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§ S1. Multinuclear spin registers 

Each R1 and R2 register contains a single PL6 electron spin strongly coupled to a single 29Si 

nuclear spin. The lattice sites occupied by 29Si atoms to form R1 and R2 registers (sites ‘1’ and ‘2’, 

respectively) have a non-zero crystal degeneracy. It is therefore possible to have larger spin registers that 

consist of a single PL6 electron spin strongly coupled to multiple 29Si spins (e.g. R11 has two 29Si atoms 

at the 1 lattice site, and R112, which has two 29Si atoms at the 1 lattice site and one 29Si atom at a 2 

lattice site). These registers occur probabilistically according to the product of binomial distributions 

(B): 

𝐵(𝑛1, 𝑘1, 𝑝) ∗ 𝐵(𝑛2, 𝑘2, 𝑝) = (𝑛1
𝑘1

) (𝑛2
𝑘2

) 𝑝𝑘1+𝑘2(1 − 𝑝)𝑛1+𝑛2−𝑘1−𝑘2 ,      (S1) 

where the subscripts denote the two lattice sites, ni is the crystal degeneracy of the ith lattice site 

and k is the number of those degenerate sites that are occupied by a 29Si atom, which occur in our 

samples naturally with probability p=4.7%. The crystal degeneracies of R1 and R2 are n1=3 and n2=6. 

These assignments were made in a previous work (16) by comparing the intensities of the registers’ 

hyperfine-split ODMR resonances (purple and blue traces in Fig. 2B, for R1 and R2, respectively) to the 

intensity of the non-hyperfine split ODMR resonance (black trace in Fig. 2B). This assignment is 

supported by drawing correspondence to similar registers based on SiC divacancies (16, 17, 27). In 

particular, the SiC divacancies have registers with nearly identical hyperfine coupling strengths and 

relative ODMR intensities to R1 and R2, but with known three-fold and six-fold degeneracies.  

These multinuclear registers have ODNMR resonances that are approximately degenerate with the 

R1 and R2 ODNMR resonances, and therefore contribute parasitic signal that interferes with our 

tomographic reconstructions. Here, we will compute the ratio of this parasitic signal to the R1 and R2 

signals to show that it has little impact on our results. 



The electron spin resonances (ESR) of registers containing a single PL6 electron spin strongly 

coupled to up to three 29Si nuclear spins are given in Table S1. We also present these registers’ 

frequency detunings (Δ) from our quantum gates, which depend on whether or not we are performing an 

experiment on R1 or R2 (labeled “R2 experiment” and “R1 experiment” in Table S1).  The maximum 

signal that a multinuclear register can contribute is reduced by the off-resonant driving factor 

 
Ω2

Ω2+Δ2,        (S2) 

where Ω is the drive-field strength. Combining this factor with Eq. (S1), we find that the ratio of signal 

that comes from unrelated registers to the real signal from R1, for example, is: 

( 6
𝑘1

)( 3
𝑘2

)𝑝𝑘1+𝑘2(1−𝑝)9−𝑘1−𝑘2

(6
1)(3

0)𝑝(1−𝑝)8

Ω2

Ω2+Δ2.      (S3) 

We compute this quantity in Table S1 (labeled “Relative Signal”), assuming that nuclear spins in 

all registers optically initialize into the nuclear  state, which is true for R1 and R2. Summing Eq. (S3) 

for registers up to those containing 3 nuclear spins and a single electron spin, we see that the parasitic 

signal is at most ~11% in R1 experiments and ~7% in R2 experiments. We therefore conclude that 

multinuclear registers contribute only marginally to our signal. 

 

§ S2. Electron spin polarization 

The quantum-state tomography in this work relies on differential photoluminescence (PL) 

measurements between states related by unitary quantum gates. Since unitary operations cannot probe 

any element of a system’s density matrix that is proportional to the identity matrix, the quantum circuits 

themselves (Fig. 3B-D) are not sufficient to probe a systems absolute density matrix (i.e. one that 

includes the identity element). Measuring the absolute density matrix is crucial to proving that our 

system exhibits genuine, as opposed to pseudo, entanglement. As we show in § S5, it suffices to 

measure the electron spin polarization to reconstruct the absolute density matrix of the initial and all 

other states. In this section, we describe how we measure the degree of electron polarization of the 



optically initialized PL6 defects. The basic principle underlying our measurement is that the radiative 

lifetimes of PL6’s mS=0 and mS=-1 spin states are different. Therefore, by optically exciting PL6 defects 

with a pulsed laser and measuring the relative coefficients of the bi-exponential PL decay, we have a 

direct measurement of the ground state electron spin polarization.   

