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A P P L I E D  P H Y S I C S

Logic operations with active topological defects
Rui Zhang1,2*, Ali Mozaffari1,4, Juan J. de Pablo1,3*

Logic operations performed by semiconductor-based transistors are the basis of modern computing. There is 
considerable interest in creating autonomous materials systems endowed with the capability to make decisions. 
In this work, we introduce the concept of using topological defects in active matter to perform logic operations. 
When an extensile active stress in a nematic liquid crystal is turned on, +1/2 defects can self-propel, in analogy to 
electron transport under a voltage gradient. By relying on hydrodynamic simulations of active nematics, we 
demonstrate that patterns of activity, when combined with surfaces imparting certain orientations, can be used 
to control the formation and transport of +1/2 defects. We further show that asymmetric high- and low-activity 
patterns can be used to create effective defect gates, tunnels, and amplifiers. The proposed active systems offer 
the potential to perform computations and transmit information in active soft materials, including actin-, tubulin-, 
and cell-based systems.

INTRODUCTION
Logic operations, such as AND gates and OR gates, provide the basis 
for computing. Semiconductor-based integrated circuits, which 
rely on electrons to perform such operations, are a cornerstone of 
modern technology. Over the past decade, important advances with 
soft materials have increased the interest and demand for soft robots 
and wearable electronic devices (1, 2). These systems, however, are 
controlled with traditional electronic devices. In this work, we ask 
the question of whether active materials, such as biological fila-
ments with motor proteins, can be reconfigured in a manner that 
allows them to perform logic operations and transmission of infor-
mation. If possible, then these operations could be used for computing 
by the active material itself, helping to pave the way for develop-
ment of soft materials systems capable of making decisions (3).

Nematic liquid crystals (LCs) consist of anisotropic molecules, 
which can flow similar to a liquid but exhibit a long-range orienta-
tional ordering (4). In regions where this orientational order is 
frustrated, topological defects emerge (5). These defects carry a 
topological charge and satisfy the Poincaré-Hopf theorem, which 
states that the total topological charge should be preserved (6). 
There are two types of LCs: one is thermotropic LC, which can enter 
nematic phase within certain temperature range, and the other is 
lyotropic LC, whose LC phases are controlled by both temperature 
and solute concentration. Recent studies have shown that defects in 
traditional thermotropic LCs, such as 4-cyano-4′-pentylbiphenyl 
(5CB), serve to sequester colloidal particles (7, 8) and amphiphilic 
molecules (9, 10) and can therefore be used as molecular carriers or 
nanoreactors. A growing trend of LC research has been the study of 
lyotropic, active LCs, in which local stresses are generated by the 
active motion of its constituents or components, which can give rise 
to collective dynamics, i.e., spontaneous flows and defect self- 
propulsion. Examples of active LCs include motor protein-driven 
biopolymer-based nematics (11, 12), composites of swimming 
bacteria and nontoxic, passive LCs (13); the latter is also named living 
nematics (14). In the particular case of a two-dimensional (2D) 

active nematic, the comet-like +1/2 defects become motile. Because 
of its broken fore-aft symmetry, this type of defects can self-propel 
along their symmetry axis subjected to active stresses (11, 15), and 
we propose to use active defects as information carriers in LCs. One 
can make an analogy between topological defects moving under 
active stresses and electron transport under a voltage gradient.

We envision that one possible application of topological defects 
is to provide a platform for the realization of logic operations. Past 
studies of defects in active nematics have been largely limited to 
their characterization (16–22). Attempts to control and manipulate 
defects have been limited in active systems (23–25), largely as a 
result of the challenges associated with preventing defect annihila-
tions and harnessing the many-body interactions that arise among 
them. A notable exception is provided by a recent theoretical study 
that put forth the concept of storing information in +1/2 defects 
in a passive nematic material under the influence of an applied 
field (26).

In this work, we overcome these challenges by building on the 
concept of activity or stress patterning. The relevant experimental 
system is an actin-based 2D nematic LC (12, 27). More specifically, 
rather than having a uniform activity throughout the entirety of the 
material, we introduce gradients of activity, as has been experimen-
tally realized by gear-shifting light-sensitive myosin motors (28). 
Recent work using theory, simulation, and experiments has con-
firmed that +1/2 defects can be coerced to move along a given activ-
ity pattern (29, 30). Independent theoretical works have discussed 
similar ideas (31, 32). In comparison with the electronic circuits, the 
transport process in active nematic microfluidic systems is achieved 
through a spontaneous conversion of chemical energy of the medium 
into mechanical work.

