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Supplementary Text 

Calculation of the chondrule cooling rate 

We present here the details of our model relating chondrule cooling rate to element condensation 

and isotopic fractionation (see (7, 58, 81) for similar modeling efforts). The initial temperature is 

the average peak temperature of porphyritic chondrules (1550 °C or 1823 K). We assume that at 

the beginning, chondrules and the surrounding gas are in elemental and isotopic equilibrium, and 

a linear cooling rate is then applied to the system. We assume that the chondrule melt and vapor 

form a closed system. As the system cools, alkali elements in the vapor become supersaturated and 

condense into the melt, reducing the vapor pressure. With fast cooling, the rate of condensation is 

insufficient to track the rapidly decreasing equilibrium vapor pressure and large oversaturation 

develops. With slow cooling, the rate of condensation allows the partial vapor pressure to track 

the equilibrium vapor pressure and no supersaturation can develop. 

 

Potassium is used as an example here, but the formalism can be applied to other elements. The 

equilibrium vapor pressure of gaseous K (the dominant vapor species for K) can be calculated 

using the following reaction,  

 

KO0.5(𝑠)
⇄ K(𝑔) +

1

4
O2(𝑔)

, (S1) 

 

The equilibrium constant (𝐾K) can be written as, 

 

𝐾K =
𝑃K,eq 𝑃O2

1/4

𝑎KO0.5

, (S2)  

 

where 𝑃K,eq and 𝑃O2
 are the equilibrium vapor pressures of K and O2, respectively, and 𝑎KO0.5

 is 

the activity of KO0.5 in melt. The activity 𝑎KO0.5
 can be rewritten as the product of activity 

coefficient (𝜒KO0.5
) and the concentration, which is the mole fraction of the species among all oxide 

species of the molten chondrule (𝑛KO0.5
𝑛Ox,tot⁄ ; with SiO2, TiO2, Al2O3, FeO, Cr2O3, MnO, MgO, 

NiO, CoO, CaO, NaO0.5, KO0.5, and RbO0.5 the oxides considered and 𝑛 the mol density in mol 

m−3). Equilibrium constants use pressure in bar, but here we convert it to SI unit Pa,  

 

𝐾K =

𝑃K,eq

105  (
𝑃O2
105 )1/4

𝜒KO0.5  (𝑛KO0.5
𝑛Ox,tot)⁄

 . (S3) 

 

Rearranging the equation to solve for the equilibrium vapor pressure of K, 

 

𝑃K,eq =
1025/4

𝑛Ox,tot

𝐾K 𝜒KO0.5

𝑃O2
1/4 𝑛KO0.5

. (S4) 

 

The condensation flux can be calculated using the Hertz-Knudsen equation (7, 58), which takes 

the form, 

 

𝐽𝑖 =
𝛾𝑖(𝑃𝑖,𝑒𝑞−𝑃𝑖)

√2𝜋𝑚𝑖𝑅𝑇
, (S5) 

 



 

 

 

 

where 𝐽𝑖  is the net condensation flux in the unit of mol m−2 s−1, 𝑖 can be an element or an isotope, 

𝛾𝑖  is the condensation coefficient, 𝑃𝑖,𝑒𝑞 and 𝑃𝑖 are equilibrium vapor pressure and actual partial 

vapor pressure of 𝑖 in the gas in unit of Pa, respectively, 𝑚𝑖 is the molar mass of the gas species in 

kg mol−1, 𝑅 is the gas constant that has a value of 8.314 m3 Pa K−1 mol−1, and 𝑇 is temperature in 

K. We assume that the gas surrounding the chondrule is well mixed and follows the ideal gas law, 

so that the total moles of K in the gas at any given time is 

 

𝑛K =
𝑃K 𝑉

𝑅𝑇
= 𝑃K

4𝜋ℛ3

3𝑅𝑇
, (S6) 

 

where 𝑉 is the volume and ℛ the radius of the gas parcel. Combining Eq. S6 and Eq. S5, and taking 

derivatives on both sides, one can write, 

 
𝑉

𝑅𝑇
𝑑𝑃K −

𝑃K 𝑉

𝑅𝑇2 𝑑𝑇 =
𝛾K(𝑃K,eq−𝑃K)

√2𝜋𝑚K𝑅𝑇
4𝜋𝑟2𝑑𝑡, (S7) 

 

where 𝑟 is the radius of molten chondrule in meter, which is approximately constant during 

condensation as only the most volatile elements are in the vapor phase. By rearranging the above 

equation, one gets, 

 

1

𝑇
 
𝑑𝑃K

𝑑𝑡
−

𝑃K

𝑇2

𝑑𝑇

𝑑𝑡
= 3𝛾K(𝑃K,eq − 𝑃K)

𝑟2

ℛ3 √
𝑅

2𝜋𝑚K𝑇
. (S8) 

 

In a closed system, the total amount of K is always equal to the sum of K in the molten chondrule 

and in the gas, 

 

𝑃K
4𝜋ℛ3

3𝑅𝑇
+ 𝑛KO0.5

4𝜋𝑟3

3
= 𝑛K,tot

4𝜋𝑟3

3
, (S9) 

 

where 𝑛 is in mol m−3. Equation S9 can be simplified as, 

 

𝑃K = 𝑅𝑇(𝑛K,tot − 𝑛KO0.5
)

