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Fusion genes represent a class of attractive therapeutic targets. Thousands of fusion genes have been identified 
in patients with cancer, but the functional consequences and therapeutic implications of most of these remain 
largely unknown. Here, we develop a functional genomic approach that consists of efficient fusion reconstruction 
and sensitive cell viability and drug response assays. Applying this approach, we characterize ~100 fusion genes 
detected in patient samples of The Cancer Genome Atlas, revealing a notable fraction of low-frequency fusions 
with activating effects on tumor growth. Focusing on those in the RTK-RAS pathway, we identify a number of 
activating fusions that can markedly affect sensitivity to relevant drugs. Last, we propose an integrated, 
level-of-evidence classification system to prioritize gene fusions systematically. Our study reiterates the urgent 
clinical need to incorporate similar functional genomic approaches to characterize gene fusions, thereby maxi-
mizing the utility of gene fusions for precision oncology.

INTRODUCTION
Gene fusion in cancer cells represents a class of molecular aberra-
tions, which are mainly caused by genomic translocations, insertions, 
and deletions or chromosomal inversions. A substantial proportion of 
fusion genes drive tumorigenesis and/or promote tumor progression, 
such as BCR-ABL1 (1), ETV6-NTRK3 (2), and TMPRSS2-ETS (3). 
Because of their tumor-specific expression and ability to drive tumor 
pathophysiology, fusion genes that are drivers rather than passen-
gers represent target molecules with tremendous diagnostic and 
therapeutic potential (4, 5). With advances in next-generation se-
quencing technology, especially through The Cancer Genome Atlas 
(TCGA) and the International Cancer Genome Consortium Pan- 
Cancer Analysis of Whole Genome efforts, the number of fusion 
genes detected has increased from several hundreds to >35,000 across 
the full spectrum of cancer types (6–9). However, the functional 

impact and clinical relevance of these cancer fusion genes remain 
poorly understood, representing a critical knowledge gap for im-
plementing precision cancer medicine.

A number of computational algorithms have been developed to 
predict the functional impact of somatic point mutations (10). The 
development and validation of these algorithms have benefited 
from a “gold standard” set of functionally characterized mutations 
(11). In contrast, the development and validation of computational 
algorithms to identify driver gene fusions are limited, at least in part, 
due to the lack of a gold standard set of functionally characterized 
fusion genes. Current studies have focused on a small set of highly 
recurrent gene fusions detected in patient tumors for detailed func-
tional and mechanistic characterization. While this is a reasonable 
practice to identify targets that can maximize the potential clinical 
impact, this approach results in many rare gene fusions remaining 
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unexplored. Moreover, conventional experimental studies can only 
characterize a small number of gene fusions in a time-consuming and 
costly manner, which is insufficient to address the need for informing 
treatment options in the clinical setting. This is largely due to diffi-
culty in creating, expressing, and characterizing large numbers of 
specific gene fusions in sensitive and robust functional assays.

In this study, we developed an efficient functional genomics ap-
proach to characterize the cellular consequences of gene fusions and 
applied it to a large number of fusion genes. We further performed 
an in-depth analysis of the fusions involved in the receptor tyrosine 
kinase (RTK)–RAS signaling pathway in terms of their functional 
consequences and potential therapeutic liabilities. Our approach de-
monstrates a potential way to fill the gap between sequencing-based 
fusion detection and target-based clinical actions.

RESULTS
Study overview
To identify clinically actionable gene fusions for implementation of 
precision oncology, we developed an efficient functional genomic 

approach to assess the functional impact of gene fusions and ap-
plied it to fusion genes detected in TCGA patient samples on a large 
scale (Fig. 1A). First, we collected ~35,000 gene fusion events from 
>11,000 TCGA patients across 33 cancer types based on two previous 
bioinformatics studies (6, 8). We selected 110 gene fusions (mainly 
from TCGA list and an additional set from MD Anderson patients), with 
considerations on their related pathways and potential druggability 
of the involved partner genes. Second, we generated fusion gene con-
structs using a Gateway multifragment recombination technique, as 
previously described (12). The quality of the fusion constructs was 
validated by directly sequencing the corresponding plasmids. We 
included only those constructs that passed the quality control step 
for subsequent assessment. Third, for each fusion gene, we evaluat-
ed its effect on cell viability through in vitro assays in informer cell 
lines (i.e., Ba/F3 and/or MCF10A). For selected candidates, we also 
performed xenograft tumor assays to assess their tumorigenic activity 
in vivo. Last, for positive hits identified above, we performed drug 
response assays to determine their therapeutic implications.

In total, we obtained high-quality functional data of 90 fusions 
(table S1). To illustrate the clinical relevance of fusion partner genes, 
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Fig. 1. Overview of our functional genomics approach and the fusion candidates assayed. (A) Schematic representation of the functional genomics platform 
for fusion genes. ORF 1, open reading frame 1; GFP, green fluorescent protein. ****P < 0.0001. (B) The Pharos target classification for 90 gene fusions. TClin, genes 
with at least one FDA-approved drug; TChem, genes with at least one ChEMBL compound with an activity cutoff of <30 nM; and TBio, genes without known drug or 
small-molecule activities. (C) Snapshot of the FASMIC: Gene fusion data portal.
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we annotated each partner gene using the Pharos database, a knowl-
edge base illuminating the druggable genome (13). Among the 
90 fusion genes, 44 (48.9%) fusions had at least one partner catego-
rized as TClin, which is associated with at least one U.S. Food and 
Drug Administration (FDA)–approved drug; 33 (36.7%) contained 
TChem targets, which had at least one ChEMBL compound with an 
activity cutoff of <30 nM; and 13 (14.4%) fusions did not have part-
ners associated with known drug or small-molecule activities, an-
notated as TBio (Fig. 1B). Notably, none of our fusions have both 
partners annotated as TDark about which nothing is known by 
definition in Pharos.

