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a b s t r a c t

Developmental improvements in working memory (WM) maintenance predict many real-

world outcomes, including educational attainment. It is thus critical to understand which

WM mechanisms support these behavioral improvements, and how WM maintenance

strategies might change through development. One challenge is that specific WM neural

mechanisms cannot easily be measured behaviorally, especially in a child population.

However, new multivariate decoding techniques have been designed, primarily in adult

populations, that can sensitively decode the contents of WM. The goal of this study was to

deploy multivariate decoding techniques known to decode memory representations in

adults to decode the contents of WM in children. We created a simple computerized WM

game for children, in which children maintained different categories of information (vi-

sual, spatial or verbal). We collected electroencephalography (EEG) data from 20 children (7

e12-year-olds) while they played the game. Using Multivariate Pattern Analysis (MVPA) on

children's EEG signals, we reliably decoded the category of the maintained information

during the sensory and maintenance period. Across exploratory reliability and validity

analyses, we examined the robustness of these results when trained on less data, and how

these patterns generalized within individuals throughout the testing session. Furthermore,

these results matched theory-based predictions of WM across individuals and across ages.

Our proof-of-concept study proposes a direct and age-appropriate potential alternative to

exclusively behavioral WM maintenance measures in children. Our study demonstrates

the utility of MVPA to measure and track the uninstructed representational content of

children's WM. Future research could use our technique to investigate children's WM

maintenance and strategies.

© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
a, 40 Boulevard Pont d'Ar
(N. Turoman).

Elsevier Ltd. This is an ope
ve, 1205 Geneva, Switzerland.

n access article under the CC BY license (http://creativecommons.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2023.10.019&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2023.10.019&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:nora.turoman@unige.ch
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2023.10.019&domain=pdf
www.sciencedirect.com/science/journal/00109452
www.elsevier.com/locate/cortex
https://doi.org/10.1016/j.cortex.2023.10.019
https://doi.org/10.1016/j.cortex.2023.10.019
https://doi.org/10.1016/j.cortex.2023.10.019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


c o r t e x 1 7 1 ( 2 0 2 4 ) 1 3 6e1 5 2 137
Working memory (WM), the brain's limited-capacity system

which temporarily maintains information that is no longer

physically present (Baddeley & Hitch, 1974; Cowan, 1998;

Miller, 1956), has been recognized as the primary determinant

of cognitive development in children (for review see Cowan,

2016), and a key predictor of scholastic skills and academic

achievement (e.g., Alloway & Alloway, 2010; Bayliss et al.,

2003; Bull et al., 2008). It is known that WM performance im-

proves with age (e.g., Gathercole, 1999; Gathercole et al., 2004;

Salthouse, 1994), and the emergence of spontaneously used

maintenance mechanisms in WM has been proposed as an

underlying cause of such improvements (e.g., Camos &

Barrouillet, 2011; Gathercole & Adams, 1994; Geier et al.,

2009; Magimairaj & Montgomery, 2013; Shimi & Scerif, 2017).

However, the way in which some of these maintenance

mechanisms are typically measured has made it difficult to

build accurate theories of their developmental trajectory.

Specifically, children's WM maintenance mechanisms are

usually assessed using behavioral tasks. Yet, the spontaneous

use of maintenance mechanisms that occur covertly is diffi-

cult to assess behaviorally without introducing specific task

manipulations. One concern is that these manipulations can

bias whether the to-be-measured maintenance mechanisms

can be detected, and how they appear to operate. Such

methodological issues can weaken the derivation chain from

hypothesis building based on extant theory, through their

testing with a given set of methods, to yielding results that are

used to build new theory (Meehl, 1990; Scheel et al., 2021).

Since science is based on the constant continuation of this

cycle, if one element is weak, this puts the inferences that can

be drawn from the data at risk on a grand scale. Given the

clear educational importance of understanding WM develop-

ment, methods must be developed which accurately assess

how children spontaneously maintain memoranda in WM,

i.e., that can uncover and track children's maintained

memoranda without the use of potentially interfering task

manipulations. In the current study, we propose an analysis

approach using established multivariate analyses of electro-

encephalographic (EEG) data, known to decode memory rep-

resentations in adults, to first check whether differences in

children's uninstructed representations can be detected. If

successful, this technique could then be used by future

studies to investigate questions related to specific mainte-

nance mechanisms and strategies in children.
1. Issues in measuring children's WM
maintenance

There are several different strategies that can be used to

maintain different types of information in WM for short pe-

riods of time (e.g., Bjorklund et al., 2008; Kail & Hagen, 1977).

Some of these mechanisms can be measured relatively sim-

ply. For example, rehearsal, which involves subvocal repeti-

tion of the information to be remembered (Baddeley, 1986;

Conrad, 1964) can be tracked by observing lip movements

associated with the maintained information (e.g., Elliott et al.,

2021; Flavell et al., 1966). Accordingly, there is ample evidence

that rehearsal strategies are spontaneously employedwithout

being instructed, from age 7 onwards (e.g., Baddeley et al.,
1998; Ferguson et al., 2002; Flavell et al., 1966; Hitch et al.,

1991). In another example, children may organize memo-

randa by a common category during a brief WM delay (Bower,

1970; Mandler, 2002). This organization strategy has typically

been measured in children by presenting memoranda in vi-

sual forms (e.g., flashcards) that could be spatially grouped by

categories (for procedure see e.g., Salatas & Flavell, 1976).

Interestingly, only older children (around age 10 onwards)

seem to use this strategy spontaneously (Bjorklund & de

Marchena, 1984; Hasselhorn, 1992; Schleepen & Jonkman,

2012). However, even 4-year-olds (Sodian et al., 1986), 7-year-

olds (Lange & Jackson, 1974), and 9-year-olds (Corsale &

Ornstein, 1980) are shown to organize memoranda when

task instructions are modified to emphasize the usefulness of

the underlying category information. Thus, specific task in-

structions may alter WM maintenance strategies and influ-

ence the measurement of WM maintenance mechanisms.

This example foreshadows the complexity of measuring

mechanisms that are not directly visible.

