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N E U R O S C I E N C E

Optogenetic pacing of medial septum 
parvalbumin-positive cells disrupts temporal but 
not spatial firing in grid cells
Mikkel Elle Lepperød1,2, Ane Charlotte Christensen1,2, Kristian Kinden Lensjø2,3,  
Alessio Paolo Buccino2,4, Jai Yu5, Marianne Fyhn2,3†, Torkel Hafting1,2*†

Grid cells in the medial entorhinal cortex (MEC) exhibit remarkable spatial activity patterns with spikes coordinated 
by theta oscillations driven by the medial septal area (MSA). Spikes from grid cells progress relative to the theta 
phase in a phenomenon called phase precession, which is suggested as essential to create the spatial periodicity 
of grid cells. Here, we show that optogenetic activation of parvalbumin-positive (PV+) cells in the MSA enabled 
selective pacing of local field potential (LFP) oscillations in MEC. During optogenetic stimulation, the grid cells 
were locked to the imposed pacing frequency but kept their spatial patterns. Phase precession was abolished, and 
speed information was no longer reflected in the LFP oscillations but was still carried by rate coding of individual 
MEC neurons. Together, these results support that theta oscillations are not critical to the spatial pattern of grid 
cells and do not carry a crucial velocity signal.

INTRODUCTION
Medial entorhinal cortex (MEC) expresses multiple spatially modu-
lated cell types. Among them, grid cells represent the environment 
by a characteristic hexagonal activity pattern (1). Characterized by 
their regular spacing, orientation, and phase, grid cells are believed 
to aid navigation based on self-motion cues (1, 2). Grid cells form 
distinct modules that share similar spacing and orientation (3). This 
population activity is coherent across environments (4), strongly 
suggesting that grid representations are not produced by single 
neuron computations but rather emerge from a continuous attractor 
network (CAN) (5). Notably, individual grid cells are not directly 
connected but communicate through a dense network of inhibitory 
neurons (6–8), supporting the idea that grid cells emerge through 
self-organizing principles dictated by underlying network connec-
tivity. How grid cells support self-localization is, however, highly 
debated, and a prominent hypothesis builds on the notion of oscil-
latory interference (OI) (9, 10).

Rhythmic neural activity is proposed to be essential to synchro-
nize activity for efficient population coding. Oscillations in the theta 
frequency range (6 to 10 Hz) are particularly prominent in the me-
dial temporal lobe, including the MEC, of animals engaging with 
their environments. Theta activity has a proposed role in memory 
processing, as sequences of grid cells and place cells in the hippo-
campus and entorhinal cortex are consistently modulated by theta 
activity, possibly facilitating plasticity and strengthening connec-
tions within neural ensembles (11). In the entorhinal cortex, this can 
be observed in a subset of grid cells in superficial layers (LII and III) 
that show phase precession, where spikes fall progressively earlier in 
the theta cycle as the animal traverses through a grid field (12, 13). 

Phase precession was first described in hippocampal place cells (14) 
and is proposed to be a facilitating mechanism for sequence learn-
ing and an essential component for spatial information processing.

Theta oscillations in MEC are associated with the rhythmic 
activity in the medial septum and the diagonal band of Broca, 
together forming the medial septal area (MSA) (15, 16). The MSA 
contains multiple cell types that drive the pace-making activity (17), 
which is transmitted to the MEC by projections from glutamatergic, 
cholinergic, and GABAergic neurons (18). Lesions or pharmaco-
logical inactivation of MSA disrupt theta oscillations in MEC and 
impair grid cell activity (19–21), suggesting a casual role for theta in 
grid cell activity. Inactivation of MSA affects, however, all down-
stream areas, not only the projections to MEC. Consequently, direct 
evidence linking theta oscillations driven by MSA to grid cell firing 
in freely moving animals is still lacking.

Several efforts have been made to establish computational mod-
els that may explain how grid cell activity arises. In one prominent 
model, the relationship between theta oscillations and phase pre-
cession has been suggested to underlie the formation of grid cell 
spatial representations through OI (9, 10). However, such single-cell 
models exclude the population representation that is evident in grid 
cells, while population representations are included in grid cell mod-
els based on CANs (22, 23). Lately, OI models have been merged 
with CANs in the so-called hybrid models, encompassing both pop-
ulation representation and phase precession (24, 25). When com-
bined, these models are able to explain both ramping in membrane 
potential and phase precession as predicted by CANs and OI models, 
respectively (24, 26). To map neural activity to stable spatial repre-
sentations, some form of path integration is required. One of the 
main disagreements between grid cell models is how location is 
encoded, updated, and decoded (27,  28). In hybrid models, path 
integration is accomplished by means of phase precession, given by a 
phase difference between velocity-controlled oscillators and a base-
line oscillation typically thought of as being driven by MSA input 
(24, 25). As a consequence, the model predicts a causal relationship 
between phase precession and the grid cell spatial representation, 
but this remains to be tested.
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The GABAergic part of the MSA projection predominantly ter-
minates on inhibitory interneurons in MEC and is suggested to be 
the main generator of rhythmic activity through coordination of the 
local inhibitory circuitry in MEC and the hippocampus (29–31). To 
test the prediction that phase precession underlies path integration 
of grid cells, we disrupted the endogenous theta [6 to 10 Hz, con-
taining the peak of the power spectrum density (PSD)] and phase 
precession in MEC using optogenetic perturbation of the MSA in-
put. We hypothesized that by controlling the spiking activity of grid 
cells through disinhibition, thus locking the spike-phase relation to 
the stimulation frequency, phase precession would also be abol-
ished. We restricted the perturbation to the GABAergic part of the 
MSA projections by taking advantage of the Cre-Lox system using a 
PvalbCre rat line (32). This allowed us to selectively target inhibitory 
cell types expressing parvalbumin (PV), the main GABAergic cell 
type in MSA (33, 34). To test a relation between phase precession 
and path integration, we chose stimulation frequencies at 11 and 
30 Hz, which are at the high end and far outside the endogenous 
theta ranges, respectively. Optogenetic activation of PV+ neurons in 
MSA induced artificial local field potential (LFP) oscillations in 
MEC and significantly reduced endogenous theta power. Activa-
tion of MSA PV+ cells caused robust activation of grid cells through 
disinhibition. Thus, both LFP oscillations and single-unit phase re-
lations followed the stimulation frequency and effectively disrupted 
grid cell phase precession. The perturbation did not affect the loca-
tion of the grid fields. Moreover, there was a prominent reduction 
in information rate of grid cells during stimulation, suggesting a 
possible impairment in the spatial readout downstream of the grid 
cell circuitry. Last, spike-speed correlations remained stable during 
stimulation, while both frequency and power of LFP theta were dis-
rupted. The findings show a dissociation between theta oscillations 
and grid cell spatial activity patterns. This supports theory in which 
theta oscillations do not cause grid cell firing patterns.

RESULTS
Specific targeting of PV+ cells in MSA
To target the GABAergic projection from MSA to MEC, channel-
rhodopsin (ChR2) was selectively expressed in PV+ cells in MSA by 
injecting a viral construct in four animals from a PvalbCre rat line 
(Fig.  1A) (32). Immunohistochemical labeling of ChR2 con-
firmed that virus expression was largely restricted to MSA (Fig. 1B 
and fig. S1), and costaining with a PV antibody showed that expres-
sion was selective to PV+ cells. We did not observe any ChR2- 
expressing cells that were not immunopositive for PV. Terminals 
expressing ChR2 were prominent in both MEC and the hippocam-
pus, and we observed ChR2-expressing boutons contacting PV+ cell 
soma locally in MEC (Fig. 1C).

To determine whether we could pace oscillations in MEC, we 
stimulated PV+ cells in MSA at two different frequencies, 11 and 30 Hz, 
while recording LFP and single-unit activity in MEC (Fig. 1D). All 
single-unit recordings were located in superficial layers of MEC (LII 
and III) (fig. S2); see table S1 for cell counts.

Stimulating PV+ cells in MSA paces LFP oscillations in MEC 
and drives grid cells through disinhibition
We stimulated either PV+ cell bodies in MSA (Fig. 2A) or PV+ ter-
minals in MEC (Fig. 2D) while recording LFP and single units in 
MEC from PvalbCre rats during exploration of a 1 m–by–1 m open 

field. Experiments where we stimulated in MSA started with a 
10-min baseline session (Baseline I), followed by 10-min stimula-
tion at 11 Hz, 10 min without stimulation (Baseline II), and ending 
with 10-min stimulation at 30 Hz. These four sessions were separated 
from each other by a 10-min break where the animal rested in their 
home cage. Immediately after stimulus onset, the endogenous theta 
(6 to 10 Hz) was reduced and LFP oscillations shifted to the stimu-
lation frequency (Fig. 2A and fig. S3). Thus, the activity of stimu-
lated PV+ cells in MSA controlled the frequency oscillations in 
MEC. Average PSD for all baseline or stimulation sessions showed 
a similar pattern with a peak at 8 Hz in baseline sessions and a new 
peak corresponding to the stimulation frequencies of either 11 or 
30 Hz (Fig. 2B). Endogenous theta power, measured by the relative 
height of the peak PSD, was significantly reduced during stimulation 
[pooled sessions, means ± SEM; Baseline I versus 11 Hz: Baseline I, 
6.3 ± 0.67; 11 Hz, 0.23 ± 0.052 (n = 44, W = 2.0, P = 8.7 × 10−9); 
Baseline II versus 30 Hz: Baseline II, 6.3 ± 0.74; 30 Hz, 0.049 ± 0.054 
(n = 32, W = 0.0, P = 8.0 × 10−7, Wilcoxon signed-rank tests)]. The 
relative power in the stimulated band was larger for 30-Hz stimu-
lation [pooled sessions, means ± SEM; 11 Hz versus 30 Hz: 11 Hz, 
18 ± 2.4; 30 Hz, 85 ± 14 (n = 32, W = 30, P = 1.2 × 10−5, Wilcoxon 
signed-rank test)] (Fig. 2C).