Since the PL6 defect has been measured (33) to have the same C3V symmetry as the nitrogen-

vacancy (NV) center in diamond, we adopt the same model and experimental techniques that were used 

to determine the electron spin polarization of NV centers (36, 43, 44). In this model, a color center spin 

in its optically excited state can, in addition to radiatively decaying in a spin-conserving way, undergo a 

spin-selective non-radiative intersystem crossing to a singlet state. This transition being spin-dependent, 

means that the probability of entering the non-radiative intersystem crossing is higher for the mS = ±1 

spin sublevels than for the mS = 0 spin sublevel. This process enables magnetic transitions between these 

spin states to be detected through optically detected magnetic resonance (ODMR). Moreover, because 

the singlet eventually relaxes by undergoing an additional intersystem crossing to the spin triplet ground 

state, repeated cycling of the defect through this transition also polarizes the spin state in its orbital 

ground state.  

In this model, the PL emitted after excitation with a short laser pulse follows a bi-exponential 

distribution, where the observed lifetimes, 𝜏0 and 𝜏±1, are the lifetimes for the mS = 0 and mS = ±1 spin 

sublevels, respectively. The lifetimes follow the relation 𝜏𝑖 = (
1

𝜏𝑜𝑝𝑡𝑖𝑐𝑎𝑙
+ 𝑘𝑖)−1, where 𝜏𝑜𝑝𝑡𝑖𝑐𝑎𝑙 is the bare 

optical lifetime and 𝑘𝑖 is the intersystem crossing rate of the 𝑖th spin sublevel. The respective relative 

amplitudes of the exponentials, then, correspond to the relative occupation of the mS = 0 and mS = ±1 

spin sublevels in the ground state. Thus, fitting the observed time-correlated single photon counting data 

to a bi-exponential model allows us to infer the absolute ground state electron spin polarization after 

non-resonant optical pumping.  

To measure the bi-exponential decay, we use a photon counting module (Picoquant PicoHarp 300) 

to time-resolve the PL emitted from an ensemble of PL6 defects subject to a train of picosecond pulses 



of 850 nm light from a mode-locked Ti:Sapphire laser (Coherent Mira 900). We use an electro-optic 

modulator (Conoptics 350) to pick the pulses down to a repetition rate of approximately four 

microseconds. We pass these pulses through a fiber (OZ Optics, QMMJ-33-UVVIS-10/125-3A-20), 

which lengthens the ~200 fs pulses to approximately ~ 1 ps. These pulses are then guided to excite the 

defects and their emitted PL is collected using a 50 micron core diameter multimode fiber (ThorLabs 

GIF50). The fiber is coupled into a 150 mm monochromator (Acton 2150i), which is used for spectral 

filtering with a 1 nm bandwidth, easily isolating the zero phonon line of PL6 (near 1,038 nm) from other 

sharp spectral features. We couple the output of the monochromator into a single mode fiber (Corning 

SMF-28e+) that is connected to a closed-cycle superconducting nanowire single photon detector 

(SingleQuantum, EOS), which has a quantum efficiency of about 28% at this wavelength and a 

manufacturer-specified timing jitter of ~50 ps.  

Because the PL6 zero phonon line sharpens at low temperatures, we cool the sample to T = 20 K 

(Janis ST500) to increase our photon collection efficiency and relative rejection of luminescence from 

other sources in the substrate. We collect separate time-correlated photon traces with the 

monochromator wavelength set to either the PL6 zero-phonon line or two nanometers shorter than the 

zero-phonon line. We then subtract these data to remove the constant luminescence background and any 

remaining non-PL6 response. Since the ODMR signal of PL6 defects does not change significantly from 

20 K to 296 K (see Supplementary Figure S4 in ref. (30)), we assume that the electron-spin polarization 

is constant over this temperature range. For comparison, the polarization of NV centers in diamond has 

been measured to remain constant from 2 K to at least 650 K (36, 44, 45).  

