features had much 
lower correlations (fig. S6). The clustering of correlations shows 
that there may be multiple underlying biological features that are 
being represented. For example, H2b feature sensitivity may be in-
dicative of exogenous factors such as nuclear import/export (39) 
and cell cycle (40) playing a role in NF-B activation probability. 
Using gray level co-occurrence matrix features from the phase 
channel, we used metrics such as entropy and measure of informa-
tion that reflect different features of adjacent image pixels to deter-
mine whether nuclear texture was predictive of NF-B activation. 
The mapping of these various texture features onto our UMAP space 
(Fig. 2D) show that highly activated cells have more heterogeneous 
nuclear morphology with low pixel correlation and that resistant cells 
have more homogenous nuclei with high pixel correlation. These 
features are suggestive of chromatin openness (41–44) and epigen-
etic factors having a potential relationship to NF-B activation.

Cells transition between multiple states but maintain their 
overall propensity for pathway activation
To further characterize the unperturbed cell states, we look at the 
time window leading up to activation. By using multiple prestimu-
lation images, we have the unique opportunity to look at the trajec-
tories of individual cells in the UMAP space over time and see the 
short-term state transitions of a given cell before exposure to TNF 
(Fig.  3A). Unexpectedly, we find that the resting (unstimulated) 
cells do not occupy a fixed parameter state and instead show dy-
namic transitions between different states. That is, important state 
features such as nuclear p65 level and nuclear texture (indicative of 
chromatin availability) actively fluctuate in unstimulated cells. Plot-
ting several features over time for single cells reveals coordinated 
changes in nuclear texture and nuclear NF-B (p65) before stimu-
lation (Fig. 3B) and is further observed by plotting the covariance 
between variables (fig. S6). As cells change over time, the image fea-
tures that are changing are often correlated. This could suggest that 
there is compensation from some features to others, as cells dynam-
ically change state. While there are often changes in state features 

during these transitions, the overall prediction score for NF-B ac-
tivation for these single cells does not change significantly (Fig. 3C). 
The cells maintained their overall propensity for NF-B activation 
under TNF stimulation while actively transitioning between multi-
ple cellular states. This result indicates that cellular sensitivity toward 
cytokine stimulation may be stable despite the fluctuations present 
in our features and within the cells before stimulation. To look at 
how stable the prediction score is at earlier time points, we look at 
single-cell autocorrelation of the prediction score. The correlation 
remains high even 35 min before stimulation (r = 0.78, n = 1109 
cells, pairwise Pearson’s correlation) (Fig. 3D). While 35 min may 
not be enough to capture the regime of long-term state (e.g., cell 
cycle), it captures the relevant time scales of the NF-B system state 
right before stimulation, as cells experience changes in pathway 
protein composition even at steady state (25). This indicates that 
while the cells do make transitions on the UMAP space to different 
states, they tend to stay within the same grouping with respect to 
activation prediction.

To confirm that the cells maintain their activation probability 
through stimulation, we clustered all single cells to look for differ-
ences between states after TNF is introduced (Fig. 3E and see the 
Supplementary Materials). Analysis of the activation fraction (i.e., 
the population fraction of cells activating NF-B) after TNF stimu-
lation of the different state clusters reveals that the different states 
indeed have different activation fractions (Fig.  3F). Adjacent cell 
clusters have similar activation probabilities, and 73.71% of all tran-
sitions happened within or to an adjacent state cluster (Fig.  3G). 
That is, while cells transition between various parameter states, they 
maintain their overall sensitivity toward TNF stimulation. We also 
looked at how dosage plays a part in the magnitude and fraction of 
activation. While the magnitude of activation followed similar be-
havior across states (fig. S7B), the fraction of activated cells varies 
across dose for different states (fig. S7C). While some cells remain 
persistently sensitive or resistant, there are other cells that have their 
activation profiles dictated by TNF dose. This supports the hypothesis 
that preexisting cell features govern activation or resistance to 
TNF input.