Optogenetic stimulation within MEC also started with a baseline 
session (Baseline I), followed by two 10-min sessions with 11-Hz 
stimulation, one in each hemisphere and finalized by 10 min with-
out stimulation (Baseline II). Stimulus onset led to an immediate 
response in theta frequency (Fig. 2D) but did not disrupt the endog-
enous theta (Fig. 2, E and F). Nevertheless, the relative power of the 
endogenous theta band was significantly reduced between baseline 
and stimulation [pooled sessions, means ± SEM; Baseline I versus 
11 Hz: Baseline I, 9.7 ±1.4; 11 Hz, 4.8 ± 7.8 × 10−1 (n = 8, W = 1.0, 
P = 1.6 × 10−2, Wilcoxon signed-rank test)].

Since inhibitory neurons in MEC constitute the main postsyn-
aptic targets of GABAergic projections from MSA (30), we investi-
gated the response to stimuli in putative inhibitory neurons together 
with responses in grid cells (Fig. 2G). We separated narrow spiking 
(NS), putative inhibitory neurons, from broad spiking (BS), puta-
tive principal cells based on spike waveform parameters (fig. S4). A 
quarter of NS units (31 of 126) responded with a rapid decrease in 
firing rate within 3 to 6 ms after stimulation onset, followed by a 
visible increase in spiking activity [we termed these cells NS inhib-
ited (NSi)]. The majority of NS units (87 of 126) were not inhibited 
by the stimulus [termed NS not inhibited (NSni)] (fig. S5). Both NSi 
and NSni cells showed a second phase of activation, likely due to the 
putative disinhibition feeding back to inhibitory cells after stimula-
tion (fig. S5A).

To label neurons as grid cells, we used the 95th percentile of 
gridness and information rate for each unit from a shuffled distri-
bution of spikes as the threshold together with a minimum gridness 
score of 0.2. Shortly after NSi cells were inhibited, grid cells showed 
consistent, robust excitatory responses with an average peak re-
sponse of 8 ms after stimulation onset. These results strongly indi-
cate that grid cells were activated through disinhibition (Fig. 2G) 
since all observed grid cell NSi pairs (recorded on same drive) 
showed NSi inhibition preceding grid cell response (means ± SEM; 
0.004 ± 0.0002 s). Following the activation of grid cells, NSi and 
NSni cells were also activated, suggesting that the widespread recur-
rent connectivity in MEC leads to large-scale activation of the 
network in response to the initial inhibition. The 11- and 30-Hz 
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stimulation elicited different responses in grid cells, and 11 Hz gen-
erated stronger response in peristimulus time histogram (PSTH) 
(Fig. 2G) when compared with 30 Hz [probability of spiking: weighted 
means ± SEM, effect size  and P value from linear mixed effects 
model (LMM); 11 Hz, 0.12 ± 0.01 (n = 58); 30 Hz, 0.047 ± 0.006 
(n = 33,  = 0.07, P = 0.0045)]. Moreover, 30 Hz tended to generate 
a longer phase of increased activity [full width at half maximum: 
weighted means ± SEM, effect size  and P value from LMM; 11 Hz, 
0.005 ± 0.00025 s (n = 58); 30 Hz, 0.01 ± 0.001 s (n = 33,  = 0.004 s, 

P = 0.1)]. After the putative disinhibition in grid cells, a brief period 
of significant inhibition (15 to 25 ms after stimulus onset) occurred 
during 11-Hz stimulation compared to a baseline period (−5 to 5 ms 
relative to stimulus onset), while 30 Hz elicited a second bout of 
increased activity, although not significantly different from base-
line [PSTH weighted means ± SEM, effect size  and P value from 
LMM; Baseline 11 Hz, 18 ± 0.65 (n = 58); postresponse, 8.3 ± 1.0 
(n = 58,  = 10, P=4.5 × 10−5); Baseline 30 Hz, 8.3 ± 0.38 (n = 33); 
postresponse, 9.2 ± 053 (n = 33,  = 0.9, P = 0.63)].

Fig. 1. PV+ cells in MSA selectively express channelrhodopsin (ChR2) after injection of virus in PvalbCre rats. (A) Illustration of a rat brain seen slightly from above on 
the left side highlights the MSA in purple and MEC in blue/cyan, with long-range projections from MSA to MEC (green). These projections target all layers of MEC, from 
the dorsal to the ventral area. A viral construct carrying ChR2 was injected in MSA. (B) Three coronal sections from a representative animal show the extent of the virus 
expression (green) in MSA at three different anterior-posterior positions. Expression covered large parts of MSA. (C) Virus expression in MSA was restricted to PV+ cells 
(red). White arrowheads mark overlap between virus (ChR2) and PV+ cells (PV) (top row). Virus-expressing projections were found in MEC, parasubiculum (PaS), and all 
regions of the hippocampus [CA1, CA3, and dentate gyrus (DG)] (bottom row). The area of MEC chosen for the magnified images is indicated by a small square. ChR2- 
labeled septal projections target PV+ cells in MEC (small outline). (D) Illustration of experimental setup. PvalbCre rats were implanted with optic fiber in MSA and recording 
electrodes in MEC (two animals also had optic fibers together with recording electrodes in MEC). Blue laser light (470 nm) was used to activate PV+ cells in MSA at two 
different frequencies, 11 and 30 Hz.
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Fig. 2. Optogenetic pacing of PV+ cells in MSA abolish endogenous theta in MEC. (A) Illustration of a presumed MSA-to-MEC connection showing that PV+ cells (PV) 
in MSA terminate on interneurons (IN) in MEC that together with grid cells (GC) form a recurrent circuit. Optogenetic activation of MEC projecting PV+ cells in MSA (blue 
shading) caused a frequency shift in oscillations in MEC as shown by time-frequency representations of LFP during open field exploration. (B) Average PSD for all baseline 
and stimulus sessions. (C) Cumulative density plots of relative theta power and relative power in the stimulated band show that the power of the endogenous theta was 
strongly reduced for both stimulation frequencies. (D) Illustration of optogenetic stimulations in MEC. Optogenetic activation of MSA PV+ cell terminals in MEC did not 
reduce the endogenous theta frequency. Time-frequency representations of LFP in two simultaneously recorded hemispheres where one is stimulated with 11 Hz. 
(E) Similar to (B). The endogenous theta remained when stimulating PV+ cell terminals in MEC at 11 Hz. (F) Cumulative density plots of relative theta power show that the 
power of endogenous theta was reduced when stimulating PV+ cell terminals in MEC. (G) Raster plot of single-unit spiking responses of one grid cell and one narrow 
spiking inhibited (NSi) cell. Probability density for the whole population of grid cells and NSi cells shows fast inhibition of NSi cells followed by grid cell activation. 
Thirty-hertz stimulation led to a second activation of both cell types after approximately 20 ms. (H) Raster plots from one grid cell and one NS cell during optogenetic 
stimulation in MEC. Probability densities of the two units are overlaid in the bottom graph to illustrate difference in response times.
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Because of the interconnectivity between GABAergic, glutama-
tergic, and cholinergic neurons in MSA (17), stimulating PV+ cells 
could potentially alter the activity of glutamatergic and/or cholinergic 
neurons locally within MSA. The increased responses of grid cells 
after stimulation could therefore be a result of delayed activation of 
glutamatergic or cholinergic neurons in MSA caused by PV+ cell 
stimulation. To test whether grid cell responses resulted from disin-
hibition through local interneurons in MEC or increased excit-
atory input from MSA, we compared responses in grid cells and 
NS units following stimulation of PV+ cell terminals locally within 
MEC. Stimulating terminals in MEC produced responses in grid 
cells with similar delay as stimulating in MSA (Fig. 2H). This simi-
larity in response supports that grid cells were likely activated 
through disinhibition following stimulations of PV+ cells and not 
by increased excitation of glutamatergic or cholinergic projections 
from MSA.

Grid cells follow the stimulation frequency, abolishing  
phase precession
Theta activity has been linked to grid cell spatial representations 
in both experimental (20, 21, 35) and theoretical work (9, 24, 25). 
By reliably controlling oscillation frequencies in MEC when stim-
ulating in MSA, we investigated the effect on grid cells’ response  
patterns.

First, we looked at the PSD of spikes to assess the theta modula-
tion of the firing rate during stimulation (Fig.  3A). The relative 
power of this theta rhythmicity was significantly reduced during 
stimulation [weighted means ± SEM, effect size  and P value from 
LMM; Baseline I versus 11 Hz: Baseline I, 1.3 ± 0.1 (n = 63); 11 Hz, 
0.2 ± 0.02 (n = 56,  = 1.0, P = 3.1 × 10−10); Baseline II versus 30 Hz: 
Baseline II, 1.3 ± 0.1 (n = 46); 30 Hz, 0.5 ± 0.1 (n = 35,  = −0.67, 
§§P = 5.6 × 10−10)] (Fig. 3B), suggesting that the spike train was no 
longer modulated by theta during the stimulation.

Next, 11- and 30-Hz stimulation caused a reduction in grid cell 
spiking coherence with the endogenous LFP theta frequency [Fig. 3, 
C and D; weighted means ± SEM; Baseline I versus 11 Hz: Baseline I, 
0.24 ± 0.026 (n = 63); 11 Hz, 0.069 ± 0.0063 (n = 56,  = 0.18, 
P = 8.8 × 10−9); effect size and P value, respectively, from LMM; 
Baseline II versus 30 Hz: Baseline II, 0.28 ± 0.026 (n = 46); 30 Hz, 
0.12 ± 0.037 (n = 35,  = 0.16, P = 0.09); effect size and P value, 
respectively, from LMM]. When comparing stimulated frequency, 
similar peak coherence was found [11 Hz versus 30 Hz: means ± SEM; 
11 Hz, 0.47 ± 0.03 (n = 58); 30 Hz, 0.43 ± 0.04 (n = 33,  = 0.054, 
P = 0.48); effect size and P value, respectively, from LMM]. Both 
populations of NS cells showed significant reduction in spike LFP 
coherence with endogenous theta and increased coherence with 
the stimulation frequency (fig. S6, B to E).