To facilitate a broad biomedical community to capitalize on our 
results, we developed a user-friendly web portal for data visualization 
and exploration (Fig. 1C). The data portal contains five modules: (i) 
“Functional annotation” provides the experimental data related to a 
specific gene fusion, including cell viability and drug response as-
says; (ii) “fusion plot” displays the fusion gene structure in an intu-
itive graph with annotated position and protein domain information; 
(iii) “fusion frequency” shows how frequently the fusion occurs in 
different cancer types; (iv) “functional prediction” shows the pre-
dicted functional impact score for the fusion; and (v) “literature 
summary” shows the functional and clinical evidence about the fu-
sion that has been reported in the literature. Users can easily search 
for a gene fusion of interest through keywords or download all data for 
their analysis. The data portal is available at https://bioinformatics.
mdanderson.org/public-software/fasmic/.

Large-scale functional annotation of fusion genes in cancer
In our functional genomics approach, we mainly used Ba/F3 cells as 
the “informer” cell line to assess the effect of a specific gene fusion 
on cell viability. Ba/F3 is a murine pro-B cell line that depends on 
interleukin-3 (IL-3) for growth and proliferation but can be readily 
transformed to IL-3 independence in the presence of an oncogenic 
event, thereby making it widely used for detecting oncogenic events 
(14). The ability to assay transfer of Ba/F3 addiction from IL-3 to 
oncogenes has already been used to investigate the activity and ther-
apeutic sensitivity of a variety of oncogenes (15–17). On the basis of 
whether a gene fusion exhibited activating effects in Ba/F3 cells 
compared to the negative controls (mCherry and/or luciferase), we 
classified the 90 gene fusions into two functional categories: 24 acti-
vating fusions and 66 fusions with no significant effects. Since the 
phenotypic effect may depend on cellular contexts, we performed 
similar cell viability assays for many fusions with no effects in the 
Ba/F3 cell line using MCF10A, a nontumorigenic breast epithelial 
cell line that is widely used in anchorage-independent growth assays 
to quantitate transforming activity. We randomly chose 30 fusions 
showing no significant effects in the Ba/F3 assay and found that 
none of them were activating in MCF10A, suggesting that the false- 
negative rate of our platform is low. In addition, we assessed the 
functional impact of 132 wild-type genes based on gene overexpres-
sion assays in the two model cell lines (Ba/F3 and MCF10A). By 
overlapping with our fusion annotation, 14 of the 24 (58.3%) acti-
vating fusions had at least one partner gene that demonstrated pos-
itive (activating) effects on cell viability, whereas only 9 of the 66 
(13.6%) no-effect fusions had a partner gene with a positive effect. 
This pattern indicates that the activating fusions tend to involve 
genes with oncogenic potential (2 test, P = 5.7 × 10−5; Fig. 2A). 
Among 140 unique partner genes from the 90 fusion genes, the top 
four common fusion partner genes were RET, FGFR2, BRAF, and 

ALK. For example, four of the five RET fusions, three of the five 
ALK fusions, and both NTRK2 fusions showed activation activity in 
the reporter cell lines. In terms of fusion recurrence in >11,000 
TCGA samples, we found that 25.4% of singleton fusions (those 
only detected in a single patient sample) showed an activating effect 
lower than that of recurrent fusions (35.0%). Among recurrent fu-
sions, 16 appeared in multiple cancer types, with FGFR3-TACC3, 
ETV6-NTRK3, and EML4-ALK being among the top activating hits 
(Fig. 2B). For recurrent fusions, the frequency in TCGA patients 
was significantly higher in the activating group than in the no effect 
group (Wilcoxon test, P = 2.9 × 10−2), consistent with the notion 
that oncogenic fusions are likely under positive selection. Although 
highly recurrent gene fusions are more likely to have a functional 
impact, our results suggest that a considerable proportion of low- 
frequency or singleton fusions are potential driver events that may 
be critical for specific tumors and have therapeutic consequences.

To gain insights into the system-level properties of activating 
fusion genes, we compared our experiment-based functional anno-
tation with the priority scores that were predicted by a computa-
tional method based on the properties of fusion partner genes in the 
biological network (18). Fusions with high centrality scores were 
significantly enriched in the activating fusions identified by our ap-
proach, highlighting the consistency of our experimental approach 
with the computation predictions (Wilcoxon test, P = 2.4 × 10−3; 
Fig. 2C). Of the fusion genes assayed, the partner genes of 50 fusions 
(55.6%) resided in the same chromosome. We performed an en-
richment analysis to assess whether the functional effects of the fu-
sions correlated with the distances between their partner genes. 
Activating fusions tended to have gene partners from different 
chromosomes (2, P = 5.1 × 10−3; Fig. 2D). This is probably because 
cis-fusions (gene partners from the same chromosome or neighbor 
genes) resulting from transcription read through are more likely to 
be passenger events.

