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P H Y S I C S

Unconditional Fock state generation using arbitrarily 
weak photonic nonlinearities
Andrew Lingenfelter1,2*, David Roberts1,2, A. A. Clerk1

We present a mechanism that harnesses extremely weak Kerr-type nonlinearities in a single driven cavity to 
deterministically generate single-photon Fock states and more general photon-blockaded states. Our method is 
effective even for nonlinearities that are orders-of-magnitude smaller than photonic loss. It is also completely 
distinct from so-called unconventional photon blockade mechanisms, as the generated states are non-Gaussian, 
exhibit a sharp cutoff in their photon number distribution, and can be arbitrarily close to a single-photon Fock 
state. Our ideas require only standard linear and parametric drives and are hence compatible with a variety of 
different photonic platforms.

INTRODUCTION
Single-photon Fock states are a fundamental resource needed in a 
myriad of quantum information protocols and technologies. There 
is as a result enormous interest in resource-friendly methods for 
their production (1). A generic, well-studied mechanism is photon 
blockade (2): Apply a monochromatic drive to a nonlinear photonic 
cavity such that the drive is only resonant for the vacuum to one 
photon transition but not for higher transitions. While conceptually 
simple, this conventional photon blockade (CPB) mechanism re-
quires the single-photon nonlinearity to be much larger than the 
loss rate. This regime can be achieved in highly nonlinear cavities 
incorporating single atoms (3), quantum dots (4), or superconducting 
qubits (5, 6). Unfortunately, this standard type of photon blockade 
is completely out of reach in more conventional systems that exhibit 
only weak nonlinearities (e.g., optical micro- or nanoresonators 
fabricated using materials with intrinsic (3) nonlinearities).

The ability to realize effects akin to photon blockade in weakly 
nonlinear systems would be an incredibly powerful resource. There 
has thus been a flurry of theoretical activity to uncover possible 
such mechanisms. Among the best known proposals is that of 
“unconventional photon blockade” (UPB), where states with 
arbitrarily small g(2)(0) correlation functions can be generated using 
extremely weak nonlinearities. UPB was originally proposed in (7) 
and subsequently analyzed in many different works (8–17). It has also 
been realized experimentally in a circuit quantum electrodynamics 
(QED) platform (18) and in a quantum dot plus cavity setup (19). 
Unfortunately, UPB is only capable of generating Gaussian states that 
have positive-definite Wigner functions and that do not exhibit a 
true cutoff in their photon number distribution (11); moreover, they 
only exhibit suppressed intensity fluctuations in the limit where the 
average photon number is vanishingly small. These features severely 
limit their utility for many possible applications. We note that an alter-
native approach to stabilizing intracavity Fock states is to use dissipation- 
engineering ideas [see, e.g., (20–23)]. These methods are, however, also 
resource demanding and require strong, structured nonlinearities.

In this work, we propose and analyze a previously unidentified 
photon blockade mechanism that (unlike UPB) deterministically gener-
ates truly non-Gaussian blockaded states (i.e., zero probability for 

more than one photon) using arbitrarily weak single-photon 
nonlinearities (see Fig. 1). In further contrast to UPB, this can be 
achieved while also having the single-Fock state probability to be 
order 1. Our mechanism is based on using nonlinearity to modify 
matrix elements of an effective cavity driving process, as opposed to 
introducing nonlinearity in a spectrum (as is done in CPB), see 
Fig.  2. In its simplest form, it reduces to realizing an effective 
single-mode Hamiltonian of the form

     ̂  H    block   =    ̃     3      ̂  a     † (   ̂  a     †   ̂  a   − r ) + h . c.  (1)

where the parameter r is tuned to 1. h.c., hermitian conjugate. Here,    ̂  a    
is the cavity annihilation operator and     ~    3    is the amplitude of an ef-
fective nonlinear driving process. By construction, this Hamiltonian 
connects the vacuum and one photon states but does not allow 
driving from ∣1〉 to the ∣2〉 photon state. Crucially, as this blockade 
is a matrix element effect, it is effective even if cavity loss is much 
larger than the nonlinearity     ~    3   .

While the basic mechanism in Eq. 1 is extremely simple, it 
describes an unusual nonlinear driving element. At first glance, it is 
not at all obvious how to realize this Hamiltonian using standard 
(2) or (3) type optical nonlinearities. Despite its exotic form, we 
show that it can be achieved using standard ingredients: a standard 
Kerr-type nonlinearity (strength U), along with standard single- 
photon and two-photon (i.e., parametric) drives. Crucially, the 
mechanism is effective even if the Kerr nonlinearity strength U is  
much weaker than the cavity loss rate . We also discuss how 
our scheme can be realized using three-wave mixing type (i.e., (2)) 
nonlinearities.

In what follows, we analyze in detail the physics of our basic 
mechanism and how it could be harnessed for a time-dependent 
protocol that generates propagating Fock states in a variety of 
realistic weakly nonlinear optical setups. We also discuss extensions 
of our basic idea, where the same underlying mechanism can be 
used to generate more complex blockaded states and even multi-
mode non-Gaussian entangled states (see the Supplementary 
Materials). Note that the infinite-time, steady-state properties of a 
damped cavity subject to the driving in Eq. 1 (in a displaced frame) 
were studied in (24). While this steady state could be tuned to 
realize a partial blockade effect, the effect was extremely limited. 
The steady state never exhibited Wigner-function negativity and, 
moreover, was exponentially fragile to imperfections (i.e., a small 
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deviation of the parameter r from an integer value completely 
destroyed the partial blockade). The utility of this effect was thus 
marginal. In contrast, our work here explores the finite-time dy-
namics of systems with this kind of nonlinear driving. We show 
that, unexpectedly, our model exhibits metastability and two dis-
tinct slow relaxation time scales. The intermediate-time physics can 
thus be extremely different from the ultimate steady state. In par-
ticular, this regime enables the near-perfect generation of Fock states 
(including states with highly negative Wigner functions) in a way 
that is robust against imperfections. We also stress that (24) did not 
discuss or analyze a concrete implementation of Eq. 1 in a generic 
driven Kerr cavity system or did it analyze an explicit time-dependent 
Fock state generation protocol; it also did not identify, let  alone 
describe, quantitatively the unexpected long-lived metastability of 
this system. These are all crucial and new features of our work.