Other covert WM mechanisms cannot be easily inferred

without employing specific task settings. One such covert

mechanism is refreshing, which involves briefly reactivating

to-be-remembered information by focusing limited internal

attentional resources onto the representation (e.g., Barrouillet

et al., 2004; Camos et al., 2018). Though it is not the only covert

WM maintenance mechanism in existence, it has received

renewed research interest (K�aldi & Babarczy, 2021; Lintz &

Johnson, 2021; Oberauer & Souza, 2020; Vergauwe et al.,

2021; Vergauwe & Langerock, 2022), and is a fitting example

mechanism to demonstrate both the necessity to manipulate

task parameters to measure it, and how such manipulations

can interfere with its measurement. One popular way to

measure refreshing is by varying the attentional demands of a

secondary processing task (Barrouillet et al., 2009; Bayliss

et al., 2003; Bertrand & Camos, 2015; Camos & Barrouillet,

2011; Conlin et al., 2005; Oftinger & Camos, 2015, 2017, 2018;

Tam et al., 2010). In such dual-task setups, refreshing would

be indexed by declines in WM performance in the mainte-

nance task as a function of the attentional demands of the

processing task (e.g., Barrouillet et al., 2009; Bayliss et al., 2003;

Camos & Barrouillet, 2011; Tam et al., 2010). A key question

has been when refreshing emerges during development, with

multiple studies observing an impact of the attentionally

demanding processing task (interpreted as the reliance on

refreshing) starting at age 7 and becoming progressively

greater with age (Barrouillet et al., 2009; Gaillard, 2011; Portrat

et al., 2009). However, as Vergauwe et al. (2021) have noted,

neither the emergence of spontaneous refreshing at age 7, nor

the increases in refreshing efficiency from then onto adoles-

cence are unequivocally supported in the literature. First, the

detrimental effects of attentional demands on memory per-

formance which are characteristic for refreshing have been

observed even at 4e6 years of age (Bertrand & Camos, 2015;

Tam et al., 2010). Second,memory performance decreases as a

result of attentionally demanding concurrent tasks have not

been found to differ much between 6-year-olds and 8-year-

olds (e.g., Conlin et al., 2005; Oftinger & Camos, 2015, 2017,

2018). Though dual-task paradigms have yielded mixed re-

sults on the developmental trajectory of refreshing, these

paradigms have still all detected refreshing in children.

https://doi.org/10.1016/j.cortex.2023.10.019
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Removing the secondary task, however, seems to make

refreshing undetectable. Namely, in a paradigm without a

dual task design, and using a different outcomemeasure than

the above studies (based on Vergauwe & Langerock, 2017; see

also Vergauwe & Langerock, 2022), Vergauwe et al. (2021) did

not find evidence for spontaneous refreshing in children older

than 7 years of age (see also Valentini & Vergauwe, 2023).

However, the removal of the processing task could have had

other consequences, for example rendering the paradigm less

challenging for children and easier to understand. The results

presented here demonstrate that specific paradigm design

choices, for example the outcome measure and the inclusion

of a secondary task, can influence whether or not refreshing

can be detected in children. The contrast between paradigms

with and without secondary tasks has the potential to upend

common conceptions ofWMdevelopment and refreshing as a

maintenance mechanism. Combined with the results

regarding the organization strategy, on a larger scale, these

outcomes (as well as e.g., Brady et al., 2021) highlight the need

for deeper considerations of methodology before testing

theoretical assumptions in the WM field.
2. Moving forward: designing better
methods for assessing WM maintenance in
children

Most studies on children's WM mechanisms have used

behavioral measures exclusively, meaning that detecting

maintenance mechanisms was reliant either on the observ-

able production of said mechanisms (for overt mechanisms),

or inferences based on results under specific task settings (for

covert mechanisms). Though such approaches have been

instrumental to understanding WM development, we have

seen that they are limited, in that it may be challenging to

disentangle whether failure to detect an effect in children is

due to a) a true absence of an effect, b) the children not being

motivated to do a difficult task, or c) the children not under-

standing the instructions of the task. Therefore, it would be

powerful to develop a measure that is independent from task

demands, which would allow children to behave, and process

information spontaneously.

A potential solution lies in departing from behavioral-only

measures. Assessing maintenance mechanisms using neural

measures would remove the need for introducing secondary

tasks or elaborate instructions, thus simplifying and removing

sources of bias from behavioral tasks, and allow children to

maintain memoranda in whichever way was most natural to

them. In particular, Multivariate Pattern Analysis (MVPA) can

index different perceptual or cognitive states, by training

classifiers to distinguish between different patterns of activity

that are distributed across the brain (Haxby et al., 2001;

Norman et al., 2006). Multivariate analyses of electroenceph-

alography (EEG) data, has successfully decoded the contents of

attended information in WM (LaRocque et al., 2013), the

amount of WM load (Adam et al., 2020), individual differences

in WM load and attentional focus (Karch et al., 2015), and

attentional processes involved in the transfer of information

into long-term memory (deBettencourt et al., 2021), all in

adults. It has less frequently been applied to neural data
collected from children, though there have been some notable

exceptions (e.g., Mares et al., 2020 [face processing in typical

development]; Petit et al., 2020 [language processing in typical

development and autism]; Lui et al., 2021 [word reading skills

with Chinese characters]). To our knowledge, however, this

method has yet to be used to elucidate WM processes in

children, let alone WM maintenance processes in children.

With that, it would be prudent for new decoding approaches

in children's WM maintenance to first make sure that basic

differences in maintained content are detectable (e.g., as in

LaRocque et al., 2013 in adults) before attempting to differ-

entiate between different maintenance mechanisms. To that

end, we conducted a proof-of-concept study to check if such

basic differences in uninstructed WM representational con-

tent are decodable, as a first step towards one day being able to

use MVPA to distinguish between different uninstructed

maintenance mechanisms in children.
3. The current study

In the current study, we aimed to directly assess the unin-

structed content of children's WM during maintenance and

track its changes over time, using the MVPA technique which

is known to decode memory representations in adults. To do

so, we posited that, instead of changing behavioral task pa-

rameters (i.e., without relying on difficult concurrent pro-

cessing tasks, or hard-to-understand task instructions), we

could leverage measures of brain activity during mainte-

nance. We tested this hypothesis by combining a simple,

child-friendly, computerized working memory task with

multivariate analyses of electroencephalographic (EEG) mea-

sures. Our study design allowed us to probe the uninstructed

representational content of children's working memory dur-

ing maintenance, and throughout the course of an entire trial

from encoding to response. We decoded between three cate-

gories that reflect the most commonly used stimulus cate-

gories in WM research (visual features, spatial locations,

verbal stimuli), mapping onto domain-specific dissociations

of working memory resources as proposed in the popular

multi-component model (Baddeley & Hitch, 1974; Baddeley,

1986; Baddeley & Logie, 1999). The ability to decode the con-

tents of WM from children was the key aim of our study, but

we also went on to assess the validity and reliability of our

approach through a series of exploratory analyses.
4. Methods

4.1. Participants

A total of 25 children (8 female, mean age ¼ 9 years 4 months,

SD age ¼ 1 year 3 months, Range: 6 years 0 monthse12 years 9

months) were recruited for the present study, through per-

sonal contacts, word of mouth, and the participant database

of the Working Memory, Cognition and Development lab. The

sample size was determined based on prior studies using

MVPA on children's EEG data available to us at the time (Lui

et al., 2021; Mares et al., 2020; Petit et al., 2020). Of this, five

participants were excluded due to not finishing the task,

https://doi.org/10.1016/j.cortex.2023.10.019
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having behavioral accuracy at or below chance level (i.e., 50%

of the total accuracy), or excessive noise in their EEG data (that

could not be cleaned from the data such at least 200 trials

remain in the dataset, e.g., due to excessive movement

throughout the experimental task). These exclusion criteria

were determined before data collection. Thus, the final sam-

ple included 20 children (7 female, mean age ¼ 9 years and 7

months, SD age ¼ 1 year and 5 months, Range: 7 years

0 monthse12 years and 2 months).