Gene fusions in the RTK-RAS signaling pathway
The RTK-RAS pathway is frequently disrupted in diverse cancer 
types, and it is estimated that as many as 40% of all tumors have 
aberrations in genes of the RAS family (19). Nearly half of the fu-
sions that we assayed (42 fusions) had at least one partner gene from 
the RTK-RAS pathway, and therefore, we focused on this pathway 
for an in-depth analysis (our tested gene fusions are highlighted; 
Fig. 3A). On the basis of TCGA PanCanAtlas dataset, we performed 
a systematic analysis of the gene fusions of RAS pathway members 
that include 272 genes, mainly defined by the RAS initiative (20). In 
the 9105 TCGA tumors, 1289 (14.2%) tumors harbored at least one 
such fusion (Fig. 3B). The highest rates of RAS pathway fusions were 
found in sarcoma (on average, 0.8 RAS pathway fusions per tumor), 
ovarian cancer (0.6), and glioblastoma (0.6), and the lowest rates 
were found in kidney chromophobe cancer (0.02) and thymoma 
cancer (0.02). In particular, 297 tumors contained one or more RAS 
pathway fusions without a mutation in RAS pathway members. These 
tumors carry potentially driver fusions of known oncogenes, such as 
ALK (TPM1-ALK), FGFR3 (FGFR3-ELAVL3), BRAF (MACF1-BRAF), 
and AKT3 (ACV2RA-AKT3, ZEB2-AKT3) as well as fusions that may 
affect the function of RAS inhibitors (RASAL2 and SPRED2) and 
RAS-regulated tumor suppressor genes (PTEN, RB1, TP53, RAD52, and 
FANCC). The results suggest that these fusions play a role in tumor 
initiation and/or maintenance through activation of the RTK-RAS 
pathway. Among the 992 tumors with co-occurrence of mutations 
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and fusions in the RTK-RAS pathway, we observed cases of known 
recurrent activating fusion genes, such as EML4-ALK in lung ade-
nocarcinomas and FGFR3-TACC3 in bladder tumors. This observa-
tion implies that fusion genes in these tumors may cooperate with 
point mutations in RAS pathway members rather than representing 
passenger events. For instance, we were able to demonstrate the on-
cogenic capacity of TRAK1-RAF1 gene fusion in a patient with mel-
anoma who also carried nonsynonymous mutations in EGFR, NF1, 
PAK3, PIK3CG, PIK3R6, and PLCE1. Therefore, a subset of previ-
ously unidentified fusions that co-occur with mutations may also 
make a notable contribution to activating RTK-RAS signaling.

Figure 3C shows the frequency summary of the 42 gene fusions 
that we assayed in TCGA patient cohort (n = 9105). Specifically, 
FGFR (five FGFR2 and two FGFR3 fusions) had the highest fusion 
frequency (n = 44), detected in 13 cancer types, and NTRK fusions 
(two NTRK2 and three NTRK3 fusions; n = 12) occurred in five 
cancer types. Among these gene fusions, ALK, BRAF, RET, and 
FGFR were the most frequent partner genes, each with five fusions, 
and therefore, we discussed them in detail.

ALK gene fusions
ALK [which encodes for the anaplastic lymphoma kinase (ALK) tyro-
sine kinase receptor] gene fusions have been reported in a wide variety 
of solid tumors (21). In the case of EML4 and other ALK gene fusions, 
dimerization of the coiled-coil domain of the 5′ partner results in 
activation of the tyrosine kinase function of ALK (22). In addition to 
the well-described ALK-EML4 rearrangements in the lung and other 
types of cancer, TPM1-ALK was also identified in bladder cancer. We 
detected TPM1-ALK mature mRNA in-frame transcripts at the RNA 
level, which was validated by discordant paired-end reads, indicating 
a reciprocal interchromosomal translocation between the TPM1 and 
ALK loci. Through this event, most of the coding sequence of TPM1, 
including its coiled-coil domain, is fused to the intracellular C ter-
minus of ALK that includes its protein kinase domain (Fig. 4A).

We next assessed the functional effects of the TPM1-ALK gene 
fusion in our Ba/F3 cell viability assays. TPM1-ALK strongly en-
hanced Ba/F3 cell survival and proliferation by 70-fold compared to 
green fluorescent protein (GFP)–expressing cells (P < 10−4) as early as 
7 days following the removal of IL-3 (Fig. 4B). We also assessed the 
transforming activity of full-length TPM1 and ALK in the Ba/F3 as-
say. Despite quantitative polymerase chain reaction (PCR)–verified 
expression (Fig. 4C), neither TPM1 nor ALK expression was able to 
promote Ba/F3 survival and proliferation in contrast to the expres-
sion of the fusion gene (Fig. 4D). TPM1-ALK promoted cell growth 
at a level comparable to EML4-ALK (Fig. 4B), suggesting their 
related activities, which is further supported by their similar and 
robust activation of signaling through signal transducer and acti-
vator of transcription 3 (Stat3), as assessed by immunoblot analysis 
of phospho-Stat3 (Y705) in outgrowth Ba/F3 cell lysates (Fig. 4E). 
We next performed Ba/F3 dose-response assays to examine the re-
sponse of TPM1-ALK to an ALK inhibitor. Ba/F3 cells expressing 
TPM1-ALK exhibited marked sensitivity to crizotinib [median in-
hibitory concentration (IC50) = 16.5 nM], an ALK kinase inhibitor 
used clinically to treat ALK-positive lung cancer patients (23), com-
pared to control cells (Fig. 4F).

