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P H Y S I C S

Multiple memory formation in glassy landscapes
Chloe W. Lindeman*† and Sidney R. Nagel†

Cyclically sheared jammed packings form memories of the shear amplitude at which they were trained by falling 
into periodic orbits where each particle returns to the identical position in subsequent cycles. While simple models 
that treat clusters of rearranging particles as isolated two-state systems offer insight into this memory formation, 
they fail to account for the long training times and multiperiod orbits observed in simulated sheared packings. We 
show that adding interactions between rearranging clusters overcomes these deficiencies. In addition, interactions 
allow simultaneous encoding of multiple memories, which would not have been possible otherwise. These 
memories are different in an essential way from those found in other systems, such as multiple transient memories 
observed in sheared suspensions, and contain information about the strength of the interactions.

INTRODUCTION
Memories in matter can be created in a multitude of ways (1). Of 
interest here is a particular form of memory in which a jammed 
packing of particles subjected to training by a cyclic quasi-static shear 
can form a memory of the amplitude at which the shear was applied 
(2–7). The memory is encoded because the system falls into a periodic 
orbit in which the packing revisits precisely the same states during 
each applied shear cycle. The periodic orbit is disturbed if the shear 
amplitude is altered so that a memory of the training amplitude can 
be “read out” by tracking the particle displacements after cycles of 
increasing strain.

This memory formation is reminiscent of the ones found in 
non-Brownian suspensions (8–12). However, for such suspensions, 
each particle only interacts if it collides with a neighbor; in jammed 
particle packings, the particles are in enduring contact with their 
neighbors throughout each cycle. In this case, it is less clear how the 
memory is formed. The energy landscapes are different: The jammed 
systems have an exponential number of well-defined local energy 
minima, while the suspensions have very large flat-bottomed ground 
states. In the case of suspensions, the orbit is reversible along each 
cycle, and there are no energy barriers that need to be overcome. 
In contrast, jammed systems deform via rearrangements between 
clusters of particles that occur in one direction of the shear and that 
undo themselves at a different amplitude as the system is sheared in 
the reverse direction (2). The motion is thus not reversible within a 
cycle but is still periodic. Because jammed packings exist in a very 
rugged, high-dimensional, and complex energy landscape (13), it is 
astonishing that these systems can find a periodic orbit at all and, 
moreover, that the periodic orbit can be discovered relatively rapidly.

Aspects of the periodic memories encoded in jammed packings 
have been modeled in a variety of ways (2, 14–17). We consider here 
a model that was motivated by the existence of localized regions in 
a disordered material, which are particularly prone to rearrangements 
due to applied external forcing (14). This model, on the basis of 
the Preisach model (18), originally proposed for magnetic systems, 
considers independent, noninteracting defects, each of which can 
exist in either of two states with an energy barrier between them. 
Because of an applied external strain, a defect can flip between the 

two states; however, the strain to flip in the “positive” direction is 
not necessarily the same as for it to flip in the opposite “negative” 
direction. Each defect, known as a hysteron, is thus an elementary 
unit of hysteresis in the system. While Preisach models have been 
successful at describing many aspects of the memories, there are 
certain phenomena that they do not capture at all.

Here, we generalize this type of model by including interactions 
between hysterons so that the applied strains for one hysteron to flip 
between its two states depends on the state of the others. As we will 
show, this generalization not only exhibits some of the phenomena 
not possible without interactions but also leads to a type of memory 
that, to our knowledge, has not yet been identified in other systems. 
Moreover, because hysteresis is embedded in the fundamental units 
that make up the model, we are able to go to the limit of very small 
system sizes and very small interaction strengths to isolate the effect 
of the interactions and the origin of these behaviors.

RESULTS
Noninteracting model—Successes and failures
Consider an ensemble of hysterons in the presence of an externally 
applied shear .