We repeat the experiment with and without the application of 160 ns 𝜋-rotations between 

picosecond pulses (Fig. S1A). Because a single picosecond pulse is likely not enough to completely 

reinitialize the spins within the optical interrogation volume, the repeated effect of partial repolarization 

and microwave rotation puts the system into a mixed state. This mixed state need not be a specific 

mixture, but rather only be different from the no-microwave case. We can then estimate the lifetimes 



and polarizations with the parameter estimation technique that we employ. The normalized data from the 

two cases of the experiment demonstrate clearly by inspection that microwave-induced rotations of the 

ground state spin do indeed modulate the time trace of the PL decay (Fig. S1B). Since our aim is to infer 

the polarization when no microwaves are applied, it may not be immediately clear why we choose to 

repeat the experiment with microwave rotations between excitations pulses. The higher the degree of 

polarization efficiency in the PL6 optical cycle, the smaller the amplitude of the shorter lifetime decay 

associated with the ms= ±1 spin state will be – in the limit of 100% polarization, this amplitude vanishes 

and a priori estimation of the shorter lifetime and its associated amplitude becomes impossible because 

the decay is purely mono-exponential. Performing both experiments and then employing a parameter 

estimation technique that fits both datasets simultaneously and shares the inferred lifetimes between 

datasets while allowing the amplitudes to remain independent, solves this issue.  

To analyze the data, we model the PL observed by following the equation 

𝑓𝑗,𝑘(𝑡𝑗,𝑘) =  𝐴𝑘 exp (−
𝑡𝑗,𝑘

𝜏𝑚𝑠=0
) + 𝐵𝑘 exp (−

𝑡𝑗,𝑘

𝜏𝑚𝑠=±1
) + 𝐶𝑘 ,           (S4) 

where 𝑡𝑗,𝑘 is the time delay of the 𝑗th time bin in the 𝑘th dataset, and 𝐴𝑘 ,  𝐵𝑘, and 𝐶𝑘 are the amplitudes of 

the biexponential decays and constant background offset in the 𝑘th dataset. Because fitting bi-

exponential models and obtaining uncertainties is a difficult problem in a typical least-squares setting, 

we apply a Bayesian approach to estimating the model parameters (46, 47). In our approach, the 

exponential decay lifetimes are shared globally but the amplitudes are allowed to vary between datasets 

using different microwave conditions. We approximate the error as normally distributed with standard 

deviation 𝜎𝑖𝑗 =  𝜂√𝑑𝑘,1038 𝑛𝑚(𝑡𝑗) +  𝑑𝑘,1036 𝑛𝑚(𝑡𝑗), where the 𝑑𝑘’s are the photons counted within the 

same time bin but when the monochromator is collecting on versus off the zero photon line of PL6, and  

𝜂 is a scaling parameter near unity that can account for any noise unexplained by the random error 

alone. The square root term is simply combining the estimators for the Poisson error of the time bin in 

each histogram in quadrature for a normal approximation of the Skellam-distributed error of our 



subtracted data -- this is a good approximation since for both histograms, the number of counts in each 

bin always exceeds about 30. Since the bi-exponential model is fit to the subtracted data, the constant 

offsets 𝐶𝑘 are nearly zero. As an aside, the value of 𝜂 we infer is not significantly different from unity, 

indicating any systematic errors are likely below the random noise level. 

Parameter uncertainties from the marginal posterior probability distributions of Bayesian models 

are often difficult or impossible to determine analytically, so most practitioners apply numerical 

techniques based on Markov-Chain Monte Carlo (MCMC) algorithms. These algorithms generate a 

random walk subject to the condition of detailed balance whose accept/reject probabilities are set by the 

posterior probability distribution. In this scenario, the random walk converges to its stationary 

distribution that is exactly the posterior probability distribution. Here we apply MT-DREAM(ZS), a 

MCMC algorithm that uses sampling from past random walk states and multiple-try Metropolis steps to 

quickly converge to the posterior probability distribution, even in problems with high-dimension (47).  