Participants were tested at the EEG lab of the Faculty of

Psychology and Educational Sciences of the University of

Geneva and were offered a 20 Swiss franc voucher from a

popular media store. All research procedures were approved

by the University of Geneva Ethical Commission (approval

code: CUREG_2021-05-49). Informed consent was obtained

from parents/caregivers and verbal assent was obtained from

children before participating in the study.

4.2. Stimuli

Stimuli belonged to one of three categories: Visual (an image of

a robot), Spatial (an image of a rocket ship in a given spatial

location on a circular grid), or Verbal (an image of a French-

sounding non-word, i.e., the written form of a French-

sounding non-word). There were 16 stimuli per category. For

the spatial category, there were 16 positions that a rocket could

occupy on a circular display; based on the memory items from

Ricker and Vergauwe (2020). For the visual category, there were

16 images of robots (generated by typing the following numbers

into the ‘generate’ query space at Robohash.org: 10, 20, 30, 40,

50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, and saved as a

.png file). Finally, for the verbal category, there were 16 non-

words presented in written form on the screen. The nonwords

were written in white letters in Calibri font, size 115. The

nonwordswere generated byWinWordGen 1.0 (Duyck, Desmet,

Verbeke, & Brysbaert, 2004), had 5 letters and 2 syllables each,

and were drawn from Lexique.org with a base language of

French (all other settingswere set to default). A list of 119words

was generated, and we selected 16 that were verified not to

resemble a real French word by a native French speaker (i.e.,

karir, gagon, wacha, eurit, hanre, impet, asers, podou, coune, sarda,

tindi, lurre, madru, ouail, pelme, and usase). The output of the

program and the verified list if words are both included in the

OSF repository for this project (see Open Practices Statement

below). All stimuli were presented centrally on a black back-

ground subtending 5 degrees of visual angle, to minimize eye

movements. For comparison purposes, we include an image of

all the stimuli together In the Supplementary Materials

(Supplemental Fig. 1).

4.3. Task procedure

The experimental task involved a single-item delayed-recog-

nition task (Fig. 1), based on the Phase 1 task of Experiment 1

in LaRocque et al. (2013). Importantly, participants were only

told to remember the information e there were no in-

structions as to how to maintain the stimuli. Each trial began

with an inter-trial interval (ITI, average duration 1000 msec),

during which participants were presented with a white fixa-

tion dot centrally on the screen. To reduce anticipation
effects, the ITIs were randomly jittered between 800msec and

1200 msec in steps of 50 msec. Next, during the Sensory

period, the to-be-memorized item was displayed for

1000 msec. Stimulus category was randomly determined on

each trial. Afterwards, during the maintenance (Delay) period

(2000 msec), a central white fixation cross appeared on the

screen. Then, a probe stimulus of the same category was

displayed for 1000msec. Finally, during the Response period, a

white question mark was displayed centrally (until the

participant responded or 2000 msec, whichever was shorter),

indicating to the participants to respond. If the probe stimulus

matched the to-be-memorized stimulus, participants were to

press the ‘k’ key on the keyboard in front of them. If the probe

stimulus did not match the previously encoded target stim-

ulus, participants were supposed to press the ‘d’ key on the

keyboard. The probe stimulus matched the to-be-memorized

stimulus 50% of the time. The ‘k’ and ‘d’ keys were marked

with green circular stickers. Prior to the experiment, partici-

pants were told to respond when they saw the question mark

on the screen. There were no instructions on which hand to

use to provide responses. To minimize blinking artefacts

during the Sensory (encoding) and Delay (retention) periods,

participants were encouraged to withhold blinking during

these times, andwe turned on the light in the testing booth for

participants that had trouble withholding blinking.

Participants completed 128 trials per category, resulting in

a total of 384 experimental trials across categories. To help

increase children's motivation, the task contained a back-

ground story (helping astronauts find their way home from an

alien space base) and was presented in a game-like fashion.

Participants could take self-timed breaks after every 48 trials.

During these breaks, the participants' total number of correct

responses out of possible correct responses was shown on the

screen, alongside the number of ‘blocks’ left. Before starting

the paradigm, participants completed several slower practice

trials. In total, each session took a maximum of 2 h, with

approximately 45 min of data collection.

The experimental paradigm was programmed using the

Psychopy Builder Standalone version 2020.2.5 (Peirce et al.,

2019), and presented on a 2400 LCD monitor (60 Hz refresh

rate) in a sound-attenuated, shielded booth. A BioSemi

ActiveTwo amplifier (BioSemi Inc., Amsterdam, The

Netherlands) was used to record EEG data from a 64-electrode

BioSemi gel headcap (10/20 electrode layout). All sites were

referenced online to electrode Cz, and re-referenced offline to

the average reference. To record eye movements and blinks,

additional electrodes were placed at the outer canthi of both

eyes (for the horizontal electrooculogram; HEOG) and above

and below the right eye (for the vertical electrooculogram;

VEOG). Electrode impedances were adjusted to below 5 kU

prior to the start of the experiment. Data were digitized at

2048 Hz.

4.4. Behavioral data analyses

Although behavioral data analyses were not the focus of the

present study, we calculated accuracy (percentage of correct

responses) over the entire task. We excluded the data of par-

ticipants with accuracy that was at or lower than a level that

would be obtained by pure chance (50%) from further EEG

http://Robohash.org
http://Lexique.org
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Fig. 1 e Task schematic. One trial per category (visual, spatial, verbal) is depicted. The stimuli for the visual category were

images of robots, the stimuli for the spatial category were rockets in a particular location on a platform, and the stimuli for

the verbal category were nonwords. The Baseline period was the last 300 msec of the ITI, which lasted 1000 msec on

average. The stimuli were presented during the Sensory period (1000 msec), followed by a blank Delay period (2000 msec).