RESULTS
Basic mechanism and realization in a driven, weakly 
nonlinear cavity
Despite wanting to realize a somewhat exotic nonlinear drive 
(cf. Eq. 1), we will consider a physical system that is both conven-
tional and ubiquitous. It consists of a single mode of a bosonic res-
onator (frequency c, lowering operator    ̂  a   ) having a weak self-Kerr 
nonlinearity U, which is subject to both one- and two-photon drives 

with amplitudes 1 and 2, respectively, and commensurate 
drive frequencies 21 = 2. Starting from the laboratory-frame 
Hamiltonian, moving to the rotating frame set by 1, and making 
a standard rotating wave approximation (RWA), we find (see 
Materials and Methods)

     ̂  H    RWA   = U    ̂  a     †     ̂  a     †   ̂  a    ̂  a   +     ̂  a     †   ̂  a   + (   1      ̂  a     †  +    2      ̂  a     †     ̂  a     †  + h . c . )  (2)

Here,  = c − 1 is the detuning of the drives from cavity reso-
nance. We stress that the two-photon drive 2 can be realized in 
many different ways. For example, one could use a weak nonlinear 
coupling to a strongly pumped auxiliary mode or just simply apply 
two additional (linear) drive tones to the main cavity mode 
[see, e.g., (25)]. Our results below do not depend on the specific 
method of implementation.

From a quantum optics perspective, our driven cavity mode 
seems innocuous: It has an extremely weak Kerr nonlinearity and 
simple quadratic driving terms (which on their own would only 
generate simple Gaussian states). To obtain something more inter-
esting, our general approach is to use linear driving (i.e., a displace-
ment in phase space) to effectively enhance the effects of U. Such 
linear displacements are often used to enhance the properties of 
weakly nonlinear systems by yielding tuneable linear dynamics 
(e.g., parametric amplifiers realized by driving weakly nonlinear 
cavities or tuneable sideband interactions in quantum optomechanics 
(26)). Such linear dynamics does not allow for the generation of 
nonclassical, non-Gaussian states. Here, we show how a displace-
ment can be used to generate an effective nonlinear cavity drive 
with a strength ≫U. We note that linear driving has also been used 
in circuit QED experiments to generate a tuneable longitudinal 
coupling between a qubit and a cavity (27–29). The interaction in 
those works is a single-photon cavity drive whose phase is controlled 
by an auxiliary qubit. This is distinct from the kind of interaction we 
realize, namely, a single-photon cavity drive whose magnitude is 
controlled by the photon number of the cavity itself, as opposed to 
that of a highly nonlinear auxiliary system.

We show that by moving to a displaced frame of the cavity,  
   ̂  a   →   ̂  a   +  , where  is an arbitrary displacement parameter, we can 
generate a displacement-enhanced nonlinearity that is precisely the 

A B

C

Fig. 1. Fock states with ultraweak nonlinearities. (A) Basic system: A nonlinear 
cavity is subject to both one- and two-photon drives 1 and 2. (B) Time depen-
dence of drive amplitudes for the protocol (see the “Generating single-photon 
states in the laboratory frame” section). The key idea is to realize an effective 
nonlinear one-photon drive in a displaced frame. (C) Numerical simulations of 
performance including imperfections. Parameters are chosen such that the effec-
tive nonlinear drive amplitude     ~    3   = 2  and the final state has  〈1∣  ̂  ρ  ∣1〉 = 0.5 . Left: 
g(2)(0) of the prepared state including errors in the initial/final displacement operations; 
these are modeled as added thermal noise (   n  ̄   th    quanta). Note that with added thermal 
noise, g(2)(0) must be greater than    n ̄    th   . Right: Final g(2)(0) with imperfect drive- 
amplitude matching 1 ≠ 0 (cf. Eq. 7). Red dashed lines show intracavity photon 
number ∣b∣2 ∼ (/U)2 during the intermediate part of the protocol.

Fig. 2. Basic photon blockade mechanisms. Left: CPB mechanisms rely on the 
nonlinearity U shifting the spectrum of the system; blockade thus requires U ≫ . 
Right: Our new approach is based on engineering a nonlinear drive that has no 
matrix element g12 connecting Fock states ∣1〉 and ∣2〉. This blockade mechanism 
is effective even if nonlinearity is arbitrarily weak.
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term we seek to engineer (see Materials and Methods). Upon 
moving to a displaced frame of the cavity, we find that the Kerr 
nonlinearity generates, among corrections to the other terms in     ̂  H    RWA   , 
the desired nonlinear drive     ~    3      ̂  a     †     ̂  a     †   ̂  a   + h . c.  with drive ampli-
tude     ~    3   = 2U  (see Materials and Methods, Eq. 15d).

Our goal is to realize (in our displaced frame) the ideal blockade 
Hamiltonian

     ̂  H    target   = (   ̃     3      ̂  a     † (   ̂  a     †   ̂  a   − r ) + h . c . ) + U    ̂  a     †     ̂  a     †   ̂  a    ̂  a    (3)

To achieve this, we first decide on a desired strength for the non-
linear drive amplitude     ~    3    in     ̂  H    target    and pick the displacement pa-
rameter  to achieve this. This requires

   →    b   ≡      ̃     3   ─ 2U    (4)

We will typically want     ~    3   ≳  , implying that a large displace-
ment will be needed if the nonlinearity U is weak.

The last step is to pick our original drive parameters 1, 2, 
and  to make the remaining terms in the full displaced Hamiltonian  
    ̂  H        (see Eq. 14 in Materials and Methods) match     ̂  H    target   . This leads 
to the choices

      1   →    1,b   ≡    ̃     3   [   −r +    ∣    ̃     3   ∣   2   ─ 
2  U   2 

   +    i ─ 4U   ]     (5a)

     2   →    2,b   ≡ −    ̃    3  2  / 4U  (5b)

   →    b   ≡ −  ∣    ̃     3   ∣   2  / U  (5c)

With this choice of drive parameters and displacement parameter 
, our displaced-frame Hamiltonian     ̂  H        has exactly the desired 
form of the target blockade-producing Hamiltonian in Eq. 3. If we 
pick r in Eq. 5a to be an integer, it follows that we can achieve 
blockaded dynamics in the displaced frame. To be concrete, imagine 
we tune parameters to achieve r = 1. If we then start the system in 
the vacuum of the displaced frame (i.e., a coherent state in the lab 
frame), then the full system dynamics will be confined to the Fock 
states n = 0, n = 1 in the displaced frame, regardless of how small the 
original value of U was.