To see whether there was regularity in transitions, we looked at 
average cellular transitions across the UMAP space. Aggregating 
single-cell trajectories across the UMAP space can be used to un-
derstand the state velocity across the population (Fig. 3H). We find 
that the average transition of single cells follows generalized pat-
terns and indicates that while the transitions might appear non- 
uniform at the single-cell level, there are average population level 
movements.

Mechanistic modeling shows that inhibitor of NF-B/p65 
ratio drives p65 leakiness and activation probability of a 
given cell
Our machine learning analysis revealed that leaky (prestimulation) 
p65 localization to be the main predictor of single-cell activation of 
NF-B. There are many different NF-B regulators that can influence 
p65 nuclear localization in resting unstimulated cells. This “leakiness” 
has been attributed to mechanisms of nucleocytoplasmic shuttling 
of inhibitor of NF-B (IB) and NF-B (p65) in resting cells 
(39, 45, 46), and observations that basal nuclear NF-B abundances 
have important biological consequences on pathway activation 
have been elucidated (47,  48). However, the NF-B pathway is 
robust to environmental fluctuations and noise, and many built-in 
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negative feedback mechanisms (Fig. 4A) prevent spontaneous acti-
vation (nuclear import of p65) in the absence of stimulation. Nevertheless, 
our imaging data reveal that many cells show minute amounts of 
“leaky” nuclear p65 (localization without stimulus) (fig. S8), which 
has been observed in cells (39) but not thoroughly investigated re-
garding activation. We find that this small but significant prestimulus 
p65 localization predetermines the sensitivity of the mouse fibro-
blast cells in responding to upcoming TNF challenges.

To understand the molecular mechanism behind p65 nuclear 
leakiness and, specifically, how it could lead to increased TNF sen-
sitivity and NF-B activation probability, we explored a mathematical 

model of NF-B pathway in single cells (8, 14). This model accurately 
reproduces the experimentally measured NF-B dynamics in a wide 
range of conditions in the mouse fibroblast cells used in our study 
(1, 6, 11, 12). We performed simulations and generated thousands 
of dynamic traces that describe nuclear NF-B (p65) localization 
in single cells stimulated with TNF. We then analyzed the molecu-
lar composition of each simulated cell and its NF-B activation pro-
file. We found that variability in levels of IB, the main inhibitor of 
NF-B (p65) keeping it in the cytoplasm, explains the observed NF-B 
leakiness. In addition to binding to p65 and keeping it in the cyto-
plasm in unstimulated cells, IB acts as a dynamic negative feedback 

Fig. 3. Resting cells dynamically transition between different states but maintain their overall NF-B activation probability. Imaging of single cells before, during, 
and after stimulation enables analysis of single-cell state stability. (A) We use selected cellular features across multiple time points to analyze the trajectory of single cells 
across the latent UMAP space before stimulation. Colored lines show the temporal trajectories of four example cells on the UMAP plot before stimulation with TNF. Cells 
transition between various points before TNF stimulation. (B) Individual cells show coordinated changes in state features while transitioning. We show the dynamic 
changes in the level of various predictive features for these cells. Time is given in minutes before stimulation (stimulation starts at t = 0). (C) While cells transition between 
different points with different transition distances, their probability to activate NF-B (given by the prediction score of our algorithm) remains the same. (D) Autocorrela-
tion of the prediction score among single cells across prestimulation time points remains stable 35 min before stimulation (r = 0.78, n = 1109 cells, pairwise Pearson’s 
correlation). (E) Single cells are clustered in the UMAP space by local adjacency into communities to look for activation differences by state (color indicates group). 
(F) Analyzing end point data after TNF stimulation by individual state clusters shows different fractions of activated cells for different states. There is activation similarity 
in adjacent clusters, and (G) 73.73% of all cell transitions are within or to an adjacent cluster. Shown is the cumulative distribution function of state transitions by transition 
distance (red X indicates average distance between clusters). (H) Aggregated trajectories reveal a state velocity depicting activation score movement across the population.
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regulator of the pathway since IB is a direct target gene of NF-B.  
IB is produced when NF-B pathway is activated and p65 enters 
the nucleus. Note that the leaky nuclear p65 that we observe is cor-
related to total p65 present in the cell. Because many of these vari-
ables are entangled in the pathway, changes in one protein typically 
reflect changes across many proteins in the pathway.