To generalize the impact of ALK fusions described above on the 
sensitivity to ALK inhibitors, we compared the public cell line drug 
sensitivity data of crizotinib and another ALK inhibitor, NVP-
TAE684, between cell line samples with or without ALK fusions and 

found that the cell lines with ALK fusions were significantly more 
sensitive to ALK inhibitors (crizotinib, Wilcoxon test, P = 1.4 × 10−4; 
Fig. 4G; and NVP-TAE684, Wilcoxon test, P = 9.0 × 10−5; Fig. 4J). 
We next assessed ALK expression across cell lines and observed that 
cell lines with ALK fusions had increased ALK expression (Wilcoxon 
test, P = 2.2 × 10−6; fig. S1A). Although the ALK expression level was 
significantly correlated with drug sensitivity to ALK inhibitors in 
cell line groups with or without ALK fusions, the correlation within 
ALK fusion cell lines [crizotinib, Pearson’s correlation coefficient 
(R) = −0.72 and NVP-TAE684, Pearson’s R = −0.74; Fig. 4, H and K] 
was much stronger than in cell lines without ALK fusions (crizotinib, 
Pearson’s R = −0.52 and NVP-TAE684, Pearson’s R = −0.50; Fig. 4, 
I and L, and fig. S1, B and C), suggesting that, in tumors with ALK 
fusions, ALK expression is more effective in predicting the response to 
ALK inhibitors and likely represents greater dependence on ALK as 
a driver. Collectively, these results highlight ALK fusions as promis-
ing predictive markers for response to ALK inhibitors in general.

RAF1 and BRAF fusions
Previous studies have reported several BRAF (B-Raf proto-oncogene, 
serine/threonine kinase) and RAF1 (Raf-1 proto-oncogene, serine/
threonine kinase) gene fusions with different partners in melanoma, 
thyroid, and prostate cancer (24). Our analysis identified BRAF/RAF1 
fusions with multiple partners, among which were the known gene 
fusions TAX1BP1-BRAF and TRAK1-RAF1 in melanoma (7, 25). To 
study the functional impacts of BRAF/RAF1 fusions comprehen-
sively, in addition to the above two fusions, we selected another 
three BRAF/RAF1 fusions from TCGA cohort that retain an intact 
protein kinase domain: CLCN6-RAF1 (TCGA-ER-A19L), CDC27-
BRAF (TCGA-FS-A1ZU), and ATG7-BRAF (TCGA-BF-A5EP) (fig. S2). 
Our Ba/F3 assays revealed robust driver activity ranging from 30- 
to 142-fold (P < 10−4) in the absence of IL-3 compared to GFP- 
expressing cells (Fig. 5A). BRAF fusion activity in Ba/F3 was similar 
to cells expressing oncogenic BRAFV600E, a well-characterized onco-
genic event at hotspot V600 that is found in 46% of melanoma sam-
ples (25). Immunoblot analysis of outgrowth Ba/F3 cell lysates 
verified RAF1 and BRAF fusion expression and enhanced mitogen- 
activated protein kinase (MAPK) signaling, assessed by phosphory-
lation of extracellular signal–regulated kinase 1/2 (ERK1/2) (T202/
Y204), which was also activated by the expression of BRAFV600E but 
not GFP control (Fig. 5B). Consistent with previous observations, 
the presence of BRAF and RAF1 gene fusions are mutually exclusive 
to activating BRAF/RAS mutations that together occur in 70% of 
melanoma cases (Fisher’s exact test, P = 0.018; Fig. 5C) (7, 25), 
which further supports that these fusions represent driver events in 
this disease.

To study the therapeutic utility of these fusions, we performed 
dose-response inhibitor assays that revealed marked sensitivity to 
the MAPK kinase (MEK) inhibitor, trametinib (IC50, CLCN6-RAF1 = 
1.223 nM and TRAK1-RAF1 = 0.9588 nM), in Ba/F3 cells express-
ing RAF1 fusions (Fig. 5D), as predicted from the fusion’s strong 
activation of MAPK signaling (Fig. 5B). We next sought to validate 
the transforming activity of the melanoma-derived fusion genes us-
ing primary human melanocytes (HMELs) (26, 27), which are ideal 
for assessing the tumorigenic activity of melanoma-specific onco-
genes. Orthotopic injection of HMEL cells expressing CLCN6-RAF1 
into the dermis of athymic mice revealed its potent oncogenic ac-
tivity (100% tumor penetrance, n = 10; Fig. 5E) compared to GFP- 
expressing control cells (n = 0 of 10). We also observed that cell 
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lines with endogenous RAF1 fusions were more sensitive to trame-
tinib using cell line drug sensitivity data (Wilcoxon test, P = 0.026; 
Fig. 5F), consistent with the RAF1 fusions being drivers of tumor 
behavior. This also suggested that RAF1 fusions are generalizable as 
predictive markers for a possible benefit from trametinib and likely 