Then, a probe image appeared (1000 msec) that was either the same image (50% of the time) or a different image from the

same category (50% of the time). Finally, during the Response period (2000 msec) a question mark appeared, and

participants could respond. Categories were randomly intermixed across trials over the duration of the experiment. Note

that the stimuli are shown much larger in the figure, for clarity, than they appeared in the experiment. EEG data were

epoched so as to contain the Baseline, Sensory, and Delay periods (i.e., ¡300 msec to 3000 msec relative to Sensory period

onset).
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analyses. To estimate whether our participants could suc-

cessfully complete the task, we derived the average accuracy

score across all participants at three different points: before

any exclusions, after exclusions based on behavioral criteria,

and after exclusions based on EEG-related criteria (i.e., the

data retaining at least 200 trials after cleaning).

4.5. EEG preprocessing

For EEG data preprocessing, we used theMatlab-based (Natick,

Massachusetts: The MathWorks Inc) EEGLAB software

(v.2022.0, Delorme & Makeig, 2004). We first down-sampled

the data to 500 Hz, removed the DC offset, and applied a

bandpass filter of 1 Hze40 Hz (12 dB/octave roll-off computed

forward and backward to eliminate phase shift). Then, we

epoched the data from �300 msec to 3000 msec relative to the

onset of the stimulus for each trial, such that each epoch

contained the Baseline period (�300 msec to 0 msec, during

the ITI), the Sensory period (0msece1000msec), and the Delay

period (1000 msece3000 msec; see Fig. 1). A semi-automatic

artefact rejection procedure was used to remove artefacts
(transient noise, movement, skin potentials, etc.), which

consisted of applying an automatic artefact rejection criterion

of ±150 mV for EEG artefacts (adapted to children's EEG, see e.g.,

Melinder et al., 2010; Shimi et al., 2015) along with visual in-

spection. Next, to remove the influence of blinks, we con-

ducted independent component analysis (ICA) using the

ICLabel package (Pion-Tonachini et al., 2019) in EEGLAB. We

detected those components that contained eye movements

and blinks with visual inspection and removed only these

components from the data. We discarded any electrodes

contaminated by artefacts, based on visual inspection

(maximum 13% of the electrode montage) and interpolated

the missing data using 3-dimensional splines (Perrin,

Bertrand, & Pernier, 1987). Our EEG analyses only included

participants with over 200 trials (67% of the total number of

trials) remaining after the cleaning procedure.

4.6. EEG classification

The main goal of this study was to examine the EEG multi-

variate representations for children performing a working

https://doi.org/10.1016/j.cortex.2023.10.019
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memory task. We approached this goal in two ways: 1) We

calculated the average classification accuracy during the

Baseline, Sensory, and Delay periods separately (time-average

classification), and 2) We examined how classifier perfor-

mance trained at a specific moment in time generalized over

other timepoints (temporal generalization classification). This

set of analyses allowed us to probe whether we can detect

differences in the uninstructed representational content of

children's workingmemory. First, we testedwhether we could

reliably decode WM content during delay periods, as well as

other periods during the trial. Second, we further tracked the

representational content over time by showing how long the

same representational structure can be detected.

Multivariate classification was performed within each

subject by employing the MVPA-Light toolbox (Treder, 2020)

with the linear discriminant analysis (LDA) classifier. We used

each participant's preprocessed single-trial voltage ampli-

tudes across all EEG channels as input features for the clas-

sifier. Both correct and incorrect response trials were included

in the analysis (as in LaRocque et al., 2013), in order to maxi-

mize the number of trials per category, assuming that incor-

rect responses were made because the details of a given

stimulus, and not its category membership, were wrongly

remembered.

For the time-average classification, we calculated the

average voltage amplitudes across each of the respective

time-windows: �300 msec to 0 msec for the Baseline

period, 0 msece1000 msec for the Sensory period, and

1000 msece3000 msec for the Delay period. We averaged

across trials, with 5 samples for each average and demeaned

the data across trials. We performed 100 iterations of the

classification analyses for each time-bin (as in Adam et al.,

2020). Cross-validation was applied, such that, on each itera-

tion, 2/3 of the trials were randomly assigned to a training set

and 1/3 of the trials to a held-out test set. The classifier per-

formance was determined by averaging the classification ac-

curacy across the 100 iterations. To ensure the same number

of trials per category in the training and test set, condition

labels with fewer trials were up-sampled using a stratification

procedure, natively implemented in the MVPA-light toolbox.

The resulting mean trial numbers per condition were as fol-

lows: 99.95 (SD ¼ 16.29) for the visual condition, 101.75

(SD ¼ 17.01) for the spatial condition, and 101.65 (SD ¼ 15.55)

for the verbal condition. Thus, the conditions had very similar

trial numbers, making for a rather balanced dataset. The

outputs of the classification performance were accuracy (i.e.,

the proportion of correctly predicted class labels) and a set of

confusion matrices (i.e., tables of proportions correctly pre-

dicted and incorrectly predicted class labels). Significance was

statistically assessed against theoretical chance (33%) via

Bonferroni-corrected one-sided t-tests at each time-bin

(assuming no meaningful values that are below chance). Sta-

tistical assessment against theoretical chance involved per-

forming subject-wise permutation (see also Fahrenfort et al.,

2018), with 1000 iterations per subject, at an alpha level of

.05, implemented via the “mv_statistics” function of the MVPA-

light toolbox.

To analyze temporal generalizability, we divided each

trial into smaller 50-msec time-bins, averaged across 5
trials, and calculated the mean voltage amplitudes for each

bin (as in Adam et al., 2020). Then, for each time point, we

trained the classifier on recorded brain activity for the given

time point and tested it on brain activity recorded at all

other time points. Significance was statistically assessed

against theoretical chance (33%) via Bonferroni-corrected

one-sided t-tests at each time-bin. The results of the 50-

msec temporal generalization are reported below. The

same analysis was also run using 20-msec time-bins,

revealing very similar results (see Supplementary

Materials).