Our computation of the posterior probability distribution reveals the lifetimes 𝜏0 = (13.9 ± 0.6) ns 

and 𝜏±1 = (5.4 ± 1.6) ns, where the error bars are 95% credible intervals, and the independent decay 

amplitudes 𝐴𝑘 and 𝐵𝑘 for both datasets. The two-dimensional marginal posterior probability distribution 

for the lifetime parameters shows a disc-shaped peak, indicating good resolution of both lifetimes and 

low correlation between them in the parameter estimation problem (Fig. S1B, inset). Although the data 

in Fig. S1B show some obvious difference between the two PL traces by eye, the model-based inference 

now lets us infer the relative amplitudes of the two decay terms quantitatively.  

The relative ms = ±1 decay amplitude, 𝐵𝑘/(𝐴𝑘 + 𝐵𝑘), shows the fraction in this state when 

microwaves are applied unambiguously differs from the no-microwave case, as desired (Fig. S1C). Of 

particular interest is the ms = ±1 component when no microwaves are applied, and our analysis indicates 

it is not significantly different, in a statistical sense, from zero. This explains why the 𝜏0 lifetime we 

infer is in precise agreement with a previous report that used only a mono-exponential decay model of 

(14 ± 3) ns (33). It is indicative of a very high electron spin polarization for this defect under optical 



excitation, which we can quantify by the relation 𝑃𝑘 = (𝐴𝑘 − 𝐵𝑘)/(𝐴𝑘 + 𝐵𝑘) (Fig. S1C, inset). We 

therefore determine the optically induced spin polarization with no applied microwaves (𝑃0) is 93−13
+7 % 

with 95% probability. This is the first report of both spin-modulated bi-exponential decay of the PL6 

defect and the spin polarization efficiency of its optical cycle, the latter of which enables us to normalize 

our tomographic data as described in § S5 by direct substitution of values sampled from the marginal 

posterior of 𝑃0. This means the final fidelities and PPT test values we compute account for uncertainties 

in both the tomographic reconstructions and the uncertainty in their normalization that derives from 

uncertainty in 𝑃0. 

 

§ S3. Register-density calculation 

The hyperfine coupling constants, the optical transition energy, the optical lifetime, and microwave 

zero-field-splitting of PL6 are all similar to those of the neutral divacancies in 4H- and 6H-SiC (16, 17,  

27-28, 30, 32-34, 48). This suggests that PL6 is a perturbation to the divacancy. We use this analogy and 

optical spectroscopy to estimate the PL6 spin density. In particular, we compare the intensity of the PL6 

zero-phonon-line emission to the intensity of the divacancy zero-phonon-line emission in highly 

implanted SiC samples (where the concentration is high enough to be accurately measured with double-

electron-electron-resonance experiments). From this procedure we estimate that the areal density of PL6 

defects is 2x1010 cm-2. The number of R1 and R2 registers in the optical illumination area is found by 

combining this density with the natural abundance of 29Si isotopic defects (4.7 %), the number of 

degenerate crystal lattice sites (3 for R1 and 6 for R2), and the laser spot size (~3 µm in diameter). From 

this calculation we estimate that there are 103 R1 and R2 registers in our optical interrogation volume. 

 

§ S4.  Coherent nuclear spin control 

We combine register-specific addressability with different radiofrequency pulse sequences to drive 

nuclear Rabi oscillations (Fig. S2A), to characterize the inhomogeneous nuclear spin-coherence times 



(T*2n) via Ramsey interferometry (Fig. S2B) and to put a lower bound on the homogeneous nuclear spin 

coherence time via the Hahn-echo sequence (T2n. See Fig. S3C).   

Nuclear Rabi oscillations demonstrate the coherent control of 29Si nuclear spins in R1 and R2 

registers. The oscillations of R1 do not exhibit beating after many oscillations, which suggests that the 

R1 hyperfine tensor is highly isotropic. The oscillations of R2 exhibit beating between three closely 

spaced frequencies (note that this is consistent with the 6-fold degeneracy assigned earlier), which 

suggests that the R2 hyperfine tensor is anisotropic. However, the ratio of the slowest to the fastest 

oscillation frequencies is 0.91, which indicates that the anisotropy is small. This is expected given the 

highly isotropic hyperfine tensors of similar registers based on the divacancies (27).  