other RAS/MAPK pathway inhibitors. In support of this contention, 
all three BRAF fusions sensitized Ba/F3 cells to trametinib (IC50, 
TAX1BP1-BRAF = 0.9107 nM, CDC27-BRAF = 0.6334 nM, and 
ATG7-BRAF = 1.148 nM; parental = 45 nM; Fig. 5H). We observed 
a similar effect upon injecting HMEL cells stably transduced with 
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one BRAF fusion, TAX1BP1-BRAF, which greatly promoted tumor 
growth (Fig. 5I) in four of the nine injections compared to control 
cells that did not form tumors (n = 0 of 10). Immunoblot analysis of 
cell and tumor lysates verified CLCN6-RAF1 and TAX1BP1-BRAF 
expression and activation of MAPK signaling compared to GFP- 
expressing HMEL cells (Fig. 5, G and J). These results suggest that, 
despite the notable diversity of the partners, RAF1 and BRAF fu-
sions represent a key class of actionable events in melanoma and 
potentially in other tumor lineages.

FGFR fusions
Oncogenic rearrangements in fibroblast growth receptor genes 
FGFR1 FGFR2, FGFR3, and FGFR4 have been reported previously 
(28). FGFR gene fusions were identified in 20 cancer types in TCGA 
cohort, including recurrent fusions of WHSC1L1-FGFR1, FGFR2- 
BICC1, and FGFR3-TACC3 (Fig. 6A). Consistent with previous 
studies (29–31), FGFR2-BICC1 and FGFR3-TACC3 showed signifi-
cant activating effects in our Ba/F3 viability assays. One interesting 
case is FGFR3-ELAVL3 fusion detected in low-grade glioma, in which 
the genomic breakpoint lies within the 3′ untranslated region (UTR) 
of FGFR3. Since the fusion transcript FGFR3-ELAVL3 is expected 
to retain the stop codon of FGFR3, translation of this transcript 
would not be predicted to yield a fusion protein. However, with alter-
native mRNA splicing, the last exon with the 3′UTR of FGFR3 would 
be spliced out, and the previous exon of FGFR3 is thus fused to exon 
2 of ELAVL3, resulting in an in-frame transcript (Fig. 6B). Previous 
studies have shown that the oncogenic potential of FGFR3-TACC3 
fusion acts through the loss of microRNA control of the 3′UTR of 
FGFR3 (32); similarly, the fusion described here would serve to di-
minish the regulation of FGFR3 by tumor suppressor microRNAs.

We assessed the driver potential of the FGFR3-ELAVL3 fusion in 
MCF10A cells using a colony assay. We found that expression of 
FGFR3-ELAVL3 led to a significant increase in colony formation 
(12-fold, P = 5 × 10−4; Fig. 6C) similar to the oncogenic PIK3CAH1047R 
control (33). Immunoblot analysis (Fig. 6D) of MCF10A cells ex-
pressing FGFR3-ELAVL3 showed elevated phosphorylation of ERK1/2 
(T202/Y204) and S6 (S235/236), which is consistent with FGFR3’s 
known role in activating the MAPK pathway (34) and observed for 
other FGFR3 gene fusions, such as the well-described FGFR3-TACC3 
event (35) that is present in a variety of cancer types.

An evidence-based classification to prioritize actionable 
gene fusions for precision oncology
On the basis of the functional genomics approach that we devel-
oped and insights obtained from the analyses above, we propose an 
integrated, level-of-evidence classification system to systematically 
prioritize gene fusions to communicate the clinical utility of indi-
vidual fusion events, which consists of four levels (Fig. 7A). Specifi-
cally, level 4 (L4): fusion presence evidence, gene fusions identified 
through tumor sequencing data; L3: correlation-based evidence, 
fusions showing a significant association with drug sensitivity as a 
group, e.g., RAF1 fusions to trametinib (Fig. 5F); L2: functional 
evidence, fusions exhibiting significant impact on tumor growth or 
drug response in vitro and/or in vivo, e.g., TAX1BP1-BRAF1 (Fig. 5, 
D and H); and L1: clinical evidence, fusions with evidence from 
patient data that they predict treatment response, e.g., EML4-ALK 
in lung cancer. The lower the level, the more compelling the evi-
dence is for treating patients based on specific gene fusions identi-
fied in their tumors.

We next applied the above classification to the complete TCGA 
patient cohort with a focus on the RTK-RAS pathway, for which we 
had the most abundant functional evidence. In total, from >11,000 
patients, we identified 1653 L4 fusions affecting members of the 
RTK-RAS pathway in 1450 patients, ranging from 37.2% (n = 97) in 
sarcoma to 0.9% in kidney chromophobe (n = 1); 177 L3 fusions in 
237 patients; 23 L2 fusions in 86 patients based on the functional 
evidence generated in this study (e.g., 44 patients carried FGFR fu-
sions); and five L1 fusions in 129 patients (Fig. 7B). This analysis 
elucidates how our functional genomics platform can empower a 
systematic approach to identify potentially clinically actionable fu-
sion events. To increase the clinical impact, we have optimized each 
step in our pipeline so that the whole process from identification of 
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fusion candidates from RNA sequencing data of patient tumors to 
the completion of in vitro cell viability and drug sensitivity assays 
can be completed in as short as 7 weeks (Fig. 7C). Moreover, our 
pipeline is cost-effective, since our recombination engineering ap-
proach for gene fusion construction substantially reduces the cost 
compared to gene synthesis (table S2).