Using dynamic simulations, we perturbed the IB/NF-B ratio 
in single cells before TNF stimulation and determined the resulting 
likelihood of pathway activation for single cells (n = 1000) (fig. 
S9B). We find a major difference in cellular activation probability 
and peak NF-B amplitude for different IB levels (fig. S9C). Coun-
terintuitively, cells with high initial IB levels require a smaller TNF 
dose to achieve NF-B activation, whereas cells with low initial IB 
levels are very resistant to any TNF dose. This unexpected finding is 
explained by the facts that the probability of activation depends on 
the IB/NF-B ratio and not the total level of IB and that the IB/
NF-B ratio is anticorrelated to the total IB level (Fig. 4B and fig. 
S9A). Expression differences between activators and repressors 
have the capability of producing large variance in phenotype differ-
ences similar to what we see with NF-B activation (49–51). Our 
simulations suggest that a preexisting imbalance in the NF-B 
negative feedback is responsible for increased TNF sensitivity in 
single cells and that the activation probability of individual cells is 
predetermined by the molecular ratio of IB to NF-B in the cell 
(Fig. 4C).

Experiments show that IB/NF-B ratio is the main 
determinant of cellular activation probability
To validate our modeling predictions experimentally, we analyzed 
live single cells by time-lapse microscopy and immunofluorescence. 
First, we found that those cells that responded to TNF stimulus had total 
nuclear NF-B (p65) at t = 0 significantly correlated with the NF-B 
peak height after stimulation (P = 1.5 × 10−111; Fig. 4D) and, on average, 
show a fivefold higher level of leaky nuclear p65 before stimulation 
than those that did not respond (P = 1.35 × 10−13; Fig. 4E). Note that 
the low level of nuclear leakiness that we observe is only about 12% 
of the total fluorescence in a given cell and is far below what is seen 
during activation. This small but significant difference shows that the 
regulation of the steady state (i.e., prestimulus) NF-B localization is 
an important determinant of NF-B activation and demonstrates 
the power of using computer vision to analyze single-cell responses.

To experimentally validate our hypothesis that the IB/NF-B 
ratio is driving activation probability from the modeling, we stained 
unstimulated cells for IB- protein expression and analyzed the 
relationship between IB and NF-B in individual cells using 
immunofluorescence (Fig. 5A). We segmented the nuclear and cyto-
plasmic compartments and found that, as predicted by our simula-
tions, there is a significant inverse correlation between the IB/
NF-B ratio and leaky nuclear p65 localization ( = −0.26, P = 2.7 × 10−11; 
Fig. 5c), which is the main feature that determines cell activation 
upon TNF stimulation.

Fig. 4. Simulations suggest that leaky NF-B localization and overall NF-B response is predetermined by the ratio of IB to NF-B proteins in single cells. 
(A) Simplified schematic of the NF-B pathway used in simulations. IB provides negative feedback to the pathway, preventing NF-B nuclear localization in unstimulated 
cells. IKK, IB kinase. (B) t-distributed stochastic neighbor embedding (tSNE) mapping of simulated single cells on NF-B pathway protein levels shows anticorrelated 
nuclear NF-B and IB/NF-B ratio in single cells. (C) Simulations predict a correlation between nuclear NF-B at t = 0 and NF-B peak height after stimulation and, con-
sequently, an inverse correlation between NF-B at t = 0 and the IB/NF-B ratio. (D) Activated live single cells confirm the prediction and show significant correlation 
between nuclear NF-B at t = 0 and NF-B peak height after stimulation. (E) Prestimulation NF-B nuclear fluorescence accounts for a high degree of variance, and acti-
vated live single cells have a significantly higher level than inactive cells. (F) Simulations suggest that increasing IB/NF-B ratio makes cells more resistant to activation 
under TNF stimulation.