Here, we build on that concept and demonstrate by hydro-
dynamic simulations that judicious design of high- and low-activity 
regions in microfluidic environments can lead to a high degree of 
control over +1/2 defect mobility. A key finding of our work is that 
the motion or “passage” of one defect can be facilitated or impeded 
by that of a second defect. We use these new concepts to realize 
defect gating, tunneling, and amplification by introducing different 
designs. Computations based on soft and biological systems have 
been considered in, for example, bacteria (33), slime mold (34, 35), 
submillimeter bubbles (36, 37), ferrofluid droplets (38), DNAs 
(39, 40), and active fluid networks (41, 42). The advantages of using 
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active topological defects as information carriers are that they can 
operate without the need for an external driving force, they can 
perform decentralized decision making, and they are topologically 
protected from noise, thereby providing an attractive, alternative 
candidate for soft matter–based logic operations. By demonstrating 
these elementary operations based on topological defects, we 
propose that combinations of these basic operations could enable 
defect redistribution, precise manipulation of optical properties, 
and autonomous transport in response to external cues, light in actin- 
based materials or nutrients in bacteria-based living nematics.

RESULTS
Our simulation is based on the Landau–de Gennes free energy 
functional (4). The microstructure of the nematic field, represented 
by a tensorial order parameter, namely, Q-tensor, is governed by 
the Beris-Edwards equation (43). A momentum equation is solved 
simultaneously to characterize the hydrodynamic flows induced by 
the active stresses. We adopted hybrid lattice Boltzmann method to 
solve these governing equations (44–46). Model details are summa-
rized in Materials and Methods. This simulation method has been 
shown to provide an accurate representation of structure and 
dynamics in a wide range of active materials, including tubulin- 
based nematics, actin-based nematics, and bacterial-based living 
nematics (12, 27, 46, 47). By choosing the mesogen length as the 
characteristic unit length, elastic constant L ∼ 1 pN, and viscosity 
 ∼ 0.1 Pa·s, a unit length scale can be mapped onto  ≈ 1 m, and 
a unit time scale corresponds to  ≈ 0.56 s. In what follows, all 
numbers are expressed in terms of simulation units.

In the patterned active nematics we consider here, the nematic 
field is freely allowed to relax, leading to the motion of topological 
defects. Active stress is modeled as an additional stress term in the 
hydrodynamic equation, expressed as  = −Q, where activity 
parameter  is spatially nonuniform (see Materials and Methods for 
more details). In our simulation, we consider extensile active 
nematics, with  being 0 and positive for regions outside and inside 
the activity pattern, respectively. This spatial pattern of activity is 
fixed. The collective effect of extensile active stresses drives the +1/2 
defect to move toward its head (Fig. 1A), as has been experimentally 
characterized and theoretically elucidated (11, 15, 48, 49). Our work 
will be based on this feature.

We first consider the case of low activity, where +1/2 defects are 
mobile, but no new defects are nucleated. Figure 1 shows that a local 
active region can guide +1/2 defect trajectories in an otherwise 
passive nematic, be it open (Fig. 1A) or closed (Fig. 1B). A +1/2 
defect follows the activity pattern, instead of moving horizontally 
along its orientation or symmetry axis, as it would in a uniform activ-
ity nematic (Fig. 1A). Our results show that +1/2 defects prefer to stay 
within the active region. When active stress is spatially nonuniform, 
it can give rise to an additional local force, namely, F = −∇ · Q, 
at activity boundaries. When a +1/2 defect is approaching such 
boundary from a more active region, this force serves to repel it and, 
therefore, confine it within the activity pattern (30). This behav-
ior has been confirmed in experiments of actin filaments and 
gear-shifting myosin motors (29). This result suggests that one can 
design activity patterns that alter +1/2 defect pathways, as demon-
strated in Fig. 1 (B and C), where we consider a cross channel with 
normal anchoring condition. A defect-free, ground state is reached 
by preparing a uniform initial director field along a diagonal 