DISCUSSION
In this study, we developed a functional genomics approach to test 
the transforming potential and drug responsiveness of fusion genes 
and demonstrated the scalability of the approach, including the 
ability to perform analysis in a clinically relevant time scale. This 
approach has a high success rate (>80%) and is time efficient and 

cost effective. The gene fusions characterized here provide a gold 
standard set for evaluating the computational algorithms to predict 
driver gene fusions in cancer. We found that a considerable fraction 
of low-frequency (or even singleton) gene fusions had functional 
effects and potential therapeutic relevance, which has important 
implications for patient management. Although fusion genes have 
represented therapeutic targets for decades (e.g., targeting of BCR-
ABL markedly changed the treatment of chronic myelogenous leu-
kemia), functional characterization and therapeutic efforts have 
mainly focused on highly recurrent fusion candidates. Our study 
reiterates the urgent need to consider low-frequency fusions as po-
tential therapeutic targets to realize the full promise of personalized 
cancer therapy. Since our functional analysis approach can be com-
pleted within a relatively short time (e.g., 7 weeks), we propose that 
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this approach can be potentially applied in a clinical setting to iden-
tify functional fusion genes that likely drive tumor behavior and 
predict response to specific therapeutic regimens.

We recognize some limitations of our approach. First, we mainly 
use Ba/F3 as a model cell line to assess the functional effect of gene 
fusions. Although most known functional fusion genes (e.g., FGFR3- 
TACC3 and ETV6-NTRK3) were validated, the Ba/F3 system may 
produce false negatives, as some fusions that are active in a lineage- 
specific system may not “score” in Ba/F3. For example, KLK2-FGFR2 
has been identified as a potential oncogenic event in prostate adeno-
carcinoma and uveal melanoma and has been reported to change 
the cell morphology and promote migration in the NIH 3T3 model 
(36). However, our parallel assessment using a second informer 
cell line, MCF10A, suggests that the false-negative rate of our plat-
form is likely low. Second, we mainly used cell viability assays as 
a readout for phenotypic effects, which does not capture all the 
functional consequences of oncogenic drivers. However, in multi-
ple systems, this phenotypic assay reports on the response to therapy 
in patients. As a complement to viability assays, we also explored 
other functional assays, such as clone formation assays. Third, our 
approach may identify some fusions as positive in the sensitive Ba/F3 
informer cell line that may have more modest effects in a lineage- 
specific context. Our strategy of assessing drug sensitivity of activat-
ing fusions should mitigate this concern. In general, we designed the 
approach to provide a good balance between experimental efficiency 
and comprehensiveness of the characterization, with the goal of 
being able to provide timely support for clinical decisions. Further 
efforts are required to improve our approach to capture more 
“context-dependent” phenotypic effects.

We provide a comprehensive view of gene fusions from the 
RTK-RAS pathway across 33 cancer types. Our results show that, 
aside from high-frequency activating mutations in genes, such as 
V600E in BRAF and G12D in KRAS, gene fusions can also contrib-
ute, to a lesser but still compelling extent, to activation of the RTK-
RAS pathway. Overall, while approximately one in every seven 
sequenced tumors carries a fusion gene of an RTK-RAS pathway 
member, there are remarkable differences in the frequency of fusion 
genes in the RTK-RAS pathway across different cancer types. This 
observation is in concordance with previous studies that show a 
predominance of activating RAS mutations in tumors such as mel-
anoma (25), pancreatic, esophageal (37), and bladder cancer (38). 
Also, certain solid tumors seem to be more fusion prone compared 
to others, such as thyroid cancer, which displays a considerable mu-
tational burden of RTK-RAS fusion genes despite being structurally 
“quiet” (39). Similarly, sarcomas appear to contain frequent fusion 
genes that are likely to be drivers (40). Cancer types such as melano-
ma and gastric adenocarcinoma harbor often hyper-rearranged ge-
nomic regions that include RTK-RAS pathway genes that have the 
potential to lead to functionally relevant fusion genes.

Although specific gene fusions are individually rare, they collec-
tively made a substantial contribution to activation of the RTK-RAS 
pathway. There are a number of therapeutic approaches to inhibit 
the RTK-RAS pathway members that are available or under investi-
gation. For example, our study identified two driver MET fusions 
(BAIAP2L1-MET and TFG-MET), and there is at least one ongoing 
clinical trial targeting MET fusion–positive tumors (NCT02978261). 
Thus, even without FDA-approved drugs, the oncogenic fusions 
identified by our functional genomics approach could be added to 
the actionable list of promising therapeutic targets. In addition to 

clinically approved recurrent targets such as BCR-ABL in leukemia 
and ALK and ROS fusions in lung cancer, accumulating data sup-
port clinical responses to rare aberrations. For example, a case re-
port presented two patients with metastatic melanoma with BRAF 
fusions that both had symptomatic improvement when treated with 
the MEK inhibitor trametinib (41). The positive clinical outcome 
associated with targeting rare fusions supports the consideration of 
a treatment paradigm, whereby patients are treated on the basis of 
the presence of such fusions independent of tissue or tumor origin. 
Functional information such as those provided here, or acquired 
therapeutically on the specific fusion, would greatly increase the 
confidence in treating patients based on a particular rare fusion 
gene. Therefore, an indispensable element of current patient strat-
ification strategies would be the functional characterization for 
gene fusions, with potential emphasis on druggable targets. Toward 
that goal, our functional genomic approach and proposed four- 
level evidence-based classification system represent an initial but 
critical attempt to improve the clinical impact of targeting rare gene 
fusion events.

