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Abstract
Purpose: This study addresses the challenge of low resolution and signal-to-noise ratio
(SNR) in diffusion-weighted images (DWI), which are pivotal for cancer detection. Tra-
ditional methods increase SNR at high b-values through multiple acquisitions, but this
results in diminished image resolution due to motion-induced variations. Our research
aims to enhance spatial resolution by exploiting the global structure within multicontrast
DWI scans and millimetric motion between acquisitions.
Methods: We introduce a novel approach employing a “Perturbation Network” to learn
subvoxel-size motions between scans, trained jointly with an implicit neural representa-
tion (INR) network. INR encodes the DWI as a continuous volumetric function, treating
voxel intensities of low-resolution acquisitions as discrete samples. By evaluating this
function with a finer grid, our model predicts higher-resolution signal intensities for
intermediate voxel locations. The Perturbation Network’s motion-correction efficacy was
validated through experiments on biological phantoms and in vivo prostate scans.
Results: Quantitative analyses revealed significantly higher structural similarity mea-
sures of super-resolution images to ground truth high-resolution images compared
to high-order interpolation (p < 0.005). In blind qualitative experiments, 96.1% of
super-resolution images were assessed to have superior diagnostic quality compared to
interpolated images.
Conclusion: High-resolution details in DWI can be obtained without the need for
high-resolution training data. One notable advantage of the proposed method is that it
does not require a super-resolution training set. This is important in clinical practice
because the proposed method can easily be adapted to images with different scanner
settings or body parts, whereas the supervised methods do not offer such an option.
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1 INTRODUCTION

Diffusion-weighted images (DWI) are sensitive to the
molecular displacement of water within each voxel.
By acquiring DWI at varying diffusion-weighting values
(b-values), we can calculate apparent diffusion coefficient
(ADC) maps. These maps reveal tissue diffusivity levels
and are particularly important because the increased cell
density typically present in cancer significantly reduces
the ADC values, which allows cancer detection. How-
ever, DWI often exhibits lower image resolution and
signal-to-noise ratio (SNR) compared to other imaging
sequences like T1 and T2-weighted images. To improve
the SNR, multiple high-b DWI acquisitions are performed.
These are then averaged to create a single image. However,
this approach is susceptible to significant artifacts.1 Arti-
facts in these images mainly arise from two types of motion
or magnetic field fluctuations: (1) gross motion or field
changes between acquisitions (e.g., due to breathing, rec-
tal gas motions), and (2) localized motions or field changes
during diffusion encoding gradients (e.g., arterial pulse or
peristalsis). The nonrigid gross motion occurring between
the separate signal acquisitions makes the image blurry,
consequently reducing the resolution whereas the local-
ized motion or B0 field fluctuations during the acquisition
can reduce or completely suppress the signal.2

This presents a challenging situation with no clear
solution. Specifically, when dealing with small voxel sizes,
the common approach of signal averaging (obtaining mul-
tiple acquisitions and averaging them) can enhance the
SNR but leads to decreased image quality and resolution
due to motion-induced variations between acquisitions.
In clinical practice, high SNR, reduced scanning times,
and patient comfort typically outweigh the need for high
resolution. Consequently, DWI images often have low
resolution, affecting their specificity and the accuracy
of targeted biopsies.3 Thus, resolution is considered cru-
cial to the “diagnostic image quality” in prostate MRI.
This is measured with the PI-QUAL score, which reflects
the extent to which the image assists in ruling in and
ruling out clinically significant cancer.4,5 Studies using
the PI-QUAL score have shown that DWI image quality,
including SNR and resolution, significantly impacts the
accuracy of cancer detection.6–9

This study introduces a super-resolution model for
diffusion-weighted prostate imaging that potentially
reduces scan times and improves patient comfort, par-
ticularly for those with claustrophobia or Parkinson’s
disease. The method enables high-quality imaging from
lower-resolution inputs, mitigating the need for a large
number of averages needed for obtaining high-resolution
images with adequate SNR. Our study aims to improve
prostate DWI resolution through self-supervised deep

learning, utilizing anatomical patterns across varying
b-values and the nonlinear inter-acquisition motion. Its
efficacy was assessed using in vivo prostate MR images
with biopsy-confirmed cancers and carefully designed
biological phantom experiments.