direction with respect to the cross. Two degenerate ground states 
are possible to arrive at, i.e., with nematic directors at the inter-
section connecting quadrants I and III and directors connecting 
quadrants II and IV. Experimentally, an external field such as electric, 
magnetic, or flow field during thermal quench can favor one degener-
ate state over the other. The phenomena we discuss here will be 
qualitatively the same for these two degenerate states. Therefore, in 
this work, without loss of generality, we only consider the nematic 
field connecting quadrants II and IV in what follows (Figs. 2, B and C, 
and 3). We find that a defect entering the cross intersection from 
the lower channel tends to move into the right channel (Fig. 1C and 
movie S1), which bears the least elastic energy once the defect enters 
(Fig. 1D). This preference can be changed by exclusively activating 
the upper channel (Fig.  1B and movie S2). A defect is forbidden 
from entering the left channel by this particular nematic field, as the 
elastic penalty to do so would be large if the +1/2 defect slid into it. 
The logic operations presented in what follows are based on the 
principle that +1/2 defects will follow the activity pattern.

Defects can also be manipulated in high-activity systems, where 
active turbulence is manifested. We first consider flat active-passive 
boundaries. Defects are found to be repelled by an activity interface 
and reside in the active side (Fig. 2A), consistent with our low-activity 
results. An “effective” homeotropic anchoring condition emerges at 
such an activity boundary, where the director on the passive side 
adopts a perpendicular orientation. To examine the anchoring 
effect in more detail, we also present results for a different geometry 
consisting of an active nematic surrounding a passive circular 
pattern (Fig. 2B). As the constantly distorting director field evolves, 
two +1/2 defects occasionally emerge within the circular region, a 
feature that is reminiscent of a passive nematic confined into a disk 
with homeotropic anchoring. The ratio of the interdefect distance 
l and the circle diameter D is measured to be l/D ≈ 0.6, indicating 
that the effective anchoring strength W ≥ 5 × 10−7 N/m. In another 
independent calculation, we fit the orientation angle for a flat activity 
boundary to a Boltzmann distribution and extract an effective 
anchoring strength W = 5 × 10−7 to 7 × 10−7 N/m (Fig. 2C), consistent 
with the result found in the circular geometry, which corresponds 
to weak anchoring in thermotropic LCs. These findings indicate 
that, by patterning activity, it is possible to create soft microfluidic 
channels with homeotropic anchoring, a property that is used 
throughout the rest of this manuscript. A possible physical mecha-
nism of this effective anchoring can be understood by analyzing the 
behavior of −1/2 defects accumulated at activity boundaries in terms 
of their orientations. The calculation of activity gradient–induced 
local force shows that −1/2 defects with one of their branches point-
ing to the passive region are favored. This will impose an effective 
normal anchoring condition to the passive LC region (see the 
Supplementary Materials and fig. S1). A more comprehensive and 
rigorous study of anchoring effect will be conducted in a future work.

In what follows, we discuss the possible logic operations that 
activity patterning can enable. We first revisit the cross channel 
shown in Fig. 3. A single +1/2 defect can travel through it horizon-
tally (movie S3), and in Fig. 1B, we showed that it can also pass 
through vertically. After the horizontal passage of a +1/2 defect, the 
nematic field at the intersection is fundamentally changed, and the 
passage of a second +1/2 defect from the bottom channel becomes 
impossible, unless the director field in the horizontal channels 
restores to its ground-state configuration. The +1/2 defect is found 
to roam around at the intersection and is unable to enter any branch 
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(Fig. 3 and movie S4). This finding indicates that it is possible to rely 
on one defect to control the dynamics or passage of another, thereby 
serving to facilitate more complex defect computations. Note that 
the passage of the first +1/2 defect has substantially raised the elastic 
energy of the system (Fig. 1D); thermal fluctuations are unable to 