D
ow

nloaded from
 https://w

w
w

.science.org on February 19, 2024



Patel et al., Sci. Adv. 2021; 7 : eabg4135     22 October 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 11

Next, we mapped the fixed-and-stained cells onto our UMAP 
visualization of the previous live imaging data (fig. S2B), allowing 
us to infer IB localization on our previous experiments for 
high-scoring cells (Fig. 5B). We find that there is indeed a signifi-
cant difference in nuclear NF-B, IB/NF-B ratio, total IB, and 
cellular area, validating our prediction that IB/NF-B ratio is driv-
ing activation probability in NF-B (Fig. 5D).

DISCUSSION
The underlying molecular sources of noisy and variable cellular re-
sponses can be challenging to study because of a fundamental diffi-
culty of analyzing cellular states without disturbing them. Here, we 
adopted an image-based machine learning approach to predicting 
the identity of cells that will respond to a biochemical signal and 
experimentally investigated them. Overall, our demonstration of 
machine learning in the identification and exploration of noisy NF-
B activation enables cellular analysis through a prospective lens. 
We supplemented our computer vision approach with additional 
single-cell experiments and mechanistic modeling to study how cel-
lular states affect the probability of heterogeneous signaling in im-
mune regulation.

Our study revealed several molecular determinants of cellular 
states that lead to variable signaling responses in the NF-B path-
way. Previously, there has been conjecture as to how NF-B signal-
ing is regulated, and metrics such as cell cycle (40) stage and basal 
NF-B levels (39) have previously been implicated. In addition to 
this, we find that the cell-to-cell variability in NF-B activation can 
largely be explained by a preexisting difference in the ratio of the 
NF-B and its inhibitor, IB. In cells that are not stimulated by a 
ligand, the p65 (NF-B) transcription factor is bound by its inhibi-
tor IB and is kept in the cytoplasm. When the cells are exposed to 

a ligand, IB degrades and NF-B transcription factors such as p65 
rapidly translocate to the nucleus and regulate inflammatory genes. 
These genes are expressed in a ligand-specific manner and have im-
portant functions in immunity, pathogen-host interactions, and 
development of adaptive immune cells. Therefore, studying which 
cells would show NF-B translocation (the hallmark of NF-B 
pathway activation) is important to understanding of cellular infor-
mation processing and cellular variability during immunity.

We find that the cells with a lower IB/NF-B protein ratio 
show small amounts of translocation to the nucleus even without 
ligand stimulation, which we term leakiness. We also found that 
leaky cells that have a low IB/NF-B ratio are more sensitive to 
TNF stimulation and readily respond when exposed to this signal. It 
remains an open question as to what leads to this variation and 
leakiness in the IB/NF-B ratio: One intriguing possibility is that 
epigenetic variance in genes encoding for NF-B network compo-
nents enforce the variable activation chance that we observe akin to 
certain modes of drug tolerance (32, 52). These epigenetic changes 
could perhaps explain the observed predicative power of nuclear 
texture features that we measured (Fig. 2D), and we plan to address 
this possibility in follow-up studies.

