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Scientific evidence suggests that nonpharmaceutical interventions (NPIs) effectively curb the spread of

COVID-19 before a pharmaceutical solution. Implementing these interventions also significantly affects

regular socioeconomic activities and practices of social, racial, and political justice. Local governments often

face conflicting goals during policymaking. Striking a balance among competing goals during a global

pandemic is a fine science of governance. How well state governments consume the scientific evidence and

maintain such a balance remains less understood. This study employs a set of Bayesian hierarchical models

to evaluate how state governments in the United States use scientific evidence to balance the fighting

against the spread of COVID-19 disease and socioeconomic, racial, social justice, and other demands. We

modeled the relationships between five NPI strategies and COVID-19 caseload information and used the

modeled result to perform a balanced governance evaluation. The results suggest that governmental attitude

and guidance effectively guide the public to fight back against a global pandemic. The more detailed

spatiotemporally varying coefficient process model produces 612,000 spatiotemporally varying coefficients,

suggesting all measures sometimes work somewhere. Summarized results indicate that states emphasizing

NPIs fared well in curbing the spread of COVID-19. With over 1 million deaths due to COVID-19 in the

United States, we feel the balance scale likely needs to tip toward preserving human lives. Our evaluation of

governance policies is hence based on such an argument. This study aims to provide decision support for

policymaking during a national emergency. Key Words: balanced governance, Bayesian spatial models, COVID-
19, policy evaluation.

F
or policymakers, having a solid understanding

of what nonpharmaceutical interventions

(NPIs) work and to which extent these inter-

ventions curb the spread of COVID-19 is a matter

of urgency. The right decisions to act against the

spread of a contagious disease could reduce mortality

rates for individuals during this global pandemic,

especially when the different variants of the virus

are rampaging through the country while people’s

attitude toward vaccination remains mixed (Kreps

et al. 2020; Largent et al. 2020).

Few studies have used advanced geospatial analyt-

ical methods to account for the timing and geo-

graphic dispersion simultaneously of such

interventions, to investigate the entire pandemic

period before a solid vaccination solution in the

United States to distill implications for policymak-

ing, to learn lessons to prepare for similar pandemics

in the future, and more important, to balance among

economic demands, public health imperatives, and

political considerations. This is because of the com-

plex and entwined nature of the policymaking and

governance practices during a pandemic caused by a

new virus. Responses and actions that significantly

affect people’s daily lives must be made on a short-

term, sometimes even daily basis, because of the vol-

atility of the caseload information and because we

still have limited knowledge about the virus. Few

studies, though, account for daily policy changes. In

addition, most traditional methods often lack the

capacity to deal with the highly skewed, often zero-

inflated daily caseload data required for dynamic
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policymaking and daily governance practices (Yu

et al. 2023). Moreover, in the United States, peo-

ple’s attitudes toward the pandemic vary dramatically

from place to place (Puspitasari et al. 2020; Kerr,

Panagopoulos, and van der Linden 2021). Whereas

governments and people in some places regarded

COVID-19 as an immediately life-threatening dis-

ease, in others, COVID-19 was treated no more seri-

ously than seasonal influenza (Kerr, Panagopoulos,

and van der Linden 2021). Such highly complex

spatial and temporal variations of the disease and

governmental and individual attitudes toward the

disease lead to a highly complex and uneven land-

scape of NPI implementation strategies across the

United States. This complexity further convoluted

the effectiveness of policies designed at the federal

and local levels to curb the spread of COVID-19.
Although many scholars have attempted to model

and predict the trend and patterns of COVID-19

(Enserink and Kupferschmidt 2020; Dowd et al.

2020; Nazia, Law, and Butt 2022), or what social

distancing (or physical distancing) strategies should

be taken (Kraemer et al. 2020; Auger et al. 2020),

these conventional research models often fall short

of delving deeply into the complex spatiotemporal

dynamics among disease caseload, NPI implementa-

tion, individual behaviors, and governmental deci-

sions during the pandemic. NPIs have been shown

on many occasions to be effective in preventing the

spread of COVID-19 (Baker et al. 2020; Kraemer

et al. 2020; Tian et al. 2020). The efficacy of NPIs,

however, is closely tied to individual attitudes and

behaviors and governments’ decisions. Although per-

sonal attitudes and behaviors are generally hard to

identify, they are shown to be closely related to indi-

vidual knowledge levels and governments’ political

orientation (which affects governments’ attitude and

decisions) during a public health event like the

COVID-19 outbreak (Puspitasari et al. 2020; Kerr,

Panagopoulos, and van der Linden 2021; Salomon

et al. 2021). In addition, in a global pandemic that

was caused by a new virus, the situation is constantly

evolving and struggles between different decision

options (implementing NPI vs. maintaining eco-

nomic performance, social justice vs. economic jus-

tice vs. health threat, among others) are

omnipresent. Many such decisions (both individual

and governmental) must be made daily. For this

matter, investigating governments’ decisions and

evaluating how such decisions generate the current

complex NPI implementing landscape, especially at

a daily temporal resolution, provide a much-needed

scientifically oriented policymaking practice support,

which could lead to better policy guidance for state

governments in future emergent public health

events. Recently developed data processing (e.g.,

indirect inverse-normal transformation) and

advanced spatiotemporal methods (e.g., Bayesian

hierarchical modeling) can allow us to undertake a

thorough investigation of these complex dynamics so

that a more complete, more detailed picture of the

policymaking and governance during a pandemic

can be depicted to guide better future responses and

actions.
The main objectives of this study were to (1)

investigate the impacts of the NPIs on curbing the

spread of COVID-19 before a pharmaceutical solu-

tion and (2) evaluate how the U.S. state govern-

ments use this information for balanced

policymaking. The evaluation intends to provide

governments with a clear starting point to wade

through a myriad of choices in a chaotic public

health crisis like this so that they will clearly under-

stand the consequences of their decisions and pro-

vide their citizens with the best possible balanced

governance. We aim to address two research ques-

tions. First, we aim to analyze how NPIs influence

the caseload of COVID-19 daily with spatiotempo-

rally varying coefficients models, which intends to

provide detailed policy-related insights into the

effectiveness of these interventions in controlling

the spread of the virus. Second, we devise an evalua-

tion scheme of the U.S. state governments’ policies

in fighting the spread of COVID-19 by comparing

the NPI implementation decisions made by the U.S.

state governments and the modeled NPI efficacy

results.
Considering the loss of more than 1 million lives

in the United States, our evaluation framework is

predicated on prioritizing the containment of the

disease spread above other considerations. The study

aims to draw lessons that shed light on policymaking

that enhances racial, social, and political justice.

Literature Review

Scientific evidence suggests that NPIs are effec-

tive against COVID-19 to various degrees (Dehning

et al. 2020; Guo et al. 2020; Brauner et al. 2021).

How such scientific evidence was used in the United
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States to develop policies, however, has been a

mixed story. There were considerations of a delicate

balance between interventions against COVID-19,

tensions with individual “freedoms,” and reducing

economic costs. There was also the complex situa-

tion of the 2020 presidential election, during which

politicians often held to their own agenda and poli-

cies more tightly than in other times (Bartels 1993;

Jacobs and Shapiro 2000; Masket, Winburn, and

Wright 2012; Desmarais, La Raja, and Kowal 2015).