We denote the two possible states of a hysteron by (+) and (−). 
Its current state is determined by its previous state (that is, its history) 
and the current value of the shear. In terms of the energy landscape, 
this is equivalent to having a double-well potential such as the one 
shown in Fig. 1A. Any given hysteron is fully described by its flipping 
strains + and −. For a system with a broad distribution of hysteron 
parameters, one can train the system as one would a jammed packing, 
with shear cycles of type (0 ➔ +  ➔ 0 ➔ − ➔ 0) as in (2, 5, 19) and 
as shown by the teal (dashed) sawtooth curve in Fig. 1B. The readout 
protocol is illustrated by the black (solid) sawtooth curve, which, 
starting at small amplitude, has an increasing amplitude for each 
subsequent cycle. The amplitude of the largest previously applied 
strain can be read out by measuring d, the fraction of hysterons that 
have changed their state at the end of each readout cycle (shown by 
the purple circles on the sawtooth curve). There is a sharp cusp in 
d when the readout amplitude equals the training amplitude, as 
shown in Fig. 1C.

The Preisach model gives rise to a special type of memory called 
return-point memory, where the system remembers extremal values 
of the applied shear (20). Return-point memory has the property 
that memories can be stored only in a particular order; an applied 
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strain will be erased as soon as another larger strain is applied, 
whereas if a smaller strain is applied, then the previously encoded 
memories of larger strains remain. The Preisach model and return- 
point memory in general have been applied to a variety of jammed 
systems, from simulations of binary mixtures of interacting particles 
(2) to experiments of sheared two-dimensional (2D) amorphous 
solids (21). This simple model captures many aspects of jammed 
systems; in particular, it produces cusp-like memories at the amplitude 
where the training was applied. However, it fails to describe the com-
plexity, both in the training and in the periodic orbits themselves.

The number of driving cycles  that a physical system takes to 
reach a periodic orbit is an important parameter. For small shear 
amplitudes,  can be just a few cycles. As the shear amplitude grows, 
 becomes large and appears to diverge at some critical amplitude 
(5, 22). In the Preisach model, however,  ≤ 1; this behavior can be 
understood by noting that each individual (independent) hysteron 
requires, at most, one cycle before it reaches a periodic orbit. This rep-
resents a substantial discrepancy with simulations of jammed packings.

A second important aspect of the memory formation is the period 
T of the orbit relative to the driving cycle. Simulations of frictional 
grains have shown that it is possible to fall into orbits that take many 
driving cycles for the particles to return to their original positions 
(4). For frictionless jammed packings, the period T grows for systems 
near the jamming transition (5). In the Preisach model, T = 1, which 
can again be understood by considering a single hysteron under 
cyclic shear.

Including interactions between hysterons
Work on hysteron-based models has primarily focused on how 
cyclically sheared jammed systems can result in return-point 
memory behavior. Here, we present a generalization of the Preisach 
model that includes interactions between hysterons. We will show 
how these interactions can explain the observed existence of  > 1 
and T > 1, behavior that was not possible in the noninteracting 
model. Moreover, we show that interactions produce a form of 
memory that allows the recall of training amplitudes that are smaller 
than those subsequently applied. This memory is not stored locally 
in the output (that is, not in a cusp appearing at the training strain 
as seen, for example, in Fig. 1C) but in the overall amplitude of 
the response.

We introduce interactions between hysterons by making the flip-
ping strains of hysteron i depend on the orientations of its n inter-
acting neighbors. Since each neighbor could be in the (−) or the (+) 
orientation, there are 2n possible microstates, each of which induces 

a different value for the top (and likewise the bottom) flipping strain 
of hysteron i. How each microstate determines the flipping strains 
of hysteron i can be chosen in a variety of ways. For simplicity, we 
report here the choice that each microstate produces an uncorrelated 
random shift to the noninteracting value of the flipping strain

    i  
+  =   i,0  +   +   i,{m}  

+    

where    i,0  +    is the value of the top flipping strain without interactions 
and    i,{m}  

+    is the shift to that value due to the particular microstate 
{m} of its neighbors. Similar rules were chosen for determining    i  

−  . 
Other possible rules, such as summing over pairwise interactions, 
lead to results qualitatively similar to those that we report here.