We have thus demonstrated how the basic physics of Eq. 1 can 
be realized using an arbitrarily weak Kerr nonlinearity and standard 
one- and two-photon driving processes. Note that the magnitude of 
the nonlinear driving in the displaced frame is the product of the 
original Kerr nonlinearity U (which could be extremely small) and 
the displacement  (which at this stage, we can assume to be very 
large). There is, of course, an important caveat about our scheme at 
this stage: As described, it only yields blockaded states and Fock 
states in the displaced frame. As we show in the “Generating single- 
photon states in the laboratory frame” section below, this is not a 
true limitation, as we can easily harness this physics to generate true 
laboratory-frame Fock states (see also Fig. 1).

Blockade dynamics in the presence of loss
Before addressing how one converts displaced-frame blockaded 
states into truly blockaded states, we first investigate the dynamics 
of our system in the displaced frame. We thus study displaced-frame 
master equation

    d ─ dt    ̂    = − i[   ̂  H    target  ,  ̂   ] + D[  ̂  a  ] ̂     (6)

where     ̂  H    target    is given by Eq. 3. We will consider the dynamics when 
the parameter r is close to, but not identical, to its ideal value for an 
n = 1 Fock state blockade, i.e., r = 1 + r. In practice, r corresponds 
to a failure to exactly match the one- and two-photon drive ampli-
tudes in the ideal required manner, as dictated by Eqs. 5a and 5b. 
Our focus here will be primarily on understanding the temporal 
dynamics on time scales t ≲ 1/ and using this to identify optimal 
parameters for generating Fock states.

Dynamics for ideal drive amplitude matching
For perfect parameter tuning r = 0, we have ideal blockade dynamics 
where the drive cannot connect the n = 1 and n = 2 Fock states. 
Within the blockade manifold spanned by {∣0〉,∣1〉}, the cavity 
behaves like a two-level-system, which is resonantly driven with 
Rabi frequency  ∝    ~    3   , i.e.,     ̂  H    target   →   ̃  Λ   3  ∣1〉〈0∣ + h.c.  As there is no 
probability of having two or more photons, for this perfect tuning 
of r, the equal-time g(2) correlation function [defined as   g   (2) (0 ) ≡ 
〈   ̂  a     †     ̂  a     †   ̂  a    ̂  a   〉/ 〈   ̂  a     †   ̂  a    〉   2  ] is always exactly 0. To generate a single-photon 
state, we simply need to perform an effective -pulse. This amounts 
to turning on the one- and two- photon drives [with the ideal 
amplitudes given by Eqs. 5a and 5b for a time   t     =  / (2 ∣    ~    3   ∣ ) . This 
allows the perfect generation of a Fock state in the limit where t ≪ 
1/, requiring  ∣    ~    3   ∣ /  ≫ 1 . We stress that this condition can be met 
even if U ≪ .

Impact of imperfect drive-amplitude matching
We now consider what is likely the dominant error mechanism for 
our scheme: the inability to perfectly match the drive amplitudes 1 
and 2 as required to achieve r = 1. For small mismatch r, there is 
only a weak matrix element connecting ∣1〉 to ∣2〉. As we will 
show, this means that we still have approximate blockade physics 
over a long time scale, enabling the production of nonclassical 
blockaded states. The perfect single photon blockade we desire 
requires matching the linear and cubic driving terms in the 
displaced-frame Hamiltonian     ̂  H        (cf. Eq. 14), i.e.,     ~    1   = −    ~    3    (i.e., r = 1). 
Deviations from this amplitude-matching condition will then de-
grade our scheme. We thus define 1, the dimensionless relative 
amplitude error in the single-photon drive amplitude, via

     ̃     1   = −    ̃     3  (1 +    1  )  (7)

While, in general, both the magnitude and phase of 1 are 
important, for the small deviations we focus on here, only the mag-
nitude matters. We take 1 real and positive for all of the numerical 
simulations.

To get some analytic insight into the impact of this imperfection, 
consider the most interesting regime of small imperfection ∣1∣ 
≪ 1 and large effective driving,  ∣    ~    3   ∣ >  . For short times, dissipa-
tion can be neglected, and further, the dynamics will be restricted to 
the states ∣0〉, ∣1〉, and ∣2〉 (as the leakage to higher levels is weak). 
In this regime, we find that the instantaneous g(2)(0; t) is time inde-
pendent and given by

   g   (2) (0; t ) =  ∣    1   ∣   2   (8)

This suggests that highly blockaded states are possible without 
requiring an incredibly precise balancing of drive amplitudes.
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In Fig. 3 (B and C), we show the results of a numerical simula-
tion of the effects of a nonzero drive-amplitude mismatch 1. We 
see that the intracavity average photon number shown in Fig. 3B 
undergoes Rabi oscillations before leaving the blockaded subspace; 
we also see that Eq. 8 provides a good description of the intracavity 
g(2)(0) until a time  t ∼ 1 / ∣    ~    3   ∣ , after which there is a departure from 
the blockaded subspace. The net result of our simulations and 
analysis is that errors in amplitude matching do not prevent the 
generation of useful blockaded states: For short times, the evolution 
produces states with small g(2)(0) while, at the same time, having 
appreciable nonvacuum population. As Fig. 3 shows, even for rela-
tive mismatches of 1 ∼ 0.1, blockaded states with  〈   ̂  a     †   ̂  a  〉 ∼ 0.5  and 
g(2)(0) < 0.1 can be produced.

Slow time scales, metastability, and blockaded states 
in the infinite-time limit
While for applications, the relatively robust blockade physics we 
obtain at short times is more than sufficient, it is also interesting to 
ask about the nature of the long-time steady state. For 1 = 0, the 
blockade is perfect for all times, and the steady state has no popula-
tion of higher Fock states. With imperfections, the situation is 
different. We saw above that the short-time blockade physics is 
relatively robust against amplitude mismatch errors. This, however, 
is not true for the infinite-time state. As discussed in Materials and 
Methods, for 1 = 0, the system has a long-lived, metastable 
high-photon number state that is only able to decay via quantum 
tunneling. This manifests itself as an extremely slow relaxation rate 
(i.e., dissipative gap)

      slow   ∼ exp  (   −   9  ∣    ̃     3   ∣   2   ─ 
4  U   2 

   )     (9)

(cf. Eq. 23 and preceding discussion in Materials and Methods). 
This exponentially small dissipative gap directly leads to the ex-
treme fragility of the steady-state photon blockade to even minuscule 
mismatches of drive amplitude. A simple perturbative argument 
suggests that the steady state blockade is lost when ∣1∣≃ slow/, 
i.e., even when ∣1∣≪1 (cf. "Photon blockade in the infinite- 
time steady state" in Materials and Methods). This fragility makes 
the steady-state effect essentially unattainable in experiment. Note 
that the extreme sensitivity of the steady state to relative drive am-
plitudes was first observed without explanation in (24); the qualita-
tive and quantitative explanations of this phenomenon provided 
in Materials and Methods is, however, new to this work.