In addition, the death of George Floyd and the ensu-

ing antiracism movement further convoluted the

enactment and implementation of the NPIs during

the pandemic, especially given strong evidence of

racial disparities in the impact of the pandemic in

the United States (Boserup, McKenney, and Elkbuli

2020; Agarwal et al. 2021). We briefly review some

highly dynamic and controversial arguments during

the pandemic to provide a solid background for the

Bayesian spatial and spatiotemporal analysis and

later governance evaluation practices.

The Vulnerable Populations Suffered

from the Pandemic Most Severely

Vulnerable populations (i.e., racial and ethnic

minority people, economically deprived individuals,

and unemployed people) were significantly affected

by the pandemic (Guo et al. 2020; Cheung 2022).

Studies documented that COVID-19 has had a dis-

proportionate impact on minority communities in

terms of higher infection rates, higher mortality

rates, and less access to health care (Laurencin and

McClinton 2020; Tai et al. 2020; Webb Hooper,

N�apoles, and P�erez-Stable 2020). During the initial

stages of the outbreak, the infection rate was over

three times greater in Black communities when com-

pared to predominantly White communities

(Thebault, Tran, and Williams 2020). A recent

study systematically reviewed literature published

from 3 June 2020 to 31 August 2020. Results

revealed that African-American and Latinx popula-

tions experienced disproportionately higher COVID-

19 infection and death rates (Mackey et al. 2021).
The COVID-19 pandemic has exacerbated the

susceptibility of socioeconomically disadvantaged

individuals to health risks and daily life challenges.

An ecological study that collected data from the

seven most severely affected states during the early

outbreak of the pandemic indicated that counties

with higher poverty rates were associated with

higher mortality rates (Abedi et al. 2021). Similar

patterns were found in other observational studies

(Raifman and Raifman 2020). Another investigation

based on hospital data examined the influence of

patients’ socioeconomic status on COVID-19 out-

comes. The study revealed that individuals from

low-income communities faced an elevated mortality

risk, medical ventilation, and admission to the

intensive care unit due to COVID-19 (Quan et al.

2021). Moreover, despite the income transfers allo-

cated by the Coronavirus Aid, Relief, and Economic

Security (CARES) Act, the poverty rate continued

to escalate from 15.0 percent to 16.7 percent

between February and September 2020, with a par-

ticularly pronounced trend among Black and

Hispanic individuals and children (Parolin et al.

2020). Evidence showed that households below 200

percent of the federal poverty line experienced a

notable increase in energy insecurity and utility dis-

connection during the COVID-19 pandemic

(Memmott et al. 2021).
Similarly, unemployed people were more severely

affected by the pandemic. Han, Meyer, and Sullivan

(2020) reported that the COVID-19 pandemic took

a heavy toll on the U.S. labor market. The employ-

ment rate fell significantly in April 2020 by over

eight percentage points (14 percent), marking

recorded history’s most prominent single-month

decline. Simultaneously, earnings decreased by more

than 10 percent at the same time. Although employ-

ment and incomes had a slight uptick in May and

June, they were still far behind where they were at

the beginning of 2020. Studies conducted in the

past decades consistently demonstrated a strong asso-

ciation between unemployment and a wide range of

adverse health outcomes, including mortality, cardio-

vascular disease, suicide deaths, and elevated rates of

mental distress, substance abuse, depression, and

anxiety (Moser, Fox, and Jones 1984; Virgolino

et al. 2022).

These observations pose an immediate and com-

plex conundrum for local governance. The first issue

to grapple with is whether implementing NPIs would

further intensify the difficulties faced by the most

vulnerable segments of the population, thereby wid-

ening the gaps of social and economic inequality.

This issue raises an urgent question: Can NPIs be

employed to both mitigate the spread of disease and

prevent the exacerbation of existing inequalities?

Governance Policy Evaluation in the United States during the Pandemic 3



Conversely, the second issue is equally as chal-

lenging: If policies were to prioritize economic per-

formance over public health measures such as NPIs,

what would be the potential fallout? One must con-

sider the possible repercussions on public health,

social cohesion, and overall quality of life. Would

such a strategy yield short-term economic gains at

the expense of long-term societal well-being? Would

it, ironically, lead to deeper economic crises in the

future due to prolonged health impacts?
Thus, it is clear that any approach to this predica-

ment must consider the delicate balance between

protecting public health and safeguarding economic

stability while also ensuring the fair and equitable

treatment of all societal groups. This is the basis and

fundamental reason for us to devise a government

evaluation scheme so that a clear understanding of

the public health consequences of governments’

decisions is present while balanced governance is

sought.

The Impact of Politics on the NPI

Policies

Studies have documented that early NPIs imple-

mented by state governors were significant predictors

of decreasing cumulative cases, new cases, and death

rates (Guo et al. 2020; White and H�ebert-Dufresne
2020). Existing literature reported the crucial impact

of partisanship on the effectiveness of implementing

social distancing interventions in the United States at

the individual level. Using SafeGraph social distanc-

ing data, Allcott et al. (2020) demonstrated that

within the counties that supported Donald Trump in

the 2016U.S. presidential election, people were less

likely to keep social distancing than people in coun-

ties that supported Hillary Clinton. Moreover, Painter

and Qiu (2020) further revealed that Democrats were

less likely to comply with a state-level order issued by

a Republican governor than a Democratic one. This

intricacy of politics and governance significantly

affects how public health interventions are imple-

mented and received. It underscores the intersection

of political alignment and compliance with health

directives, implying a complex interplay between

political, social, and health factors that cannot be

overlooked. The implications are manifold, suggesting

that the success of such health measures is inextrica-

bly tied to the political leanings of the populations

they aim to protect.

Indeed, it brings to the fore the crucial role of

political leaders in shaping public responses to crises.

Notably, their ability to guide their constituents

toward behaviors beneficial for public health

depends on political affiliations, belief systems, and

trust. The evidence just presented indicates that the

effectiveness of crucial health interventions during a

pandemic, such as social distancing, can be signifi-

cantly compromised by partisan differences.

Ultimately, this intricate entanglement of politics

and governance has far-reaching implications for

public health, necessitating an approach to pan-

demic management that is scientifically sound, polit-

ically aware, and socially sensitive.
Few studies have ventured this far to untangle the

intricacy of the interplay between politics, socioeco-

nomic justice, NPI strategies against a pandemic, and

other demands that governing bodies face every day.

Adolph et al. (2021) examined the early response of

five state-level mitigation intervention policies (i.e.,

large gathering ban, stay-at-home order, school clo-

sure, restaurant restrictions, and nonessential business

closure) across all fifty states, with a study window

from 26 February 2020 to 23 March 2020. Results

indicated that governors’ party affiliation was the

most crucial predictor of when states issued mitigation

interventions; other things being equal, Republican-

led states were slower to enact such policies during

the early outbreak of COVID-19. These findings were

aligned with another study that showed that

Democratic governors adopted stay-at-home orders

more quickly than their Republican counterparts

(Patterson 2022). Still, these studies aimed at under-

standing the timing of enacting early mitigation poli-

cies and state political interaction with such

implementation until April 2020, without examining

these policies over a more extended period, including

issuing, lifting, and reissuing social distancing policies.

This study aims to fill in this gap.