We note that this model is distinct from spin models, where 
hysteresis is an emergent behavior (23, 24). Not only does this model 
allow the number of hysterons and distributions of    i,0  +     and    i,0  −    to be 
separately controlled but it also allows the interaction parameters 
(strengths    i,{m}  

+    and    i,{m}  
−   , locality, and number of interacting 

hysterons) to be varied independent of the amount of hysteresis. As 
we shall see, this last attribute allows a perturbative analysis of how 
interactions enter, starting with small system size and infinitesimal 
interaction strength.

To implement this model, we must choose the total number N of 
hysterons in the system and the distributions of  [  i  

+ ,   i  
− ,   i,{m}  

+  ,   i,{m}  
−  ] . 

We also need to specify the rules that indicate which hysterons inter-
act with one another. We have investigated two cases: (i) a mean-
field model, in which all N hysterons interact; and (ii) a 1D model, 
in which we order the N hysterons on a line (with periodic boundary 
conditions) and add interactions between each hysteron and its L 
neighbors on either side. We measured memory effects in the 1D model 
for large systems N > > L and found them to be indistinguishable in 
both shape and magnitude from our results for the mean-field 
simulations as long as each hysteron interacts with the same number 
of neighbors (i.e., the size of the mean-field system, NMF, is chosen to 
be the same as 2L + 1 in the 1D model).

To determine the initial state of the system, a random sequence 
of N (−) and (+) states is chosen, and the system is “relaxed” so that 
any unstable hysterons are stabilized. During a shear cycle, the 
hysterons are flipped one at a time, and the system is relaxed after 
each step. For each configuration,  and T are recorded.

We follow standard training and readout protocols (2, 5). We 
apply one or more training cycles and record the state of each 
hysteron; this is our reference state. To read out, we apply cycles of 
increasing amplitude and record the fractional difference d between 
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Fig. 1. Hysteron schematic. (A) A single hysteron with flipping strains + and −. The configuration can be modeled as a double-well potential as shown. For  > +, the 
hysteron is forced into the (+) state (i.e., the rightmost well), and for  < −, the hysteron is forced into the (−) state (i.e., the leftmost well). For intermediate values of the 
strain, − <  < +, the hysteron can reside in either state as prescribed by its preparation history. (B) Schematic of training (dashed teal) and readout (solid black) cycles. 
After training, the state of each hysteron is recorded; this state is compared with the state after each readout cycle (i.e., at each purple dot), and the fractional difference 
is recorded as d. (C) An example of d versus the readout strain, readout, for a system of independent hysterons trained at 1 = 8.
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the current state and the reference state after each readout cycle 
(shown as purple circles in the readout curve of Fig. 1B). A typical 
plot of d versus readout for a noninteracting system of hysterons is 
shown in Fig. 1C.

To explore the memory capacity of this model, we train systems 
with a protocol involving two amplitudes: First, we fully train the 
system at a shear 1 (that is, apply as many training cycles as needed 
so that the system is in a periodic state at that amplitude of shear), 
then we apply a single cycle at a second shear amplitude 2. In a 
noninteracting model, if 2 > 1, then the second amplitude would 
immediately (i.e., within a single cycle) erase any memory of the first 
input; in that case, two copies of the same system trained at different 
values of 1 but with the same value of the larger amplitude 2 would 
look identical. When interactions are added, a single larger-amplitude 
shear cycle does not necessarily erase the memory of the smaller, pre-
viously stored, input amplitude. Thus, it is possible to observe more 
complex behavior in the storage of multiple memories in this model.

Results from simulations
To determine the role of interactions, we simulate the model for 
different values of N and with distributions of  [  i,0  +  ,   i,0  −  ,   i,{m}  

+  ,   i,{m}  
−  ]  

as described in Materials and Methods below. The qualitative behavior 
of the model does not depend critically on the choices made for these 
distributions as long as the distributions are sufficiently broad.