To further assess how grid cells spiked relative to LFP theta 
phase, we computed the resultant vector length of phase preference 
[Fig. 3E; weighted means ± SEM; Baseline I versus 11 Hz: Baseline 
I, 0.23 ± 0.013 (n  =  63); 11 Hz, 0.038 ± 0.0033 (n  =  56,  = 0.2, 
P  =  2.5  ×  10−6); effect size and P value, respectively, from LMM; 
Baseline II versus 30 Hz: Baseline II, 0.24 ± 0.016 (n = 46); 30 Hz, 
0.018 ± 0.0031 (n = 35,  = 0.19, P = 1.1 × 10−6); effect size and 
P value, respectively, from LMM]. When comparing stimulated fre-
quency, similar resultant vector length was found [11 Hz versus 30 Hz: 
means ± SEM; 11 Hz, 0.25 ± 0.016 (n = 58); 30 Hz, 0.26 ± 0.018 
(n = 33,  = 0.022, P = 0.7); effect size and P value, respectively, from 
LMM]. Here, n indicates pooled unique cell count, and baselines 

were only selected when preceding a stimulation session. Results 
indicate that both 11 and 30 Hz caused grid cells to lose their phase 
locking to theta and a large fraction of grid cells to phase lock to the 
stimulation frequency (Fig. 3E, right), although not consistently to 
a preferred angle across neurons.

These findings suggested that grid cell phase precession was dis-
rupted during stimulation sessions. We therefore identified all grid 
cells with significant phase precession or recession (spikes appear-
ing progressively later in each theta cycle) relative to the endoge-
nous theta frequency band (6 to 10 Hz) during baseline sessions 
(Baseline I and Baseline II). We then compared this to the same 
frequency band in the stimulation sessions (11 and 30 Hz, respec-
tively) (Fig. 3G) using the methods described in (13, 36). To reliably 
identify loss of phase precession/recession, we performed two sepa-
rate analyses, using either spatial field detection or firing rate 
threshold to detect field entry (described in Methods). From these 
detection methods, we assessed pooled field crossings and single 
run crossings in accordance with (13). Moreover, to verify the anal-
ysis, we reanalyzed publicly available data from the work of Sargolini 
and co-workers (37) and performed an additional control to assess 
phase precession relative to a “random” band in the LFP (20 to 
25 Hz). With these data at hand, we could reliably detect loss of 
phase precession by using the P values outlined in (36) and repro-
duce the results from the work of Reifenstein et al. (13). Comparing 
phase precession between the theta band and the random band 
showed that in pooled field crossings, we reliably detected loss of 
phase precession by thresholding the P value. In contrast, with single 
run trials, this detection method was hampered by false positives, 
likely because of the low spike count (fig. S7).

For all recorded units, no grid cells displayed significant phase 
precession during any of the stimulation sessions (field detection, 
Fig.  3F; rate detection, fig. S7F), showing that phase precession 
ceased during optogenetic pacing [the number of significant phase 
precessing neurons (P < 0.01, R > 0.1): Baseline I, 9 (as shown in 
figure 3 f) of 63; 11 Hz, 0 of 56; Baseline II, 9 (as shown in figure 3 f) 
of 46; 30 Hz, 0 of 35].

Grid cells remain spatially stable during MSA stimulation 
but show increased out-of-field spikes during disinhibition
At first observation, we saw that the spatial firing pattern of grid 
fields remained remarkably stable between baseline and stimulation 
sessions (Fig. 4A and fig. S8). However, when inspecting rate maps, 
we noticed that many grid cells showed either increased or decreased 
firing rates during stimulation. To test whether this alteration was 
present, we first compared pairwise relative changes in spatial shift 
for each grid cell from a baseline session to a stimulation session 
(Fig.  4B). To assess the magnitude of change, we created control 
populations using the first half of a baseline session compared to the 
second half of the session (Baseline Ia versus Baseline Ib and Baseline 
IIa versus Baseline IIb). The comparison of spatial shift amounted 
to the following (weighted means ± SEM, effect size  and P value 
from LMM): Baseline Ia to Baseline Ib, 0.022 ± 0.0013 (n = 63); 
Baseline I to 11 Hz, 0.022 ± 0.0021 (n = 21,  = 0.001, P = 0.87); Base-
line I to Baseline II, 0.022 ± 0.002 (n = 21,  = 0.023, P = 0.22); Baseline 
IIa to Baseline IIb, 0.019 ± 7.0 × 10−5 (n = 46); Baseline II to 30 Hz, 
0.018 ± 0.0026 (n = 16,  = 1.4 × 10−4, P = 0.99). Note that relative 
measures require the same neurons to be present in subsequent 
sessions, therefore reducing the number of units (n) included in 
this analyses.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

hicago on February 21, 2024



Lepperød et al., Sci. Adv. 2021; 7 : eabd5684     5 May 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 18

D

BA

C

G

E F

Fig. 3. Grid cells stop phase precessing during MSA stimulation. (A) Theta rhythmicity estimated by the power spectral density of the neuronal firing rate obtained by 
kernel estimation with a Gaussian kernel of width 10 ms. (B) Cumulative density of the peak theta rhythmicity (6 to 10 Hz) divided by the average power of 1-Hz wide 
adjacent bands. (C) Spike LFP coherence in grid cells for baseline sessions compared to 11- and 30-Hz stimulation. Grid cells showed strong spike coherency to the endog-
enous theta frequency (around 8 Hz) in baseline sessions, which was reduced during stimulation. (D) Cumulative density plots show that grid cells significantly reduced 
spike coherency at the endogenous theta frequency during both 11- and 30-Hz stimulation. Both stimulated bands caused similar peak coherence. (E) Polar plot display-
ing theta phase preference and vector length of all grid cells during baseline (endogenous theta) and stimulation sessions (stimulated band). (F) Swarm plot of P values 
(only neurons with P value below 0.10 are shown) for neurons phase precessing (circular linear correlation r < 0) during Baseline I, 11 Hz, Baseline II, and 30 Hz sessions. 
We found no significant phase precessing neurons during stimulation as indicated by no points below the black line (P < 0.01). (G) Rows show color-coded rate maps from 
two grid cells during baseline followed by an 11-Hz stimulation session. Rat and unit numbers are indicated to the left, and peak rate and gridness are indicated above. 
Raster plots represent spike phase relative to LFP (band-pass filtered at 6 to 10 Hz) versus distance traveled through grid fields. The regression line indicates that the spike 
phase predicts the position of the animal within the field. P value of phase precession is shown to the right. Both example units ceased phase precessing during stimula-
tion, shown by the loss of significant phase precession (P < 0.01).
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Fig. 4. Grid cells are spatially stable during optogenetic stimulation of MSA. (A) Color-coded rate maps (top) and running path with spikes superimposed (bottom) 
from three grid cells recorded in all four sessions of 10 min each. Rate maps are adjusted with color coding corresponding to the heat color of the first recording session. 
Peak rates and gridness are denoted above each rate map. Rat number and unit ID are indicated to the left of the rate maps. (B) Scatter plots showing relative changes in 
spatial shift of grid cells followed across multiple recording sessions. There were no detectable significant changes compared to Baseline Ia or IIa versus Baseline Ia or IIb 
(first half versus second half of Baseline I or Baseline II, respectively). (C) Cumulative density plots of average rate, maximum rate, gridness, spatial information, and spatial 
information specificity. There were no detectable differences in either rate measures; however, there was a nonsignificant change in gridness between baseline and 
stimulation and a significant change in spatial information rate when comparing Baseline I and 11 Hz. Spatial information specificity showed no significant change. 
(D) Raster plot from an example grid cell where 0 marks 11-Hz stimulation onset. Spikes in the preresponse (Pre: green/purple; −5 to 5 ms) and response period (Resp: orange/
pink; 5 to 11 ms) and the between pulses (Between: blue; 15 to −5 ms) are marked. The rat’s running trajectory of the recording session with spikes from Pre, Resp, and 
Between periods superimposed. Black circles indicate outline of identified grid fields. (E) Similar to (D) but showing 30-Hz stimulation. Violin plots [minimum to maximum 
and median (black line)] show increased out-of-field spiking activity during response periods. Width of violin corresponds to number of samples for each value. *P < 0.05 
and ***P < 0.001; LMM test. ns, not significant.
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Next, we calculated average rate, maximum rate, and gridness of 
all recorded grid cells (Fig. 4C). We found no significant differences 
from Baseline I to 11 Hz or Baseline II to 30 Hz [weighted means ± 
SEM, effect size  and P value from LMM; average rate: Baseline I, 
9.8 ± 0.93 (n = 63); 11 Hz, 11 ± 1.0 (n = 56,  = 0.6, P = 0.69); Base-
line II, 10 ± 1.0 (n = 46); 30 Hz, 8.5 ± 1.1 (n = 35,  = 0.51, P = 0.6.8); 
Baseline I to Baseline II,  = 0.31, P = 0.82; maximum rate: Baseline I, 
36 ± 2.1 (n = 63); 11 Hz, 36 ± 2.2 (n = 56,  = 1.3, P = 0.76); Baseline II, 
42 ± 2.4 (n = 46); 30 Hz, 37 ± 2.5 (n = 35,  = 1.7, P = 0.72); Baseline I 
to Baseline II,  = 3.3, P = 0.34; gridness: Baseline I, 0.37 ± 0.06 (n = 
63); 11 Hz, 0.4 ± 0.05 (n = 56,  = 0.028, P = 0.85); Baseline II, 0.53 ± 
0.04 (n = 46); 30 Hz, 0.57 ± 0.05 (n = 35,  = 0.027, P = 0.86); 
Baseline I to Baseline II,  = 0.084, P = 0.74]. See also the Supple-
mentary Materials for more grid cell statistics (figs. S8 and S9 and 
tables S2 and S3).

Unexpectedly, neither stimulation frequencies caused any sig-
nificant change in spatial position and gridness or change in mean 
or maximum firing rate, indicating that the artificially induced 
oscillations did not alter spatial position or the firing properties of grid 
cells. We observed a small, nonsignificant effect on gridness between 
baseline and stimulation. We also performed these analyses for BS 
nongrid cells and the NSi and NSni cells (see fig. S10 for details).