The inhomogeneous nuclear spin coherence time (T*2n, R1 = 29 ± 2 µs, T*2n, R2 = 47 ± 6 µs) is found 

to be two orders of magnitude longer than the inhomogeneous electron spin coherence time (T*2e  ~ 300 

ns). The homogeneous nuclear spin coherence time (T2n, R1 = 247 ± 100 µs, T2n, R2 = 209 ± 42 µs) 

exceeds the homogeneous electron spin coherence time (T2e  ~ 60 µs at T = 296 K), but is surprisingly 

short. We attribute this to the electronic spin-lattice relaxation (which occurs on timescales T1e ~ 200 µs 

at T = 296 K (28)), which randomizes the electron spin and limits our measurement. The nuclear spin 

coherence is likely significantly longer and should be recoverable via selective re-initialization of the 

electron spin with a short optical pulse. 

 

§ S5. Quantum State Tomography 

Register initialization and readout are achieved through optical pumping and PL measurements, 

respectively. The PL signal is proportional to the intensity of the readout laser in the interrogation 

volume. Thus, in our measurements, we study the density matrix of registers as averaged over the 

illumination volume, which is given by the relation 𝜌 =  
∑ 𝐼(𝑟𝑗)𝜌𝑗𝑗

∑ 𝐼(𝑟𝑗)𝑗
 , where 𝑟𝑗 is the location of the j-th 

register, 𝐼(𝑟𝑗) is the laser intensity at the location of this register, and 𝜌𝑗 is the 2-spin (electron and 

nuclear spin) density matrix of the register. 



In this section we explicitly outline how we measure the elements of ρ. We employ a simplified 

notation for the register states: |1=|0,↑, |2=|0,↓, |3=|-1, ↑, |4=|-1,↓, |5=|+1,↑, and |6=|+1,↓. The 

PL emitted by PL6 corresponds to the spin occupation probability of each energy eigenstate (𝜌𝑖𝑖, where i 

ranges from 1-6) multiplied by the PL signal that would be obtained if all spins were in that state (Ki). 

Mathematically, this can be represented as ∑ 𝐾𝑖𝜌𝑖𝑖
6
𝑖=1 .  

To reconstruct ρ of a register ensemble, we use the following algorithm: we prepare the register 

ensemble into its to-be-measured state, operate on it with a sequence of microwave and radiofrequency 

pulses (represented by the unitary operator U1), and then measure the PL. We then re-prepare the state, 

operate on it with a different sequence of microwave and radiofrequency pulses (U2) and then measure 

the PL again. The difference between these PL measurements is the signal (see main text Fig. 3B for the 

circuit-representation of this measurement sequence):  

 

𝑆𝑖𝑔𝑛𝑎𝑙 = ∑ 𝐾𝑖[(𝑈1𝜌𝑈1
𝑡)𝑖𝑖 − (𝑈2𝜌𝑈2

𝑡)𝑖𝑖]
6
𝑖=1 .    (S5) 

    

To extract most elements of ρ it suffices to make U1 and U2 be a single electron spin rotation 

followed by a single nuclear spin rotation. By choosing U1 and U2 in this way, we also mitigate errors 

during the tomography procedure. In particular, such pulse sequences start by transferring the to-be-

measured density matrix element with a fast electronic pulse onto the highly coherent nuclear spin. Once 

transferred, nuclear gates and optical pulses are used to probe the element with minimal dephasing. The 

same considerations were applied in the construction of our entangling algorithm. 

Before explicitly defining U1 and U2 we introduce an abbreviated notation for the four spin 

transitions in our system. We define e0 to be the local broadband electronic transition of both |1|3 

and |2|4, e1 to be the selective non-local electronic transition |1|3, e2 to be the selective non-

local electronic transition |2|4, and n to be the selective non-local nuclear transition |3|4. With 

this notation, U can be conveniently represented as:  



𝑈𝑖 = 𝑅𝜙𝑛
𝑛 (𝜃𝑛)𝑅𝜙𝑒

𝑒 (𝜃𝑒 
),              (S6) 

where the rotation anglese and n, and phases e and n depend on the measurement sequence. The 

superscript n is the single nuclear transition that we drive, and the superscript e is one of the above-

defined electronic transitions. We make the electron spin rotation be the same for both U1 and U2 and 

vary the phase and the duration of the nuclear spin rotation. By choosing U1 and U2 in this way, the 

contribution to the signal (Eq. (S5)) from the electron spin vanishes, and therefore, we measure only the 

nuclear-spin contribution (i.e. the measurement uses ODNMR). Moreover, the signal vanishes for all 

registers without an ODNMR resonance at the nuclear pulse frequency. Since the nuclear pulse 

bandwidths are significantly narrower than the separation between the R1 and R2 ODNMR resonances, 

there is virtually no cross talk between these registers. The explicit rotations to determine the coherences 

and populations are given in Table S2 and S3, respectively, and are also presented in the main text Fig. 