One might worry that this small dissipative gap should also have 
made the finite-time blockade physics presented above highly fragile. 
This is not the case: For an imperfect system that starts from vacuum, 
there is a distinct metastable regime of relevance whose physics is 
controlled by a different time scale unrelated to 1/slow. The relevant 
rate esc now corresponds to a slow escape from the blockaded sub-
space. For imperfect amplitude matching (1 ≠ 0), there is a weak 
coupling between blockaded and unblockaded subspaces. Once in 
the unblockaded subspace, the system can eventually populate 
the weakly metastable, high-amplitude state. While this escape de-
stroys the blockade and results in a very large average photon number 
in the steady state, this corruption occurs over a very slow time scale 
1/esc. The slow heating associated with this phenomena can be 
seen in Fig. 3A.

The escape rate esc can be estimated using a Fermi’s Golden 
Rule (FGR) argument where 1 (the imperfection in the single- 
photon drive amplitude) is treated as a perturbation. This is consistent 
with the numerically observed behavior that the average intracavity 
photon number approaches its steady-state value exponentially. 
Defining      ~    1   =    ~    3   ×     1   , an approximate FGR calculation yields 
(see Materials and Methods)

     esc   = c     ∣     ̃     1   ∣   2   ─      (10)

with c is a dimensionless number. While, in general, it will depend 
on other parameters in the unperturbed Hamiltonian, for   ≫    ~    3   , 
we find that it is constant: c = 1. In contrast, for the regime of interest 
  ∼    ~    3   , a simple analytic estimate is not possible. We do, however, 
find from numerics in this regime (i.e., by fitting the long-time 
relaxation of the average photon number shown in Fig. 3A) that 
c ≈ 0.25 in this regime. The overall form of esc reflects two basic 
facts: The cavity can only leave the blockade subspace through the 
very small matrix element  ∝     ~    1   , and the cavity must jump into 
energy eigenstates, which are not localized to the Fock state ∣2> but 
spread out in Fock space and thus harder to jump into. The latter 
effect leads generically to c < 1.

The slow escape rate esc defines a time window over which the 
blockaded subspace is isolated from the rest of Hilbert space. To 
prepare Fock states, one just needs this time to be long compared to 
inverse drive amplitudes. In practice, this leads to the weak con-
straint on drive-amplitude matching 1 < 1. This is to be contrasted 
against the exponentially more demanding condition needed for 
blockade physics in the steady state, 1 < slow/. The vast difference 

A

B C

Fig. 3. Impact of mismatched drive amplitudes on blockade dynamics. (A) Average 
intracavity photon number versus time (log axes) for values of the dimensionless 
relative amplitude mismatch 1 (cf. Eq. 7). One clearly sees two distinct time 
scales: The desired low-amplitude blockaded state is reached on a time scale ∼1/, 
whereas if 1 ≠ 0, then there is a much slower heating to a high amplitude state, 
esc (cf. Eq. 10). Note that all of the 1 shown are much larger than the “antiresonance” 
width r for these parameters (cf. Fig. 6), i.e., the steady-state blockade is destroyed 
for all 1 shown. (B) Zoom-in on short-time behavior of (A), linear axes. The dashed 
curve is the ideal 1 = 0 steady-state average photon number. (C) Instantaneous 
intracavity correlation function g(2)(0; t), for various imperfection levels 1. Dashed 
lines correspond to the short-time analytic result in Eq. 8. For all plots, we use 
parameters U = 0.4 and     ~    3   = 2 .
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in these conditions means that our blockade mechanism is with 
reach of various experimental platforms, whereas in contrast, the 
steady-state version of the effect is completely impractical.

Photon blockade with weak drive
The short-time blockade physics we have considered so far re-
quires     ~    3   >  . Via Eq. 4, we see that this is possible even if U ≪ , as 
long as we use a large displacement b. While at a fundamental 
level, such large displacements pose no problems, but at a practical 
level, they can create issues. We will see this explicitly in the next 
section, where we discuss in detail how to turn the displaced-frame 
Fock states produced by Eq. 3 to true laboratory-frame Fock states.

Given this possible concern, it is also interesting to ask about the 
dynamics of system where  ∣    ~    3   ∣ ≪  , a regime that could be reached 
with small U and modest displacements . Consider first the case where 
the drive amplitudes are perfectly matched, implying r = 1 in Eq. 3. 
In this case, the system approaches the infinite-time, perfectly block-
aded steady state on a time scale ∼1/. This state has zero probability 
for having more than one photon, and the single photon occupancy is

  〈1 ∣  ̂   (t → ∞ ) ∣ 1〉 =    4  ∣    ̃     3   /  ∣   2    ─  
1 + 8  ∣    ̃     3   /  ∣   2 

    (11)

Hence, having a weak     ~    3   /   does not break the blockade but just 
reduces the population of the one photon state. On the bright side, 
in this weak drive regime, the blockade much more robust to 
amplitude mismatch errors. Figure 4A shows the transition from 
the underdamped regime     ~    3   >  / 4 , where coherent oscillations are 
visible, to the overdamped regime where the cavity exponentially 
relaxes to the steady state. The robustness of the overdamped blockade 
is shown in Fig. 4A where the g(2)(0; t) of the overdamped blockade 
remains near the amplitude-mismatch–limited value g(2)(0; t) = 
∣1∣2 given by Eq. 8 for long times even as the underdamped 
blockade experiences a large rise in g(2)(0; t) for times t ∼ 1.

Generating single-photon states in the laboratory frame
Our discussion so far has established how, using a cavity mode with 
an extremely weak Kerr nonlinearity U ≪  and standard one- and 
two-photon drives, it is possible to generate truly photon-blockaded 
states in a displaced frame. In the displaced frame and for ideal 
matching of drive amplitudes, these states have zero population of 
states with two or more photons and, moreover, can have a popula-
tion of the ∣1〉 Fock state that approaches one. We also showed that 
this physics is robust, again modest errors in matching the two drive 
amplitudes appropriately.