Despite spatially stable fields during stimulation, there was a re-
duction in spatial information between Baseline I to 11 Hz [weighted 
means ± SEM, effect size  and P value from LMM; Baseline I, 1.4 ± 
0.086 (n = 63); 11 Hz, 0.93 ± 0.069 (n = 56,  = 0.4, P = 0.017); Base-
line II, 1.3 ± 0.1 (n = 46); 30 Hz, 1.1 ± 0.11 (n = 35,  = 0.027, P = 0.95); 
Baseline I to Baseline II,  = 0.097, P = 0.043] (Fig. 4C). However, 
when controlling for rate (spatial information specificity), there was 
no detectable reduction [weighted means ± SEM, effect size  and 
P value from LMM; Baseline I, 0.25 ± 0.034 (n = 63); 11 Hz, 0.22 ± 
0.045 (n = 56,  = 0.037, §P = 0.76); Baseline II, 0.23 ± 0.034 (n = 46); 
30 Hz, 0.24 ± 0.038 (n = 35;  = 0.02, P = 0.33)]. This lack of effect 
in information specificity indicates that the spatial information in 
each spike was preserved (most spikes fall within fields) but that the 
information per time was decreased; however, we did not ascertain 
the difference in effect size.

Since stimulation induced a putative disinhibition in grid cells 
followed by a period of inhibition, we suspected that more spikes 
would fall outside grid fields during periods of increased activation 
and reduce the spatial information during stimulation sessions, 
similar to the findings from Zutshi et al. (38). To assess this suspi-
cion, we separated each stimulation phase into a preresponse phase, 
termed Pre (−5 to 5 ms relative to stimulus onset); a response phase, 
termed Resp (5 to 11 ms after stimulus onset); and lastly a period 
between pulses, termed Between (15 ms after stimulus onset to 5 ms 
before the next stimulus). We then calculated the relative percent-
age of out-of-field spikes during each of these phases (Fig. 4D). We 
found increased out-of-field spikes during the response phase for 
both stimulation frequencies [weighted means ± SEM, effect size  
and P value from LMM; 11 Hz: Pre, 0.57 ± 0.021 (n = 56); Resp, 0.63 ± 
0.018 (n = 56); Between, 0.55 ± 0.021 (n = 56). Pre versus Resp:  = 
0.06, P = 2.7 × 10−9; Pre versus Between:  = 0.024, P = 9.4 × 10−4; 
Resp versus Between:  = 0.081, P = 2.7 × 10−17; 30 Hz: Pre, 0.54 ± 
0.019 (n = 35); Resp, 0.54 ± 0.019 (n = 35); Between, 0.49 ± 0.022 
(n = 35); Pre versus Resp:  = 0.0036, P = 0.84; Pre versus Between: 
 = 0.044, §§P = 0.15; Resp versus Between:  = 0.052, P = 0.028]. 
This suggests that out-of-field spiking was caused by the short time 
window of enhanced spiking after each stimulation pulse. Together, 

this shows that the oscillatory septal input can modulate the tempo-
ral firing of grid cells within stable fields but is not determinant of 
field position.

Speed correlations of grid and NSi cells were intact during 
MSA stimulation while disrupted in LFP oscillations
Several computational models predict that to perform path integration, 
grid cells need information about the animals’ speed (6, 22, 23, 39–41). 
It has been shown that there are at least two individual sources of 
speed information that can be present in single neurons: one based 
on firing rate and the other based on oscillatory frequency (42). The 
oscillatory frequency decreases if input from MSA is impaired; 
hence, septal input may be critical for intact speed representation of 
neurons in MEC.

On the basis of these assumptions, we tested whether pacing 
MSA PV+ cells would disrupt rate-based speed representation of 
individual units in MEC. We computed speed scores for individual 
grid and NSi cells, given by the linear relationship between firing 
rate and the animals’ running speed (43), and compared these 
across baseline and stimulation sessions (Fig. 5A). We found no sig-
nificant change in speed scores during stimulation for grid cells 
[weighted means ± SEM, effect size  and P value from LMM; Base-
line I, 0.11 ± 0.011 (n = 63); 11 Hz, 0.094 ± 0.012 (n = 56,  = − 0.013, 
P = 0.53); Baseline II, 0.087 ± 0.0080 (n = 46); 30 Hz, 0.074 ± 0.0099 
(n = 35,  = 0.013,  §§P = 0.38); Baseline I and Baseline II,  = 0.0094, 
P = 0.68]. Moreover, we found no significant effect on speed scores 
for NSi cells [weighted means ± SEM, effect size  and P value from 
LMM; Baseline I, 0.15 ± 0.04 (n = 12); 11 Hz, 0.18 ± 0.02 (n = 25, 
 = 0.018, P = 0.69); Baseline II, 0.17 ± 0.025 (n = 17); 30 Hz, 0.21 ± 
0.019 (n = 32,  = 0.035, P = 0.3); Baseline I and Baseline II,  = 
0.017, P = 0.54] (Fig. 5B, fig. S5, and tables S2 and S3).

Activity in glutamatergic cells in MSA is strongly linked to loco-
motor behavior and theta frequency (44). Therefore, we also tested 
whether the running speed of the animals was altered during ses-
sions of theta pacing. We observed a small but significant decrease 
in running speed [means ± SEM, Wilcoxon signed-rank tests; Base-
line I, 0.16 ± 0.0054; 11 Hz, 0.15 ± 0.004 (n = 22, W = 47, P = 0.017); 
Baseline II, 0.15 ± 0.004; 30 Hz, 0.14 ± 0.005 (n = 16, W = 18, P = 
0.0097)]. There was also a small decrease from Baseline I to Baseline 
II (n = 15, W = 17, P = 0.015) and a prominent decrease from 11 to 
30 Hz (n = 16, W = 0.00, P = 4.4 × 10−4). The subsequent decrease in 
running speed from one session to the next, including from Base-
line I to Baseline II, may suggest that the animals grew increasingly 
tired from running or lost interest in the chocolate treats, rather 
than locomotor behavior being affected by stimulating PV+ cells in 
MSA (fig. 5C).

Self-motion–based modulation of theta is also suggested to be a 
central mechanism for creating grid cell firing patterns because of 
the observed lack of grid cell activity during passive transport (35). 
Since we observed no disruption of grid cell patterns during MSA 
pacing, we tested whether LFP theta frequency was modulated by 
the animals’ running speed during stimulation. As expected, we ob-
served a strong correlation between running speed and theta fre-
quency for all units in baseline sessions. However, the correlation was 
completely disrupted both during 11- and 30-Hz stimulation sessions 
[means ± SEM, Wilcoxon signed-rank test; Baseline I, 0.18 ± 0.017; 
11 Hz, −0.0064 ± 0.0108 (W = 16, P = 2.27 × 10−8, n = 44); Baseline 
II, 0.22 ± 0.02; 30 Hz, 0.012 ± 0.014 (W = 9, P = 1.86 × 10−6, n = 32)] 
(Fig. 5, D and E).
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Fig. 5. Neuronal speed modulation is stable despite disrupted speed modulation in theta. (A) Example of speed modulation in one grid cell and one NS cell (NSi) 
during baseline and stimulation sessions. Speed score is denoted above each speed graph. Vertical axis represents normalized firing rate. (B) Violin plots show speed 
scores in grid cells (top) and NSi cells (bottom) between baseline and stimulation sessions. Neither 11- nor 30-Hz stimulation caused any significant change in speed 
scores for either cell type. (C) Violin plots showing paired comparisons of running speed of animals in all recording sessions. Running speed decreased slightly from Base-
line I to 11 Hz, from Baseline I to Baseline II, and from Baseline II to 30 Hz. (D) Correlation between running speed and theta peak frequency was strong in both Baseline I 
and Baseline II but disrupted during 11- and 30-Hz stimulation. (E) Frequency score, as represented by the correlation between running speed and peak frequency. This 
was significantly reduced from Baseline I to 11 Hz and from Baseline II to 30 Hz. (F) Correlation between running speed and theta power was strong in both Baseline I and 
Baseline II but disrupted during 11- and 30-Hz stimulation. (G) Power score, as represented by the correlation between running speed and power. This was significantly 
reduced from Baseline I to 11 Hz and from Baseline II to 30 Hz. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001, Wilcoxon signed-rank test.
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Under normal conditions, speed information is reflected in both 
LFP theta frequency and the power of these oscillations. Therefore, 
it could be that the speed-power relationship was sustained although 
the speed-frequency relationship was broken as previously observed 
(45). While we observed a strong correlation between running 
speed and theta power in baseline sessions, this was completely dis-
rupted during both 11- and 30-Hz stimulation sessions [means ± SEM, 
Wilcoxon signed-rank test; Baseline I, 0.15 ± 0.02; 11 Hz, −0.02 ± 0.03 
(W = 110, P = 7.02 × 10−6, n = 44); Baseline II, 0.11 ± 0.02; 30 Hz, 
0.05 ± 0.02 (W = 152, P = 0.0362, n = 32)] (Fig. 5, F and G, and 
fig. S11). These results suggest that speed modulation of theta is 
dissociated from speed modulation of individual MEC neurons and 
is not needed for stable grid cell firing patterns.

DISCUSSION
In this study, we investigated the hypothesis of a causal relationship 
between theta oscillations and spatial representation of grid cells, 
postulated by experimental findings (20, 21, 35) and grid cell hybrid 
models (24, 25). We show that the spatial and the temporal firing 
pattern of grid cells can be dissociated. Experimentally induced 
oscillations disrupted endogenous theta activity in MEC, impaired 
phase precession, and speed modulation of LFP, but the spatial rep-
resentations of grid cells and speed modulation remained intact.