To further validate our approach and investigate its

robustness, we conducted additional exploratory analyses to

assess its reliability and validity. First, we split our EEG

dataset in half and conducted several analyses to establish

the robustness of EEG decoding within and across these

halves. Specifically, for each participant, we split the data

into an early half (blocks 1e4 in the experimental session)

and a late half (blocks 5e8), and applied the same temporal

generalization procedures to each half separately. After-

wards, we cross-decoded from the early to the late half, such

that data from the early half of the session were used for

training the classifier and the data from the late half of the

sessionwere used for testing the classifier (see e.g., LaRocque

et al., 2013; Lewis-Peacock et al., 2012). Second, we descrip-

tively compared the results of the main time-average

decoding to an expected pattern based on our given task

design (i.e., no above-chance decoding at Baseline, high

above-chance decoding at Sensory, and lower but still above-

chance decoding at Delay). Third, we descriptively compared

the results of the confusion matrix generated by the time-

average classification above to a pattern that follows classic

WM theory (i.e., that verbal stimuli would be the least con-

fusable with other categories, while visual and spatial stim-

uli would be more confusable with each other, though still

distinct). Fourth, we investigated the relationship between

decoding accuracy in the Sensory and Delay periods per in-

dividual, to capture the consistency of our measures across

participants. Here, we had two assumptions: 1) that classi-

fication performance when observing the stimulus to be

remembered (i.e., during the Sensory period) should be

higher than classification performance when maintaining

said stimulus in memory in its absence (i.e., during the

Delay), and 2) that individuals with higher classification

performance at Sensory than others will also have higher

classification performance at Delay than others. To test these

assumptions, we first compared average classification ac-

curacy at Sensory and Delay using a paired-sample right-

tailed t-test. Then, we quantified the strength of the rela-

tionship between classification accuracy at Sensory and

Delay via Pearson correlation. Finally, we examined decoding

accuracy as a function of age. We did so first by using a linear

regression between participants' age and their average clas-

sification accuracy for the Baseline, Sensory, and Delay pe-

riods separately, using the “fitlm” and “anova” functions in

Matlab. This was done to rule out that our results were driven

by older participants, and not the entire range of partici-

pants. It is well-established that children's WM performance

tends to improve with age (e.g., Gathercole, 1999; Gathercole
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et al., 2004; Salthouse, 1994), and thus our above-chance

decoding results could have stemmed from older ‘high per-

formers’ with higher decoding accuracy. Finally, we

compared behavioral accuracy and classification accuracy

between the youngest participants in the sample and the

entire sample. Since our youngest participants were between

7 and 8 years of age (5 participants aged: 7 years, 7 years and 6

months, 7 years and 9 months, 8 years and 1 months, and 8

years and 3months), theymight have had trouble processing

the nonwords due to less efficient reading skills. To ascertain

if decoding results were driven by such a difference in pro-

cessing verbal and other stimuli in young participants, we

compared their behavioral and classification performance

across categories to that of the entire sample. Behavioral

data were analyzed using a Bayesian analysis of covariance

(BANCOVA) with one within-subjects factor of Category and

Age as a covariate, using the default settings (Cauchy prior

with a .707 scaling constant for effect size) in JASP v.0.16.4.0

(JASP Team, 2020). We also descriptively compared the

youngest participants' accuracies per category with those of

the entire sample. For the decoding analyses, we extracted a

confusion matrix for the youngest participants only, using

the same methods as for the main analyses described above,

and compared the values per category with those of the

entire sample. To avoid reiterating the main analysis results,

in the Results section, we will only present the results of the

split-half analyses, confusion matrix analysis, individual

difference analyses, and analysis of decoding accuracy by

age.

4.7. Open practices statement

The behavioral data, exclusion criteria, preprocessing, anal-

ysis scripts, and study materials (stimuli and task design) are

available at https://osf.io/jeh67/. Due to space limitations on

OSF, the raw EEG data are stored in a Zenodo repository:

(https://zenodo.org/record/8425759), and the preprocessed

EEG data are stored in another Zenodo repository: (https://

zenodo.org/record/8425851). No part of the study procedures

or analyses was pre-registered prior to the research being

conducted. We report howwe determined our sample size, all

data exclusions, all inclusion/exclusion criteria, whether in-

clusion/exclusion criteria were established prior to data

analysis, all manipulations, and all measures in the study in

the pages above.
5. Results

5.1. Behavioral results

In a first analysis step, we verified whether participants suc-

cessfully performed the task by checking their average

behavioral accuracy results. The total sample had an average

accuracy score of 84% (SD ¼ 21%). After applying our behav-

ioral exclusion criteria, the average accuracy score was 89%

(SD ¼ 9%). Finally, after applying our EEG exclusion criteria,

the average accuracy score was 90% (SD ¼ 8%). This high ac-

curacy demonstrates that our participants successfully per-

formed the WM task.
5.2. EEG classification

The key goal of this study was to use multivariate pattern

analysis to decode EEG data collected from children during a

WM game. We were interested in whether multivariate EEG

patterns differed when children maintained different cate-

gories of information (visual, spatial, and verbal). First, we

examined the time-average EEG voltage patterns during the

Baseline, Sensory, and Delay periods (Fig. 2). As expected, we

found that decoding accuracy was above theoretical chance

(33%) in the Sensory period (mean ¼ 58.0%, median ¼ 60.0%,

SD ¼ 11.1%, p ¼ 2.77e-09) and the Delay period (mean ¼ 44.4%,

median ¼ 45.1%, SD ¼ 8.6%, p ¼ 7.38e-06), but not in the Base-

line period (mean¼ 34.6%,median¼ 33.8%, SD¼ 4.4%, p¼ .11).

This demonstrates reliable decoding of children's WM con-

tents during the time when children maintained information

(Delay), and when they viewed information (Sensory), but also

verifies that we were unable to decode during the moments

prior to the stimulus presentation when they were preparing

for the onset of the next trial (Baseline).

5.3. Temporal generalization of EEG patterns

Next, we examined how children's WM representations

unfolded across time by examining how patterns generalized

across different moments (Fig. 3). That is, we trained a

multivariate classifier at a particular time point, and tested it

on all other timepoints. We observed similar multivariate

representations across time, particularly from the Sensory to

the Delay periods of the trials: Representations that were

detected during the early Sensory period could be traced with

high accuracy over the entire Sensory period, and impor-

tantly, for a portion of the Delay period. This is reflected in

reliable decoding at distant moments of time, far from the

diagonal of the matrix. In sum, our results suggest not only

that differences in observed and maintained representational

content can be detected, but that the same representations

that were formed when stimuli were observed persisted in

WM for a portion of the maintenance period, even when the

stimuli were absent.
6. Further exploratory analyses of reliability
and validity

6.1. Split-half analyses

In a first set of exploratory split-half analyses, we examined

whether, with half asmuch data, we could still reliably decode

the content of children's WM, and how the decoding gener-

alized across time. Evenwhen training/testing only within the

early half, classification was robust during the majority of the

Sensory period, and within the first 500 msec of the Delay

period, but not during the Baseline period (Fig. 4A). Further,

the same representations detected early in the Sensory period

were observed throughout the Sensory and Delay periods

(Fig. 4A). The results for the late-half showed that we reliably

classified data during the Sensory period and most of the

Delay period (though not consecutively), but not during the

Baseline period (Fig. 4B). Here too, the representations

https://osf.io/jeh67/
https://zenodo.org/record/8425759
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Fig. 2 e Classification accuracy of time-averaged patterns during the Baseline (gray), Sensory (green), and Delay (purple)

periods. The mean is illustrated as a horizontal line, the median accuracy is depicted as a white circle, and standard error is

depicted as a vertical black line. Individual data points are depicted as dots, and theoretical chance is represented by a

dashed and dotted horizontal black line. The numerical average accuracy score is displayed above each violin plot. Accuracy

scores that are significantly above chance are marked with *** if they are above the p < .001 threshold.