3C and D. 

The only elements of ρ that cannot be measured by picking Ui as in Eq. (S6) are ρ13, ρ24. To 

measure these we modify Ui to have another nuclear spin rotation (denoted by primes): 

𝑈𝑖 = 𝑅𝜙𝑛
𝑛 (𝜃𝑛)𝑅𝜙𝑒

𝑒 (𝜃𝑒 
)𝑅𝜙′𝑛

′𝑛 (𝜃′
𝑛).      (S7) 

Since the PL6 electron spin inhomogeneous coherence time T*2e is shorter than the time it takes to 

perform the nuclear spin rotation 𝑅𝜙′𝑛
′𝑛 (𝜃′𝑛), such a measurement would be highly inaccurate. We 

therefore do not measure ρ13 or ρ24 but rather add an uncertainty to them equal to the maxima allowed by 

their corresponding diagonal density matrix elements (for example, the uncertainty in ρ13 is √𝜌11𝜌33).  

To determine the normalization (𝐾3 − 𝐾4) for all density matrix elements and the optically 

initialized density matrix, we need seven linearly independent equations. Three equations come from the 

pulse sequences presented in Table S3 (the fourth is a linear combination of the others). The fourth 

equation comes from the normalization condition: 

𝑡𝑟(𝜌) = 1,      (S8) 



The fifth and sixth equations come from the symmetry condition that there is equal electron spin 

polarization into ms=±1: 

𝜌33 = 𝜌55 𝑎𝑛𝑑 𝜌44 = 𝜌66,         (S9) 

The seventh equation comes from our measure of the electron spin polarization (as discussed in § 

S2): 

𝑃𝑒 = 𝜌11 + 𝜌22 − 𝜌33 − 𝜌44 − 𝜌55 − 𝜌66                (S10) 

To compute all other density matrices, we drop the assumptions of Eq. (S9) and (S10), which are 

valid for only the initialized state, and assume that the spin populations in the mS=+1 manifold remain 

constant under all operations within the mS=0 and mS=-1 manifolds: 

 𝜌55 = 𝜌55
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑎𝑛𝑑 𝜌66 = 𝜌66

𝑖𝑛𝑖𝑡𝑖𝑎𝑙.     (S11) 

Eq. (S11) is valid since our microwave pulses, which have a maximum drive strength of 25 MHz 

and never exceed a 50 MHz bandwidth, are detuned from the transitions |1|5 and |2|6 by 

approximately 1.6 GHz. There is no redistribution between states |5 and |6 since our radiofrequency 

pulses, which have a maximum drive strength of 83 kHz and never exceed a 300 kHz bandwidth, are 

detuned from the |5|6  transition by approximately 560 kHz. Re-thermalization over the duration of 

the entangling gate (~5 μs long) is negligible. 

 

 

 



 

Fig. S1. Optically pumped electron spin polarization. (A) A pulse sequence diagram showing the 

timing of the picosecond pulsed excitation, the microwave (MW) 𝝅-pulses for the case of the 

experiment where we apply them, and the bi-exponential fluorescence decay recorded on the time-

correlated photon counting module. (B) The natural logarithm of the normalized binned PL counts from 

the PL6 ensemble after picosecond pulse excitation for the no-microwave/microwave repetitions of the 

experiment. Inset: A contour plot of the marginal posterior probability density for the bi-exponential 

model lifetimes. (C) A plot of the marginal probability density of the relative amplitude of the 𝒎𝒔 = ±𝟏 

exponential decay term for both the no-microwave/microwave repetitions of the experiment. Inset: The 

marginal probability density for the spin polarization 𝑷𝒌 for the same no-microwave/microwave 

repetitions of the experiment. 