MATERIALS AND METHODS
Mice
Female athymic mice [Crl:NU(NCr)-Foxn1nu, 4 to 6 weeks in age; 
Charles River Laboratories] were used for xenograft tumor studies. 
In husbandry and housing conditions, all mice were fed a standard 
chow diet ad libitum and housed in a pathogen-free facility with 
standard controlled temperature, humidity, and light-dark cycle 
(12-hour) conditions with no more than five mice per cage under the 
supervision of veterinarians, in an Association for Assessment and 
Accreditation of Laboratory Animal Care International–accredited 
animal facility at Baylor College of Medicine. All animal procedures 
were reviewed and approved by the Institutional Animal Care and 
Use Committee at Baylor College of Medicine (AN-5428).

Cell lines
293T cells [American Type Culture Collection (ATCC)] were cul-
tured in Dulbecco’s modified Eagle’s medium (Thermo Fisher Sci-
entific) supplemented with 10% fetal bovine serum (FBS; Thermo 
Fisher Scientific). Parental Ba/F3 cells were cultured in RPMI 1640 
medium (Thermo Fisher Scientific) supplemented with 5% FBS 
(Thermo Fisher Scientific) and recombinant mouse IL-3 (2.5 ng/ml; 
R&D Systems). MCF10A cells (ATCC) were cultured as described 
previously (42). HMEL cells (26) were cultured in RPMI 1640 medium 
supplemented with 10% FBS, penicillin (100 U/ml), and streptomycin 
(100 g/ml). All cell lines were propagated at 37°C and 5% CO2 in a 
humidified atmosphere. Cells lines were fingerprinted before use at 
the MD Anderson Cancer Center Characterized Cell Line Core 
Facility using a short tandem repeat (STR) testing platform.

Gene fusion selection
To balance the discovery power and assessment bias, we aimed to 
select 100 fusions from TCGA patients based on two factors, the 
potential druggability of fusion partner genes and the involvement 
of RTK-RAS pathway. In terms of the druggability annotation of 
partner genes, we set 50% for TClin, 35% for TChem, and 15% for 
TBio; for TClin, we further set 80% for RTK/RAS; and for TChem, we 
set 20% for RTK/RAS. Then, based on these predefined estimates, 
we chose the corresponding number of fusion candidates from each 
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category. In addition, we included a number of gene fusions de-
tected in MD Anderson patient samples. In total, 110 gene fusions 
were selected.

Gene fusion construction
The fusion gene constructs were generated using the Gateway mul-
tifragment recombination technique, as previously described (12). 
Briefly, fusion gene construction was based on PCR using sequence- 
verified open reading frames (ORFs) corresponding to each fusion 
gene fragment obtained from the ORFeome collaboration (www.
orfeomecollaboration.org), Mammalian Gene Collection, and com-
mercial ORF sources (Ultimate ORF Clones; Life Technologies) as 
PCR template. PCR primers were generated to amplify the desired 
fragments (left and right gene arms of each fusion) with terminal 
Gateway (Life Technologies) recombination sequences. The left and 
right arm PCR products were incorporated into pDONR vectors 
(Life Technologies) and pFUSE-B vector (Addgene, plasmid no. 
97185), respectively, through BP recombination (Life Technologies), 
followed by multifragment recombination into the pFUSE-DEST_
R1R4 vector (Addgene, plasmid no. 97186) through LR recombi-
nation reaction (Life Technologies) following the manufacturer’s 
recommendations. The reaction mixtures were incubated at room 
temperature overnight and subsequently transformed into STBL3 
(Life Technologies) competent bacteria.

Ba/F3 cell viability assays
Lentivirus production and transduction of Ba/F3 cells are described 
in Ng et al. (17). Briefly, Lenti-X 293T cells were transfected with the 
fusion gene–containing vector and packaging plasmids (psPAX2 and 
pMD2.G). Lentivirus was harvested 3 days after transfection and 
used to transduce Ba/F3 cells by spinoculation at 1000g for 3 hours 
in the presence of polybrene (final concentration of 8 g/ml). For 
Ba/F3 transforming potential assays, transduced Ba/F3 cells were 
incubated in medium without IL-3 for 7 days, as described earlier 
(15, 16), and cell viability was determined using CellTiter-Glo (Promega). 
For inhibitor assays, stable Ba/F3 cells expressing fusions (in IL-3–
free medium) and parental Ba/F3 (in regular medium) were seeded 
in quadruplicates in 96-well plates at 1000 cells per well. Cells were 
treated with dimethyl sulfoxide or respective inhibitors at differ-
ent concentrations for 72 hours, and cell viability was determined 
using CellTiter-Glo (Promega). At least two independent experi-
ments were performed. All inhibitor compounds were purchased 
from Selleck Chemicals.