Studies of Ranking the Fifty States and

Washington, DC, in Terms of

Governance Performance

We reviewed the existing literature on rating the

efficiency of the state’s responses to the COVID-19

pandemic and found a dearth of research conducted

in the United States. Xu, Park, and Park (2021)

adopted data envelopment analysis and four distinct

4 Yu et al.



machine-learning approaches to evaluate response

performance to COVID-19 at the state level in the

United States. Results showed that twenty-three

states were efficient regarding the number of tested,

public funding, health care workers, and hospital

beds. In addition, Radley, Baumgartner, and Collins

(2023) integrated fifty-six measures, including health

care access, health inequalities, and health out-

comes, to assess fifty states’ overall health system

performance and readiness in 2020. They ranked

Hawaii and Massachusetts at the top and Mississippi,

Oklahoma, and West Virginia as the low-perfor-

mance participants. These studies centered on the

evaluation of public health infrastructure in response

to the pandemic, rather than understanding the

interaction between the governments’ efforts and the

effectiveness of mitigation policies.
Although these studies provide valuable insights

into health infrastructure and readiness, there remains

a gap in understanding how state governance practices

influenced the effectiveness of pandemic mitigation

strategies. We posit that it is essential to evaluate the

static conditions of public health infrastructure and

how dynamic governmental decision-making can

shape outcomes. Our aim in this study is to bridge this

gap by developing a ranking system that prioritizes the

value of human lives above other societal demands,

such as economic development. We integrate this

human-centric focus with a robust analysis of state-

level governance practices, specifically their enaction

or lifting of the NPI strategies during the pandemic,

coupled with the modeled efficacy of those NPI strate-

gies. Our study intends to create a more nuanced and

comprehensive understanding of how state govern-

ments are doing when facing complex and conflicting

goals during unprecedented public health emergencies

like COVID-19. The study aims to provide an angle

that might be of essential importance to guide future

governments’ balanced practices during emergencies

like COVID-19, be it public health, natural disasters,

or coping with the increasing crises related to climate

change.

Data Collection

COVID-19 Caseload Data

In this study, for a period of 304 days (13 March

2020–10 January 2021), for each state and the

District of Columbia, we collected data from eight

outcome variables to represent from a broad perspec-

tive the spread of COVID-19. They are the cumula-

tive cases, cumulative deaths, new cases, and new

deaths per 1,000 people of these four variables (all

collected daily). The starting point was chosen

because 11 March 2020 marked the enactment of

the National Emergency in the United States to

fight the pandemic. The endpoint was chosen

because the current investigation attempts to isolate

the impact of COVID-19 vaccination and instead

focuses on the effectiveness and relevant policymak-

ing of the NPI strategies. At the specified time of 10

January 2021, there were only a few health workers

who were fully vaccinated in the country. Centers

for Disease Control and Prevention (CDC) data

show that on 10 January 2021, only 0.35 percent of

the U.S. population were fully vaccinated (CDC

2021). This long period provides an excellent oppor-

tunity to study how NPIs prevent the spread of

COVID-19 and how states use the information for

their own policymaking during the pandemic on a

daily basis. We use all eight caseload variables to

represent the spread of COVID-19 because the

spread of the novel coronavirus is a highly complex

process and how the data are generated also varies

from place to place and time to time. A composite

index based on the eight caseload variables might be

tempting, but the different recording and reporting

mechanisms in different states suggest that a multi-

ple-outcome representation strategy works best to

capture the full image of the spread of the virus

(Guo et al. 2020). It is critical to study how different

NPIs curb the spread of the virus from the broadest

possible perspective. In addition, to remove the

potential daily fluctuation of the reported data, we

applied a five-day-moving-averaging process on the

raw data to produce a smooth daily change pattern

of the caseloads, which renders the final analysis

ranging from 15 March 2020 to 8 January 2021, for

a total of 300 days.

NPI Data

Data for the five NPI strategies during the 300-

day study period for each state are also collected,

including the exact dates and hours of adopting, lift-

ing, and readopting each strategy. These mitigation

strategies include the stay-at-home order or advisory,

restaurant and bar limit (closure or outside dining

Governance Policy Evaluation in the United States during the Pandemic 5



only), large gathering ban (no more than ten peo-

ple), nonessential business closure, and mask-wearing

mandate.

A total of 3,703 executive orders pertinent to the

NPI orders from the state government Web sites for

all fifty states and Washington, DC, were extracted.

Figure 1 shows the data extraction process using

New Mexico as an example (all other states and

NPI measures follow the same procedure and are not

repeated here). This is followed by content coding

and analysis. Review and coding guidelines were

developed in advance. Two researchers from our

team separately examined all documents and

resolved discrepancies in coding by consensus in a

discussion. Considering variation across states in the

frequency of use of alternative social distancing strat-

egies and prior literature on social distancing, we

extracted information on five types of mitigation

interventions. The study window was defined from

the declaration of national emergency (13 March

2020) to the moment when major vaccination

efforts from the Biden administration had not yet

been initiated (10 January 2021).

Social Determinants of Disease Control and
Epidemic or Pandemic Prevention

In addition to these daily varying COVID-19

caseload and NPI data, we have also used daily

invariant background information for each state.

From a disease control perspective, the effectiveness

of NPIs against COVID-19 is sensitive to each

state’s socioeconomic, demographic, and cultural-

political backgrounds. Background information was

assembled under the guidance of the National

Academies of Science, Engineering, and Medicine’s

report on adapting the World Health Organization’s

(WHO) “social determinants of health” (SDOH)

framework for the United States. The SDOH frame-

work emphasizes the strong relationships between

health outcomes and socioeconomic, cultural, eth-

nic, political, and infrastructural factors. While the

changes of COVID-19 spread and the implementa-

tion of the mitigation measures for each day are

volatile, these changes are related to the compara-

tively invariant background factors for each state.

Based on the National Academies’ report under the

SDOH framework, this research identified five

blocks of state-level factors that might influence the

spread of the COVID-19 and the implementation of

various NPI mitigation measures. These include (1)

demographic factors, which include the percentage
of people sixty-five and older in 2018, and the per-
centage of African and Latino Americans; (2) eco-
nomic factors, which include per-capita gross

domestic product in 2019, the poverty rate in 2018,
and the unemployment rate in February 2020; (3)
public health infrastructure factors, which include

the number of hospital beds per 1,000 population in
2018, the percentage of noninsured individuals in
2018, and per-capita public health budget in 2019;

(4) political factors, which include whether the gov-
ernor was a Democrat in 2020 and whether the state
had Democratic senators in 2020; and (5) infrastruc-

ture factors, which include the number of interna-
tional airports in 2020. All data were obtained from
the U.S. Census, Bureau of Labor Statistics, Kaiser
Family Foundation, and other public data sources,

including articles published in the New York Times,
Washington Post, and other relevant news agencies.

Methods

The Inverse-Normal Transformation and the
Indirect INT Method

This study uses both daily variant caseload and inter-
vention data and daily invariant state background

information. To consider the state background infor-
mation and control for the relative volatility of the
daily varying details, and to avoid potential modeling

misspecification with the highly right-skewed and zero-
inflated caseload variables (the histograms for all varia-
bles are not reported here due to space constraints), we
adopt the indirect inverse-normal transformation

(INT) and mixed modeling approach proposed in
McCaw et al. (2020) to preprocess the data.

Denoting yit the caseload variables for the ith
state at time t, 2 1, :::, Tf g, the analysis followed
these steps.