 

 

 

 

 

 

 

 



 

Fig. S2. Coherent nuclear spin control in SiC. (A) Nuclear Rabi oscillations. R(t) is the variable-

length radiofrequency pulse that is used to drive nuclear magnetic resonance. (B) Nuclear Ramsey 

interferometry is used to measure the inhomogeneous nuclear spin coherence time (T*2n). tfree is the 

nuclear-spin free evolution time. The radiofrequency pulses are applied 125 kHz off resonance to 

recover an oscillation. (C) Nuclear Hahn echo, used to measure the homogeneous nuclear spin 

coherence time (T2n). tfree is the nuclear-spin free evolution time. These measurements were performed at 

B||=33 mT, where registers initialize into the state |𝟎, ↑〉. The error bars in (C) represent 95% confidence 

intervals. The C↑NOTe gate in the dashed boxes in the circuit diagrams can be used to project the nuclear 

spin onto the electron spin for readout. This gate is not necessary near B||=33 mT, where the nuclear spin 

can be measured directly. The curves in all three panels have been offset for clarity. See the Materials 

and Methods for measurement details.  

 

 

 

 

 

 

 



 

Fig. S3. Entanglement of the R1 ensemble. Real (upper panels) and imaginary (lower panels) 

components of the initial and entangled R1 density matrices. The overlaid transparent bars represent the 

ideal density matrices. 

 

 



Fig. S4. Experimental Apparatus. General features of Electrical Setup (1) and Optical Setup (2) were 

used for our all of our measurements. Optical Setup (3) and the cryostat were integrated for the electron-

spin-polarization measurement. The components are defined in the figure. 

Table S1. The relative signal calculated for various registers.  

R2 experiment ESR (MHz) Δ (MHz) Relative Signal 

R2 ±4.8 0 1 

R22 (±9.6, 0) 4.8 0. 04 

R21 (±1.5, ±11.1) 6.3 0.03 

R222 (±4.8, ± 14.4) 9.8 <0.01 

R221 (±15.9, ±6.3, ±3.3) 11.1 <0.01 

R211 (±17.4, ±7.8, ±4.8) 12.6 <0.01 

R1 experiment ESR (MHz) Δ (MHz) Relative Signal 

R1 ±6.3 0 1 

R11 (±12.6, 0) 6.3 0.01 

R12 (±1.5, ±11.1) 4.8 0.10 

R111 (±12.6, ±25.2) 18.9 <0.01 

R112 (±17.4, ±7.8, ±4.8) 11.1 <0.01 

R122 (±15.9, ±6.3, ±3.3) 9.6 <0.01 

    

 



Table S2. Quantum gate sequences used to measure the density matrix coherences. The quantum 

circuit representations of U1 and U2 are presented in Fig. 3D.   

𝑈1 𝑈2 Signal 

𝑅0
𝑛 (

𝜋

2
) 𝑅0

𝑒1(𝜋) 𝑅180
𝑛 (

𝜋

2
) 𝑅0

𝑒1(𝜋) 2ℜ(𝜌14)(𝐾3 − 𝐾4) 

𝑅0
𝑛 (

𝜋

2
) 𝑅0

𝑒2(𝜋) 𝑅180
𝑛 (

𝜋

2
) 𝑅0

𝑒2(𝜋) −2ℜ(𝜌23)(𝐾3 − 𝐾4) 

𝑅0
𝑛 (

𝜋

2
) 𝑅0

𝑒0(𝜋) 𝑅180
𝑛 (

𝜋

2
) 𝑅0

𝑒0(𝜋) 2ℑ(𝜌12)(𝐾3 − 𝐾4) 

𝑅0
𝑛 (

𝜋

2
) 𝑅180

𝑛 (
𝜋

2
) 2ℑ(𝜌34)(𝐾3 − 𝐾4) 

𝑅90
𝑛 (

𝜋

2
) 𝑅0

𝑒1(𝜋) 𝑅270
𝑛 (

𝜋

2
) 𝑅0

𝑒1(𝜋) −2ℑ(𝜌14)(𝐾3 − 𝐾4) 

𝑅90
𝑛 (

𝜋

2
) 𝑅0

𝑒2(𝜋) 𝑅270
𝑛 (

𝜋

2
) 𝑅0

𝑒2(𝜋) −2ℑ(𝜌23)(𝐾3 − 𝐾4) 