We find that interactions between hysterons allow for both  and 
T values greater than 1, a result consistent with what has been seen 
in spin systems with emergent hysteresis (23, 24). Figure 2 (A and B) 
shows the probabilities P() and P(T) for finding a configuration 
with a training time  or period T for different system sizes in the 
mean-field model. In both cases, the probability decays approximately 
exponentially with  or T and increases as the number of interacting 
hysterons is increased. It is possible to get  = 2 for systems as small 
as N = 2 interacting hysterons and to get T = 2 for systems as small 
as N = 3.

The inset of Fig. 2B shows P(T) versus T for simulations of jammed 
systems cyclically sheared in the quasi-static limit (5). In those sim-
ulations, P(T) also decayed approximately exponentially with T and 
increased as the system was brought closer to the jamming transi-
tion where the range of elastic interactions increases. This is consist-
ent with our mean-field model where P(T > 1) increases with the 
number of interacting neighbors N.

Memories of multiple training inputs
As emphasized above, noninteracting hysterons give rise to a hierarchy 
of memories so that when a larger-amplitude training shear is applied, 
it erases all memories of previous training with smaller amplitudes. 
When we introduce interactions, this is no longer the case; for  > 1, 
a single shear cycle is, by definition, not sufficient to bring the system 
to a periodic state. It is therefore possible that when a larger strain is 
applied to a system that has already been trained at a smaller ampli-
tude, there will be a signature left of the initial trained state. Such 
behavior was investigated in three systems showing “multiple-transient 
memories”: charge-density waves (25, 26), non-Brownian suspensions 
(10–12), and the park-bench model (1, 16). In those cases, there is a 
memory of the smaller-amplitude behavior that eventually vanishes as 
more training occurs at the larger amplitudes. The memory appears 
as a cusp in the readout at both training amplitudes. As training con-
tinues, the cusp at the smaller amplitude disappears, leaving only the 
single memory associated with the larger-amplitude input.

We have investigated the possibility of a second memory in our 
model of interacting hysterons. When we apply our two-amplitude 
training protocol with a second training pulse that has a smaller 
amplitude than the first one, 2 < 1, we see behavior that is similar 
to the noninteracting case of the Preisach model but with some dif-
ferences. This is shown in Fig. 3A. As in the Preisach model, there is 
a sharp cusp at both 1 and 2. However, when interactions are 
introduced, the cusp at 1 no longer occurs at d = 0, appearing instead 
at a finite value d > 0.

When the second training pulse has a larger amplitude than the 
first one, 2 > 1, the system retains a memory of the smaller amplitude 
input at 1. This would not have been possible in the noninteracting 
case. Figure 3B shows the readout for systems trained at different 
values of 1 and the same value of 2 (2 = 8) with 1 < 2. The curves 
are nearly the same but not identical; there is a signal that is buried 
in the small differences between the curves. This signal can be un-
covered by subtracting off the “background” (the curve d2 = 1 cor-
responding to 1 = 2 = 8, which is equivalent to training fully at 2): 
S ≡ d − d2 = 1. As shown in Fig. 3C, S not only has a cusp at 2, but 
the separate curves have a magnitude at 2 that is a roughly linear 
function of 1 as shown in the inset to Fig. 3C. The value of 1 can 
be determined by the magnitude of S(2).

When we fix the interactions to be either (+∆fix) or (−∆fix) (so that 
the splitting between values of    i  

+   is either 0 or 2∆fix, depending on 
the state of its neighbors), we find that the readout, S, has a second 
cusp structure that appears at (2 − 2∆fix). This appears as a peak in 
S″, the second derivative of the readout curve with respect to readout, 
as shown in Fig. 4. Adding a distribution, ∆range, around ∆fix shows 
a corresponding broadening of the cusp around (2 − 2∆fix), also 
seen in Fig. 4. S″ thus contains more than just the average interaction 
strength: For small interaction strength, S″ provides the distribution 
of interactions strengths between the hysterons.