𝑟3

ℛ3
. (S10) 

 

Taking the derivatives on both sides, it follows, 

 

𝑑𝑃K = 𝑅(𝑛K,tot − 𝑛KO0.5
)

𝑟3

ℛ3 𝑑𝑇 −  𝑅𝑇
𝑟3

ℛ3  𝑑𝑛KO0.5
. (S11) 

 

Inserting Eqs. S4, S10, and S11 into Eq. S8, we get,  

 
𝑑𝑛KO0.5

𝑑𝑡
=

3𝛾K

𝑟
√

𝑅𝑇

2𝜋𝑚K
[

𝑟3

ℛ3 𝑛K,tot − (
𝑟3

ℛ3 +
1025/4

𝑛Ox,tot

𝐾K 𝜒KO0.5

𝑅𝑇 𝑃O2
1/4) 𝑛KO0.5

]. (S12) 

 

Imposing a linear cooling rate on the condensation by assuming 

 

𝑇(𝑡) = 𝑇0 + 𝛷𝑡, (S13) 

 



 

 

 

 

and replacing 𝑛KO0.5
 with 𝑛K, we have, 

 

𝑑𝑛K

𝑑𝑇
=

3𝛾K

𝑟𝛷
√

𝑅𝑇

2𝜋𝑚K
[

𝑟3

ℛ3 𝑛K,tot − (
𝑟3

ℛ3 +
1025/4

𝑛Ox,tot

𝐾K 𝜒K

𝑅𝑇 𝑃O2
1/4) 𝑛K]. (S14) 

 

By dividing both sides by the total amount of K, the differential equation describing how the 

condensed fraction evolves as a function of temperature takes the form, 

 

𝑑𝑓K

𝑑𝑇
=

3𝛾K

𝑟𝛷
√

𝑅𝑇

2𝜋𝑚K
[

𝑟3

ℛ3 − (
𝑟3

ℛ3 +
1025/4

𝑛Ox,tot

𝐾K𝜒K

𝑅𝑇 𝑃O2
1/4) 𝑓K]. (S15) 

 

The partial differential equations S14 and S15 apply to both elements and isotopes. In the 

equations, 𝑛K and 𝑓K are the amount and the fraction of K in the molten chondrule (i.e., the 

condensed fraction of K), respectively, 𝑇 is temperature in K, 𝛷 is cooling rate in K s−1, 𝑅 is the 

gas constant 8.314 m3 Pa K−1 mol−1, and 𝑚K is the molar mass of K (39.098 g mol−1). We assume 

the radius of chondrule (𝑟) to be a constant value of 0.5 mm, which is typical for chondrules (82) 

and was used in previous models of chondrule formation (e.g., (55, 70, 81)). The radius of the gas 

(ℛ) surrounding the molten chondrule is set by the fraction of K in the chondrule melt (𝑓K,0) at 

peak temperature (𝑇0) assuming gas-melt equilibrium, 

 

ℛ = 𝑟 [
(1−𝑓K,0)

𝑓K,0

𝑛Ox,tot

1025/4

𝑅𝑇0 𝑃O2
1/4

𝐾K𝜒K
]1/3. (S16) 

 

The peak temperature 𝑇0 is set at 1550 °C or 1823 K; the average peak temperature of porphyritic 

chondrules (63, 64). Chondrules have different textures for which different peak melting 

temperatures are invoked (e.g., (63, 64, 67)), but the majority of chondrules (~80%) are porphyritic 

(83). We calculate that ℛ must be between 0.04 and 0.2 m (Fig. S3), in agreement with previous 

estimates (e.g., (48, 54, 84)) . 𝑛Ox,tot in mol m−3 is assumed to be constant during condensation 

and is calculated by assuming a bulk CI-composition. The assumption that this value is constant 

is realistic because alkali elements only represent a small fraction of CI components (NaO0.5, KO0.5 

and RbO0.5 represent only 2 mol% of all oxides in total). The product 𝐾K 𝜒K 𝛾K depends on 

temperature, and the value can be determined experimentally. In this work we use the data from 

(62), which gives the latest constraints on alkali element evaporation/condensation kinetics based 

on vacuum evaporation experiments. In the above equations, the evaporation coefficient 𝛾K has to 

be separated from 𝐾K𝜒K. We assume a constant value of 0.1 for 𝛾K (and for 𝛾Na and 𝛾Rb) and we 

use the following relationships (62), 

 

ln(𝜒K 𝛾K) = −29265/T + 3.4593, (S17) 

ln(𝜒Na 𝛾Na) = −22239/T + 2.4947, (S18) 

ln(𝜒Rb 𝛾Rb) = −35020/T + 7.4795. (S19) 

 

The oxygen partial pressure 𝑃O2
 in Pa was calculated by assuming a constant oxygen fugacity of 

IW−1.5 (54, 55), which varies with temperature following the relationship (85), 

 

𝐿𝑜𝑔10𝑃O2
= 3.5 −

27489

𝑇
+ 6.072. (S20) 



 

 

 

 

 

Using Eq. S15, one can calculate the fraction of an element condensed as a function of temperature 

for various cooling rates. Applying Eq. S14 to isotopes, one can calculate the condensed amount 

of each isotope and the isotopic composition of the condensate. We used Mathematica to solve 

these partial differential equations numerically.  