Another possible explanation for our observations is that cells 
that are less sensitive to TNF (i.e., those that are not leaky) do not 
have a functioning NF-B network. However, in our experiments, 
the cells that show leakiness and those that are not leaky all activate 
and show complete NF-B translocation at sufficiently high TNF 
doses, which shows that they have intact IB kinase/NF-B net-
work and transport mechanisms. On the other hand, our pathway 
simulations showed that simple changes in the protein abundance 
of p65 and IB are sufficient to observe leakiness and increased sen-
sitivity to TNF. These protein abundance changes can happen be-
cause of a variety of factors, including the possible epigenetic factors 

Fig. 5. Single-cell activation is largely predetermined by the NF-B/IB ratio. We validated our machine learning and modeling predictions in immunofluorescence 
staining experiments. (A) Image of unperturbed 3T3 cells stained with IB- with fluorescent p65 and H2B reporters. (B) High-scoring fixed cells are mapped onto UMAP. 
(C) There is a significant inverse correlation between leaky nuclear NF-B localization and IB/NF-B ratio. (D) IB/NF-B ratio is significantly correlated with nuclear NF-B 
state at t = 0 in predicted fixed cells, and there is a significant difference between IB/NF-B ratio, leaky nuclear NF-B localization, total IB, and cellular area.
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that we discussed above, or cells being exposed to previous signals 
that change their transcriptional states.

Through dynamical imaging of cells before and after stimulation, 
we found that resting (unstimulated) cells mostly maintain their 
sensitivity state at various time points, indicating the stable nature 
of the underlying NF-B architecture in response to TNF. Howev-
er, while cells maintain their overall sensitivity toward future TNF 
stimulation, these cells actively sample various molecular states. We 
find that most of the NF-B response variability is explainable, but 
the cells do undergo spontaneous state transitions, which is a plau-
sible explanation for the NF-B activation variability that cannot be 
explained by our algorithm alone. While the NF-B system has 
many components to help maintain its sensitivity toward chemical 
signals, there is still an element of stochastic state fluctuations that 
result in creating diversity in single-cell and, ultimately, population 
behavior. This phenotypic diversity was shown to be advantageous 
for a cell population when responding to rapidly changing environ-
mental conditions. Cytokines such as TNF often activate multiple 
signaling pathways, and stratified state-based activation could pro-
vide a way to achieve specific responses for specific cell states at 
different dose ranges.

Our findings suggest an alternate characterization for signaling 
variability in mammalian signal transduction and offer the interest-
ing possibility that activation heterogeneity is a proxy for cell state 
that a cell can interpret and act on (53). The prevalence of these state 
niches is further evidence that cell populations are well equipped at 
differentiating diverse and dynamic signals through cellular special-
ization even in an equilibrium population. The matching of activation 
probability, heterogeneity in the IB/NF-B ratio, and nuclear mor-
phology is indicative of regulation mechanisms in place for decod-
ing different signaling patterns for a variety of different cellular states.

MATERIALS AND METHODS
Experimental model and subject details
Knockout p65−/− mouse 3T3 fibroblasts were engineered with p65-
dsRed under the native p65 promotor (8), and a minimum fluores-
cence clone was selected to represent endogenous expression of 
NF-B and the pathway dynamics. A ubiquitin promotor–driven 
H2B-GFP cassette provides a nuclear marker for image processing.

Microfluidic cell culture
Cell culture chambers are made of polydimethylsiloxane and coated 
with fibronectin (FC010-10MG) overnight. Cells are seeded at a 
constant density of ~20,000 cells/cm2. Cells are taken at 100% con-
fluence by incubating with 0.25% trypsin-EDTA (25200-056) for 
5 min before loading and are cultured for 5 hours before stimula-
tion. Cells were cultured using standard conditions for cell culture 
(5% CO2 and 37°C) and maintained using an incubation chamber 
during imaging. TNF- (PMC3014_3671982503) was diluted in 
FluoroBrite Dulbecco’s modified Eagle’s medium (A1896701) with 
2× GlutaMAX (35050061), penicillin/streptomycin (15140-122), 
and fetal bovine serum (16140071) for stimulation of NIH 3T3 cells. 
Vials of stimulation media were pressurized at 5 psi, kept on ice, 
and connected to the chip via microbore tubing (PEEK, VICI). The 
microfluidic device is mounted on the microscope.