We note that this is different from the double cusps that were 
seen in the case of multiple transient memories in suspensions and 
charge-density waves (10–12, 25, 26). In that case, the two cusps were 
determined by the two training amplitudes; here, only one cusp is 
related to the amplitude 2; the other is determined by the interaction 
strength |∆fix|.

Analysis of two- and three-hysteron systems
Focusing on small (N = 2 and 3) systems provides insight into the 
periodicity and memory capacity of interacting hysterons. It has 
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Fig. 2. Probability of  and T. Probability distributions of (A)  and (B) T in a mean-
field model of interacting hysterons where the parameter A in the distribution of 
interaction strengths, defined in Materials and Methods, was chosen to be A = 0.5. 
Inset in (B) shows P(T) versus T from simulations of cyclically sheared jammed packings, 
adapted from (5). In the inset, higher probability curves correspond to lower pressure 
where the system is closer to the jamming threshold.
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proven useful to describe such systems as directed graphs that rep-
resent each microstate of the system as a node with arrows showing 
how the system flows to other nodes as shear is applied (19, 27). 
Here, we use directed graphs to illustrate which states are visited 
and in what order, under cyclic shear of a particular amplitude. For 
small N, this makes it possible to enumerate all possible cases with a 
particular periodicity or training time. In such diagrams, we impose 
the rule that only one hysteron can flip at a time.

Although analytic calculations quickly become intractable for large 
system sizes, an analysis of the case N = 3 is possible and illustrates 
the nature of the approximately exponential decay of P(T) with 
T shown in Fig. 2B. Figure 5B shows all the directed graphs for 
N = 3 with T = 2 (up to hysteron swap, time reversal, and (+) ➔ (−) 
inversion, which contribute to the corresponding multiplicities). 

The probability of any such graph will depend on the multiplicity of 
each diagram and the probability of each arrow connecting two 
nodes. Although multiplicity of a given loop increases for larger 
numbers of microstates visited, there is also a fractional factor asso-
ciated with each outgoing arrow (shown in Fig. 5A for a particular 
choice of parameters), so that higher period loops are suppressed by 
some small fraction to a high power. This leads to the generic expo-
nential decrease of P(T) with T. We performed T = 2 and 3 calcula-
tions for N = 3 with simplified model parameters and found excellent 
agreement with simulation results as shown in Fig. 5C.

Analysis of systems with small interaction strength allows us to 
think of the interactions as perturbations about the noninteracting 
case and shows the origin of the second memory. This can be seen 
most clearly in two-hysteron systems, N = 2. For this case, Fig. 6 
shows all possible configurations with  = 2, which are the only 
systems that contribute to the background-subtracted readout S for 
1 = 0. Each of these configurations has at least one flipping strain 
that straddles ±2 due to an interaction. This is a limiting con-
straint (represented by a red circle in the figure) as it requires a bar 
end to be within ~ of 2 or −2. Type I configurations require only 
one limiting constraint, while the others require two or more. 
(The bar ends that are not circled must lie roughly within the inter-
vals indicated between the three horizontal dashed lines but do not 
have be within ~ of 2 or −2.) Therefore, when  < < |2|, type I 
configurations dominate because their contribution scales with ∆ 
rather than with ∆2 or ∆3. In the limit of small ∆, we can therefore 
analyze the effect of interactions by studying only this one case.