 

Test of the numerical model: instantaneous cooling 

We solved the partial differential equations describing condensation in the time (Eq. S12) and 

temperature domains (Eq. S14) and the results are consistent. The differential equations were 

solved numerically using Mathematica as they do not have simple analytical solutions. In this 

section, we consider the special case of instantaneous cooling, whereby a system that is at 

equilibrium at temperature 𝑇0, evolves to a new equilibrium when the temperature suddenly drops 

to a lower temperature 𝑇𝑒. Such a cooling scheme simplifies the equations and allows us to derive 

an analytical solution, which can be compared to the numerical solution, thereby providing a 

means of testing the numerical model.  

 

We consider a closed system comprising a well-mixed melt sphere surrounded by a concentric 

shell of well-mixed vapor (similar to the chondrule setting). As a result of the sudden drop in 

temperature, the vapor that was at equilibrium with the liquid at 𝑇0 becomes supersaturated, 

resulting in condensation that will continue until liquid and vapor reach equilibrium at 𝑇𝑒. Bourdon 

and Fitoussi (86) developed an analytical equation for a similar scenario. They used Eq. B23 from 

Dauphas et al. (8) to calculate the instantaneous isotopic fractionation factor associated with 

condensation from a supersaturated vapor medium. That formula, however, assumes that the 

isotopic composition of each increment of condensate is solely set by the condensation flux, which 

is not the case here, unless transport in the liquid is diffusion limited. We assume instead that the 

equilibrium vapor pressure is set by the bulk liquid, meaning that the condensing atoms can mix 

instantaneously with atoms already in the liquid. Furthermore, Bourdon and Fitoussi (86) did not 

track the temporal evolution of the system. Below, we solve Eq. S12 for instantaneous cooling. 

We allow for instantaneous mixing in the liquid and track the temporal evolution of the system. 

 

To simplify the expressions, we start by replacing 𝑛KO0.5 with the notation 𝑛K (the amount of K in 

the condensate in mol m−3) in Eq. S12, 

 

𝑑𝑛K

𝑑𝑡
=

3𝛾K

𝑟
√

𝑅𝑇

2𝜋𝑚K
[

𝑟3

ℛ3 𝑛K,tot − (
𝑟3

ℛ3 +
1025/4

𝑛Ox,tot

𝐾K  𝜒K

𝑅𝑇 𝑃O2
1/4) 𝑛K]. (S21) 

 

The temperature 𝑇 is changed instantaneously and the system stays at that temperature afterwards, 

so the only time-dependent variable is 𝑛K. We can simplify this equation by using the notation 

𝑛K,𝑒, which is the amount of K that would be in the condensate (in mol m−3) if the system was 

allowed to evolve for long enough to reach equilibrium at 𝑇𝑒 (i.e., 𝑑𝑛K,𝑒 𝑑𝑡⁄ = 0),  

 

𝑛K,𝑒 =
𝑟3𝑛K,tot

ℛ3 (
𝑟3

ℛ3 +
1025/4

𝑛Ox,tot

𝐾K 𝜒K

𝑅𝑇 𝑃O2
1/4)⁄ . (S22) 

 

Equation S21 can then be rewritten as, 

 



 

 

 

 

𝑑𝑛K

𝑑𝑡
= 3𝛾K√

𝑅𝑇

2𝜋𝑚K

𝑟2

ℛ3 𝑛K,tot (1 −
𝑛K

𝑛K,𝑒
). (S23) 

 

Rearranging and integrating the equation from time zero (𝑡 = 0, 𝑛K = 𝑛K,0) to time 𝑡, we have, 

 

𝑛K

𝑛K,𝑒
= 1 − (1 −

𝑛K,0

𝑛K,𝑒
)  𝑒

−3𝛾K√
𝑅𝑇

2𝜋𝑚K
 
𝑟2

ℛ3  
𝑛K,tot

𝑛K,𝑒
 𝑡

. (S24) 

 

Introducing the notations 𝑓0 = 𝑛K,0/𝑛K,tot, 𝑓 = 𝑛K/𝑛K,tot, and 𝑓𝑒 = 𝑛K,𝑒/𝑛K,tot, which represent 

the fractions of K in the condensate at the start, at any time t, and at equilibrium, respectively, Eq. 

S24 takes the form, 

 

𝑓 = 𝑓𝑒 − (𝑓𝑒 − 𝑓0) 𝑒
−3𝛾K√

𝑅𝑇

2𝜋𝑚K
 
𝑟2

ℛ3  
𝑡

𝑓𝑒. (S25) 

 

The equation gives the time evolution of the condensed K fraction. From this equation, we can 

also express 𝑡 as a function of the condensed fraction 𝑓,  

 

𝑡 = −
𝑓𝑒

3𝛾K√
𝑅𝑇

2𝜋𝑚K
 
𝑟2

ℛ3

ln
𝑓𝑒−𝑓

𝑓𝑒−𝑓0
. (S26) 

 

We can apply Eq. S25 to isotopes j and i,  

 

𝑓𝑗 = 𝑓𝑒,𝑗 − (𝑓𝑒,𝑗 − 𝑓0,𝑗) 𝑒
−3𝛾K,𝑗√

𝑅𝑇

2𝜋𝑚K,𝑗
 
𝑟2

ℛ3 
𝑡

𝑓𝑒,𝑗
. (S27) 

𝑓𝑖 = 𝑓𝑒,𝑖 − (𝑓𝑒,𝑖 − 𝑓0,𝑖) 𝑒
−3𝛾K,𝑖√

𝑅𝑇

2𝜋𝑚K,𝑖
 
𝑟2

ℛ3 
𝑡

𝑓𝑒,𝑖. (S28) 

 

We are interested in the isotopic ratio in the condensate, which can be obtained by dividing Eq. 