We image using Nikon Eclipse Ti2 microscope to capture both 
phase and fluorescence images of cultured cells at a 20× magnifica-
tion. We use a Hamamatsu ORCA-Flash4.0 V3 Digital CMOS Camera 

(C13440) to capture an image every 5 min for the duration of the 
experiment. Custom MATLAB scripts were used for image process-
ing. NF-B activation was quantified as mean nuclear fluorescence 
intensity after background correction. For peak analysis, data were 
smoothed and normalized (MATLAB functions smooth and z-score), 
followed by peak detection. Activation label is crafted from binary 
threshold for nuclear p65.

Fixed-cell immunofluorescence
Fibroblasts were seeded in microfluidic chamber and allowed to at-
tach. Cells were rinsed with a 1-min wash of phosphate-buffered saline 
(PBS) and fixed using a 4% paraformaldehyde solution at 5 hours 
after attachment. Cells were fixed for 10 min at room temperature 
and blocked and permeabilized with a 10% bovine serum album 
(BSA) and 0.5% Triton X-100 solution in PBS for 1 hour. Cells were 
then incubated with primary antibodies in a staining solution (2% BSA 
and 0.1% Triton X-100 in PBS) for another 1 hour at 37°C. Cells were 
then washed again with PBS and incubated with secondary antibodies 
in staining solution for 1 hour at 37°C. Primary antibody used was 
a rabbit polyclonal to IB- (ab7217). Secondary antibodies were goat 
polyclonal secondary antibody to rabbit immunoglobulin G H&L 
(Alexa Fluor 647) (G378361).

For the image analysis of fixed cells, we used cell images taken at 
the time point immediately preceding fixation (5 min). We then an-
alyzed fixed images and used cell coordinates to match up the fixa-
tion analysis with the image analysis that goes into the machine 
learning pipeline. The images taken immediately before fixation are 
cells in an unperturbed state similar to prestimulation cells in the 
dosage experiments. We did not have to do anything in the way of 
specifically transforming/aligning either to map with each other 
in UMAP.

Data processing
Predicting the activation of cells using microscopy images can be 
formulated as an object classification problem. Data processing de-
tails are as follows: We first use minimum-maximum normaliza-
tion to scale the pixel intensity into the range of [0, 1]. Then, we 
crop each cell as a 64 by 64 image patch centered around the cell 
nucleus. We split the dataset into 10 folds and set up cross-valida-
tion experiment to evaluate our model. In each run, eight folds are 
used for training, one fold is used for validation, and the last fold is 
used for evaluation.

Extraction of texture features and SVM model
Hand-crafted feature extraction was performed during nuclear seg-
mentation and for each tracked single cell. The number of all ex-
tracted parameters is 236 and is shown in table S2. Texture extraction 
was performed using several custom MATLAB scripts. SVM model 
was run using cubic kernel with an overall accuracy of 73%. Fitting was 
performed with 10-fold cross-validation with 10% dropout on a 
dataset with [0.005, 0.05, 0.5, 5 ng/ml] TNF input images (n = 3456) 
and an independent dataset with TNF (0.1 ng/ml) input images 
(n = 2113) before stimulation (fig. S4). Dose feature is represented 
as a categorical variable in the analysis. Feature creation code is pro-
vided at https://github.com/parthivapatel/ML_cellim.git.