𝑅90
𝑛 (

𝜋

2
) 𝑅0

𝑒0(𝜋) 𝑅270
𝑛 (

𝜋

2
) 𝑅0

𝑒0(𝜋) 2ℜ(𝜌12)(𝐾3 − 𝐾4) 

𝑅90
𝑛 (

𝜋

2
) 𝑅270

𝑛 (
𝜋

2
) 2ℜ(𝜌34)(𝐾3 − 𝐾4) 

𝑅90
𝑛 (

𝜋

2
) 𝑅0

𝑒1(𝜋)𝑅0
𝑛(𝜋) 𝑅270

𝑛 (
𝜋

2
) 𝑅0

𝑒1(𝜋)𝑅0
𝑛(𝜋) 2ℜ(𝜌13)(𝐾3 − 𝐾4) 

𝑅0
𝑛 (

𝜋

2
) 𝑅0

𝑒1(𝜋)𝑅0
𝑛(𝜋) 𝑅180

𝑛 (
𝜋

2
) 𝑅0

𝑒1(𝜋)𝑅𝑥
𝑛(𝜋) 2ℑ(𝜌13)(𝐾3 − 𝐾4) 

𝑅90
𝑛 (

𝜋

2
) 𝑅0

𝑒2(𝜋)𝑅0
𝑛(𝜋) 𝑅270

𝑛 (
𝜋

2
) 𝑅0

𝑒2(𝜋)𝑅0
𝑛(𝜋) 2ℜ(𝜌24)(𝐾3 − 𝐾4) 

𝑅0
𝑛 (

𝜋

2
) 𝑅0

𝑒2(𝜋)𝑅0
𝑛(𝜋) 𝑅180

𝑛 (
𝜋

2
) 𝑅0

𝑒2(𝜋)𝑅0
𝑛(𝜋) −2ℑ(𝜌24)(𝐾3 − 𝐾4) 

 

 



Table S3. Quantum gate sequences used to measure the density matrix populations. Note that only 

three of these four equations are linearly independent. It therefore suffices to make only three of these 

measurements. For the reconstruction presented in the main text, we use the first three sequences. The 

quantum circuit representations of U1 and U2 are presented in Fig. 3C.   

𝑈1 𝑈2 Signal 

𝑅0
𝑛(𝜋)𝑅0

𝑒1(𝜋) 𝑅0
𝑒1(𝜋) −(𝐾3 − 𝐾4)(𝜌11 − 𝜌44) 

𝑅0
𝑛(𝜋)𝑅0

𝑒2(𝜋) 𝑅0
𝑒2(𝜋) −(𝐾3 − 𝐾4)(𝜌33 − 𝜌22) 

𝑅0
𝑛(𝜋)𝑅0

𝑒0(𝜋) 𝑅0
𝑒0(𝜋) −(𝐾3 − 𝐾4)(𝜌11 − 𝜌22) 

𝑅0
𝑛(𝜋) − −(𝐾3 − 𝐾4)(𝜌33 − 𝜌44) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S4. Consolidated initialization and entanglement data.  The left-most column shows the ideal 

states. The electron spin polarization Pe is defined in Eq. S10 and the nuclear spin polarization is defined 

as 𝑷𝒏 =
𝝆𝟏𝟏−𝝆𝟐𝟐

𝝆𝟏𝟏+𝝆𝟐𝟐
. The error bars represent the 95% confidence intervals. 

 

R2 Pn Pe F PPT test  

|0, ↑〉 99−3
+1% 93−11

+7 % 0.95−0.07
+0.05 -0.01±0.02 

|Φ+〉 - - 0.78±0.07 -0.31±0.06 

|Φ−〉 - - 0.79±0.07 -0.31±0.07 

|Ψ+〉 - - 0.88±0.07 -0.40±0.06 

|Ψ−〉 - - 0.85±0.07 -0.37±0.06 

R1 Pn Pe F PPT test  

|0, ↑〉 91±8% 89−12
+11% 0.89±0.08 -0.004±0.011 

|Φ+〉 - - 0.76±0.07 -0.29±0.06 

|Φ−〉 - - 0.73±0.07 -0.25±0.05 

|Ψ+〉 - - 0.77±0.07 -0.30±0.06 

|Ψ−〉 - - 0.78±0.07 -0.32±0.06 

 