S27 by Eq. S28, 

 

𝑛K,𝑗 𝑛K,𝑖⁄

𝑛K,tot,𝑗 𝑛K,tot,𝑖⁄
=

𝑓𝑗

𝑓𝑖
=

𝑓𝑒,𝑗−(𝑓𝑒,𝑗−𝑓0,𝑗) 𝑒

−3𝛾K,𝑗√
𝑅𝑇

2𝜋𝑚K,𝑗
 
𝑟2

ℛ3 
𝑡

𝑓𝑒,𝑗

𝑓𝑒,𝑖−(𝑓𝑒,𝑖−𝑓0,𝑖) 𝑒

−3𝛾K,𝑖√
𝑅𝑇

2𝜋𝑚K,𝑖
 
𝑟2

ℛ3 
𝑡

𝑓𝑒,𝑖

. (S29) 

 

The left side of the equation is the isotopic ratio 𝑗/𝑖 in the condensate divided by that in the bulk. 

We can simplify the right side of the equation, by introducing the equilibrium isotopic fractionation 

factor (𝛼) between the condensate and the vapor, 

 

𝛼𝑒 =
𝑛K,𝑒,𝑗/𝑛K,𝑒,𝑖

(𝑛K,tot,𝑗−𝑛K,𝑒,𝑗)/(𝑛K,tot,𝑖−𝑛K,𝑒,𝑖)
=

𝑓𝑒,𝑗/𝑓𝑒,𝑖

(1−𝑓𝑒,𝑗)/(1−𝑓𝑒,𝑖)
, (S30)  

𝛼0 =
𝑛K,0,𝑗/𝑛K,0,𝑖

(𝑛K,tot,𝑗−𝑛K,0,𝑗)/(𝑛K,tot,𝑖−𝑛K,0,𝑖)
=

𝑓0,𝑗/𝑓0,𝑖

(1−𝑓0,𝑗)/(1−𝑓0,𝑖)
. (S31) 

 



 

 

 

 

We therefore have, 

 

𝑓𝑒,𝑗 =
𝛼𝑒

1−𝑓𝑒,𝑖+𝛼𝑒𝑓𝑒,𝑖
𝑓𝑒,𝑖. (S32) 

𝑓0,𝑗 =
𝛼0

1−𝑓0,𝑖+𝛼0𝑓0,𝑖
𝑓0,𝑖. (S33) 

 

To simplify the exponential terms in Eq. S29, we express them as a function 𝑦(𝑥), with 𝑥 =
𝛾K √𝑚K⁄ ,  

 

𝑦(𝑥) = 𝑒
−3𝑥√

𝑅𝑇

2𝜋
 
𝑟2

ℛ3 
𝑡

𝑓𝑒. (S34) 

 

The difference between 𝛾K,𝑗 √𝑚K,𝑗⁄  and 𝛾K,𝑖 √𝑚K,𝑖⁄  is small as we are considering two isotopes 

of the same element with nearly the same mass. Therefore, we can use the following 

approximation,  

 

𝑦(𝑥𝑗) ≃ 𝑦(𝑥𝑖) +
𝜕𝑦

𝜕𝑥𝑖
(𝑥𝑗 − 𝑥𝑖), (S35) 

 

which translates to,  

 

𝑒
−3𝛾K,𝑗√

𝑅𝑇

2𝜋𝑚K,𝑗
 
𝑟2

ℛ3 
𝑡

𝑓𝑒,𝑗
≃  [1 − √

𝑅𝑇

2𝜋

3𝑟2

ℛ3

𝑡

𝑓𝑒,𝑖
(

𝛾K,𝑗

√𝑚K,𝑗
−

𝛾K,𝑖

√𝑚K,𝑖
)] 𝑒

−3𝛾K,𝑖√
𝑅𝑇

2𝜋𝑚K,𝑖
 
𝑟2

ℛ3  
𝑡

𝑓𝑒,𝑖. (S36) 

 

If we introduce the kinetic isotopic fractionation factor 𝛼𝑘𝑖𝑛, 

 

𝛼𝑘𝑖𝑛 =
𝛾K,𝑗

√𝑚K,𝑗
/

𝛾K,𝑖

√𝑚K,𝑖
 , (S37) 

 

Eq. S36 can then be expressed as, 

 

𝑒
−3𝛾K,𝑗√

𝑅𝑇

2𝜋𝑚K,𝑗
 
𝑟2

ℛ3 
𝑡

𝑓𝑒,𝑗
≃ [1 − √

𝑅𝑇

2𝜋

3𝑟2

ℛ3

𝑡

𝑓𝑒,𝑖

𝛾K,𝑖

√𝑚K,𝑖
(𝑎𝑘𝑖𝑛 − 1)] 𝑒

−3𝛾K,𝑖√
𝑅𝑇

2𝜋𝑚K,𝑖
 
𝑟2

ℛ3 
𝑡

𝑓𝑒,𝑖. (S38) 