We discussed the displacement transformation    ̂  a   →   ̂  a   +   that 
led to the Hamiltonian in Eq. 14 as a passive transformation. To 
make use of this idea to generate true Fock states, we now view the 
displacement as an active transformation: A short, high-amplitude 
one-photon drive will be used to initially and rapidly displace the 
cavity state by an amplitude b. A similar protocol will then be used 
to undo this displacement at the end of the blockade protocol. In 
what follows, we discuss each step of this protocol in detail, includ-
ing a treatment of error mechanisms associated with imperfect dis-
placements.

Protocol overview
The basic idea of the full scheme is sketched in Fig. 5. It has three 
main steps:

1) Initial displacement: With the cavity initially in vacuum ∣0〉, 
we rapidly displace the cavity (using the one-photon drive) to the 
coherent state ∣b〉 (see Eq. 4).

2) Fock state generation: We next turn on the two-photon drive 
and set both the drive amplitudes 1 and 2 to their ideal values 
given by Eqs. 5a and 5b. We then let the system evolve for an opti-
mally chosen time     block   ∼  ∣    ~    3   ∣   −1  . This will prepare to good approx-
imation a single-photon blockaded state in the displaced frame.

3) Final displacement: Last, we turn off the two-photon drive 
and adjust the amplitude of the one-photon drive 1 such that 
rapidly displaces the cavity by an amount −b. This then shifts our 
displaced-frame blockaded state to laboratory-frame blockaded state 
(ideally the state ∣1〉).

The end result of the three steps above is a blockaded, approxi-
mate single-photon state in the cavity. To turn this into a more 
useful propagating single-photon state, we imagine a situation where 
the cavity is overcoupled to a waveguide or transmission line. In this 
case, one simple waits at the end of step three. The intracavity state 
will then preferentially leak out into waveguide as an approximate 
Fock state in a propagating mode with an exponential profile. Note 
that while overcoupling will increase , this is not overly detrimental 
to our protocol. As we have stressed, our protocol can be effective 
even if the Kerr nonlinearity U is much smaller than the total loss 
rate  of the cavity.

The initial and final displacements in our protocol are of course 
key aspects needed to achieve our final, laboratory-frame photon- 
blockaded state. As discussed, these should correspond to ampli-
tudes b  and − b respectively, where this amplitude is determined 
by Eq. 4. A failure to perform this ideally represents another possi-
ble experimental imperfection that would degrade from our scheme. 
Even if the one-photon drive used to perform these displacements 

A

B

Fig. 4. Photon blockade dynamics with weak    ̃     3    drive. As discussed in the text, 
the resource requirements of our scheme are greatly reduced if one only tries to 
achieve a nonlinear drive     ~    3   ≲  . (A) Average intracavity photon number versus 
time for an imperfect drive amplitude matching 1 = 0.01, for different     ~    3   . As 
expected,  〈  ̂  n  〉 (t)  approaches its steady state value (cf. Eq. 11) in a time ∼1/. Re-
ducing     ~    3    reduces this value. (B) Instantaneous intracavity g(2)(0; t) of the cavity as 
a function of time, with 1 = 0.01. Even for modest drives     ~    3   <  , a good blockade is 
achieved at short times. For all plots, U = 0.075.
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can be calibrated perfectly, the weak cavity nonlinearity U can cause 
errors during steps 1 and 3 of the protocol. The dominant error is 
an unwanted parametric drive generated via U; this could be 
canceled by also applying a compensating two-photon drive 2 ≠ 0 
during steps 1 and 3; this is depicted in Fig. 5. In what follows, as 
opposed to focusing on a particular mechanism, we use a general 
model to characterize errors in the displacement steps (steps 1 and 3) 
of our general protocol.

Numerical results
Having outlined our full protocol, we numerically study its perform-
ance. Step 2 is modeled exactly, by evolving our system as per the 
full master equation in Eq. 13. The possibly imperfect displacement 
operations in steps 1 and 3 are modeled as a combination of a 
perfect displacement and the injection of thermal noise (correspond-
ing to    n ̄    th    thermal quanta). Formally, this corresponds to a Gaussian 
additive noise channel (30). Note that this additive thermal noise 
rapidly degrades the blockade. If we start with a perfect Fock state 
∣1〉 and add    n ̄    th    thermal quanta (via an additive Gaussian noise 
channel), then one can show that   g   (2) (0 ) ≥ 4   n ̄    th   . Further details are 
provided in the Supplementary Materials, as are results for limita-
tions arising from classical displacement and phase noise.

In addition to displacement errors, we consider drive amplitude 
mismatches, which we discussed in the “Impact of imperfect 
drive-amplitude matching” section. The results of that analysis 
apply here, but as a check, we perform the full Fock state generation 
protocol with small 1 ≠ 0. The figure of merit for the Fock state 
generation protocol is the instantaneous second-order coherence 
g(2)(0) at the end of the protocol as a function of U/.

Numerical simulations of our full time-dependent protocol for 
various choices of U/ are shown in Fig. 1C. In each case, parameters 

are chosen to produce (in the ideal case) a state where the blockaded 
state has  〈1 ∣  ̂    ∣ 1〉 = 0.5 . The numerical results show that the blockade 
protocol is effective even for U/ = 0.03 and, moreover, is robust 
against both small displacement errors and small amplitude 
match errors. There is no fundamental limit against applying our 
protocol for even smaller values of U. Numerics becomes some-
what unwieldy, given the large displacements b ∼ /U that are 
required.

DISCUSSION
A key virtue of our scheme is that it is extremely generic: There are 
many different kinds of systems that can realize weakly nonlinear 
electromagnetic modes with one- and two-photon drives. In the 
context of weakly nonlinear optical cavities, the primary experi-
mental challenge for implementation is the large cavity displacements 
required, b ∼ /U. For typical low-loss silicon microresonators, the 
intrinsic (3) nonlinearity yields U/ ∼ 10−8 (31). The (3) of silicon 
nitride is typically even smaller (32–34). While the large displace-
ments and intracavity powers required in such systems to achieve 
b ∼ /U may be possible given the pulsed nature of our scheme, a 
safer route would be to follow the general ideas in the “Photon 
blockade with weak drive” section. Here, one uses displacements 
much smaller than /U, making constraints on power handling 
much more reasonable. This results in a perfect blockade and states 
with vanishingly small g(2)(0). The price to pay, however, is that the 
average photon number will also be very small. We stress that even 
in this regime, the states generated have a strong advantage over the 
UPB mechanism of (7): Unlike UPB, our states are non-Gaussian 
and have zero population of higher Fock states.