While grid cells were strongly modulated by the imposed oscilla-
tory frequency, this did not disrupt their spatial firing patterns. We 
did however see a reduction in spatial information rate that was 
confined to the short time period where grid cells were activated by 
the optogenetic stimulation of PV+ cells in MSA. Grid cells were likely 
activated through disinhibition, thus providing additional support 
for an inhibitory circuitry where PV+ cells in MSA provide mono-
synaptic input to local interneurons in superficial layers of MEC (29), 
which, in turn, are tightly connected to grid cells (6, 39). This inhib-
itory circuitry seems determinant for theta oscillations in MEC. The 
data adds to a growing body of evidence suggesting that the 
GABAergic/PV+ neurons in MSA are responsible for pacing theta 
oscillations in MEC and hippocampus. Grid cells showed substantial 
phase locking to the stimulation frequency, resulting in impaired 
grid cell phase precession. This demonstrates that grid cells do not 
rely on phase precession to maintain stable spatial representations.

In this study, we aimed to fully disrupt the endogenous theta to 
assess its role for grid cell firing properties. To achieve this, we in-
duced a strongly synchronized activity via optogenetic stimulation 
of PV+ cells, which completely abolished phase precession and theta 
phase locking in grid cells through putative disinhibition and dis-
rupted the temporal modulation of the LFP theta. Because of the 
high amplitude and regularity of the stimulation pulses [as seen by 
the large harmonic components in Fig.  2 (B to E)], the resulting 
oscillation is not comparable to the endogenous theta oscillations. 
Given that we aimed to assess the robustness of grid cells, we took 
advantage of this nonphysiological oscillation paradigm, which 
allowed us to show that neither phase precession nor speed modu-
lation of the theta oscillation is crucial for grid cells to retain their 
spatial properties. The abolished phase precession in grid cells, 
however, might not be a direct consequence of the drive of MSA but 
rather caused by the strong stimulation-induced synchrony, which 
would cancel any temporal information during forced spikes. In 
addition, the strong stimulation regime might change the circuit dy-
namics, possibly biasing interpretation of mechanistic underpinnings 

of neuronal oscillations presented in this study. To better assess 
how the MSA modulates phase precession and phase locking, a 
stimulation regime with nonsquare pulses, temporal jitter in inter-
stimulus interval, and varying stimulation amplitude might be a 
better choice. This might help create an artificial septal non-oscillatory 
input or a septal input with nonstable frequencies that is observed 
in bats (46). Further studies involving a more physiological stimula-
tion are therefore needed to additionally characterize oscillatory 
phenomena in MSA and MEC.

Previous experiments show that pharmacological inactivation of 
MSA disrupts both the spatial firing pattern of grid cells and theta 
oscillations in MEC and hippocampus (20, 21). This has been taken 
as evidence to support that theta oscillations are critical to grid cell 
activity. However, pharmacological inactivation of MSA also silences 
inputs to the hippocampus and the parahippocampal areas, and 
hippocampal inactivation has been shown to disrupt grid cell firing 
(47). Inactivation of MSA also disrupts parahippocampal activity, 
which, in turn, may impair grid cell activity. It is therefore unre-
solved whether the impaired grid cell patterns after MSA inactivation 
are caused by direct input to MEC or indirectly by disturbed hippo-
campal activity. Given the low temporal and spatial resolution of 
pharmacological manipulations, it is challenging to directly relate 
interventions to functional properties of grid cell activity in such 
previous experiments. Pharmacological manipulations also lack the 
necessary cell type specificity to assess the role of separate parts of 
the septal-entorhinal projection. Thus, the cell type–specific opto-
genetic activation in the PvalbCre rat line used in the presented 
investigation likely overcomes both these limitations.

Pyramidal neurons of the hippocampus provide rhythmic feed-
back to MSA and might thereby support the maintenance of theta 
rhythm (48, 49). One might thus argue that disturbed hippocampal 
activity caused by septal inactivation leads to loss of theta, which 
then disrupts grid cell activity. In contrast to inactivation, various 
alterations of MSA activity show little effect on the spatial firing of 
hippocampal place cells, despite disrupting theta oscillations in the 
hippocampus. For example, Zutshi and colleagues (38) have demon-
strated that optogenetic pacing of theta does not disrupt place fields 
but decreases the memory performance of mice in an alternating 
eight maze. Furthermore, another study shows that disinhibition of 
MSA using a -aminobutyric acid type A (GABAA) antagonist 
leaves place fields in the hippocampus intact but affects navigation 
performance in rats (50). Similar to presented findings in MEC, this 
differentiated effect indicates that the rhythmic input from MSA 
may not determine spatial representations in the hippocampus but 
may still support navigation and memory function. It remains to be 
tested whether the MSA input to MEC serves similar functions for 
memory and navigation as is indicated for the hippocampus.

PV+ cells in MSA send direct projections to the parasubiculum 
(PaS) (51), which again project to MEC layer II. We can therefore 
not exclude that changes in MEC LFP during optogenetic stimula-
tion in MSA are indirectly driven from inputs from the PaS. On the 
other hand, the short delay in single-cell response times, primarily 
by inhibitory neurons in MEC, suggests that the direct GABAergic 
projection from MSA to MEC is, in large part, responsible for co-
ordinating the local inhibitory network and pacing the LFP. While 
the role of PaS inputs to LII cells in MEC remains unknown, the dis-
sociation between LFP and grid cell firing in presented study is clear.

Although ChR2 expression and therefore optogenetic activation 
was restricted to PV+ cells in MSA, the activation responses that we 
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observed in the MEC (Fig. 2G) may not be limited to terminals of 
PV+ cells in MEC. The MSA projection includes glutamatergic pro-
jections that terminate on both excitatory and inhibitory neurons 
and provides speed-correlated input, mainly to pyramidal cells in 
superficial layers of MEC, but has not been found to terminate on 
stellate cells (29, 52). The number of neurons in MEC responding 
with fast glutamatergic activation upon general stimulation of MSA 
fibers is significantly less than neurons responding with fast inhibi-
tion (29). It is therefore more likely that the activation pattern that 
we observed in grid cells were due to disinhibition than direct acti-
vation by glutamatergic inputs. Another possibility is activation of 
the cholinergic component of the MSA projection. The cholinergic 
projection is found to synapse onto all functionally distinguishable 
cell types in MEC, and the postsynaptic responses may vary accord-
ing to the composition of cholinergic receptors on the target neurons 
(53). Furthermore, the GABAergic inhibition onto MEC interneu-
rons might influence the incoming septal glutamatergic or cholin-
ergic projections into MEC. However, when considering the delay 
of about 8 ms from stimulation of PV+ cells in MSA until unit 
response in MEC, it seems unlikely that the putative excitatory neu-
rons were directly activated by the stimulation. We observed a con-
sistent and robust temporal relation between inhibitory input and 
grid cell activation with inhibition of putative inhibitory units al-
ways preceding putative disinhibition. Moreover, we observed no 
change in running speed, which would be expected if the glutama-
tergic pathway was activated (44). Last, when solely stimulating PV+ 
cell terminals in MEC, we observed inhibition of NS units and dis-
inhibition of grid cells similar to when we stimulated cell bodies in 
MSA. Moreover, if antidromic signals activated PV+ cell bodies in 
MSA, we would perhaps expect to see stronger effect in LFP theta 
during MEC stimulations, which we did not observe. We believe 
that the difference in effects on LFP theta power between MSA and 
MEC stimulation is likely due to a far larger number of GABAergic 
terminals activated when stimulating in MSA compared to local 
stimulation of terminals below the fiber tip in MEC. Thus, it is ex-
pected that we observe a stronger effect on the LFP during MSA 
stimulation. On the basis of current observations, we therefore 
believe that the main effect on grid cells is due to disinhibition by 
activation of PV+ projection neurons in MSA.

The increase in out-of-field spikes during 11-Hz stimulation 
opens the question of whether it would be possible to disrupt grid 
cells with a different stimulation paradigm. We observed no further 
increase in out-of-field spikes when stimulation pulses were in-
creased from 11 to 30 Hz and with no further reduction in spatial 
information. However, the decrease in spatial selectivity during dis-
inhibition indicates that the grid fields could be disrupted if the 
stimulation frequency was increased to such an extent that the in-
terpulse interval was on the same order as the response duration, 
hence inducing a constant disinhibition. Whether the grid cell net-
work would be able to maintain its activity pattern also during higher 
stimulation frequencies remains to be determined and may shine 
light on the remarkable stability observed in grid cells.

Although optogenetic stimulation initiated a brief increase in 
grid cell activity causing increased out-of-field spiking, the fields 
remained stable when examining time-averaged rate maps. We do 
however acknowledge that negative effects must be supported by 
sufficient power to reliably assess the lack of change between base-
line and stimulation. However, estimating power in a mixed mea-
sures design fitted by LMM is not trivial. Typically, in a repeated 

measures design, sample size can be reduced to roughly half (54) 
compared with independent measures design. Therefore, we chose 
to estimate an upper bound of detectable effect sizes by disregard-
ing that many neurons were repeated across baseline and stimula-
tion sessions. To compute this upper bound, we performed a 
nonparametric estimate of the distributions per  animal using a 
Gaussian kernel density estimate (KDE). We then resampled these 
distributions and shifted the mean difference per  animal to a set 
effect size before calculating the P value. Repeating this 100 times 
per effect size, we assessed the power as the probability of P < 0.05, 
i.e., rejecting the null hypothesis while the alternative hypothesis 
was true. By shifting the effect size across a range of values, we were 
able to obtain the upper bound of detectable effect sizes at 80% 
power as average rate = 2.7 Hz, max rate = 6.1 Hz, gridness = 0.14, 
information rate = 0.23 bit/s, and information specificity = 0.11 bit/
spike. Given these upper bound values, we believe that presented 
analysis would detect significant changes in effect sizes and thus 
support the notion that there are no significant spatial changes in 
grid cells’ patterns during stimulation.