Validation with additional models
We validate and report the accuracies using other classifiers as well 
(table S1). All models use the same fivefold cross-validation split. 
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The training fold is split into train validation to grid search the best 
hyperparameters. Last, we report the average performance over the 
test folds. The models have the following hyperparameter settings.
Logistic regression
We use logistic regression with liblinear solver and L2 regularization 
and optimize the best C values (for regularization) on the valida-
tion folds.
SVM with rbf kernel
We tune this SVM with “rbf” kernel to optimize different C values 
and gamma values (for kernel).
SVM with polynomial kernel
This SVM uses a polynomial kernel. The hyperparameters are the C 
value and the degree of the polynomial kernel.
Random forest
We choose to use 100 decision trees as the base estimators for the 
random forest classifier.
AdaBoost
This model has the same number of estimators with the random 
forest. The base estimator is a decision tree classifier with a maxi-
mum depth of 1.
Convolutional neural network
There are two convolutional layers, each followed by max-pooling 
layers. After flattening the output of the second max-pooling layer, 
two fully connected layers are applied with a tanh activation func-
tion. Dropout layers follow both dense layers with a dropout ratio of 
0.5 during training. The last layer is a sigmoid function to calculate 
the probability of two classes. We used the Keras library (https://
keras.io/) for the CNN implementation. We used TensorFlow 
(www.tensorflow.org) as the backend for Keras. We used scikit-
learn (https://scikit-learn.org/) for the other classifiers.

State velocity
Individual cells at time 0 were mapped onto UMAP using parame-
ters (nearest neighbors = 12, Chebyshev distance metric, minimum 
distance = 0.1) across multiple doses. Multiple additional prestimu-
lation time points were then embedded onto the UMAP projection 
using nearest-neighbor embedding. UMAP embedding was turned 
into a grid of (i, j) components and morphological velocity was 
approximated using    1 _ n    ∑ 

i=0
  

t
        → x   i,j  

t    , where     → x   i,j  
t     is the vector of displacement 

of a prestimulation single cell mapped onto UMAP between t and 
t − 1 in the grid (i, j) for all cells. The average displacement vector 
across all cells is shown in the state velocity.

Clustering
Clustering in Fig. 3 was performed using Louvain community de-
tection derived from created adjacency matrix from the near-
est-neighbor descent algorithm on cell database with hand-crafted 
features. Single cells move across Louvain partitions between time 
points at a frequency of less than 73.71%. Clustering for cell traces 
used in fig. S4 was performed through k-means clustering us-
ing a k = 6.

Statistical tests
Figure 2C uses two-sample t test to evaluate P values with n = 1028 
for positive predicted and n = 2428 for negative predicted. The red 
line shows significance level of P = 0.001. Figure 4E uses two-sample 
t test to evaluate P value with n = 1028 for positive predicted and 
n = 2428 for negative predicted.

Figure 5D uses two-sample t test to evaluate P value on high-scoring 
prediction fixed cells with n = 45 for positive predicted and n = 74 
for negative predicted. Misclassification error was minimized using 
high-scoring cells only.

Mathematical modeling of NF-B pathway
Using a hybrid stochastic deterministic model of the NF-B path-
way, published previously (8, 14), we simulated 1000 single cells 
exposed to 20 TNF concentrations. The hybrid model based on 
Gillespie algorithm uses verified intrinsic noise (8, 14) in TNF re-
ceptor-ligand binding and in transcription of IB- and A20, which 
form the main negative feedback loops leading to oscillations.

Simulation was performed at 100-s time steps with 10-hour 
equilibrium period from initial conditions, 6  m of a single TNF 
pulse, and then 2 hours of evolution. Analysis was performed on 
first peak of resulting cell traces of nuclear NF-B. Simulated single 
cells at t = 0 can be found in table S3 for reference TNF concen-
trations.

See table S4 for abbreviations and table S5 for parameters. NF-
B and TNF receptor are distributed in a lognormal distribution 
with means of 105 and 104 molecules and parameters  and  
(  √ 
_

  1 ⁄ 2    , −1/4) and (  √ 
_

 2   , −1). Ordinary differential equations for the model 
are listed below.