destroy the information. However, an intruder −1/2 defect can 
erase this information and restore the initial director field. Our 
calculation shows that the passage time of a −1/2 defect on the same 
horizontal stripe pattern of activity is ∼ 1106 , about eight times the 
passage time of a +1/2 defect, ∼ 140  (Fig. 3A). This sets the time 
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Fig. 2. Anchoring effect at activity gradient boundary. (A) A slab of passive region of width 100 bound by active regions at activity level  = 0.002. (B) A passive circular 
region with diameter 160 surrounded by active region exhibiting two +1/2 defects, reminiscent of a passive nematic confined in a cylinder with homeotropic anchoring. 
(C) Probability distribution function (pdf) of director orientations at various positions relative to the activity boundary (x < 0, passive region; x > 0, active region), showing 
the emergence of a homeotropic anchoring effect at the passive side of the boundary.
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Fig. 1. Defect trajectory control via activity pattern. (A) A +1/2 defect follows a rectangular activity region (red shaded) with activity  = 0.002. (B) +1/2 defect follows 
a vertical stripe of activity  = 0.0035 and enters the top channel. (C) +1/2 defect chooses to enter the right channel under the influence of a cross pattern of activity  = 
0.0035. Inset shows the initial configuration similar to (B) at t = 0 . In (B) and (C), channel width is 60 and pattern width is 20. (D) Temporal elastic energy plot shows that 
defect entering the right channel for the cross pattern (C) is associated with entering a lower elastic energy state compared to the defect being forced into the upper 
channel for the stripe pattern (B).
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scale that the passage of the first +1/2 defect can be remembered by 
the system. To protect this information, one has to turn off the 
pattern right after the passage.

Defect-based tunneling and gating operations, analogous to 
those found in transistors, can be performed by introducing asym-
metric patterns. A triangular activity pattern, for example, can 
nucleate a ±1/2 defect pair from an otherwise uniform nematic (29). 
Here, we take advantage of this mechanism and create an array of 
closely spaced triangular patterns in a channel having an initial 
vertical nematic field. Activation of these triangular regions leads to 
formation of pairs of defects. The key feature here is that the newly 
generated −1/2 defect at each triangular pattern is subsequently 
annihilated by the approaching +1/2 defect coming from its left 
side. This gives rise to the instantaneous “tunneling” of a +1/2 
defect over a long distance (Fig. 4A and movie S5). This process is 
reminiscent of electron transport in solids, where electrons move 
collectively, leading to their effective long-distance transport. The 
same triangular pattern can be used to realize defect gating. To this 
end, we consider two active regions (with activity level ′ = 0.001) 
separated by a passive gap. Usually, the mobile +1/2 defect in one 
active region is unable to cross the gap and enter the other active 
region. This blockage can be overcome by introducing a high-activity 
triangular pattern. Similar to the defect tunneling idea, one can turn 
“on” a triangular high-activity pattern in the middle of the gap with 
activity level  = 0.022, leading to the nucleation of a ±1/2 defect 
pair (Fig. 4B and movie S6). The awaiting +1/2 defect is then anni-
hilated by the new −1/2 defect, which is left with a +1/2 defect on 
the other side that quickly escapes the gap. In the absence of the 
activity pattern, however, the awaiting defect is stuck at the gate 
(Fig. 4, C and D, and movie S6). Note that the time scale for this 
defect gating operation (≈ 20 ) is much shorter than that associated 
with the active passage of defects without tunneling (≈ 100 ; Fig. 4D). 
It takes ∼ 5  for the defect to tunnel the triangular pattern, but it has 
to spend ∼ 15  to pass the nonactive gaps between the activity 

pattern and the gate boundaries (Fig. 4D). Because the speed of 
isolated, self-propelling +1/2 defects is usually proportional to the 
activity level (50), the change in time scales, i.e., 5  against 100 , 
can be understood by the ratio of the activity levels in and outside 
the gate, i.e., /′ ≈ 20 (Fig. 4).

It is also possible to induce a defect-based “amplification” mech-
anism, analogous to that used in electronic systems where current 
or signals are amplified. Defects carry a topological charge, and 
their self-propulsion can also be regarded as a charge current. To 
demonstrate the concept of defect amplification, we consider two 
horizontal corridors connected by vertical channels (Fig. 5A and 
movie S7). The surfaces exhibit homeotropic anchoring, except at 
the top surface of the top corridor. The system is initially uniform 
but includes a +1/2 defect (shown in blue arrowheads) that is parked 
on the left side, i.e., the entrance of the bottom corridor. By follow-
ing the horizontal activity pattern, the defect flows toward the right 
exit of the corridor, during which new +1/2 defects emerge from the 
channel corners and move into the top corridor following the verti-
cal activity patterns. At the end of the process, when the original 
defect approaches the exit of the bottom corridor, all three generated 
defects (marked in yellow arrowheads) move into the top corridor. 
The new defects leave the corners before the original defect enters 
the junction, underscoring the fact that the interaction between the 
passing defect and the newly born defect exhibits a long-range elastic 
nature. Through additional design refinements of the channels at 
the top corridor, which are not shown here for brevity, it is possible 
to implement additional operations. Note that topological charge 
conservation still holds in this system. In Fig. 5B, we show the two 
director fields before and after the +1/2 defect nucleates from the 
corner. The effective topological charge of the surface defect at 
the corner is +1/4 (−1/4) before (after) the defect nucleation (51); 
the change in the topological charge at the corner thus gives rise to 
an additional +1/2 charge, preserving the total topological charge of 
the system. Note that, in this demonstration, amplification is 3×. 