 

Introducing Eqs. S26, S32, S33, and S38 into Eq. S29, and using the following approximation 

(𝛼𝑘𝑖𝑛 − 1 is close to 0),  

 

 (𝛼𝑘𝑖𝑛 − 1) 𝑙𝑛
𝑓𝑒,𝑖−𝑓𝑖

𝑓𝑒,𝑖−𝑓0,𝑖
≃ (

𝑓𝑒,𝑖−𝑓𝑖

𝑓𝑒,𝑖−𝑓0,𝑖
)

(𝛼𝑘𝑖𝑛−1)

− 1, (S39) 

 

Eq. S29 can be simplified as, 

 
𝑛K,𝑗 𝑛K,𝑖⁄

𝑛K,tot,𝑗 𝑛K,tot,𝑖⁄
=

𝛼𝑒𝑓𝑒

𝑓(1+𝛼𝑒𝑓𝑒−𝑓𝑒)
+ [

𝛼0𝑓0

𝑓(1−𝑓0+𝛼0𝑓0)
−

𝛼𝑒𝑓𝑒

𝑓(1+𝛼𝑒𝑓𝑒−𝑓𝑒)
] (

𝑓𝑒−𝑓

𝑓𝑒−𝑓0
)

𝛼𝑘𝑖𝑛

. (S40) 



 

 

 

 

 

The isotopic composition of the condensate 𝛿𝑐 (relative to the bulk) as a function of the condensed 

fraction 𝑓 then takes the form,  

 

𝛿𝑐 = 1000 ln {
𝛼𝑒𝑓𝑒

𝑓(1+𝛼𝑒𝑓𝑒−𝑓𝑒)
+ (

𝛼0𝑓0

𝑓(1+𝛼0𝑓0−𝑓0)
−

𝛼𝑒𝑓𝑒

𝑓(1+𝛼𝑒𝑓𝑒−𝑓𝑒)
) (

𝑓𝑒−𝑓

𝑓𝑒−𝑓0
)

𝛼𝑘𝑖𝑛
}. (S41) 

 

Using the fact that 𝛼0 ≃ 1, 𝛼𝑒 ≃ 1, and 𝛼𝑘𝑖𝑛 ≃ 1, one can show that Eq. S41 can be approximated 

as, 

 

𝛿𝑐 =
(1−𝑓𝑒)𝑓𝑒(𝑓−𝑓0)

𝑓(𝑓𝑒−𝑓0)
Δ𝑒 +

(𝑓−𝑓𝑒)𝑓0(𝑓0−1)

𝑓(𝑓𝑒−𝑓0)
Δ0 +

(𝑓−𝑓𝑒)

𝑓
ln (

𝑓𝑒−𝑓

𝑓𝑒−𝑓0
) Δ𝑘𝑖𝑛, (S42) 

 

where Δ is isotopic fractionation in ‰ defined as Δ = 1000 (𝛼 − 1). 
 

𝛿𝑐 (i.e., Eq. S42) can also be expressed as a function of time by simply replacing 𝑓 with the 

expression that gives its time evolution (Eq. S25). 

 

Below, we validate our numerical simulations against the formula that we have derived for 

instantaneous cooling. In our numerical model, we simulate instantaneous cooling by equilibrating 

chondrule melt and vapor at an initial temperature 𝑇0 of 1823 K, and then setting a lower 

temperature for the system to evolve to equilibrium. At the initial temperature, with the assumed 

radius of the chondrule (𝑟 = 0.5 mm) and the preferred radius of the surrounding gas parcel (ℛ = 

0.069 m), about 0.24×CI K is in the melt and 0.76×CI K in the vapor (i.e., 𝑓0 = 0.24). Isotopic 

fractionation factors are assumed to be 𝛼𝑘𝑖𝑛 = √𝑚 K 39 /𝑚 K 41 , and 𝛼0 = 𝛼𝑒 = 1. We calculate the 

evolution trajectories for various final temperatures, corresponding to different fractions of the 

element in the melt at final equilibrium. In Fig. S2, we show the cooling trajectories for five 

temperature drops (final temperature 𝑇𝑒 ranging from 1773 K to 1323 K). The plots show the time 

evolution of the condensed fraction 𝑓 (Fig. S2A) and the isotopic fractionation of the condensate 

𝛿𝑐 (Fig. S2B), as well as 𝛿𝑐 against 𝑓 (Fig. S2C). We also plot on the figure the results from our 

analytical equations (Eqs. S42 and S25). As shown in Fig. S2, the curves obtained using the 

numerical model (solid lines) agree with the analytical equations (open symbols), which validates 

the numerical model. The curves show that as the degree of undercooling Δ𝑇 = 𝑇𝑒 − 𝑇0 gets 

higher, the fraction of K condensed and the maximum isotopic fractionation produced are larger, 

as is expected. 