For 1 between 0 and 2, an additional configuration type becomes 
relevant. This is a more complex case in which  = 1 yet different 
amplitude cycles lead to different outcomes; however, the same gen-
eral picture applies. For any value of 1 < 2, these diagrams can be 
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Fig. 3. Readout for interacting model. (A) Averaged readout curve for N = 11 mean-field configurations with 1 > 2 in an interacting system with interaction strength 
A = 0.1. The curve, which shows two sharp cusps at 1 and 2, is nearly indistinguishable from that produced by noninteracting systems trained in the same way. However, 
d(1) is precisely zero for noninteracting systems and is small but nonzero for interacting systems. (B) Averaged readout curve for N = 11 mean-field configurations with 
different values of 1, all less than 2. All systems were trained at 2 = 8 and have interaction strength A = 0.1. Dashed line shows 2. The data points (shown with different 
colors and symbols sizes for clarity) lie very nearly on top of one another, so it is difficult to see the difference between them. (C) The same data as shown in (B) but with 
the curve for d1 = 2 = 8 subtracted off, leaving S ≡ d − d1 = 2. This reveals that there is extra structure in the readout indicating that a memory of the initial (smaller amplitude) 
input is still encoded in the system. Inset shows the magnitude of S at 2 as a function of 1; this magnitude is roughly linear in 1.
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Fig. 4. S″ for simplified interactions. S″, the second derivative of the back-
ground-subtracted readout, versus readout for N = 2 systems with 1 = 0 and 2 = 8. 
For (fix) interactions, there is a peak sharply localized around readout = 5, indicated 
by the black arrow. For (range) interactions, the peak is centered on the same value 
but is broadened. The (range) data points also show a peak just below readout = 8, 
corresponding to cases where flipping strains happened to have the same sign so 
that the resulting “splitting” was smaller than 1.
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used to demonstrate that there is no structure at readout = 1 in S. This 
memory is therefore in a different class from those found in suspen-
sions with multiple transient memories.

As long as the interaction strength is small, increasing N does not 
result in qualitatively different behavior, as shown in Fig. 7. For 
small ∆, we can thus understand even large systems as a perturbation 
around the type I behavior of two-hysteron interactions. For larger 
∆, we must include higher-order diagrams.

DISCUSSION
The probabilities of getting T > 1 and  > 1 and the exponential 
decay of P(T) with T, as observed in (5), are successes of this model. 
In cyclically sheared jammed packings, we expect systems closer to 
jamming (that is, at lower pressure) to have longer-range interactions, 
effectively coupling a larger number of rearranging regions. The 

increase in P(T > 1) with system size in our systems of hysterons is 
therefore consistent with the general trend seen in (5), where P(T > 1) 
increases with decreasing pressure. The effect of relative location of 
the interacting regions has been studied in the paper by Keim and 
Paulsen (28).

We see two distinct types of memory in Fig. 3C. As in noninter-
acting systems of hysterons, 2 is stored locally in the location of the 
cusp of the readout signal. There is no local signature such as a cusp 
in the response associated with the amplitude of 1 if 1 < 2 in 
accord with simulations of jammed systems (6). This is in contrast 
to the cusp-like second memory that was found in non-Brownian 
suspensions and charge-density waves (10–12, 25, 26). However, 
there is still a memory of 1 that is embedded in the magnitude of 
the readout; by calibrating the response, it is possible to determine the 
exact value of 1. This is a previously unidentified form of memory. Our 
results suggest that we can reinterpret readout curves from simulations 
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Fig. 5. Contributions to T = 2 for three-hysteron systems. (A) Template for N = 3 directed graphs showing all possible microstates and the probability of each transition 
for a set of three interacting hysterons under cyclic shear in the convenient case of simplified hysteron parameters as described in case (ii) of Materials and Methods. Note 
that the probabilities are the same for all arrows from one given horizontal level to another [for example, an arrow from (−++) to (−−+) has the same probability as the 
one from (+−+) to (+−−)] and are symmetric under inversion of the entire system [for example, an arrow from (−++) to (+++) has the same probability as the one from 
(+−−) to (−−−)]. (B) The three N = 3 directed graphs (up to hysteron swap, time reversal, and + ➔ − inversion) with T = 2. The probability of finding T = 2 is calculated by 
finding the probabilities and multiplicities of each graph. Note that each arrow contributes an additional factor as specified in (A), so that cycles with more arrows (for 
example, T > 1 compared with T = 1) tend to be less likely. (C) Comparison of calculation and simulation for simplified hysteron parameters as described in case (ii) of 
Materials and Methods.
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or bottom flipping strain, the state of the other hysteron corresponding to each value is shown. Limiting constraints (that is, flipping strains that must be within ~ of 
2 or −2) are circled; note that type I has only one such constraint, while types II to IV have two and type V has three.
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of jammed systems for different numbers of training cycles (2) likewise 
as a memory of the number of training cycles applied to the system.