1. Separately for each time point t 2 1, :::, Tf g, regress

each yit on the time-invariant background information

wj (j¼ 1, … , k, k is the number of time-invariant

background covariates) to obtain the residuals eit :

eit ¼ yit −
X

b0j wj

where b0j is the coefficients (not reported) of
the jth time-invariant covariate, including the

intercept. After this step, the influence of the
background SDOH information is removed.
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2. Conduct INT on the residuals to obtain the Z scores

zit � INTðeitÞ, again separately for each time point t.
INT procedures follow: Suppose u is a zero-inflated

skewed-distributed variable. Let rank(ui) denote the

sample rank of ui when the measurements are placed

in ascending order. The rank-based INT is defined as:

INT uið Þ ¼ a−1 rank uið Þ − k
n − 2kþ 1

� �
:

Here a−1 is the normal density function or the
inverse cumulative distribution function of a

normal distribution from which the name of INT

comes, k 2 (0, 1=2) is an adjustable offset, and n
is the sample size. By default, the Blom offset of

k¼ 3/8 is adopted (McCaw et al. 2020). This

transformation will both eliminate the zero-

inflation problem in the data and make the

distribution normal. This procedure is performed

for both the discrete caseload data and the

continuous proportion data as both data sets are

heavily zero-inflated.

Figure 1. Illustration: The content analysis data search flowchart for New Mexico’s social distancing measures.

Governance Policy Evaluation in the United States during the Pandemic 7



3. Because the INT transformation is not linear, the

transformed zit is again correlated with the background

information wj: To remove this redundant correlation

(so that their influences can be fully considered), we

regress each of the five time-variant NPI variables,

xipt, p 2 1, :::, 5f g, on the time-invariant covariates

(background information) wi to obtain the residuals

eipt (McCaw et al. 2020):

eipt ¼ xipt −
X

bpj wj

where bpj is the coefficients (not reported) of the

pth mitigation measures on the jth time-invariant

covariate, including the intercepts.
4. The newly obtained zit and eipt represent the outcome

variable and mitigation measures that will be used for

understanding the impact of NPI mitigation measures

on the spread of COVID-19 after controlling for the

socioeconomic, cultural, and infrastructure background

information for each state (because now the

background SDOH variables’ influences are fully

removed after this procedure). The final model takes

the form:

zit ¼ b0 þ
Xp

i¼1

bieipt þ e�

where b0 is the constant term, bi is the

coefficient of the ith mitigation measure, and e�

is the model residual.

Method of the Impact Analysis

Considering Spatial and Temporal

Structures and Scoring Evaluation for

State Governments

Bayesian Hierarchical Models to Assess NPI
Strategies’ Efficacy

To understand how our system of ranking states’

responses to the pandemic works, we have used the

Bayesian hierarchical model. This model allows us to

analyze data collected across different regions and

time frames, commonly referred to as geopanel data.

Such data often exhibit correlations between nearby

geographical regions or similar time points (autocor-

relation), a factor we must account for in our models

for unbiased and efficient modeling results.
Unlike typical spatial autoregressive models as

detailed in Elhorst (2014), or geographically weighted

panel regression models as detailed in Yu (2010) and

Yu et al. (2023), the Bayesian hierarchical model is

uniquely suited to incorporating both spatially and

temporally varying coefficient processes explicitly in

the modeling framework. This is because the hierar-

chical structure employed in this model allows the

spatial autoregressive structures to be explicitly

expressed using certain statistical distributions (Besag

1974; Besag and Green 1993), such as the Mat�ern ker-

nel for points (Genton 2001), or the Gaussian

Markov random field for areal units (Rue and Held

2005). The temporal autoregressive structure is often

modeled with a first-order autoregressive process as is

typical in time series analysis (Hamilton 2020).

More important, the interactions between spatial

and temporal structures that are often treated as

latent in other models can also be expressed by an

expanded Gaussian Markov random field distribution

(Rue and Held 2005). The model hence provides an

excellent opportunity for examining the intricate

dynamics and potentially varying relationships

between daily COVID-19 caseload information and

the enaction and lifting of the NPI strategies in

each state. After controlling for the temporal, spa-

tial, and spatiotemporal autoregressive structures

explicitly using the Bayesian hierarchical structure,

we can produce the posteriors for the coefficients at

each state and on each day, hence the spatiotempo-

rally varying coefficients. These potentially daily and

state-wise varying relationships are the foundation

for detailed policy evaluation in our proposed meth-

odological framework.

We have applied three versions of this model,

each more complex than the last. The first model

incorporates a spatial random effect and a temporally

autoregressive prior to accounting for the correlation

structures (this corresponds to a nonspatial model).

The second model goes a step further and considers

the spatial random effect as a Gaussian Markov ran-

dom field, a technique to model spatially correlated

data (this corresponds to a spatial but nonvarying

coefficient model). Our third and most advanced

model accounts for spatial and temporal varying

influences and interactions on both the model’s

intercept and its slopes. It is called the Bayesian

hierarchical spatiotemporally varying coefficient pro-

cess (BHSTVCP) model. The BHSTVCP model

allows these elements to change over time and loca-

tion, yielding a richer understanding of how NPIs

affect COVID-19 caseloads. Detailed methodological

elaboration is provided in the Supplemental Material

for the interested audience.
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The versatility of these models allows us to paint

a more precise picture of the NPI measures’ daily

effectiveness. This picture is then compared with the

state governments’ actions regarding the NPI meas-

ures, creating an evaluation of government perfor-

mance in terms of battling COVID-19 versus other

demands, hence a basis for balanced governance

practices.
We have performed these calculations using a

technique called integrated nested Laplace approxi-

mations (INLA), a deterministic algorithm proposed

by Rue, Martino, and Chopin (2009) and imple-

mented in the R platform for efficient and accurate

Bayesian simulation. The availability of the INLA

algorithm enables the complex BHSTVCP model to

be estimated with reasonable computational cost

(less than ten minutes) on a Microsoft Windows

workstation with a Xeon Platinum 8280 CPU, fifty-

six cores, and 512GB of RAM. This complex analy-

sis offers us a nuanced view of each state’s COVID-

19 responses while considering the multiple demands

they face.
Applying the spatiotemporally varying coefficients

model provides a channel to produce a daily effec-

tiveness impression of the five NPI measures

(whether or not the NPI measures are significant on

each day). When comparing this effectiveness

impression with the state government’s actions in

terms of the five NPI measures, it serves the purpose

of evaluating balanced government performance

between fighting against the spread of COVID-19

and other urgent needs. We detail the evaluation

procedure with a scoring system in what follows.

Scoring and Ranking of States’ Efforts

To evaluate how governments strike the balance,

we devise a 4-point Likert scale to score the inter-

vention performance for each state on each day of

the study period from 15 March 2020 to 8 January

2021. The scoring system was devised by applying a

counterfactual framework for program evaluation.

The framework was originally developed by Neyman

(1923) for evaluations of programs using a random-

ized experiment, and later expanded by Rubin

(1974, 1986) to evaluations of programs with a non-

randomized quasi-experiment.