Fig. 3 e Temporal generalization of classification, where a classifier was trained on one time point and tested on all other

time points. Average classification values are overlaid by a significance mask: gray colored areas indicate the time points at

which classification did not survive the Bonferroni correction for multiple comparisons, while all other colors correspond to

above-chance classification generalization.
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Fig. 4 e Classification performance on EEG data split into early (‘blocks’ 1e4) and late (‘blocks’ 5e8) halves. A) Classification

results in the early half of the testing session, B) Classification results in the late half of the testing session and C) Cross-

decoding results between the early and late halves (training the classifier on early half data, testing the classifier on late half

data). Across all panels, Average classification values are overlaid by a significance mask: gray fields indicate the time

points at which classification did not survive the Bonferroni correction for multiple comparisons, while all other colors

correspond to above-chance classification generalization.
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detected early in the Sensory period were present throughout

the Sensory and Delay periods (Fig. 4B). We also investigated

the consistency or stability of the representational structures

in WM throughout the entire session, by conducting cross-

decoding analyses between the early and late halves. We

observed reliable cross-decoding during most of the Sensory

period and the first 1000 msec of the Delay period (though not

consecutively). Finally, here too, representations detected

early in the Sensory period were present throughout the

Sensory and Delay periods (Fig. 4C). This suggests that repre-

sentational structures detected in the early half of the testing

session were comparable to those detected in the late half of

the testing session. In sum, these split-half classification re-

sults show that our approach detects robust representations,

which are furthermore stable across the testing session,

lending support to the overall reliability and validity of the

approach.

6.2. Category confusability

We next examined the classification performance of specific

categories, to identify which stimulus categories were most

confusable, using the confusion matrices from the time-

average classification (Fig. 5). First, during the Baseline

period, all categories at test were almost equally confusable

with each other, since all of the values were near chance

(33%). Next, during the Sensory period, we observed that

verbal information was most accurately decoded (71%) and

least confusable with either visual or spatial information.

Whereas visual (52%) and spatial (51%) informationweremore

confusable with each other (35%). The confusability patterns

in the Sensory period were echoed during the Delay period,

though with less pronounced distinctions between the cate-

gories, consistent with slightly lower overall decoding accu-

racy at Delay than at Sensory. These results show that each

category was distinct enough from other categories, and that

the specific pattern of differences between categories was

consistent with theoretical distinctions between WM

processes.
6.3. Individual differences in multivariate decoding

When it comes to individual classification performance, we

had two main assumptions with regards to the consistency of

our measures across participants. First, we assumed that

classification performance would be higher during the Sen-

sory period than during the Delay period. Second, we assumed

that individuals with higher classification performance at

Sensorywill also have higher classification performance at. To

test these assumptions, we first compared average classifi-

cation accuracy at Sensory and Delay using a paired-sample

right-tailed t-test. Second, we quantified the strength of the

relationship between classification accuracy at Sensory and

Delay via Pearson correlation.

The results of the paired-sample right-tailed t-test and

Pearson correlation confirmed our assumptions (Fig. 6).

Namely, classification accuracy was higher during the Sen-

sory period than in the Delay period across participants

[t(19) ¼ 9.87, p ¼ 3.23 � 10�09], by an average of 13.5%. More-

over, classification performance was highly correlated across

individuals [r(18) ¼ .84, p < .001]. That is, most participants

with high decoding accuracy in the Sensory period also tended

to have high decoding accuracy during the Delay period. This

suggests that our results were driven by patterns present

across the whole sample, and that our approach is consistent

across individuals since decoding accuracy across individuals

was consistent across the Sensory and Delay periods.

6.4. Decoding across age

Fig. 7 shows decoding accuracy as a function of age. One can

immediately see that successful decoding during Sensory and

Delay periodswas present at all ages, from the youngest to the

oldest participant. Moreover, regression analyses on decoding

accuracy as a function of age did not reveal any significant

relationship between age and decoding accuracy in any period

of the trials: Baseline (R2 ¼ .03, p ¼ .46), Sensory (R2 ¼ .02,

p ¼ .57), and Delay (R2 ¼ .03, p ¼ .51). As Fig. 7 indeed shows, in

each of the periods of interest, decoding accuracy was stable

https://doi.org/10.1016/j.cortex.2023.10.019
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Fig. 5 e Confusion matrices for the three categories of information (visual, spatial, and verbal) during the Baseline, Sensory,

and Delay periods. Training class labels are on the y-axis, and testing class labels on the x-axis. The tables show the

proportion of trials where a category was confused with any of the other three categories.

Fig. 6 e Individual differences in classification accuracy. Each dot depicts the average decoding accuracy from a participant

during the Sensory and Delay periods, and dots from the same individual are connected by lines. The colors are organized

according to the decoding accuracy during the Sensory period, from lowest accuracy (blue) to highest accuracy (red).
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across the entire age range. Our above-chance decoding thus

does not seem to be driven by high-performing older children.

As to whether our decoding results may have been driven

by younger children struggling to process the verbal stimuli, a

BANCOVA showed that the best model, i.e., the model that

best fit the data, included the main effects of Category and

Age. However, removing the covariate of Age from the best

model only made the best model 2.5 times worse. This is a

level of evidence that falls within the anecdotal range

(Jeffreys, 1961; Kass & Raftery, 1995; Sch€onbrodt et al., 2017),

suggesting that Age did not have an important effect in the

best model, and that behavioral accuracy was not meaning-

fully affected by age. This result is not unexpected given that

the participants only had to maintain one item, which chil-

dren in the age range of our participants can easily do (Riggs

et al., 2006). Next, the youngest participants’ behavioral
accuracies per category were 81.25% for visual, 79,53% for

spatial, and 83,59% for verbal, compared to the overall sam-

ple's 90.78% for visual, 88.91% for spatial, and 90.59% for ver-

bal. As expected, the youngest participants had lower overall

accuracy compared to the entire sample. However, their ac-

curacy was lowest for the spatial category, not the verbal

category, mirroring the entire sample. Further, their accuracy

reduction compared to the overall samplewas the smallest for

the verbal category. Thus, in terms of behavioral WM perfor-

mance, there was no evidence that the youngest children

processed the nonwords in a drastically different way

compared to the overall sample.