The observed disruption of grid cell phase precession during 
optogenetic stimulation with seemingly no effect on spatial coding 
contradicts the core of OI models where phase precession is used 
for path integration. Phase precession is suggested as a mechanism 
to provide the animal with information about direction of move-
ment, which is needed to constantly update its position (55). More-
over, it has been shown that the animal’s position on a linear track 
can be decoded using phase precession (56), which is maintained 
in two-dimensional (2D) environments (13). During the 10-min 
stimulation, grid cell activity was locked to the stimulation frequency, 
but we observed only minor temporal decay in spatial accuracy and 
in the spatial information of grid maps. This indicates that during 
stimulation, some form of mechanism for localization other than 
OI must be at play for the grid map to be constantly updated. This 
could perhaps be provided by local cues or other path integration 
strategies independent of phase precession. For example, we found 
that speed coding in grid cells was intact during stimulation; thus, 
the speed signal necessary to update a path integrator may, however, 
still be provided. Phase precession is also suggested to be important 
for sequence coding and memory; thus, some disruption in spatial 
learning that we cannot observe with presented experiments might 
be addressed in future studies.

It is well established that frequency and amplitude of the theta 
rhythm increase with running speed (57, 58), suggesting that theta 
oscillations play a role in speed representation. Passive transporta-
tion of an animal does not reduce overall theta rhythm but elimi-
nates the linear velocity modulation of theta, meaning that theta 
frequency does not increase with increasing running speed (35). 
In baseline recordings the strong and positive correlation between 
running speed and theta frequency saturates at a modest running 
speed and was disrupted when we paced PV+ neurons in MSA 
with optogenetic stimulation. Firing rates of neurons in MEC 
were still modulated by speed during the same stimulation, which 
corresponds well with a recent finding stating that input from the 
MSA does not control the speed coding by firing rate of entorhinal 
speed cells (59). This suggests that grid cell spatial firing pattern is 
generated independently of the theta-speed relationship. Further-
more, the passive movement effects on grid cells are more likely 
due to the absence of a self-motion velocity signal, as suggested by 
Terrazas et al. (2).
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Typically, CAN models are associated with path integration aris-
ing from velocity input where direction and speed are provided into 
the network. Although these models can sustain oscillatory input (39), 
they do not normally account for temporal activity in grid cells such 
as phase precession, with the exception of the work by Navratilova 
and colleagues (60). However, whether CAN models and recent 
normative models (41) would be able to sustain a stable spatial pat-
tern during interventions similar to those presented here is yet to be 
determined.

There is evidence that grid cells rely on path integration, where 
anchoring to environmental cues is seen as an error correction 
strategy [e.g., (61)]. Moreover, several lines of evidence indicate that 
grid cells use environmental cues to stabilize the grid map (62, 61), 
in the absence of path information. The observed preservation of grid 
maps in presented data could therefore be a result of corrections 
by use of cues in the recording environment during stimulation. Ac-
cording to both the OI theory and the hybrid version, the experimentally 
observed pattern emerges through path integration. Therefore, we 
believe that we presented conclusions still hold—that the presented 
results contradict the established OI theory. Specifically, path integra-
tion cannot be driven by phase precession, and the emergence of the 
experimentally observed grid pattern must either rely on some other 
velocity signal or not be dependent on path integration at all. However, 
how theta oscillations affect the emergence of grid patterns when the 
animal is exploring a novel environment still remains to be explored.

Recent theoretical work (63, 64) links the temporal relation 
between MSA pace-making theta and the resonance and rebound 
spiking found in stellate cells, to underlie spatial representation, 
phase precession, and theta cycle skipping. Together, these models 
suggest that theta oscillations are closely related to the grid cell spa-
tial representations. This is in contradiction to the experimental 
findings reported here, and it will therefore be interesting to see 
whether such models can accommodate the dissociation between 
temporal and spatial grid cell properties.

METHODS
Subjects
We used male Long-Evans PvalbCre knock-in rats (3 to 8 months 
old, 350 to 550 g at surgery) (32). An internal ribosomal entry site–Cre 
recombinase sequence cassette was inserted into the Pvalb locus 
using CRISPR-Cas9 gene editing. Whole-genome sequencing of the 
strain indicated that the donor was correctly inserted into the de-
sired locus but also identified a random insertion of the donor cas-
sette into an intergenic region on chromosome 1 (chr1: 265, 469, 
284-265, 469, and 502). This random insertion is unlikely to cause 
nonspecific expression of Cre, given the lack of transcription regu-
lators in the region. This is supported by immunohistochemistry 
verification, which demonstrates high coexpression of Pvalb with 
Cre (32). After surgeries, the animals were housed individually in 
GR1800 (Tecniplast, Buguggiate, Italy) individually ventilated cages, 
in a temperature- and humidity-controlled vivarium. A 12-hour 
light/12-hour dark schedule was maintained, and testing occurred 
in the light phase. The rats were food-deprived 18 to 24 hours be-
fore training and kept at 85 to 90% of free-feeding body weight, with 
water available ad libitum. Experiments were performed in accor-
dance with the Norwegian Animal Welfare Act and the European 
Convention for the Protection of Vertebrate Animals used for Ex-
perimental and Other Scientific Purposes.

Surgical procedures
Surgeries were performed in an aseptic environment; rats were 
anesthetized with isoflurane mixed with air (5% induction, 1.5 to 2% 
for maintenance) and immobilized in a stereotaxic frame (World 
Precision Instruments Ltd., Hertfordshire, UK). They were given 
subcutaneous injections of buprenorphine (0.04 mg/kg) and local 
subcutaneous injections of bupivacaine/adrenaline (Marcain adrena-
line, 13.2 mg/kg) in the scalp before surgery began, which was 
cleaned and shaved with ethanol and chlorhexidine. The hind paw 
withdrawal reflex was used to assess the depth of anesthesia, together 
with continuous monitoring of heart rate and core temperature 
throughout the operation by using a MouseSTAT system with feed-
back mechanism to a heating pad (Kent Scientific, CT, USA). At the 
end of the surgery, animals were given a subcutaneous injection of 
carprofen (5 mg/kg), and the edge of the wound was cleaned fol-
lowed by local anesthetic ointment lidocaine. This was repeated for 
3 days after surgery.
Injection of opsin clone–carrying virus and electrode implantation
Craniotomies were made above the MSA and bilaterally above the 
MEC using a handheld Perfecta 300 dental drill (W&H Nordic, 
Täby, Sweden). Tetrode implantation and injections were per-
formed in one surgical session. A Hamilton syringe (Harvard Apparatus, 
MA, USA) was used to inject a viral vector, AAV5-Ef1a-DIO-
hChR2(H134R)-EYFP (UNC) into MSA. Injections were done in 
two locations, with two depths at each location (6.5 and 7.5  ± 
0.2 mm measured from the surface of the skull). The locations were 
at 0.6 mm and 1.0 mm anterior of bregma and at the midline, with 
a total volume of 300 nl at each location. The injections were made in 
a stepwise manner with a rate of 50 nl/min, and the needle was left at 
the injection site for another 5 min before retraction. Tetrodes/op-
trodes were implanted above MEC at 0.4 ± 0.1 mm anterior of the 
transverse sinus and 4.5 ± 0.1 mm from the midline. Electrodes were 
held by 16-channel microdrives (Axona, St. Albans, UK) and refer-
enced by ground using jeweler’s screws fixed to the skull. Implants 
containing either optic fibers, tetrodes, or both were anchored in 
the skull using jeweler’s screws and dental cement. To avoid light 
from the laser leaking through the implant, it was sealed with black 
nail polish.

Extracellular recordings and processing
Recording setup
Axona microdrives were connected to Intan RHD2132 headstages 
with custom adapters (from the Axona connector of the microdrive 
to the Omnetics connector of the headstage). The headstages were 
connected to the Open Ephys acquisition board (65) via thin Serial 
Peripheral Interface (SPI) cables. The recordings were acquired us-
ing the Open Ephys GUI for saving the data and visualizing LFP, 
high-pass–filtered signals, and spikes in real time. In addition, we 
used a Point Grey Flea3 camera mounted on the ceiling to track the 
animal’s position. The tracking was monitored in Open Ephys us-
ing the Tracking plugin (66), which uses Bonsai for image analysis 
and Open Ephys for synchronization, storage, and visualization of the 
trajectories. Optogenetic stimulation was performed using a 473-nm 
Blue Diode-pumped solid-state laser (100 mW; Shanghai laser, China) 
with power between 20 and 50 mW. The laser was triggered using 
the Pulse Pal 2 stimulator controlled by the Open Ephys GUI. We 
used train of pulses from the Pulse Pal stimulator to the laser con-
troller. The train consisted of pulses of 5 ms and interpulse intervals 
of 85 ms (for 11-Hz stimulation) or 28 ms (for 30-Hz stimulation).
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Recording procedure
The animals were habituated to the recording environment during 
daily training sessions starting a week before surgery. The recording 
environment consisted of a 1 m–by–1  m black box containing a 
white A4 sheet on one of the walls, serving as a local cue. To moti-
vate animals to actively explore the environment, chocolate crum-
bles (Weetos) were randomly thrown into the arena for the entire 
recording session. Electrophysiological recordings were initiated 
3 weeks after surgery to ensure proper virus expression. During re-
cording sessions where we searched for grid cells, animals ran in the 
arena for sessions lasting from 10 to 20 min (depending on how fast 
they could cover the entire environment). Between sessions, if there 
were no grid cells recorded, the tetrodes were adjusted downward in 
steps of 50 m, and we allowed the animals to rest in their home 
cage for 20 to 30 min.