A counterfactual is a potential outcome, or the

state of affairs that would have happened in the

absence of the cause. The counterfactual framework

emphasizes that program participants selected into

either treatment or nontreatment conditions have

potential outcomes in both states: the one in which

they are observed and the one in which they are not

observed. The difference between the observed and

potential outcomes is the treatment effect. Under

the current context, a state actually implementing

an intervention is the outcome of treatment; like-

wise, a state not implementing an intervention is

the outcome of nontreatment. Using the BHSTVCP

model-predicted coefficients, we define the model-

predicted significance of implementing a particular

NPI as potential outcome and whether a state actu-

ally implemented the intervention as an observed

outcome. A state government might or might not

take a treatment because of various factors affecting

the decision-making, notably economic, health, and

political factors. States that should have taken cer-

tain NPIs to fight against the spread of COVID-19

might not choose to do so. Hence, whether the deci-

sions made by the states align with the epidemiologi-

cal requirement—defined here as the model-

predicted significance of implementing a certain

NPI—represents the state’s performance in fighting

the spread of the disease. The scoring system

employed a 4-point Likert scale to measure the treat-

ment effects, or various levels of the difference

between the counterfactual (i.e., what would have

happened had the state “followed” the action sug-

gested by the BHSTVCP model) and the actual out-

come, with 4 being excellent, 3 being very good, 2

being fair, and 1 being poor. We gave the scores

based on the following comparisons between

whether a state implemented the intervention and

whether the BHSTVCP model showed that the

implementation would significantly reduce COVID-

19 caseloads (based on the null hypothesis that there

was no difference between pre- and postgovernment

intervention, and a one-tailed credibility level of 95

percent). It is also to be noted, however, that policy-

making in the face of a new pandemic is fundamen-

tally a choice under (very great) uncertainty. Our

evaluation metrics assess but one aspect (fighting

against the deadly virus) of the full spectrum of

governance.

1. If a state implemented an intervention, and the

BHSTVCP model shows the intervention was not

significant on that day, we gave the state a score of 4,

to acknowledge the government’s precautionary

efforts. This is because the actual implementation of

Governance Policy Evaluation in the United States during the Pandemic 9



any of the interventions was a decision made under

very great uncertainty. If an intervention would not

be effective as reported by the model, the governor

still made the decision, which means that the

decision-maker was more cautious. The governor’s

extra effort to prevent the spread of COVID-19

warrants the highest points.

2. If a state implemented an intervention, and the

BHSVCP model shows the intervention was

significant on that day, we gave the state a score of 3.

If the governor enacted a measure that turned out to

be necessary for that day, it means that the governor

made a correct decision. In this context, the governor

is awarded the next highest point, as opposed to the

previous situation in which the governor made a more

prudent decision.

3. If a state did not implement an intervention, and the

BHSVCP model shows the intervention was not

necessary (statistically not significant) on that day, we

gave the state a score of 2. In this case, the governors

were just lucky.

4. If a state did not implement an intervention, but the

BHSVCP model shows the intervention was necessary

on that day, we gave the state a score of 1. This is the

scenario when the balanced scale tipped toward other

priorities than preventing the spread. The daily scores

are then added up over the 300 days to tell the story

of the governments’ efforts to consume scientific

evidence in preventing the spread of COVID-19.

Results

The raw data were first transformed through the

indirect INT approach and then fed to the Bayesian

nonspatial, spatial, and BHSTVCP models. The

models produce sixteen sets of global (eight Bayesian

hierarchical nonspatial and spatial models, respec-

tively) and 122,400 sets of locally varying relation-

ships between the five NPI strategies and the spread

of COVID-19 in the United States (in total, there

are 8 � 5¼ 40 regression coefficients each for the

Bayesian hierarchical nonspatial and spatial models,

and 122,400 � 5¼ 612,000 spatiotemporally varying

regression coefficients for the BHSTVCP models).

The global coefficients are reported in Table 1. The

saturated deviance information criterion (DIC) that

are used to compare the Bayesian hierarchical mod-

els are also produced and reported in Table 2. These

results provide solid evidence to access the effective-

ness of the COVID-19 intervention and evaluate

how such information is consumed during the poli-

cymaking process in different states in the United

States.

Results from the Bayesian Nonspatial, Spatial, and
BHSTVCP models

Following the specifications of the global models,

we calibrated eight nonspatial Bayesian models (spa-

tial random effect assumed to be i.i.d with temporal

effect), eight spatial (but not spatiotemporally vary-

ing) Bayesian models (spatial random effect assumed

to be “besag” with temporal effect) and eight

BHSTVCP models for the eight outcome variables

regressed on the five NPI measures after the indirect

INT transformation.

Quite interestingly, for the Bayesian hierarchical

models, the nonspatial model suggests that none of

the NPIs work against the spread of COVID-19 (as

all the one-tailed credibility interval contains the

value zero), but when spatial information is modeled

with the prior “besag,” “stay-at-home order” and “no

large gathering” are shown to be statistically signifi-

cant to prevent the spread of COVID-19 (Table 1),

but all other NPI mitigation strategies remain non-

significant. This practice resonates with many geo-

graphical studies that when data were collected over

geographical spaces (or geo-temporal spaces), consid-

ering the autocorrelation structure of the data makes

quite a difference in modeled results and modeling

performance (Anselin 1988; LeSage and Pace 2009).

Still, these models are global in nature and detailed

local patterns require the varying coefficient process

model.

From the BHSTVCP models, for each of the five

NPI measures, the models produce 8 (the number of

outcome variables) � 51 (the number of states) �
300 (the number of days) ¼ 122,400 spatiotempo-

rally varying coefficients. There are in total 5 �
122,400¼ 612,000 spatiotemporally varying coeffi-

cients produced. In addition, for these 612,000 vary-

ing coefficients, we conducted the one-tailed

significance (95 percent confidence level) test for

each individual estimated coefficient to see if the

NPI measure effectively prevents the spread of

COVID-19 on the specified day and state.
The amount of information produced by the

BHSTVCP models is rich. It will not be practical to

visualize all 612,000 varying coefficients, nor will it

be informative. In addition, the actual values of the
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coefficients are likely of less interest under the spa-
tiotemporally varying modeling scheme. The spatio-
temporally varying pattern is of more interest

instead. Moreover, it is necessary to summarize these
coefficients along with their varying z scores that
indicate whether they are statistically significant

or not.
To create the spatiotemporally varying pattern,

the first thing we did was pick out the coefficients

with z scores that suggest their 95 percent credibility
intervals do not contain the value zero. We then
combine the coefficients over the eight COVID-19
caseload variables because we regard all eight varia-

bles as different aspects of the spread of COVID-19.

During the combination, because the values of the
coefficients are of less interest, for each NPI mitiga-
tion strategy, on each state and each day, if one of

the eight coefficients is statistically significant (95
percent credibility interval does not contain the
value zero), the first such coefficient will be retained

for that NPI mitigation strategy on the specific state
and day. After these two steps, the total number of
coefficients that we use for visualization is reduced

from 612,000 to 25,000 (10,229 for stay at home,
2,850 for restaurant and bar limits, 9,521 for large
gathering ban, 1,658 for nonessential business clo-
sure, and 742 for mask-wearing mandate). Using

time as the horizontal axis, and state and the varying

Table 1. Results of nonspatial and spatial nonvarying coefficient Bayesian hierarchical models

Intercept

Stay-at-home

order

Restaurant

closure

No large

gathering

Nonessential

business

closure

Mask

wearing

Nonspatial

Cumulative cases Estimate 0.000 −0.007 0.008 −0.002 0.001 −0.002
95% CI <0.722 <0.001 <0.016 <0.005 <0.009 <0.009