It is especially exciting that this memory provides a way to 
measure the strength of the interactions present in an interacting 
system. We showed that for two Dirac delta functions at (±∆fix), we 
can read out the interaction strength directly from the readout signal. 
This survives to broader distributions. Thus, the shape of the readout 
signal S provides information about typical interaction strengths in 
the system. This could provide a new, possibly unique, method to 
determine this crucial parameter in real systems. A natural next step 
is to apply this training protocol to simulations of a jammed system. 
If our interacting model successfully captures the memory behavior 
of such systems, it could provide a simple method for measuring the 
distribution of interaction strengths between rearrangements.

Systems of hysterons have been used successfully to reproduce 
many elements of cyclically sheared jammed packings. We have re-
ported here further similarities for small systems when interactions 
are included. However, this is very unexpected, since systems of 
hysterons differ fundamentally from jammed packings; after all, there 
is a vast gap in the number of degrees of freedom between these two 
systems, and it is far from obvious that binary variables can adequately 
describe real, continuous systems. It may be that hysteron models 
describe well the behavior of jammed systems near their periodic 
orbit but fail to capture early transient behavior of large systems. 
Further simulations and experiments are essential for understanding 
when and why hysterons successfully capture the essence of their 
much more complex jammed counterparts. Nevertheless, the model 
that we have introduced here is of sufficient generality that it can be 
applied to a wide variety of systems, including those with more 
discrete variables than jammed packings.

MATERIALS AND METHODS
For simulations of the mean-field model, we report the results for 
three types of situations: (i) The interaction strengths    i,{m}  

+    and    i,{m}  
−    for 

hysteron i are chosen uniformly from [−A (   i,0  +   −   i,0  −   ), +A(   i,0  +   −   i,0  −   )] 
so that the interactions are scaled by the length of the hysteron they 
affect. That is, longer hysterons are more likely to have their flipping 
strains shifted by larger values. We choose A between 0 and 0.5. The 
distribution of initial hysteron lengths (   i,0  +   −   i,0  −   ) and midpoints 
(   i,0  +   +   i,0  −   )/2 are drawn randomly from between [0,20] and [−25,25], 
respectively. (ii) The distribution of initial hysteron lengths (   i,0  +   −   i,0  −   ) 
and midpoints (   i,0  +   +   i,0  −   )/2 are drawn randomly from between 

[9.99,10.01] and [−0.01,0.01], respectively, so that all hysterons are 
initially essentially identical. The interaction strengths    i,{m}  

+    and    i,{m}  
−    for 

hysteron i are chosen uniformly from [−A (   i,0  +   −   i,0  −   ), +A(   i,0  +   −   i,0  −   )] 
with A = 0.1. (iii) We fix the values of    i,{m}  

+    to be (±∆fix) so that    i  
+  =  

 i,0  +   ±     fix   and likewise for    i  
−  . In this case, the shifts are not scaled by 

the length of the hysteron that they affect. We choose the distribu-
tion of (   i,0  +   −   i,0  −   ) and (   i,0  +   +   i,0  −   )/2 to be drawn randomly from be-
tween [5,20] and [−25,25], respectively. In all cases, the results are 
averaged over between 104 and ~107 independent configurations.
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Fig. 7. S for two different system sizes. Comparison of background-subtracted 
readout S for N = 2 and N = 11 systems with interaction strength A = 0.05. The curves 
agree very well. Both curves are for 1 = 0 and 2 = 8 and are rescaled to equal 1 at 2.
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