t = 0τ t = 70τ t = 140τ

t = 290τt = 220τt = 150τ
Fig. 3. Control of defect passage via a second defect. A +1/2 defect is sent from the left channel at t = 0  with a horizontal stripe pattern of activity  = 0.0035 and a 
second +1/2 defect is sent from the bottom channel with a vertical stripe pattern of activity  = 0.0035 at t = 150 , when the first one has passed the intersection. This 
shows that the second defect is unable to pass the intersection. The channel width is 60 and the pattern width is 20.
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If we rely on micrometer-size actin-based nematics, then the theo-
retical amplification that can be achieved from a centimeter-scale 
device will be 1 cm/(10 ×1 m) = O(103). However, if our experi-
mental system is based on a low–molecular weight, thermotropic 
nematic, e.g., 5CB, whose characteristic defect size is 7 nm, then the 
theoretical amplification can reach to 1 cm/(10 × 7 nm) = O(105).

DISCUSSION
Here, we have shown that activity patterning provides a versatile 
and largely unexplored platform to manipulate the dynamics of +1/2 
defects in a nematic LCs. Here, we have focused on 2D systems and 
examined defect passage through T-junctions and cross junctions. 
At modest activity levels, which are unable to nucleate new defects, 

different activity patterns can be used to guide defect trajectories. The 
interplay of active and elastic stresses gives rise to particular preferences 
for defect pathways. The passage of one defect can substantially 
change the director field at a junction, for example, and block the 
passage of a second defect coming from an orthogonal channel. At 
higher activity levels, a simple triangular pattern can nucleate a pair 
of ±1/2 defects in an otherwise uniform nematic. This phenomenon 
has been exploited to realize defect tunneling and gating. Last, we 
have demonstrated that it is possible to produce multiple defects out of 
an individual, passing defect to realize the concept of controlled defect 
amplification. In these demonstrations, the channel widths have 
been of order ∼ 50 m. Note that a homeotropic anchoring condition 
is generally needed because the +1/2 defect in a channel system must 
propel against a director field orthogonal to its symmetry axis.

t = 3τ

t = 9τ

t = 6τ

t = 0τ

A B

C

t = 0τ

t = 10τ

t = 20τ

t = 200τ

D
x = 0

Fig. 4. Defect tunneling and gating. (A) A +1/2 defect is shown tunneling into the right side of a closely spaced array of triangular pattern with activity  = 0.022. Each 
triangle has a base length of 18 and a height of 54. The channel width is 80. (B) Defect tunneling through a passive gap of width 80 via a triangular pattern of the same 
size and activity level as (A). (C) The +1/2 defect is unable to pass the gap after a sufficiently long time (100 ). In (B) and (C), activity ′ = 0.001 is applied outside the gate 
to mobilize the defect. (D) Defect position as function of time for scenarios (B) and (C) and when there is no gate; the shadowed region indicates the gate region.
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Note that an alternative patterning active nematics can be 
realized by photopatterning local easy axis of a surface, which leads 
to a nematic with fixed director field (52). Bacteria swimming in 
such photopatterned nematics show intriguing patterns of dynam-
ics (14, 53). Surface patterning can also be realized using a smectic 
oil, which can provide an anisotropic environment and render 
the turbulent-like, active nematic flows into more ordered flows 
(23, 24). More recently, a submersed micropatterned surface also 
demonstrates the capability of control over defect dynamics and 
spontaneous flows in microtubule-based active nematic film (54). 
We anticipate that our concept of activity patterning could be com-
bined with these different patterning techniques and may lead to 
unprecedented phenomena and new applications.

We hope that the results presented here will stimulate new 
experimental work. Recent experiments have established that it is 
possible to pattern activity in experimental 2D actin systems using 
micromirror arrays and light-sensitive myosin motors. It should 
also be possible to pattern oxygen or nutrient concentrations in 
living LCs. Future work will extend the concepts and designs pre-
sented here to three dimensions, where preliminary results indicate 
that an even richer set of operations should be possible.