Cumulative deaths Estimate 0.000 0.001 −0.005 −0.001 0.034 0.005

95% CI <0.182 <0.009 <0.003 <0.006 <0.042 <0.016

New cases Estimate 0.000 −0.012 0.004 0.022 −0.010 0.024

95% CI <0.116 <0.027 <0.040 <0.056 <0.029 <0.076

New deaths Estimate 0.000 −0.027 0.026 0.040 0.037 0.012

95% CI <0.093 <0.029 <0.080 <0.089 <0.094 <0.087

Cumulative cases per 1,000

people

Estimate 0.000 0.014 −0.006 0.002 0.026 0.002

95% CI <0.189 <0.024 <0.004 <0.010 <0.036 <0.015

Cumulative deaths per

1,000 people

Estimate 0.000 0.014 −0.006 0.002 0.026 0.002

95% CI <0.192 <0.024 <0.004 <0.010 <0.036 <0.015

New cases per 1,000 people Estimate 0.000 −0.058 0.003 0.020 0.061 −0.039
95% CI <0.072 <0.013 <0.072 <0.084 <0.135 <0.056

New deaths per 1,000

people

Estimate 0.000 −0.030 0.048 0.096 0.080 −0.091
95% CI <0.052 <0.057 <0.137 <0.176 <0.175 <0.019

Spatial nonvarying

Cumulative cases Estimate 0.000 −0.009 0.003 −0.004 −0.003 0.001

95% CI <1.638 <−0.001 <0.010 <0.003 <0.005 <0.011

Cumulative deaths Estimate 0.000 −0.001 0.004 −0.003 0.026 0.009

95% CI <1.637 <0.007 <0.012 <0.004 <0.034 <0.020

New cases Estimate 0.000 −0.030 0.025 0.017 0.001 0.011

95% CI <1.635 <0.009 <0.061 <0.050 <0.039 <0.062

New deaths Estimate 0.000 −0.024 0.009 0.051 0.032 0.009

95% CI <1.637 <0.032 <0.061 <0.099 <0.088 <0.081

Cumulative cases per 1,000

people

Estimate 0.000 −0.004 −0.004 −0.011 0.018 0.008

95% CI <1.642 <0.006 <0.006 <−0.003 <0.028 <0.021

Cumulative deaths per

1,000 people

Estimate 0.000 0.017 0.003 0.001 0.023 0.000

95% CI <1.642 <0.027 <0.013 <0.009 <0.033 <0.013

New cases per 1,000 people Estimate 0.000 −0.059 0.035 0.015 0.080 0.012

95% CI <1.642 <0.010 <0.101 <0.074 <0.151 <0.101

New deaths per 1,000

people

Estimate 0.000 0.019 0.053 0.055 0.065 −0.072
95% CI <1.638 <0.108 <0.140 <0.132 <0.158 <0.040
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coefficients as vertical axes, we can produce the five
summarized charts shown in Figures 2 through 6. All
charts are produced in R (R Core Team 2022).

The immediate impression from the five charts is
that the effectiveness (significant NPI mitigation
strategies’ coefficients) varies widely in both geogra-

phy and time. Although there is information loss
during the summarization and combination proce-
dure, it is clear that contrary to the nonvarying

model, all NPI mitigation strategies work to prevent
the spread of COVID-19 at some places and some-
times, although the statistical significance varies in

different places and at different times. The result
agrees in general with many previous studies (Abel
and McQueen 2020; Anderson et al. 2020; Auger
et al. 2020; G€uner, Hasano�glu, and Aktaş 2020;

Brauner et al. 2021) and common practices in epide-
miological scenarios. More important, the saturated
DIC values reported in Table 2 are evidence that

the varying coefficient models perform far better
than the global spatial models, which perform
slightly better than the global nonspatial models. It

is worth noting here, though, the great change of
the saturated DIC value from the global to local
model might be because of the added flexibility of

the local model that considers not only the spatial
and temporal structures of the data, but also their
interactions. We do invite the readers to be cautious
when interpreting the fitness of the models to the

data. It might be more prudent to situate different
models to different application scenarios instead of
comparing the models and celebrating the local

models’ seemingly superiority. In addition, the results
from the local models also suggest that the effective-
ness of the NPI mitigation strategies might be better

evaluated at the local (individual state) level instead
of the global (collective state) level. In countries
like the United States in which each local

administrative unit (state) has its own unique policy-

making and implementation practices and priorities,

a global model that summarizes over the vast details

might not provide specific enough information to

evaluate the effectiveness of some policies. Local

models, on the other hand, although specifically

focusing on the details of the individualized differ-

ences, could produce more reasonable results for pol-

icy evaluation and hence guide policymaking and

governance in the future.

Evaluation of Governments’ Performance with the
BHSTVCP Model

To use this rich amount of information to evalu-

ate the state governments’ performance during the

pandemic, we summarize the information by making

the following calculations, ranking, and mapping the

results in Table 3 and the five maps (Figure 7).
First, for any specific state and day, if one of the

five NPI strategies is significantly effective on any

one of the eight outcome variables, the NPI measure

will be marked as significantly effective to prevent

the spread of COVID-19 for that state on that day.

The number of days that NPI measure is signifi-

cantly effective for each state is then recorded. This

information is visualized in Figures 2 through 6 with

the five charts.

Second, the number of days a specific NPI mea-

sure is significantly effective for each state is com-

pared with the number of days that the NPI measure

is implemented for the corresponding state. The

comparison of all fifty-one states is shown as the bar

charts in the maps (Figure 7).
Third, a 4-point Likert scale is used to score the

intervention performance for each state on each day

of the study period from 15 March 2020 to 8 January

Table 2. Saturated deviance information criterion (DIC) across the three Bayesian hierarchical models

Caseload variables Nonspatial model Spatial model Varying coefficient model

Cumulative cases 30,500.18 30,466.40 −114,971.330
Cumulative deaths 30,535.86 30,488.59 −120,081.633
New cases 30,422.73 24,175.28 −18,805.373
New deaths 27,790.51 23,684.59 −6,311.103
Cumulative cases per 1,000 people 30,418.24 29,196.28 −142,402.369
Cumulative deaths per 1,000 people 30,514.70 30,395.58 −120,547.353
New cases per 1,000 people 28,564.83 23,872.18 −1,868.621
New deaths per 1,000 people 29,465.73 23,457.20 −128,070.319
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2021. The scale uses the following values to represent

the performance of a state government against the

spread of COVID-19: 4¼ excellent, 3¼ very good,

2¼ fair, 1¼ poor (details given earlier). After each

state is scored for all 300 days, the scores are summed

to form the basis of ranking and evaluating how states

consume the scientific evidence that NPIs are effec-

tive against COVID-19. The summed scores for all

the states are presented in Table 3. The ranking was

the ranking order of the score that further considered

tied states. The ranking is also gray-scaled for each

state in the five maps in Figure 7.

Discussion and Conclusion

The Overall Lesson

To our first research objective and questions, our

results clearly suggest that implementation of NPI

strategies has a significant impact on the spread of

COVID-19. This is especially true when the spatial

and temporal structure of our data is incorporated

within the model.
The research team combed through thousands of

governmental Websites, policy-related documents,

and other sources to build a full set of COVID-19

caseload and NPI strategies data sets. We investi-

gated the policymaking and governance practices at

the state level during the pandemic by unraveling

how policymakers acted in such difficult times

through advanced spatiotemporal modeling. Global

and local models are employed to fully use the very

rich spatial and temporal information in the col-

lected data. Both the global and local models’ results

clearly suggest NPI mitigation measures work to curb

the spread of the disease, if not all the time and at

all places, at least in some places (most of the

places) and at some times (most of the time). From

a general, global perspective, Table 1 suggests the

stay-at-home order or advisory and no large gather-

ings work to curb the spread under the Bayesian

hierarchical modeling framework across the spectrum

of the eight COVID-19 spread outcome variables

when spatial structure is explicitly modeled. This

result agrees with previous studies that government

enforcement and social distancing play a significant

role in curbing the spread of COVID-19, at least

from an overall perspective, as witnessed in many

other countries (Dehning et al. 2020; Guo et al.