An alternative route for implementation in optical cavities would 
be to use (2) nonlinearities in materials with broken inversion 
symmetry like silicon nitride or aluminum nitride. These nonlineari-
ties are parametrically larger than the corresponding (3); a recent 
experiment even achieved a single-photon (2) nonlinearity that 
was ∼0.01 (35). We stress that while our scheme requires a Kerr-type 
four-wave mixing nonlinearity, this can be achieved starting with 
three-wave mixing (2) processes that generate a nonlinear coupling 
to a detuned auxiliary mode (36). To the second order in this 
coupling, one generates the desired self-Kerr interaction U needed 

Fig. 5. Fock state generation protocol timing diagram. Top: Three steps of the 
generation protocol described in the “Protocol overview” section. The gray regions 
are the initial and final cavity displacements, which are implemented by applying 
strong one photon drives (1) to the cavity for a short displacement time d ≪ −1. 
Ramped two-photon drives (2) are also applied to correct unwanted squeezing 
generated by U during these displacement operations. The white region represents 
the displaced-frame Fock state generation step; here, one- and two-photon drive 
amplitudes are tuned to their ideal values as given by Eqs. 5a to 5c. The evolution 
here occurs for a duration     block   ∼  ∣    ~    3   ∣   −1   that can be optimized, during which the 
cavity evolves under Eq. 13. Bottom: Cavity phase space diagram showing sche-
matically the evolution of the cavity state in the laboratory frame.

Fig. 6. Steady state photon number antiresonance width as a function of  U /   ̃     3   . 
Full width at half maximum (FWHM) of the steady-state photon number at the 
single-photon blockade antiresonance as a function of  U /   ̃     3    as measured by the 
small deviation 1 (cf. Eq. 7).
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for our scheme. Despite being the second order, this can still be 
orders-of-magnitude larger than an intrinsic (3) nonlinearity.

While optical cavities are one possible domain of application, 
they are not the only candidate. Our ideas could also be exploited in 
parametrically driven nanomechanical systems with weak intrinsic 
Duffing nonlinearities [see, e.g., (37)], as well as in microwave 
cavity systems. A current trend in quantum information processing 
with superconducting circuits is to store and process information in 
high-Q microwave cavities [see, e.g., (38, 39)]. In such schemes, 
detuned qubits are often used to induce weak nonlinearities in the 
principle bosonic modes. A key limitation in these approaches is 
that the qubit also induces additional loss mechanisms. Our ideas here 
suggest a path to circumvent this. One could use extremely large 
qubit-cavity detunings, resulting in not only very weak induced 
cavity nonlinearities but also weak induced dissipation. Our scheme 
shows that such weak nonlinearities could still be harnessed to 
produce nonclassical states.

In this work, we have described a previously unidentified basic 
route to generating photonic states that are blockaded: They have a 
sharp cutoff in their photon number distribution, having zero prob-
ability to have more than r photons in the state. This is accomplished 
by using standard tools (a weak Kerr nonlinearity, one- and two- 
photon drives) to realize an effective nonlinear drive, cf. Eq. 3. In 
stark contrast to the well-studied UPB mechanism (7), our scheme 
can generate truly blockaded states and states that do not need to be 
infinitely close to being vacuum. In principle, our basic mechanism 
is effective even for arbitrarily weak nonlinearities U ≪ . In practice, 
limitations will arise from the inability to perfectly match the one- 
and two- photon drive amplitudes and the inability to apply the re-
quired displacement transformations perfectly. We showed that the scheme 
nonetheless can be effective even if these imperfections are present.

While our analysis focused on generating states that approxi-
mate single-photon Fock states, the idea is much more general. By 
picking the parameter r in Eq. 3 to be an integer larger than one 
(which then influences the choice of drive amplitudes via Eqs. 5a 
and 5b), one can generate higher-order blockaded states: states that 
are confined to the manifold spanned by Fock states ∣0〉 , ∣1〉 , …, ∣r〉. 
Further, the same basic idea can used to generate nonclassical, 
multimode entangled states. One again realizes the nonlinear driv-
ing Hamiltonian in Eq. 3 in a displaced frame, but now the mode    ̂  a    
is actually a collective mode of two or more distinct cavity modes. 
Generating a Fock state in this collective mode directly corresponds 
to a W-style entangled state. More details are provided in the 
Supplementary Materials.

In summary, we believe that the mechanism discussed here will 
prove to be valuable tool for generating nonclassical photonic states 
in a variety of platforms where only weak nonlinearities are achiev-
able. It could also conceivably be harnessed as a tool for quantum 
simulation, i.e., to realize models of strongly interacting photons. 
Our ideas are compatible with a wide variety of bosonic systems, 
including optical and microwave cavities, as well as more general 
superconducting circuit QED setups.

MATERIALS AND METHODS
RWA Hamiltonian
A crucial result of this work is that to implement the nonlinear photon 
drive of Eq. 1, we require only a single mode of a bosonic resonator 
with a weak self-Kerr nonlinearity U and standard one- and 

two-photon drives. The starting laboratory-frame Hamiltonian is 
thus (ħ = 1)

   
  ̂  H   =    c      ̂  a     †   ̂  a   +   U ─ 6    (  ̂  a   +    ̂  a     † )   

4
 
   + (   1    e   −i   1  t  +   1  *    e   i   1  t  ) (  ̂  a   +    ̂  a     † )    

+ (   2    e   −i   2  t  +   2  *    e   i   2  t  ) (  ̂  a    ̂  a   +    ̂  a     †     ̂  a     † )

   (12)

Note that the only nonlinearity in this Hamiltonian is Kerr inter-
action U, which we will allow to be extremely weak, i.e., U ≪ , 
where  is the cavity loss rate. The two-photon drive 2 is a 
standard parametric drive and can be realized without requiring a 
strong single-photon nonlinarity.

We choose the drive frequencies to satisfy 2 = 21 = 2(c − ), 
implying that they are equally detuned from the resonance by an 
amount . We also work in the standard regime where c is the 
largest frequency in the problem, allowing us to make an RWA on 
both the nonlinearity and drive terms. Making the RWA and work-
ing in the rotating frame set by the drive frequency 1, we obtain 
Eq. 2. Note that we have normal-ordered the nonlinearity; thus, the 
nonlinearity strength in     ̂  H    RWA    is U. Note also that normal-ordering 
shifts the resonance to     ~    c   =    c   + 2U ; we implicitly assume the de-
tuning from resonance in     ̂  H    RWA    is thus   =    1   −    ~    c   .