 

Radius of the chondrule ambient gas (ℛ) and average chondrule cooling rate 

As discussed above, the value of ℛ is determined by the fraction of K in the chondrule melt (𝑓K) 

at the peak temperature of 1823 K (Eq. S16). Because equilibrium is assumed at peak temperature, 

the value of ℛ does not depend on the cooling rate. Different ℛ values would, however, lead to 

different cooling rates, and different elemental and isotopic trajectories. The fraction of K in 

chondrule at peak temperature is not precisely known, but previous work showed that most likely 

chondrules did not lose all their MVEs during heating. A study of Na content in olivine phenocrysts 

in type I and II chondrules concluded that significant amount of Na was present when olivine was 

crystalizing (48). Another study of Na abundance in melt inclusions in olivine and chondrule 

glasses in type II chondrules showed that melt inclusions in olivine had Na amount lower than 



 

 

 

expected from crystal-liquid elemental fractionation relative to chondrule glass (49). According to 

(49), chondrules could have evaporated ~50% or more of their total condensed Na before re-

condensation.  

 

These studies are mainly based on type II chondrules in ordinary chondrites. In carbonaceous 

chondrites, type I chondrules dominate, and they are more depleted in MVEs (87). Type II 

chondrules have inventories of Na and K close to CI, but type I chondrules have K abundance of 

~0.48×CI (Table S1). For lack of better constraints, we assume that similar to type II chondrules, 

type I chondrules retained about 50 % (i.e., ~0.24×CI) of their final inventory of K (i.e., ~0.48×CI) 

at peak temperature. In other words, at peak temperature, 0.24×CI K is in the chondrule melt and 

0.76×CI K is in the gas. Another ~0.24×CI K then condenses from the gas into the chondrule melt 

during cooling, making up a total of ~0.48×CI K in the chondrule component. The ℛ value and 

the cooling rate constrained based on this assumption are 0.069 m (Fig. S3; corresponding to a 

number density of 727 chondrule/m) and ~560±180 K/hr (Fig. 4), respectively. 

 

Given uncertainties in the fraction of K in type I chondrule melt at peak temperature, we also 

calculated two extreme conditions, one with chondrules retaining 0.048×CI K (i.e., only 10 % of 

their current K content) at peak temperature, and the other with chondrules retaining 0.43×CI K 

(i.e., 90 % of their current K content) at peak temperature. In the two scenarios, the ℛ values are 

calculated to be 0.127 m and 0.052 m, respectively, and the corresponding chondrule number 

densities are ~117 chondrule/m3 and ~1698 chondrule/m3. The calculated average chondrule 

cooling rates for these two scenarios are ~80±25 K/hr and ~1500±450 K/hr, respectively (Fig. S4). 

These cooling rate estimates based on Rb and K isotopes are consistent with the cooling rates (10–

1000 K/hr) constrained from laboratory experiments aimed at reproducing chondrule textures (e.g., 

(66–68) and references therein). 

 

Cooling rates recorded by individual chondrules 

The elemental and isotopic compositions of the calculated chondrule component represent 

averages. Individual chondrules have variable compositions and they might have experienced 

different thermal histories. Jiang et al. (22) measured the isotopic compositions of K in individual 

bulk chondrules from Allende. A difficulty with interpreting single chondrule data is that the 

isotopic compositions of individual chondrules may have been modified by parent-body aqueous 

alteration and metamorphism. In Allende, fine-grained refractory inclusions, which presumably 

did not incorporate any Na or K when they formed at high temperature in the nebula, are now full 

of Na-rich aqueous alteration products such as nepheline and sodalite (32), demonstrating that Na 

was extensively mobilized by fluids on the Allende parent body. A second complication is that 

sample selection might have been biased towards larger chondrules as small chondrules would be 

challenging to separate and analyze. With these caveats in mind, we can use the same modeling 

approach as that used for our chondrule component to calculate the cooling rates of the individual 

chondrules measured in (22).  

 

In Table S2, we report the calculated cooling rates of individual chondrules. The isotopic 

compositions of individual chondrules relative to CI-like matrix (Δ41KChondrule-CI) were obtained by 

subtracting the δ41K value of CI-like matrix constrained in this study (0.04±0.08 ‰) from that of 

the individual chondrules reported in (22). The isotopic compositions (relative to CI-like matrix) 

range from −0.28 to −0.91 ‰, with a weighted bulk of −0.39±0.05 ‰ (weighted by chondrule size 



 

 

 

 

and K content), similar to that of our calculated chondrule component (−0.37±0.15 ‰; Table S1). 

The degrees of K depletion in the chondrules were quantified using K/Al ratios (22) normalized to 

that of CI chondrites (0.0651; (88)). To calculate cooling rates, the radii of the chondrule (𝑟) and 

of the surrounding gas (ℛ) are needed. The chondrule radii were calculated using the reported 

chondrule weights (22) by assuming a density of 3.15 g cm−3 (82). We further assume a constant 

ℛ/𝑟 ratio, meaning that at large scale, the chondrule-gas cloud had a homogeneous density of 

condensable mass. For lack of better constraints, we anchor this ratio to the values that we used to 

calculate the condensation trajectories of the chondrule component (Figs. 4 and S4). We 

considered two ℛ/𝑟 ratios (ℛ/𝑟 = 254 and 138; Table S2) in our calculation, corresponding to 

0.048×CI and 0.24×CI K in the chondrule component at peak temperature, respectively. 