Finally, a comparison of confusion matrices between the

entire sample and the youngest participants (Fig. 8) revealed

lower classification accuracies for the verbal category at

Sensory and Delay for the youngest participants. That said,
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https://doi.org/10.1016/j.cortex.2023.10.019


Fig. 7 e Decoding accuracy as a function of age. For each period (Baseline, Sensory, and Delay) we examined whether there

was a relationship between classification accuracy and age. The age of the participant is depicted along the x-axis, and the

classification accuracy is along the y-axis. Each participant is represented by one dot in each plot. The black dashed

regression line on each panel shows the relationship between age and classification accuracy, which was not reliable for

any of the three periods.
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their classification accuracies were still high, and certainly

above the 33% chance level: 61.69% at Sensory and 44.03% at

Delay. These results further support that the youngest par-

ticipants could successfully process nonword stimuli. It is

thus highly likely that our results were driven by patterns

present across the whole sample, regardless of age, lending

evidence to the consistency of our approach across

individuals.
7. Discussion

In the present study, we aimed to deploy an analysis approach

based on MVPA of EEG data to directly measure uninstructed

WM representational content in children. Therefore, we

developed a game-like computerized task with no mainte-

nance instructions.We collected EEG data from childrenwhile

they performed this task, and analyzed this data with multi-

variate pattern analysis methods. We reliably decoded the

category of information during a WM maintenance period.

Furthermore, we examined the temporal generalization of

classification performance during the maintenance period

and the consistency of the representations from sensory to

delay periods. In addition, we conducted exploratory analyses

of the reliability and validity of our results.

7.1. Decoding the content of children's WM

Although this is the first study to use MVPA on EEG signals to

investigate children's WM maintained memoranda, the re-

sults are comparable with the existing literature in adults.

Namely, our delay period decoding accuracy between visual,

spatial, and verbal categories in children's EEG (44%) was

comparable to decoding accuracy between visual, phonolog-

ical, and semantic categories in young adults' EEG (45.3%) in

the Phase 1 task of LaRocque et al. (2013). This is especially

impressive given that our sample consisted of children, a

populationwhoseWMperformance is known to be lower than

that of young adults (e.g., Gathercole, 1999; Gathercole et al.,

2004; Salthouse, 1994), and whose EEG signals are not
perfectly comparable to those of adults, due to physiological

differences, higher spectral power in children than adults, etc.

(e.g., Barriga-Paulino et al., 2011; Scerif et al., 2006). It is equally

noteworthy that such results were obtained from an MVPA

pipeline based on adult applications (e.g., the mini-block

approach by Adam et al., 2020). Thus, even before delving

into reliability and validity, these results already suggest that

our approach is appropriate for decoding children's WM

content.

Inspired by methodological issues in measuring children's
maintenance mechanisms behaviorally, and the resultant

theoretical confusion surrounding children's ability to apply

certain maintenance mechanisms spontaneously (e.g., in the

case of refreshing and organization), we aimed to use an

analysis approach, known to decode memory representations

in adults, to tap into the content of children's WM. We

exploredwhether it is possible to infer children'sWMcontents

during maintenance, as a first step towards potential future

studies on the maintenance mechanisms and strategies they

use. As such, the results of this proof-of-concept study cannot

in and of themselves reveal anything about strategies or

maintenance processes and thus, for example, cannot answer

whether, or at which age, children can spontaneously refresh

information. However, since the approach appears sensitive

and appropriate for detecting children's WM representations,

just like adults' WM representations (e.g., Christophel et al.,

2018; Lewis-Peacock et al., 2012, 2015; Rose et al., 2016), it

could potentially be used as a base for addressing which

maintenance processes children spontaneously use and

when, as well as other open questions in the field of WM

development.

7.2. Exploring the reliability and validity of our
approach

Given the topic of this special issue, although our paradigm

was not optimized for such analyses, and although such an-

alyses are not typically conducted (or at least not always re-

ported) in the adult literature, we carried out exploratory

analyses of reliability and validity to assess the use of our
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Fig. 8 e Confusion matrices showing classification accuracy for the three information categories (visual, spatial, and verbal)

during the Sensory, and Delay periods. The results of the entire sample (repeated from Fig. 5) are shown on the left, and the

results of the 5 youngest participants (aged 7 yearse8 years and 3 months) are shown on the right, for comparison

purposes. Training class labels are on the y-axis, and testing class labels on the x-axis. All results are shown on the same

scale as in the bottom right corner. The tables show the proportion of trials where a category was confused with any of the

other three categories.
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approach as part of a derivation chain in the field of WM.

Within such constraints, these exploratory analyses none-

theless added further support to the main results.

Splitting the data into an early and late half showed two

main lines of support for the consistency of the decoding re-

sults over time. First, the pattern of decoding accuracy in both

the early and late halves was comparable to that of the overall

pattern in themain analyses. Second, training the classifier on

the early half data and testing it on the late half data showed

that representational structures detected in the early half

were similar to those in the late half. Both of these results

suggest that, despite potential fatigue over the course of an

experimental session, decoding is nonetheless reliable, and

that WM representations remain similar over the course of a

testing session.

Givenour taskdesign,weexpecteddecodingaccuracyacross

thedifferent stagesofWMto followagivenpattern.AtBaseline,
we expected decoding not to rise above chance levels, as this

periodpresumablymainly containednoise. Likewise, therewas

no blocking of trials by category, such that anticipatory

category-related activity would be detected during this period.

Next, the Sensory period involved the perception, recognition,

and encoding of the information to be remembered. Since this

information was physically present on the screen during this

time, we expected decoding accuracy to be the highest during

the Sensory period. Finally, since the Delay period involved the

maintenance of information in WM in the absence of the to-be-

remembered stimuli on the screen, we still expected above-

chance decoding accuracy, though lower than in the Sensory

period. These patterns were borne out by time-average results,

showing that our decoding procedure correctly responded to 1)

noise at Baseline, 2) differences between observed categories of

stimuli at Sensory, and 3) differences between representations

of maintained categories of stimuli at Delay.
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Based on classic WM theoretical accounts whereby WM is

split into separate visuo-spatial and verbal domains (Baddeley

& Hitch, 1974; Baddeley & Logie, 1999), if our approach truly

captured WM content, the results would reveal verbal infor-

mation to be distinct from visual and spatial information,

while the latter two would be more confusable. To assess this,

we examined patterns in the confusion matrices generated as

part of the time-average analyses. We specifically observed

that information labeled as verbal at training was the least

confusable with information labeled as visual or as spatial at

test, and that information labeled as visual and spatial at

training was relatively confusable with each other at test. This

is in line with classic theories of domain-specificity for visuo-

spatial and verbal information (Baddeley & Hitch, 1974;

Baddeley & Logie, 1999), and suggests that our approach

measured actual maintained WM content.