Fast reactions

   d [ IKKKa] ─ dt   =  k  a   × B(t ) × ( K  N   − [IKKKa ] ) ×     k  A20   ─  k  A20   + [A20]   − ki × [IKKKa]  

           
d [ IKKn] ─ dt   = −  [IKKKa]   2  ×  k  1   × [IKKn ] +  k  4   × ( K  NN  −    

[ IKK  N   ] − [ IKK  A   ] − [IKKi ] )
   

   d [ IKKa] ─ dt   =  [IKKKa]   2  ×  k  1   × [IKKn ] −   k  3   × [Ikka ] × ( k  2   + [A20 ] )  

    d [ IKKi] ─ dt   =  k  3   × [IKKa ] ×     k  2   + [A20] ─  k  2     −  k  4   × [IKKi]  

    
d [  IB  p  ]

 ─ dt   =  a  2   × [IKKa ] × [IB ] −   t  p   × [ IB  p  ]  

   
d [ NFB ∣  IB  p  ]

  ──────────  dt   =  a  3   × [IKKa ] × [NFB ∣ IB ] −   t  p   × [NFB∣ IB  p  ]  

     d [ NFB] ─ dt   =  c  6a   × [NFB ∣ IB ] −  a  1   × [NFB ] × [IB ] +    
t  p   × [NFB ∣ IB ] −   i  1   × [NFB] 

    d [  NFB  n  ] ─ dt   =  i  1   × [NFB ] −  a  1   ×  k  v   × [ IB  n   ] × [ NFB  n  ]  

    d [ A20] ─ dt   =  c  4   × [A 20  t   ] −  c  5   × [A20]  

    d [ A 20  t  ] ─ dt   =  c  1   × [ G  A20   ] −  c  3   × [A  20  t  ]  

     d [ IB] ─ dt   = −  a  2   × [IKKa ] × [IB ] −  a  1   × [IB ] × [NFB ] +  c  4   ×  
                    [ IB  t   ] −  c  5a   × [IB ] −  i  1a   × [IB ] +  e  1a   × [ IB  n  ]  
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    d [  IB  n  ] ─ dt   = −  a  1   ×  k  v   × [ IB  n   ] × [NFB ] +   i  1a   × [IB ] −  e  1a   × [ IB  n  ] 

    d [  IB  t  ] ─ dt   =  c  1a   × [ G  IB   ] −  c  3   × [ IB  t  ]  

   d [ NFB ∣ IB]  ─  dt   =  a  1   × [IB ] × [NFB ] −   c  6a   × [NFB ∣ IB ] − 
                                a  3   × [IKKa ] × [NFB ∣ IB ] +  e  2a   × [NFB ∣  IB  n  ] 

     d [ NFB ∣  IB  n  ]  ────────── dt   =  a  1   ×  k  v   × [ IBa  n   ] × [ NFB  n   ] − 
  e  2a   × [NFB ∣  IB  n  ]  

Reporter is transcribed cooperatively

    d [  R  t  ] ─ dt   =  c  1   ×    [ G  R  ]   n  ─ 
 k r  

n  −  [ G  R  ]   n 
   −  c  3   × [ R  t  ]  

Slow reactions

    d [ B] ─ dt   =  k  b   × [TNF ] × (M − [B ] ) −  k  f   × [B]  

    d [  G  A20  ] ─ dt   =  q  1   × [ NFB  n   ] × ( A  N   − [ G  A20   ] ) −  q  2   × [ IB  n   ] × [ G  A20  ]  

    d [  G  IB  ] ─ dt   =  q  1   × [ NFB  n   ] × ( A  Na   − [ G  IB   ] ) −  q  2   × [ IB  n   ] × [ G  IB  ]  

    d [  G  R  ] ─ dt   =  q  1   × [ NFB  n   ] × ( A  Nr   − [ G  R   ] ) −  q  2   × [ IB  n   ] × [ G  R  ]  

Stochastic functions for receptors, A20, IB, 
and reporter genes

    [    R r  
b  ]   = kb × [ TNF  ext  ]   

    [    R r  
d  ]   = kd   

  [ R   b  ] =  q  1   × [ NFB  n  ]  

  [ R   d  ] =  q  2   × [ IB  n  ]  

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg4135

View/request a protocol for this paper from Bio-protocol.
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