 

Assuming a constant ℛ/𝑟 ratio results in the same amount of K relative to CI present in the 

chondrule melt at peak temperature (1823 K; the starting point of the simulation) for all chondrules 

(~0.048×CI for ℛ/𝑟 = 254 and 0.24×CI for ℛ/𝑟 = 138). No cooling rate was obtained for 

chondrule #13 from (22) because its total K amount is only 0.03×CI (Table S2), which is less than 

the calculated initial amount of 0.048×CI. For ℛ/r = 254, the calculated cooling rates of individual 

chondrules range from 50 to 400 K/hr (except for chondrule #13). For the lower ℛ/r ratio of 138, 

cooling rates were obtained for 11 out of 17 chondrules, with values ranging from 400–2300 K/hr. 

The cooling rates inferred for these chondrules are overall in agreement with estimates based on 

chondrule textures (~10–1000 K/hr; e.g., (66–68) and references therein). However, as discussed 

above, the K inventories and isotopic compositions of chondrules in Allende may have been 

affected by parent-body processing. 

  



 

 

 

 

 

Fig. S1. 

Rubidium isotopic compositions measured in this study compared with previously published data 

(17). Discrepancies are found for Murchison and Vigarano (panel A). We used two different 

chromatography methods to test the accuracy of our Rb data and found very consistent results (see 

Methods). When plotting against Te isotopic compositions in (23), our Rb data show a trend with 

Te, which was not clear in previously published data (panel B). 

  



 

 

 

 

 

Fig. S2. 

Modeled composition of the liquid condensate during instantaneous cooling, calculated by 

assuming initial equilibrium at 1823 K between liquid and vapor (concentric spheres with radii of 

0.5 mm and 0.069 m, respectively), and instantaneously decreasing the temperature so that the 

vapor becomes supersaturated. The curves are labelled with the final temperatures. The solid lines 

were calculated using our numerical model (Eqs. S12 and S14), while the open symbols were 

calculated using the analytical equations derived in the Supplement (Eqs. S25 and S42). As shown, 

the two modeling approaches agree, which validates our numerical code for calculating isotopic 

fractionation during condensation for finite cooling rates. 

  



 

 

 

 

 

Fig. S3. 

Fraction of alkali elements in chondrule melt (as opposed to ambient gas) at assumed peak 

temperature (1823 K) as a function of the radius ℛ of the gas parcel surrounding a 0.5 mm-radius 

chondrule. Equilibrium between the chondrule melt and the gas is assumed. The K and Rb amount 

in the chondrule component (i.e., the total condensed amount) are 0.48×CI and 0.43×CI 

respectively (Table S1). Assuming that 0.24×CI K (i.e., half of the total K in the chondrule 

component; blue dashed line) remained in the chondrule melt at peak temperature, the gas radius 

ℛ surrounding the chondrule droplet would be 0.069 m (black dashed line), and the corresponding 

Rb amount in the chondrule melt at the temperature would be ~0.1×CI (orange dashed line). 

  



 

 

 

 

 

Fig. S4. 

Modeled trajectories of Rb and K isotopic fractionations against their condensed fractions during 

chondrule cooling. The chondrule was set to have a radius of 0.5 mm. Two scenarios with different 

gas radii ℛ are considered: panels A and B assume that 0.048×CI K is present in the chondrule 

melt at the peak temperature of 1823 K (corresponding to ℛ = 0.127 m; Fig. S3), and panels C and 

D assume that 0.43×CI K is present in the chondrule melt at the peak temperature (corresponding 

to ℛ = 0.052 m; Fig. S3). The Rb and K compositions of the chondrule component (yellow stars) 

give consistent cooling rates within error for each scenario, and the cooling rates are 80±25 K/hr 

(weighted mean of cooling rates from K and Rb) in the first scenario and 1500±450 K/hr in the 

second scenario.  



 

 

 

 

 

Fig. S5. 

Modeled trajectories of chondrule melt composition during cooling under finite cooling rates. The 

calculation was done by assuming an initial temperature of 1823 K, and adopting radii for the 

chondrule and surrounding vapor of 0.5 mm and 0.069 m, respectively. Panels A, C, and E are for 

Rb condensation, while panels B, D, and F are for K condensation.  

 



  

Table S1. 

Average Rb, K, Te, and Zn elemental and isotopic compositions of the CC groups and the calculated chondrule and matrix components. 

 

Matrix 

mass 

fraction* Rb (μg/g) K (μg/g) Te (μg/g) Zn (μg/g) 

δ87Rb ± 2σ 

(‰)‡ 

δ41K ± 2σ  

(‰)‡ 

δ128Te ± 2SD 

(‰) 

δ66Zn ± 2SD 

(‰) 

CI 1 2.3† 546† 2.29±0.10* 309† 0.17±0.02 
−0.07±0.61§ 

(−0.20±0.57)§ 
0.15±0.04* 0.46±0.10|| 

CM 0.41±0.12 1.7† 403† 1.43±0.15* 180† 0.12±0.02 −0.12±0.35 0.08±0.02* 0.38±0.04|| 

CV 0.30±0.07 1.3† 310† 0.90±0.13* 107† 0.07±0.21 −0.27±0.92 0.01±0.02* 0.24±0.12|| 

CO 0.20±0.12  1.5† 345† 0.82±0.03* 100† 0.07±0.44 −0.15±1.19 −0.03±0.03* 0.17±0.11|| 

CR 0.09±0.05 1.1† 303† 0.49±0.03* 96† 
 

   

Tagish Lake 0.64±0.23 1.8† 334† 1.67±0.04* 216† 
 

   