The last two analyses confirmed that our results were

not driven by a subset of participants, but by consistent

values across the entire sample. Namely, we observed that

the majority of participants had slightly higher decoding at

Sensory than at Delay, and that those individuals that had

high decoding accuracy at Sensory also had high decoding

accuracy at Delay. Several explanations exist as to why

some individuals had higher decoding at both stages than

others. Apart from differences in WM ability (here, how well

one can represent physically absent information), differ-

ences in electrode preparation (e.g., the amount of electro-

lyte used) and skull thickness could also have driven

individual differences in decoding. Though we collected no

data at this stage to explore any such possible accounts, this

may be an interesting direction for future research. Skull

thickness is known to change with age (e.g., Calderbank

et al., 2016), so this variable could have potentially driven

any changes in decoding accuracy with age. However, there

was no evidence for decoding changes as a function of age,

as classification accuracies were evenly distributed across

participants regardless of age. Importantly, there was no

evidence for the observed decoding results being driven

either by high-performing older participants, or by younger

participants' potential differences in processing the verbal

stimuli. According to classic theories of reading develop-

ment (e.g., Chall, 1983), younger children have different

strategies for processing verbal stimuli than do older chil-

dren. Thus, it could be possible that younger children had

different (slower/less adaptive) ways to process and main-

tain our verbal stimuli, which could have affected our

decoding results. We did observe lower classification accu-

racy, i.e., greater confusability, for the verbal category in the

Sensory and Delay periods in younger participants

compared to the overall sample. However, their classifica-

tion accuracy was still well above chance, and there was no

associated behavioral performance decrease. Thus, rather

than not having adequate strategies for processing and

maintaining the nonword stimuli, the younger children

could have relied a bit more on the visual characteristics of

the nonwords to maintain them in WM. Either way, their

behavioral and decoding results did not indicate any major

differences from the overall sample. Taken together, these

results suggest that our approach is reliable across time

within a testing session, across individuals. Further, they
suggest that our approach measured what we set out to

measure, that is, differences in the content of children's
WM.

7.3. Limitations

An inherent limitation of our study was that its design and

resource allocationwere optimized for themain analyses, and

aim to provide a proof of concept of decoding children's WM

content, but not for our analyses of reliability and validity. For

instance, our task was designed to be easy to complete suc-

cessfully across the 7e12 age range. In addition, our sample

size (n ¼ 20) was appropriate for a proof-of-concept study, but

relatively small for regression analyses (20 participants). Now

that our proof of concept appears to have been successful,

future studies should include retests and replications in larger

samples.

Another potential issue with our design lies in its lack of

masks, i.e., irrelevant stimuli that would overwrite the con-

tents of sensory memory, and prevent such sensory repre-

sentations from driving the decoding results. We

intentionally refrained from adding any additional infor-

mation other than the to-be-remembered items and their

probes, both to keep the task as simple as possible, and to

prevent any potential biasing effects resulting from masks

(see “attractive bias” in Lorenc et al., 2021). A point that is

rarely acknowledged in the use of masks is that they can

function as external distractors (i.e., irrelevant stimuli that

should not be attended; reviewed in Rademaker et al., 2015,

pp. 1e2). Since children are known to be more susceptible to

visual distraction than adults (e.g., Plude et al., 1994; Trick &

Enns, 1998), we did not wish to risk replacing sensory

memory effects with potential distractor effects. This point

notwithstanding, our current design does not let us directly

assess whether representational content at maintenance

consists merely of a persisting sensory trace. Indeed, there

are some differences in features across categories that could

have driven the decoding. For example, the verbal stimuli

occupied less vertical space on the screen than the visual and

spatial stimuli, or that the visual stimuli were more colorful

than the other stimuli (Supplemental Fig. 1). However, that

would be unlikely, since the perceptual and informational

content of a visual stimulus only seem to persist for a

maximum of 500 msec after stimulus offset (Irwin &

Yeomans, 1986; Massaro & Loftus, 1996; Sperling, 1960), and

we found significant decoding for almost the entire Delay

period, consistent with comparisons of sensory memory and

WM such as Cappiello & Zhang, 2016). Similar differences

between verbal and visual stimuli did not deter LaRocque

et al. (2013), whose paradigm we leaned on to construct

ours, from making conclusions about WM maintenance.

Finally, in an exploratory searchlight analysis (detailed in the

Supplementary Materials; see Supplemental Fig. 5), we found

above-chance decoding accuracy across the entire electrode

montage, which would be unlikely in the event that only

purely sensory-feature differences in memoranda drove the

classification. Though our current paradigm cannot unde-

niably rule out potential influences of sensory features in the

decoding, observing above-chance classification in regions

with limited perceptual representations, and during periods

https://doi.org/10.1016/j.cortex.2023.10.019
https://doi.org/10.1016/j.cortex.2023.10.019
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that extend far beyond stimulus presentation shows that our

decoding analysis did capture maintained representational

content in WM.

Finally, we used a relatively strong highpass filter of 1 Hz

coupled with baseline correction to clean our EEG data before

classification. Highpass filters as low as .05 Hz have recently

been recognized to produce decoding artefacts, particularly

in temporal generalization, by temporally shifting the signal

and generating spurious activity in the baseline period,

which baseline correction then further exacerbates by

shifting it onto the signal later on in the trial (van Driel et al.,

2021). Our highpass filter choice was motivated by the need

to perform accurate ICA on our EEG data (e.g., Winkler et al.,

2015) which was necessary as children's data are typically

noisier than that of adult data. To test whether our above-

chance decoding could have been a result of such issues,

we conducted a check recommended in van Driel et al.

(2021, p. 16; see Supplementary materials: Supplemental

preprocessing checks). This indicated that it is highly un-

likely that our decoding results were contaminated by arte-

facts resulting from our preprocessing pipeline. Nonetheless,

future studies employing MVPA on EEG data may wish to

verify their filter settings before conducting classification

analyses to avoid potential pitfalls as highlighted by van

Driel et al. (2021).
8. Conclusion

The current study demonstrates that children's WM contents

can be decoded using EEG MVPA techniques established in

adults together with a simple behavioral paradigm, in a

manner that is promising in terms of reliability and validity.

Though the main insights the study provides are what chil-

dren are maintaining rather than how, the framework we

developed as part of this study can serve as a base for in-

vestigations of maintenance mechanisms, or questions

related to representational content. As such, this study pro-

vides a much-needed stepping stone for strengthening the

derivation chain in the field of WM development.
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