When grid cells could be detected, optogenetic experiments 
were conducted and consisted of a block of four recording ses-
sions. This started with a baseline session with no laser stimulation 
(Baseline I), followed by an 11-Hz stimulation session where the 
laser stimulation lasted for 10 min. Optogenetic stimulation started 
1 min into the recording session. The next recording session was 
another baseline session (Baseline II), followed by a last 30-Hz stim-
ulation session. All sessions lasted 10 to 20 min and were separated 
by a 10- to 20-min break where the animals rested in the home cage. 
The electrodes were not moved between these sessions to ensure 
that the same cells could be recorded across baseline and stimula-
tion sessions. However, after one block of optogenetic experiments 
were conducted, we again lowered the electrodes searching for new 
grid cells at a more ventral position. Two of the animals had optic 
fibers in MEC in addition to MSA. Optogenetic stimulation in MEC 
was conducted as described above, but only for a single hemisphere 
at a time and only using 11-Hz laser pulses.
Spike sorting
Recordings were spike-sorted automatically using Kilosort2 (https://
github.com/MouseLand/Kilosort2), run with the SpikeInterface 
framework (67). Before spike sorting, the signals were filtered with 
a 300- to 6000-Hz band-pass filter, and common median reference 
was applied (separately for each microdrive) to reduce common 
mode noise. The spike sorting output was curated using Phy (68), 
for manually rejecting noisy clusters, merging similar clusters, and 
splitting and cleaning clusters based on their principal components 
features. After manual curation, the data were saved to Exdir format 
(69) for further processing.
Automatic tracking of units over different experimental sessions
The tracking of the same units over different experimental sessions 
was done with an automatic approach. For each unit of each ses-
sion, we computed a normalized similarity score with units record-
ed on separate sessions. Defining Ti ∈ ℝNxT as the average waveform 
(or template) recorded on a tetrode of a unit i (with N channels and 
T samples), the similarity score to another template from a different 
session (on the same tetrode) was computed as

   s  ij   =   
 ∑ n      ∑ t      ( T  int   −  T  jnt  )   2 

  ───────────────  max(∣  T  i   ∣ , ∣  T  j   ∣ ) N    

Then, we built a graph with each unit of each session as a node 
and the similarity scores as edges (note that units from the same 
recording session could not have an edge). Last, the graph was in-
terrogated to extract the minimum paths. Nodes along these paths 

were considered to be the same unit over time. We used a threshold 
for the minimum acceptable similarity score to build an edge (0.035) 
and for how far apart in time units could be considered to be the 
same (15 days). Moreover, we ensured that tracked units were found 
at the same depth: When a tetrode depth was adjusted, paths along 
the graph were stopped. The output of the automatic tracking algo-
rithm was visually inspected to assess the goodness of the tracking.

Histology and identification of recording position
At the end of the experiments, animals were deeply anesthetized by 
an intraperitoneal injection of pentobarbital sodium (50 mg/kg) 
and intracardially perfused with 0.9% NaCl, followed by 4% para-
formaldehyde (PFA) in 1× phosphate-buffered saline (PBS). The 
brains were dissected out and postfixed for 24 hours in 4% PFA. Be-
fore sectioning, the brains were cryoprotected in 30% sucrose in 1× 
PBS for 3 days and then cut into three parts: one anterior part for 
coronal sectioning and two posterior parts for sagittal sectioning. 
Forty-micrometer coronal (for locating MSA) and sagittal (for 
locating MEC) sections were then cut with a cryostat (Leica Biosystems, 
Buffalo Grove, USA). Staining procedures were performed on free- 
floating sections under constant agitation unless mentioned other-
wise. An antibody for green fluorescent protein (GFP) was used to 
visualize the virus expression and anti-PV for visualizing PV+ cells.

First, the sections were rinsed times in 1× PBS and blocked with 
2% goat serum and 0.3% Triton X-100 in 1× PBS for 1 hour at room 
temperature. The sections were then incubated with chicken anti- 
GFP (1:1000; Invitrogen, no. A-10262) and rabbit anti-PV (1:2000; 
Swant, no. PV27) in blocking solution overnight at room tempera-
ture. On the following day, the sections were rinsed with 0.3% Triton 
X-100 in 1× PBS and incubated for 2 hours in 1× PBS with secondary 
antibodies goat anti-chicken Alexa Fluor 488 (1:1000; Invitrogen, 
no. A-11039) and donkey anti-rabbit Alexa Fluor 647 (1:1000; Invi-
trogen, no. ab150075). After incubation, sections were rinsed in 
1× PBS and incubated with NeuroTrace 430/455, blue fluorescent 
Nissl stain (1:100; Thermo Fisher Scientific, no. N21479), for 30 min. 
Sections were lastly rinsed in 1× PBS, mounted on SuperFrost Plus 
(Thermo Fisher Scientific, no. J7800AMNT) and coverslipped with 
FluorSave reagent (Millipore, no. 345789-20ML). Images were 
acquired with an Andor Dragonfly spinning disc microscope using 
the Fusion software, with a Zyla 5.5 scientific complementary metal- 
oxide semiconductor camera covering 2048 × 2048 pixels. Overview 
images of sections were acquired using a 20× objective [numerical 
aperture (NA) 0.75]. High-magnification images of PV+ somas and 
virus expression were acquired within the MSA and MEC through 
a 60× objective (NA 1.4).

The sagittal sections containing tracks from the tetrodes were 
mounted directly on SuperFrost Ultra Plus slides (Thermo Fisher 
Scientific, no. J3800AMNZ) after sectioning and counterstained with 
Nissl for visualizing cell bodies using Cresyl violet. Sections were 
then dehydrated in ethanol baths (70 to 96%) and xylene before be-
ing coverslipped with Entellan. Tetrode tracks were identified, mea-
sured, and photographed through an Axioplan 2 microscope (Carl 
Zeiss, Oberkochen, Germany). High-resolution images were then 
stitched together using the MosaiX extension in the AxioVision 
software (Carl Zeiss, Oberkochen, Germany).

Quantification and statistical analysis
All tests regarding LFP were nonparametric because of distributions 
failing normality tests (scipy.stats.normaltest). For LFP analysis, we 
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used the Wilcoxon signed-rank test (scipy.stats.wilcoxon) with data 
paired on the animal level. Cell data were tested using LMMs to 
account for (i) non-independence (animal and unit groups), (ii) the 
mixed-design nature of the dataset (some neurons were repeatedly 
measured while others were only measured in one of two compared 
sessions), and (iii) imbalance (some animals had higher cell count 
than others). The statsmodels (70) package was used to run the 
LMMs. In particular, we used the statsmodels.regression.mixed_
linear_model.MixedLM.from_formula function with formulas 
'variable ~ label', where variable denotes the measured variable of 
interest, e.g., gridness, and the label denotes two sessions, e.g., Baseline I 
and 11 Hz. The groups were set to groups =  'entity' where entity 
denotes animal ID, and a variance component specifying the unit 
ID as a categorical variable vc_formula = {'1': '0 + C(unit_id)'}, 
where the zero suppresses an intercept. Last, the model had random 
intercepts and random slopes, where the former is used by default 
in MixedLM and the latter is specified by re_formula =  'label', al-
lowing the groups to have random initial values and vary randomly, 
respectively, from session to session.

In some cases, we ran into convergence issues with the statsmod-
els optimizers and were unable to fit the above-described model. In 
these cases, we altered the model and indicated these alterations by 
adding a § or §§ to the P values. For  §, we removed the variance 
component such that only animals were considered as groups, and 
this removes the repeated part of the model design and lead to over-
estimation of the P value. For §§, we both removed the variance 
component and the slopes model given by the random effects for-
mula. In this case, we underestimate the P value, as the model does 
not allow for intra-animal variations.

Because of imbalanced neural data, where the number of recorded 
neurons from each animal was different (see table S1), presented averag-
es from neural data were weighted. First, a dataset was defined as  
𝔻 = { x  i=1,j=1  ,  x  i=2,j=1  , … ,  x  i= N  1  ,j=1  ,  x  i=1,j=2  ,  x  i=2,j=2  , … ,  x  i= N  2  ,j=2  , … ,  x  i= N  N  ,j=N  } , 
where neural activity xi, j (for example, gridness or spike rate) was 
recorded from neuron i and animal j, Nj denotes the number of 
neurons from animal j, and N denotes the number of animals. The 
weighted average was given by    x ̄    w   =  ⟨x⟩  w   , where

   ⟨x⟩  w   =   
 ∑ j=1  N    ∑ i=1   N  j       w  i,j    x  i,j    ─  

 ∑ j=1  N    ∑ i=1   N  j       w  i,j  
    

and the weighted variance defined as

    w  2   =  ⟨ (x −   x ̄    w  )   2 ⟩  w    

The weight was found by   w  j   =   1 _  N  j  
  , where Nj denotes the number of 

neurons recorded from animal j.
All analyses were performed in Python. We used software devel-

oped at Centre for Integrative Neuroplasticity (CINPLA). In particular, 
data management was performed with Expipe (71) using Exdir (69) 
to store raw data. Furthermore, analysis code can be found for spatial 
maps (github.com/CINPLA/spatial-maps), for speed cell analysis 
(github.com/CINPLA/speed-cells), for phase precession (github.com/
CINPLA/phase-precession), and for spike waveform (github.com/
CINPLA/spike-waveform). All paper-specific analyses are also doc-
umented at github.com/CINPLA/septum-mec with reference to 
Docker image with all software installed.

Spiking rate maps
Spiking rate maps were produced by dividing the arena into equally 
sized bins. For each bin, the number of spikes and the time spent 
within the bin were counted to produce a spike map and an occu-
pancy map, respectively, with a bin size of 2 cm by 2 cm. The spike 
map and the occupancy map were smoothed individually by using 
the convolution of a 2D Gaussian kernel provided by Astropy (72). 
Each bin in the smoothed spike map was divided by the corre-
sponding bin in the smoothed occupancy map to reduce edge dis-
tortions. Each smoothed rate map was produced with SD  = 4 cm.
Autocorrelogram
Spatial autocorrelations used for visualization and subsequent anal-
yses were created by correlating the smoothed rate map with itself 
using the scipy.signal.fftconvolve function from the SciPy package 
with the mode parameter set to mode = 'full'.
Gridness score
For each rate map, a gridness score was calculated by first masking 
the central peak with a disc having a radius of half the distance to the 
closest peak found among six surrounding peaks. Furthermore, 
the area of the autocorrelogram outside a disc centered on the cen-
ter peak was masked with a radius 3/2 times the distance to the out-
ermost of the six closest peaks. Next, the masked autocorrelogram 
was rotated by increments of 30° up to 150°. For each rotation, we 
calculated the Pearson product moment correlation coefficient against 
the originally masked autocorrelogram. Last, the gridness score was 
calculated by taking the lowest coefficient found with rotations 60° 
and 120° and subtracting the highest coefficient found with rota-
tions 30°, 90°, and 150°.
Shuffling
Null distributions of gridness and spatial information were generated 
by a randomized spike train for each registration using the function 
spike_train_surrogates.dither_spike_train from the Elephant elec-
trophysiology analysis toolkit (neuralensemble.org/elephant). For 
each session, n = 1000 randomized spike trains were generated using 
a shift of 30 s with edges = True.
Spatial shift
To compute the shift of fields of the rate map, we computed the 
cross-correlation created by correlating the smoothed rate maps 
using the scipy.signal.fftconvolve function from the SciPy package 
with the mode parameter set to mode = 'full'. The spatial shift was 
then given by the center of mass of the cross-correlogram.
Identification of firing fields
To estimate the firing within and outside fields, we first identified 
the individual fields in the rate map. Following the protocol of (73), we 
first identified a global field radius as 0.7 times half the distance from 
the center peak to the closest peak in the autocorrelogram. Next, we 
identified all the peaks in the rate map before excluding the lower of 
any two peaks within a distance shorter than the global field radius.