2020; Brauner et al. 2021). The global models

provide evidence that governmental attitude and

guidance effectively guide the public to fight back a

global pandemic.
The spread of COVID-19 and the fight against it

in the United States for the years 2020 and 2021

were a struggle for both the people and the govern-

ments. Preventing the spread of the disease through

NPI measures (e.g., stay-at-home orders and adviso-

ries, social distancing mandates, mask-wearing man-

dates, and business closures, among many others) to

mitigate the most severe effects of the pandemic on

the people and the economy and to maintain social

justice were constantly in conflict during the pan-

demic. Whether the government should enact NPI

strategies, whether individuals should get vaccinated,

and whether travel bans (both domestic and interna-

tional) should be enforced are questions that

attracted vigorous debates that did not always rely

on scientific evidence. Balancing between NPI

implementation and the perceived impacts on eco-

nomic performance, social justice, and many other

day-to-day businesses was often the issue causing the

most conflict as state governors made decisions.

Although this implied the weighing of the value of a

human life against other factors such as economic

costs and freedoms, governors and other policy-

makers made these decisions without using explicit

value-of-life studies or considering the complex

ethics of such decisions. Considering governmental

attitudes and particularly policies could have far-

reaching effects on individuals’ behaviors (Patrick

and Cormier 2020; Brauner et al. 2021; Kerr,

Panagopoulos, and van der Linden 2021), combing

through the day-to-day chaos of COVID-19 cases,

day-to-day government-issued orders, advisories, and

mandates that attempt to battle the spread of

COVID-19, and struggle to maintain a feasible

socioeconomic performance and justice, is of critical

importance for science-based policy studies.

The global models, however, assume the regressed

relationships between the outcomes and NPIs stay

the same in places and times. The geographic (indi-

vidual) and temporal variation effects are usually not

of concern. The results we see here only represent

an aggregated overall picture of the relationships.

Although the results are useful for a quick evalua-

tion of overall policies, we feel a more detailed

understanding of the intertwined relationships

between implementation of NPI strategies and the

spread of COVID-19 is essential for governance
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Figure 2. Spatiotemporally varying significant coefficients for stay-at-home orders.
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Figure 3. Spatiotemporally varying significant coefficients for restaurant and bar limits.
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Figure 4. Spatiotemporally varying significant coefficients for large gathering bans.
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Figure 5. Spatiotemporally varying significant coefficients for nonessential business closures.

Governance Policy Evaluation in the United States during the Pandemic 17



Figure 6. Spatiotemporally varying significant coefficients for mask-wearing mandates.
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Table 3. The scores and ranking of the five intervention measures for each state.

Stay-at-home order Restaurant/bar limits Large gathering bans

Nonessential

business bans

Mask-wearing

mandate

State Score Rank State Score Rank State Score Rank State Score Rank State Score Rank

West Virginia 580 1 New Jersey 344 1 Ohio 293 1 New Jersey 186 1 Connecticut 528 1

Colorado 447 2 California 330 2 New Mexico 292 2 New Mexico 168 2 New York 524 2

Alabama 441 3 New Mexico 300 3 Wisconsin 281 3 Michigan 166 3 Maine 505 3

California 412 4 Washington, DC 208 4 Rhode Island 268 4.5 Maine 158 4 Delaware 503 4

New Mexico 282 5 Oklahoma 194 5.5 Colorado 268 4.5 Minnesota 150 5 Illinois 491 5

Illinois 227 6 Massachusetts 194 5.5 New York 263 6 Pennsylvania 142 6 Rhode Island 480 6

Wisconsin 212 7 Pennsylvania 192 7 Illinois 258 7 New York 136 7 Massachusetts 475 7

Virginia 195 8 Washington 188 8 Texas 248 8 Vermont 134 8 New Mexico 465 8

Washington 134 9 New York 182 9.5 Vermont 245 9 New Hampshire 130 9 Virginia 449 9

Delaware 130 10 New Hampshire 182 9.5 Washington 222 10 Rhode Island 126 10 California 410 10

Hawaii 99 11 Illinois 181 11 Washington, DC 217 11 Iowa 124 11.5 Washington 394 11

Vermont 96 12 Connecticut 179 12 Idaho 210 12 Massachusetts 124 11.5 Nevada 393 12

Washington, DC 69 13 Maryland 176 13 Virginia 183 13 Kentucky 120 13 North Carolina 391 13

Indiana 66 14 Oregon 168 14 Wyoming 170 14 Washington, DC 118 14 Pennsylvania 382 14

Kansas 60 15 Vermont 157 15 Oklahoma 165 15 California 112 15 West Virginia 372 15.5

Tennessee 48 16 Rhode Island 152 16 Tennessee 145 16 Maryland 106 17 Texas 372 15.5

Texas 28 17 Hawaii 149 17 Iowa 122 18 Louisiana 106 17 Louisiana 359 17

Wyoming −1 18 Virginia 142 18 Delaware 122 18 North Carolina 106 17 Oregon 356 18

Idaho −6 19 Kentucky 139 19 Connecticut 122 18 Oregon 104 20 Alabama 354 19

Georgia −9 20 Ohio 134 20.5 South Carolina 121 20 Ohio 104 20 Colorado 351 20

Utah −15 21.5 Colorado 134 20.5 Oregon 120 21 Idaho 104 20 New Jersey 346 21.5

Iowa −15 21.5 West Virginia 119 22 Pennsylvania 116 22 Virginia 102 22 Arkansas 346 21.5

Connecticut −18 23 Delaware 117 23 Kentucky 108 23 Nevada 98 23 Michigan 335 23

Alaska −29 24 Wisconsin 114 24 Kansas 99 24 South Carolina 94 24.5 Washington, DC 331 24

Arizona −50 25 South Carolina 105 25 Hawaii 98 25 Wisconsin 94 24.5 Indiana 322 25.5

Florida −52 26 Louisiana 99 26 Florida 84 26 Delaware 87 26 Wisconsin 322 25.5

Massachusetts −62 27 Nevada 98 27 Georgia 79 27 Washington 86 27 Maryland 318 27

Kentucky −70 28.5 Arizona 95 28 Massachusetts 75 28 Hawaii 84 28 Ohio 314 28

South Dakota −70 28.5 Iowa 89 29 Indiana 66 29 West Virginia 82 29 Kansas 311 29

Ohio −84 30 Indiana 83 30.5 California 61 30 Connecticut 80 30 Kentucky 270 30

Rhode Island −92 31 Idaho 83 30.5 South Dakota 53 31 Wyoming 74 31 Vermont 267 31

Oregon −124 32 Utah 78 32 West Virginia 51 32 Florida 72 32.5 Minnesota 219 32

New York −132 33 Texas 69 33 Louisiana 43 33 Texas 72 32.5 Mississippi 154 33

New Hampshire −140 34.5 Georgia 68 34 Arizona 38 34 Mississippi 70 34 Utah 118 34