MCF10A anchorage–independent growth assays
Fusion genes were transduced into MCF10A cells via lentiviral in-
fection. As previously described (12), soft agar assays were per-
formed in six-well plates in triplicate. First, bottom layers were 
prepared using 0.8% Noble agar (Affymetrix Inc.) with complete 
MCF10A growth medium. After solidification, 10,000 cells were 
mixed with 0.45% agar in complete growth medium and laid on top 
of the bottom layer. Two milliliters of medium was added in each 
well after 3 days, and the medium was refreshed every 3 days. Colo-
nies were counted 2 weeks after seeding.

Immunoblotting
Cells and tumor tissues were lysed with radioimmunoprecipitation 
assay buffer containing protease inhibitor cocktail (Sigma-Aldrich) 
and phosphatase inhibitor cocktail (Calbiochem). Protein lysates were 

separated on 4 to 12% bis-tris gel (Novex) and transferred to poly-
vinylidene difluoride membranes. The following antibodies were used 
to detect expression: Raf1 (Abcam), BRAF (B-Raf proto-oncogene, 
serine/threonine kinase) (Santa Cruz Biotechnology), phospho- 
Erk1/2 (T202/Y204) (Cell Signaling Technology), Erk1/2 (Cell Signal-
ing Technology), and glyceraldehyde-3-phosphate dehydrogenase 
(Santa Cruz Biotechnology).

In vivo xenograft tumor assay
All studies using mice were performed in accordance with our Insti-
tutional Animal Care and Use Committee–approved animal protocol 
(AN-5428) at Baylor College of Medicine. One million cells were re-
suspended in a 1:1 Hanks’ balanced salt solution (Life Technologies) 
and Matrigel (BD Biosciences) and injected into female athymic mice 
subcutaneously in bilateral flanks or orthotopically into the dermis 
(27). Mice were monitored twice a week, tumors were measured, and 
volumes were calculated as length × width2/2.

Bioinformatics analysis of TCGA gene fusions
The gene fusion events from >11,000 TCGA patients across 33 cancer 
types were collected on the basis of two previous bioinformatics 
studies (6, 8). The somatic mutations of genes in the RTK-RAS path-
way identified from TCGA tumor samples were obtained from 
TCGA Pan-Cancer Analysis (19). Centrality scores were obtained from 
the TumorFusions database (8). The genes involved in the RTK-
RAS pathway were obtained and merged on the basis of the RTK-RAS 
pathway defined by TCGA Pan-Cancer Analysis (19) and the RAS 
initiative (20). The fusion cancer bipartite network was built using 
Cytoscape (www.cytoscape.org) based on the fusion frequencies 
identified in TCGA patient cohort.

Drug sensitivity analysis on ALK and RAF1 gene fusions
The drug sensitivity data were downloaded from Genomics of Drug 
Sensitivity in Cancer (GDSC) (www.cancerrxgene.org) and Cancer 
Therapeutics Response Portal (CTRP) v2 (https://portals.broadin-
stitute.org/ctrp/). The gene fusions and the corresponding gene ex-
pression data in cell line samples were obtained from Cancer Cell Line 
Encyclopedia (https://portals.broadinstitute.org/ccle). The differential 
analyses of drug sensitivity (area under the curve) between cell lines 
with and without ALK or RAF1 fusions were performed by Wilcoxon 
test. The associations between ALK or RAF1 gene expression and 
ALK or RAF inhibitors were assessed by Pearson’s correlation test.

An evidence-based classification system for prioritizing 
actionable gene fusions
Using TCGA data, we applied the classification system defined in 
Fig. 7A to prioritize L4 to L2 actionable gene fusions involved in the 
RTK-RAS pathway. L4 fusions were filtered from TCGA gene fu-
sion list by selecting those having at least one partner gene in the 
RTK-RAS pathway. The number of patients harboring RTK-RAS 
fusions was counted within each cancer to generate the green bar 
plot in Fig. 7B. To annotate L3 fusions, we performed a differential 
drug sensitivity analysis for each pair of RTK-RAS gene and its cor-
responding inhibitors using drug sensitivity data obtained from 
GDSC and CTRPv2. The significant genes were selected under a false 
discovery rate of <0.2. The patients with fusions harboring these 
significant genes were further counted and summarized in the heatmap. 
The activating fusions annotated by our functional platform were 
annotated as L2 fusions. We further identified patients harboring 
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the L2 fusions from TCGA patient cohort and summarized the counts 
in a bar plot grouped by each gene family (e.g., FGFR and NTRK).

Data portal development
The functional annotation data, as well as other metadata, were first 
loaded into CouchDB. The fusion gene frequencies were obtained 
from two previous studies (6, 8). Literature data were manually cu-
rated. The fusion plots were developed on the basis of a command 
line tool for generating lollipop plots. The bar plots were generated 
by Highcharts. The interactive tables were generated by DataTables.

Quantification and statistical analysis
Statistical analysis was performed using R (version 3.6.1). To assess 
the correlation between two continuous variables, the Pearson’s 
correlation test was used; to assess the correlation between two cat-
egorical variables, a chi-square test was used; and to compare the 
mean value between two groups, a Wilcoxon or Student’s t test was 
used. Detailed descriptions of statistical tests are provided in Mate-
rials and Methods and the respective figure legends.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm2382
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