MATERIALS AND METHODS
Simulation method
Here, we detail the active nematodynamic equations and the numeri-
cal method adopted. The 2D nematic considered here is described 
by a nematic tensorial order parameter Q and a velocity field u. For 
uniaxial nematics, the tensorial order parameter can be written as 
Q = S(nn − I/3), in which n is a unit vector representing the nematic field, 
S is the scalar order parameter of the nematic, and I is the identity 
tensor. By defining the strain rate field D = (∇u + (∇u)T)/2 and the 

vorticity  = (∇u − (∇u)T)/2, one can introduce an advection term   
S = (D +  ) · (  Q +   I _ 3  )   +  (  Q +   I _ 3  )   · (D −  ) − 2 (  Q +   I _ 3  )  (Q : 𝛁u)  , 
where  is the flow-aligning parameter. The governing equation of 
the Q-tensor, namely, the Beris-Edwards equation, can therefore be 
written as (43)

    ∂ Q ─ ∂ t   + u · 𝛁Q − S = H  (1)

where  is related to the rotational viscosity of the underlying nematic 
    1   = 2  S 0  2  /   with S0 being the equilibrium scalar order parameter 
(55), and H is the molecular field defined as   H = −  (     F _ 

Q  −   I _ 3  Tr  (     F _ 
Q  )   )    , 

which drives the system toward thermodynamic equilibrium 
with a free energy functional F = ∫VfdV, the integrand of which reads 
  f =   A  0   _ 2   (  1 −  U _ 3   )  Tr ( Q   2  ) −   A  0   U _ 3   Tr ( Q   3  ) +  A  U  0   _ 4    (Tr ( Q   2  ) )   

2
  +  L _ 2    (𝛁Q)   2   . The 

phenomenological coefficient A0 sets the energy scale, U controls 
the magnitude of the equilibrium scalar order parameter S0 via 
  S  0   =  1 _ 4  +  3 _ 4   √ 

_
 1 −   8 _ 3U     (56), and L is the elastic constant under one-constant 

approximation.
The local fluid density  and velocity u are governed by the 

generalized incompressible Navier-Stokes equations, modified by a 
frictional dissipative term

    (     ∂ ─ ∂ t   + u · ∇  )  u = ∇ · − u   (2)

The total asymmetric stress tensor  = p + a is a sum of a passive 
and an active stress, and  is a damping parameter setting the 
hydrodynamic screening length. The viscoelastic properties 
of  thenematic are lumped in the passive stress, which is a 
sum of viscous and elastic terms. The passive stress is written as 
      p  = 2D −  P  0   I + 2 (  Q +   I _ 3  )  (Q : H ) − H ·  (  Q +   I _ 3  )   −  (  Q +   I _ 3  )   
· H − 𝛁Q :   F _ 

𝛁Q  + Q · H − H · Q  . Here,  is the isotropic viscosity and 

t = 0τ t = 10τ

t = 70τ t = 130τ

t = 160τ B

A

Fig. 5. Defect amplification. (A) Sequential snapshots of a +1/2 defect (marked in blue arrowheads) being sent into an otherwise defect-free system from the left end of 
the bottom corridor. New +1/2 defects are observed format each corner of the vertical channel when the original defect is approaching. Corridor and channel widths are 
50, the activity pattern width is 25, and the activity level is  = 0.004. (B) Schematics of the possible director fields near a corner before and after the nucleation of a +1/2 defect. 
The number indicates the effective topological charge of the corner defect.
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P0 is the isotropic bulk pressure. The active stress a = −Q, with 
 = (r) being a spatially varying activity parameter. A spontaneous 
flow can be generated when  or Q has spatial gradient, with  > 0 
for extensile systems and  < 0 for contractile ones. We use a hybrid 
lattice Boltzmann method to solve the coupled governing partial 
differential equations (Eqs. 1 and 2) (47, 57, 58). We chose the 
following parameters throughout the 2D simulation: A0 = 0.1, L = 0.1, 
U = 3.5 (giving q ≃ 0.62),  = 1/3,  = 0.1,  = 0.7,  = 0.01, an 
infinite homeotropic anchoring condition, and a no-slip velocity 
field at the channel boundaries. The active/passive interface (tanh 
profile) is of width of two lattice units.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg9060
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