CI-like 

matrix¶  
1 2.37±0.15 535.7±35.9 2.31±0.10 307.3±19.8 0.19±0.03 0.04±0.08 0.15±0.01 0.47±0.03 

Chondrule 

component¶ 
0 1.00±0.06 259.7±14.3 0.34±0.05 59.6±7.4 0.04±0.05 −0.33±0.12 −0.38±0.09 0.05±0.09 

Abundance in chondrule 

relative to matrix 
0.42±0.04 CI 0.48±0.04 CI 0.15±0.02 CI 0.19±0.03 CI     

Isotope fractionation 

(Δchondrule-matrix) 
    −0.15±0.06 −0.37±0.15 −0.53±0.10 −0.42±0.10 

*Matrix mass fractions, Te concentrations and isotopic compositions are from (23, 89–95). †Rubidium, K, and Zn concentrations of CC groups are 

from (26), and a ±10% error was assumed for these concentrations when calculating the elemental composition of the chondrule component by linear 

regression (Fig. 2). ‡Group means and errors of Rb and K isotopic compositions are calculated as weighted means and 95% c.i. using Isoplot. §The 

average CI δ41K value is −0.07±0.61 when Ivuna is excluded and is −0.20±0.57 when Ivuna is included. ||Zinc isotopic compositions are taken from 

(24, 25). ¶The elemental and isotopic compositions of the CI-like matrix and the chondrule component are calculated using the linear regressions in 

Fig. 2.  

  



 

 

 

 

Table S2.  

Calculated cooling rates of individual chondrules. 

No.* 

Chond. wt. 

(mg)* 

Chond. radius 

𝒓 (mm)† 

(K/Al)CI wt. 

ratio‡ Δ41KChond.-CI
§ 

Assumed 

total K 

(×CI)|| 

Gas radius 

𝓡 (m) 

 (𝓡/𝒓=254)¶ 

Cooling rate 

(K/hr)# 

Gas radius 

𝓡 (m) 

 (𝓡/𝒓=138)¶ 

 Cooling 

rate (K/hr)# 

CH1 8.22 0.854 0.507 −0.28±0.09 1 0.217 51±18 0.118 390±120 

CH2 12.9 0.992 0.123 −0.31±0.08 1 0.252 145±40 0.137 / 

CH3 18.67 1.123 0.276 −0.38±0.08 1 0.285 75±15 0.155 580±120 

CH4 9.47 0.895 0.184 −0.28±0.09 1 0.227 100±30 0.124 / 

CH5 4.58 0.703 0.476 −0.34±0.08 1 0.179 78±20 0.097 600±150 

CH6 2.36 0.563 0.154 −0.42±0.11 1 0.143 280±80 0.078 / 

CH7 1.51 0.486 0.630 −0.33±0.10 1 0.123 110±30 0.067 820±240 

CH8 4.26 0.686 0.307 −0.38±0.14 1 0.174 112±45 0.095 880±320 

CH9 4.62 0.705 0.276 −0.45±0.08 1 0.179 140±25 0.097 1120±200 

CH10 3.79 0.660 0.108 −0.48±0.09 1 0.168 400±100 0.091 / 

CH11 8.92 0.878 0.276 −0.31±0.09 1 0.223 78±25 0.121 600±180 

CH12 2.32 0.560 0.430 −0.91±0.11 1 0.142 280±40 0.077 2200±300 

CH13 13.83 1.016 0.030 −0.84±0.08 1 0.258 / 0.140 / 

CH14 44.59 1.501 0.215 −0.44±0.14 1 0.381 80±25 0.207 / 

CH15 1.06 0.431 0.430 −0.41±0.10 1 0.110 155±35 0.060 1200±300 

CH16 0.35 0.298 0.430 −0.53±0.11 1 0.076 300±170 0.041 2300±600 

CH17 0.67 0.370 0.430 −0.32±0.09 1 0.094 140±40 0.051 1100±300 
*Chondrule no. and chondrule weights are from Jiang et al. (22). †Chondrule radius is calculated using the chondrule weights and an assumed density 

of 3.15 g cm−3 (82). ‡K/Al weight ratio relative to CI is calculated by dividing the K/Al weight ratio reported in (22) by 0.0651 (i.e., the K/Al weight 

ratio of CI chondrites; (88)). §Isotopic differences between chondrules and CI-like matrix (Δ41KChond.-CI) are calculated by subtracting the K isotopic 

composition of CI-like matrix (0.04±0.08 ‰; Table S1) from the measured K isotopic compositions of individual chondrules reported in (22). ||The 

bulk gas-chondrule is assumed to have CI-like K amount. ¶Gas radius is calculated by assuming a constant mass density of condensable matter, i.e., 

a constant ℛ/𝑟 ratio for all chondrules. Two ℛ/𝑟 ratios that were used for calculating the cooling rate of the chondrule component were applied 

here. The first one (ℛ/𝑟=254) corresponds to 0.048×CI K in the chondrule component at the peak T of 1823K; Fig. S4), while the second one 

(ℛ/𝑟=138) corresponds to 0.24×CI K in the chondrule component at the peak T (Fig. 4). #Cooling rates were not obtained for chondrules that have 

total K amount less than the calculated K amount in the molten chondrule at peak T, which is determined by the ℛ/𝑟 ratio. 
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