To define the extent of each field, we first used morphological 
dilation to enlarge bright regions and shrink dark regions using 
skimage.morphology.dilation from the package scikit-image (74). 
To extract the boundaries of fields in the dilated image, we further 
used a Laplace filter using Gaussian second derivatives. The Laplacian 
of Gaussian was calculated using the ndimage.gaussian_laplace with 
sigma = 2.5 function from the SciPy Python package (75).

To separate and label the remaining regions, we used the ndimage.
label function. Any regions with an area less than nine bins were 
excluded. The areas were then sorted on the basis of the mean firing 
rate in each area.
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Fields were defined to be any labeled region found that corre-
sponded with a non-excluded peak from the protocol of (73). The 
fields were used in subsequent analyses to identify in- and out-
field spikes.
Spatial information and specificity
Spatial information is an estimate of to which degree the animal’s 
position can be predicted on the basis of the firing of the cell, given 
in bits per second (14). Spatial information was found using the fol-
lowing equation

  spatial information =  ∑ 
i
      p  i     

   i   ─ 


    log  2        i   ─ 


    

where pi is the probability of the animal being in bin i, given by the 
occupancy map divided by the total session time; i is the firing rate 
in bin i; and  is the mean firing rate. Spatial information specificity 
was calculated from spatial information divided by average rate.
Speed score
The speed score was computed according to (43), briefly described 
below. To compute the correlation between running speed and the 
firing rate of neurons, we first calculated the instantaneous speed 
and interpolated linearly to match the sampling frequency of the 
firing rate. The firing rate was computed by convolving a Gaussian 
kernel with the spike times using statistics.instantaneous_rate and 
kernels.GaussianKernel from the Elephant package (76). Last, the 
speed score was computed as the Pearson correlation coefficient 
between the instantaneous speed and the firing rate for speed be-
tween 0.02 and 0.5 m/s.

Since we had strong disinhibitory responses both in grid cells 
and NSi cells, a window of 5 to 11 ms and 3 to 11 ms, respectively, 
was masked out when computing speed scores (larger window for 
NSi cells to account for the initial inhibition).
Waveform analysis
To separate between NS and BS units, we calculated the time from 
trough to peak and the time to cross the half-width amplitude of the 
largest-amplitude trough from the mean waveform. In peak-to-trough 
calculations, the sampling period of each spike was increased 200-fold 
by cubic interpolation to get an accurate measure of peak times. The 
half-width crossing time was refined by a linear interpolation between 
crossings of the constant line of half amplitude. All interpolations were 
done with scipy.interpolate.interp1d. Last, we separated clusters with 
scipy.cluster.vq.kmeans on the baseline and stimulation sessions.
LFP spectrum analysis
In all LFP-related analyses, we removed transients most likely due to 
chewing artifacts by thresholding the signal and setting the signal to zero 
(LFP >2 mV → 0); for analysis where spikes were compared with LFP, 
we also removed spikes that fell within the time of these artifacts.

The time-frequency spectrum was calculated by means of a 
continuous wavelet transform on the z-scored LFP signal using a 
Morlet wavelet with nondimensional frequency 0 = 80 (77) and 
the PyCWT library (github.com/regeirk/pycwt). Then, a weighted 
histogram of speed v with bin size 0.02 m/s was calculated in the 
range v ∈ [0.02,1] m/s. The weights were either the mean power of 
the wavelet spectrogram over frequencies f ∈ [4,12] or the frequen-
cy at the maximum power within the same frequency range. The 
PSD was calculated on LFP signal using the Welch method given by 
mlab.psd from the Matplotlib package (78).

The confidence intervals presented in Fig. 2 (A to C) were calcu-
lated by bootstrapping each data point from each recording at the 

95% confidence level. To compute the spectrum as obtained from 
the time frequency representation versus running speed v, we first 
calculated the instantaneous speed and interpolated linearly to match 
the sampling frequency of the LFP signal at 1000 Hz.
Spike phase estimation
To estimate the phase preference of spikes relative to LFP, we fil-
tered the LFP signal in a preferred frequency band and performed 
with a Butterworth filter of order 3 using scipy.signal.butter_bandpass 
and scipy.signal.filtfilt. The phase was acquired from the Hilbert 
transform scipy.signal.hilbert of the filtered LFP, and the angle was 
obtained using numpy.angle. From each recorded neuron, a phase 
was thus found for each spike, and to estimate its angular prefer-
ence, we performed a KDE using the von Mises model given by

  f( ) =   1 ─ 2  I  0  ()    exp ( cos ( −  ) )  

where I0 is a modified Bessel function of order 1 using scipy.special.
I0 with  = 100, f( + 2) = f(), and

   ∫0  
2

   f( ) d = 1  

From the probability density function generated with the von 
Mises KDE, the mean resultant vector length  R =  √ 

_
  R   2  +  C   2    / n  with 

R = ∑n cos (ai) and C = ∑n sin (ai) for angular data a of size n (com-
puted with pycircstat.resultant_vector_length) and mean angle 
(pycircstat.mean) was used to compute the spike-phase score and 
direction, respectively.
Spike LFP coherence
To evaluate spiking coherence to LFP (Pxy), we used the sta.spike_
field_coherence from Elephant (76), which measures the coherence 
between a binned spike train and the LFP using scipy.signal.coherence. 
Signal peaks were extracted using scipy.signal.find_peaks, and the 
energy was computed by ( (Pxy)f), where f is the corresponding 
frequency resolution.
Phase precession
Phase precession was computed according to (13, 36) where the 
normalized distance traveled within a field and the corresponding 
phase it fired relative to the band-pass–filtered LFP (6 to 10 Hz). To 
measure the linear circular correlation, we translated a MATLAB 
script obtained from Kempter et al. (36) and translated to Python 
using SciPy, NumPy, and the PyCircStat (79) package. The phase 
precession quantification for Python is available at the CINPLA 
GitHub site github.com/CINPLA/phase-precession.

The LFP signal was band-pass–filtered in the theta frequency 
range (6 to 10 Hz). The instantaneous theta phase was found using 
the Hilbert transform of the filtered signal. Each spike was assigned an 
instantaneous theta phase by interpolation using the scipy.interpolate.
interp1d. Phase precession was quantified by two measures: First, 
assuming that the association between phase and position can be 
described by a linear model of the form   ̂    = 2ax +   ̂     0    (where a is the 
phase, x is the distance traveled through the firing field, 0 is the phase 
offset, and   ̂     is the approximation of the true phase ), we obtained 
the slope by maximizing the goodness of fit  a =  arg  max   

 
a
   
*

 
    R( a   * ) 

  R =  √ 

___________________________________________

       (     1 ─ n     ∑ 
k=1

  
n
   cos (   k   − 2a  x  k   )  )     

2

  +   (     1 ─ n     ∑ 
k=1

  
n
   sin (   k   − 2a  x  k   )  )     

2
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and computing the phase offset with

     ̂     0   = arctan *  (     
 ∑ k     sin (   k   − 2a  x  k  )

  ───────────  
 ∑ k     cos (   k   − 2a  x  k  )

   )     

where arctan * is the quadrant-specific inverse of the tangent (numpy.
arctan2). Second, a circular-linear correlation was computed by

  r =   
 ∑ k=1  n   sin (   k   −   ̄   ) sin (   k   −   ̄  )

   ─────────────────────   
 √ 

____________________________
    ∑ k=1     sin  (   k   −   ̄  )   2   ∑ k=1     sin  (   k   −   ̄  )   2   
    

with    ̄   = arctan *    ∑ k     sin (   k  ) _  ∑ k     cos (   k  )   and    ̄   = arctan *    ∑ k     sin (   k  ) _  ∑ h     cos (   h  )  , where j = 
2axj(mod 2).

For large sample sizes, P values can be derived (36, 80) with

   p = 1 − erf  (      ∣ z ∣  ─ 
 √ 
_

 2  
   )     

where erf is the error function and  z = r  √ 
_

    20      02   /    22      with     ij   =  
n   −1   ∑ k=1  n    sin  (   k   −   ̄  )   i  sin  (   k   −   ̄  )   j  . When assessing whether a neu-
ron phase precess r < 0 or recess r > 0 two parameters were used, we 
required a P value less than P < 0.01 and a goodness of fit R > 0.1.
Stimulus response probability and cell-type characterization
To compute stimulus response (PSTH), we first aligned spikes to 
each stimulus onset and cut out spikes between −10 and 50 ms with 
respect to the stimulus onset. A kernel density estimation was then 
performed with the stats.gaussian_kde with sigma = 0.1 ms to get 
the probability density of spiking. Then, the 99th percentile of the 
density before the stimulus was used to determine whether the stimu-
lus response was significant. Response latency was further obtained 
as the time-to-peak or time-to-trough response for excitation and 
inhibition, respectively. We considered responses as inhibitory only 
when the time to trough of the response preceded the time to peak.

Units that were characterized as NSi once by the significance of 
inhibitory response were labeled as NSi regardless of response pro-
file in other sessions. Full width at half maximum was computed 
from the maximum peak within an interval between 5 and 30 ms of 
the PSTH.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/19/eabd5684/DC1

View/request a protocol for this paper from Bio-protocol.
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