Displacement transformation
We use strong driving to enhance the effects of U in     ̂  H    RWA   . We also 
include single-photon loss at a rate  using a standard Lindblad 
master equation description. Letting   ̂     denote the reduced density 
matrix of the cavity mode, we have

    d ─ dt   ̂    = − i [    ̂  H    RWA  ,  ̂    ] + D [   ̂  a   ]  ̂     (13)

where  D [   ̂  a   ]   ̂  O   = (  ̂  a    ̂  O      ̂  a     †  − {   ̂  a     †   ̂  a  ,   ̂  O  }/ 2)  is the standard Lindblad dis-
sipative superoperator.

The trick is now to show that with appropriate parameter 
tuning, a simple displacement of our weakly nonlinear Hamiltonian 
in Eq. 2 can yield exactly the kind of nonlinear driving interaction 
we are looking for. In particular, we want a Hamiltonian that is uni-
tarily equivalent to     ̂  H    target    in Eq. 3, where the parameter r will be set 
to a positive integer. This Hamiltonian describes a nonlinear driving 
process that can pump up an initial vacuum state to the n = r Fock 
state but no higher.

To achieve this equivalence, we consider a displacement trans-
formation to a new frame where the original photonic vacuum is 
shifted to the coherent state ∣−〉; we leave the amplitude  un-
specified for the moment. This required unitary is   D     = exp (    ̂  a     †  −  
   *   ̂  a  ) , which transforms the lowering operator as    ̂  a   →   ̂  a   +  . In this 
new displaced frame, the master equation for our system has the 
same form as Eq. 13 but with a modified displaced Hamiltonian     ̂  H       

      ̂  H       = U    ̂  a     †     ̂  a     †   ̂  a    ̂  a   +   ̃       ̂  a     †   ̂  a     
+ (   ̃     1      ̂  a     †  +    ̃     2      ̂  a     †     ̂  a     †  +    ̃     3      ̂  a     †     ̂  a     †   ̂  a   + h . c . )

   (14)

All of the terms in the original laboratory-frame Hamiltonian 
appear in     ̂  H        but with altered coefficients; we also generate the 
desired nonlinear single-photon driving term     ~    3   . The displaced-frame 
Hamiltonian parameters are

    ~   =  + 4U  ∣  ∣   2   (15a)
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     ~    1   =    1   +  + 2     *     2   + 2U  ∣  ∣   2   −   1 ─ 2   i  (15b)

     ~    2   =    2   + U     2   (15c)

     ~    3   = 2U  (15d)

Notice that by picking the displacement  and the laboratory- 
frame Hamiltonian parameters 1, 2, and , we have complete 
control over all of the displaced-frame Hamiltonian parameters. In 
particular, the choices in Eqs. 4 and 5 lead to the target Hamiltonian 
    ̂  H    target   . In addition, notice that the displacement transformation 
modifies the Lindblad dissipator as  D [   ̂  a   ] ↦ D [   ̂  a   + ] , which we 
rewrite as  D [   ̂  a   ] − i [ (− i / 2 )    ̂  a     †  + h . c . , ] . The induced coherent 
linear drive component has been absorbed into     ~    1    in Eq. 13b. The 
net result is that the damping rate of the cavity is the same in the 
displaced frame.

Photon blockade in the infinite-time steady state
The main focus of our work is understanding Fock state generation 
using the dynamics of Eq. 13 for times much shorter than the full 
relaxation time of the system. Here, we comment on features of the 
infinite-time steady state. The properties of this steady state were 
discussed in (24) using an exact-solution technique.

As discussed, when r is exactly tuned to an integer, the steady 
state exhibits blockade: the steady state photon number distribution 
truncates at n = r. Unexpectedly, this blockade phenomenon is lost 
even for extremely small deviations of r away from an integer. This 
manifests itself as an antiresonance phenomenon when the average 
photon number in the steady state,  〈  ̂  n    〉  ss    is plotted versus r. There is 
a sharp dip in this quantity when r is an integer, with the width of 
these features r ≪ 1. This behavior is illustrated in Fig. 6, where we plot 
the full-width half-maximum r for the antiresonance in   〈  ̂  n   (  r )    〉  ss     
centered at r = 1. We plot this width as a function of     ~    3   / U . The plot 
shows an exponential dependence on this parameter. Away from 
the blockade point r = 1, the steady-state photon number is approx-
imately constant and has a large value ≫1.

Both the large average steady-state photon number away from 
integer r and the extremely small antiresonance widths can be 
understood starting with a semiclassical analysis, which reveals a 
large-amplitude metastable state. The semiclassical equation of 
motion for the amplitude  α = 〈  ̂  a  〉  that follows from Eq. 13 is

    d ─ dt    = − 2iU     *      2  − 2i    ̃     3       *   − i    ̃     3       2  + i    ̃     3   r −    ─ 2     (16)

For r = 0 (nonlinear drive only) and  = 0, the steady-state solu-
tions to this equation are 0 = 0 (with multiplicity 2) and

     ha   = −   3    ̃     3   ─ 2U    (17)

Because we always assume a regime where  U ≪    ~    3   , this ampli-
tude is typically very large. Including nonzero  and r, we find that 
the first-order correction to this amplitude is small. To the first or-
der, we have

     ha   = −   3    ̃     3   ─ 2U   −   i ─ 
2    ̃     3  

   +   2U ─ 
9    ̃     3  

   r  (18)

We can also confirm that this is an accurate description of the 
large-amplitude state by numerically finding the fixed points to 
Eq. 16 without assuming small r  and .

Next, we show that this semiclassical solution is stable by per-
forming a standard linear stability analysis of the semiclassical 
equations. The eigenvalues of the linearized equations of motion for 
 and * about ha are

      ±   = −    ─ 2   ± i3  √ 
_

 3     
   ̃    3  2 

 ─ 2U   (  1 −   8 ─ 27      U   2  ─ 
   ̃    3  2 

   r )     (19)

which have negative real parts, indicating linear stability at the 
semiclassical level. Turning to the quantum problem, our system 
always has a unique steady state, which, for integer r, is a blockaded 
state. Hence, for integer r, the above semiclassically stable state is 
only unstable due to quantum effects (i.e., precisely the blockade 
physics we have described, which is intimately tied to the discrete-
ness of photon number).