New Jersey −140 34.5 Wyoming 66 35 Utah 26 35 Tennessee 65 35 Hawaii 108 35

Arkansas −156 36 Florida 62 36.5 Minnesota −38 36 Montana 60 36 Iowa 106 36

Michigan −162 37 Nebraska 62 36.5 Alaska −49 37 Oklahoma 58 37 North Dakota 104 37

North Carolina −164 38 Arkansas 51 38 Maryland −55 38 Missouri 56 38 Montana 100 38

Mississippi −182 39.5 Tennessee 34 39 Alabama −91 39 Alaska 43 39 Wyoming 62 39

Maine −182 39.5 South Dakota 26 40 Arkansas −96 40 Arizona 27 40 New Hampshire 54 40

South Carolina −191 41 North Carolina 19 41 New Hampshire −130 41 North Dakota 0 42 Alaska 0 42.5

Louisiana −196 42 Montana 9 42 New Jersey −140 42 South Dakota 0 42 Idaho 0 42.5

Minnesota −198 43 North Dakota −20 43 Nebraska −146 43 Nebraska 0 42 Tennessee 0 42.5

Maryland −208 44 Alabama −32 44 Maine −150 44 Illinois −11 44 Arizona 0 42.5

Nevada −210 45 Kansas −41 45 Michigan −162 45.5 Georgia −16 45 Missouri −1 45.5

Pennsylvania −226 46 Alaska −46 46 Montana −162 45.5 Alabama −32 46 Florida −1 45.5

Montana −242 47 Minnesota −66 47 Nevada −168 47 Utah −52 47 Oklahoma −6 47.5

Missouri −244 48 Missouri −97 48 Mississippi −182 48 Arkansas −70 48 Georgia −6 47.5

Nebraska −258 49 Maine −140 49 North Carolina −194 49 Colorado −93 49 South Carolina −8 49

Oklahoma −300 50.5 Michigan −165 50 Missouri −216 50 Indiana −131 50 South Dakota −11 50

North Dakota −300 50.5 Mississippi −212 51 North Dakota −300 51 Kansas −151 51 Nebraska −55 51
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Figure 7. Contrast of implemented and effective days of the five mitigation measures and the rank for the fifty states and Washington,

DC. (A) Implementation, effectiveness, and rank of stay-at-home orders; (B) Implementation, effectiveness, and rank of restaurant and

bar limits; (7C) Implementation, effectiveness, and rank of no large gatherings; (D) Implementation, effectiveness, and rank of

nonessential business closures; and (E) Implementation, effectiveness, and rank of mask-wearing mandates.
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policy evaluation. The results from the global model

invite further investigation. We do, however, realize

that there are many factors other than the NPI strat-

egies that are at work to curb the spread of COVID-

19. We also realize that the administrative units that

implement NPI strategies (municipalities) and the

data collection units (states) are not always the

same, so this modifiable areal unit problem (MAUP)

might also mean this analytical result needs to be

taken with caution and merits further investigation.

The Detailed Pattern

To our second research objective and question,

with the Likert scale system and results from the

spatiotemporally varying coefficient model, we are

able to generate a governance policy evaluation

scheme. The scheme compares the modeled spatio-

temporally varying coefficients and the implementa-

tion of NPI strategies at each state on each day.
First, we found that under the Bayesian analytical

framework, the Bayesian hierarchical spatiotempo-

rally varying coefficient model poses the capability

to unravel the seemingly chaotic relationships caused

by the MAUP. The model combines the data and

our prior experiences regarding how policies will

interact over geographic units and temporal periods

and allows the coefficient to vary in both space and

time. This model is able to examine the relationship

at a more detailed local level.

Second, supplementary to the global model, the

local model suggests that all NPIs work in some place

and on some days during the study period. Not surpris-

ingly, stay-at-home orders or advisories and large gath-

ering bans are the two factors that are most effective

because they work on most days and in most places.
Based on the results, we contend that individuals’

decisions in staying at home or participating in large

gatherings regardless of the order or advisory might

differ from place to place. Whereas the global mod-

els are not designed to detect the locational differ-

ence in individuals’ behaviors, the local models

provide more details that these measures are effec-

tive against COVID-19 in some places on some

days, especially when and where the individuals’

behaviors agree with the order or advisory.
More important, the local model depicts a political

divide in consuming the scientific evidence that enact-

ing NPIs facilitates curbing the spread of COVID-19.

The states that actively enacted NPIs, which happen

to be primarily pro-Democrat states, often rank higher

when considering both NPI strategies’ implementa-

tions and their effectiveness (Table 3). States where

economic development took higher priority and NPIs

and public health were considered less important in

their policies, as advocated by most Republican gover-

nors, often ranked lower in dealing with the spreading

of the virus (Table 3) in our ranking scheme.
For instance, for the top quintile states in the rank-

ing (Table 3), more than 80 percent of them either

have a Democratic governor or voted for Joe Biden in

2020. New Mexico ranks the highest (always among

the top ten), followed by New York (four times) and

California, Rhode Island, and Washington (three

times). For the bottom quintile states, more than

60 percent of them voted for Trump in 2020. Missouri

and Nebraska rank the lowest (four times among the

bottom ten), followed by North Dakota and Montana

(three times; Table 3 and Figures 2–6). When govern-

mental views are in direct conflict with the scientific

evidence, especially when leadership in curbing the

spread of COVID-19 is lacking, chaos often ensues.

Although preventing the spread of a global pandemic

is supposed to be a scientific exercise, the reality is that

science and politics are often mixed in devising local

policies. The different attitudes toward the scientific

evidence led to different strategies for handling the

implementation of the various NPIs, which had direct

consequences on the daily caseloads of COVID-19.

The Take-Home Message

Conflicts between the importance of human lives

and economic performance are inherently convo-

luted. It was rare that this explicit trade-off was

made explicit empirically during the pandemic as

policymakers debated policy changes. Yet troubled

economies could also lead to a tragic aftermath for

both individuals and governments. Striking a bal-

ance between science and politics is a delicate sci-

ence of policy and governance. We do provide a

ranking of governance in this study, but we also

acknowledge that the ranking is strictly applied to

curbing the spread of COVID-19. Whether or not

curbing the spread of COVID-19 should be taken as

the highest priority, however, is a policy decision

that all governance bodies must consider carefully,

and the consequences are felt by all citizens under

governance. The delicacy of such balance is beyond

the scope of this study to fully explore, although
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with more than 1 million deaths due to COVID-19

since 2020 in the United States, we contend the

scale of the balance needs to tip toward saving

human lives. With advanced spatiotemporal model-

ing, this study facilitates achieving a possible such

balance. The elegant Bayesian analytical framework

that allows scholars to combine the observed (the

data) and the experienced (the priors) to produce

more reliable posteriors renders a potential scientifi-

cally based compromise among different priorities, at

different times, and in different places. This is espe-

cially true under the context of the continued new

variants of the virus and the government’s difficulty

in persuading more individuals to get vaccinated.

Even with vaccination, NPIs are still effective strate-

gies that fight against the spread of COVID-19

(Baker et al. 2020). We hope the results from this

study will not only provide practical policymaking

support for state governments on the ongoing fight

against COVID-19, but also create a platform for

discussion regarding the delicate balance between

fighting a global pandemic and maintaining socio-

economic normalcy.
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