Returning to the quantum problem, we find that upon numeri-
cally diagonalizing     ̂  H    block    in Eq. 1, there is an eigenstate ∣〉 with 
photon number  〈  ̂  n    〉  Φ   ≈ ∣ α  ha  ∣   2   where ha is given by Eq. 19. Focus-
ing on the single photon blockade, r = 1, we numerically diagonalize 
the Liouvillian Eq. 13, which reveals that there is generically a single 
nonzero eigenvalue slow, which is significantly smaller than ; all 
other decay rates are order  or larger. We seek to show that this 
eigenvalue corresponds to the decay of the Hamiltonian eigenstate 
∣〉 and that the value is exponentially small in     ~    3   / U .

Working under the assumption that ∣〉 is the state whose 
decay is given by the Liouvillian eigenvalue slow, we use the first- 
order degenerate Liouvillian perturbation theory to estimate slow. 
The exact eigenstates within the single photon blockade manifold 
{∣0〉,∣1〉} are given by

  ∣    ±   〉 =   1 ─ 
 √ 
_

 2  
  (∣ 0〉 ± ∣ 1〉 ) ;  E  ±   = ∓    ̃     3    (20)

Note that these span the {∣0〉, ∣1〉} manifold so that 〈0∣〉 = 
〈1∣〉 = 0. Using the numerically computed ∣〉, we find that it is 
reasonably well approximated by the coherent state ∣ha〉 with 
overlap ∣〈ha∣〉∣2 > 0.96 for  U ≪    ~    3   . We enforce orthogonality 
with the blockade eigenstates (Eq. 20), which gives us the approxi-
mate eigenstate

  ∣ 〉 =   1 ─ 
N

  (∣    ha   〉 −  e   − 1 _ 2  ∣   ha  ∣   2   ∣ 0〉 −    ha    e   − 1 _ 2  ∣   ha  ∣   2   ∣ 1〉)  (21)

where N is the normalization constant. Under the assumption that 
∣〉 is an approximate eigenstate of     ̂  H    block   , the relevant three- 
eigenstate degenerate manifold of the unperturbed Liouvillian 
  ℒ  0   = − i [    ̂  H    block  , ·]  is {∣+〉 〈+∣,∣−〉 〈−∣,∣〉 〈∣} (the third 
exact eigenstate is ∣〉 〈∣ of course). The perturbation is single 
photon loss

   ℒ  1   = D [   ̂  a  ]  (22)

where  D [   ̂  X  ]  is the standard Lindblad dissipator. We diagonalize 
the three state subspace with respect to ℒ1 and compute the eigen-
values. The irrelevant eigenvalues are 0 = 0, whose eigenvector is 
the   ≪    ~    3    limit of the single photon blockade steady state, and 
1 = /2, whose eigenvector describes population imbalance relative 
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to the steady state. The final eigenvalue is the only one whose eigen-
vector involves ∣〉 〈∣ and for  U ≪    ~    3    is given by

     slow   ≈   ∣    ha   ∣   2 (1 + 2  ∣    ha   ∣   2  )  e   − ∣   ha  ∣   2    (23)

This shows that the dissipative gap of the blockade Liouvillian 
spectrum is exponentially small in  U /    ~    3   ≪ 1  due to a quasistable 
eigenstate of the coherent Hamiltonian. We thus have provided a 
quantitative and intuitive understandingof the unexpected sensitivity 
of the steady state to small deviations of r away from integer values, 
explaining the unexpectedly sharp antiresonance phenomena 
found in (24).

Estimation of esc
We provide details here on how to use FGR to estimate the slow rate 
esc (c.f. Eq. 10), which governs escape from the blockaded subspace 
in the presence of imperfect drive amplitudes. Consider first 
the simple case where   ≪    ~    3   . We write the system Hamiltonian 
   ̂  H   =    ̂  H    0   + (    ~    1      ̂  a     †  + h . c . ) , where     ̂  H    0    is the ideal Hamiltonian with 
perfect drive amplitude matching (i.e.,     ̂  H    0   =    ̂  H    target    with r = 1, 
c.f. Eq. 3). Treating the last term as a perturbation and letting ∣j〉 (Ej) 
denote eigenstates (eigenvalues) of     ̂  H    0   , application of FGR yields

     esc   =   ∑ 
j∈{unblock}

     ∣ 〈    j   ∣     ̃     1      ̂  a     †  ∣    ±   〉 ∣   
2
    

   j   / 2 ─ 
 (E)   2  +   j  2  / 4

    (24)

Here, ∣±〉 are the two blockade-subspace eigenstates of     ̂  H    0   , and 
E = Ej − E±. The last factor in Eq. 24 corresponds to the lifetime- 
broadened density of states of each unblockaded eigenstate; for 
weak , the decay rate     j   =  〈   j   ∣    ̂  a     †   ̂  a   ∣    j   〉 . This general form matches 
that of Eq. 10, with a prefactor c that in general depends on the un-
blockaded eigenstates of     ̂  H    0    and hence  U /    ~    3   . We find good agree-
ment between Eq. 24 (computed from exact diagonalization) and 
the rate extracted from numerical simulations of the system dynamics 
for weak . As an example, we consider     ~    3   = 100  . For  U /    ~    3   = 0.2 , 
the estimate is c = 0.0051 and the extracted value from the dynamics 
is c = 0.0047, and for  U /    ~    3   = 0.3 , the estimate is c = 0.0036 and the 
extracted value is c = 0.0045. These are typical of this parameter re-
gime. The small value of c here directly reflects the delocalization of 
the unblockaded eigenstates.

For more general regimes, it is trickier to directly apply FGR, as 
one can no longer treat the effects of  by simply lifetime broadening 
each unperturbed eigenstate. For   ≫    ~    3   , one can use the fact that 
the large dissipation will disrupt the formation of coherent eigen-
states outside the blockaded subspace. In this case, we can estimate 
esc by considering a transition from either ∣±〉 to the Fock state 
∣2〉, whose decay rate is simply 2. This leads to an approximate 
decay rate corresponding to Eq. 10 with parameter-independent 
constant c = 1. For the most relevant regime   ∼    ~    3   , it is difficult to 
rigorously calculate the decay rate as neither  nor the unblockaded 
coherent dynamics can be treated perturbatively. As discussed in 
the "Slow time scales, metastability, and blockaded states in the 
infinite-time limit" section, numerically a good agreement is found to 
the general form in Eq. 10 with c ∼ 0.25. Heuristically, this is consist-
ent with the results presented above; the slightly smaller value of c 
corresponds to the partial delocalization of unblockaded eigenstates.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj1916
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