1.1 Super-resolution in medical images

Super-resolution in medical images has been a topic of
interest over the past two decades. Early methods concen-
trated on multi-image registration and stitching, utilizing
shifted, orthogonal, anisotropic, or rotated scans.10–14

However, the effectiveness of methods using linear sub-
voxel shifts has been debated, as they provide minimal
or no in-plane improvement. This is because MRI is
a Fourier imaging technique, here rigid spatial shifts
only introduce a linear phase gradient without yield-
ing a more densely sampled k-space.15 Consequently,
these techniques have only shown success in achieving
through-plane super-resolution.

The success of deep learning-based super-resolution
technologies in real-world imaging has inspired the appli-
cation of similar supervised methods in medical imaging,
drawing from techniques proven effective in digital pho-
tography.16 Recent supervised deep learning methods
assume that a low-resolution image is a “degraded” ver-
sion of its high-resolution counterpart, aiming to reverse
this “degradation process” to recover the high-resolution
image.17 While these methods are increasingly applied
and show promise, it is crucial to note that, as with other
medical deep learning applications, their effectiveness
is often limited by the scarcity of available training data.
Consequently, much of the super-resolution training
in medical imaging depends on synthetically degraded
input–output pairs.

However, it is important to approach these super-
vised methods cautiously. In medical imaging, high-
and low-resolution image pairs are not readily avail-
able, and synthetically degrading images to create these
pairs for training can lead to artifacts and hallucinations.
The emerging self-supervised super-resolution paradigm
presents a promising solution to overcome these limita-
tions. Self-supervised learning utilizes the inherent infor-
mation in the data, eliminating the need for explicit high-
and low-resolution pairs. Table 1 offers a concise summary
of the relevant literature in this domain.

This paper presents a self-supervised super-resolution
model* for DWI utilizing the Implicit Neural
Representation (INR) framework.40 Unlike supervised
methods that assume a low-resolution image is simply
a degraded high-resolution image and seek to learn the
inverse degradation function, our model adopts a more
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GUNDOGDU et al. 3

T A B L E 1 Literature review of super-resolution in medical imaging.

References Year Modality Body part Method

Peled et al.10 2001 DWI Brain Registration of shifted scans

Carmi et al.11 2006 T2W Phantom Registration of rotated scans

Kennedy et al.12 2007 PET/CT Lung Registration of shifted scans

Mayer et al.13 2007 T2W Phantom Registration of shifted scans

Lu et al.14 2010 T2W Body Registration of parallel scans from different coils

Scherrer et al.15 2011 DWI Brain Registration of rotated scans

Tieng et al.18 2011 T2W Phantom Registration of shifted scans

Van Reeth et al.19 2012 T2W Brain Registration of rotated/shifted scans (review article)

Scherrer et al.20 2012 DWI Brain Registration of orthogonal scans

Wu et al.21 2016 DWI Brain High-order singular value decomposition

Jurek et al.22 2017 T2W Prostate Registration of orthogonal scans

Alexander et al.23 2017 DWI Brain Patch regression

Chaudhari et al.16 2018 T2W Knee Supervised CNN

Zeng et al.24 2018 T1W Brain Supervised CNN

Chen et al.25 2018 T2W Brain Supervised CNN

Sood et al.26 2019 T2W Prostate Supervised GAN

Liu et al.27 2019 T2W Prostate Supervised CNN

Hong et al.28 2019 DWI Brain Supervised CNN

Dar et al.29 2019 T1, T2 Brain Supervised GAN

He et al.30 2020 T2W Prostate Supervised deep attention networks

Zhou et al.31 2020 T1, T2, FLAIR Brain Supervised multimodal fusion-net

Park et al.32 2021 T2W Lung Supervised autoencoder-inspired CNN

Sood et al.33 2021 T2W Prostate Supervised GAN

Chatterjee et al.34 2021 DWI Brain Supervised Unet

Wu et al.35 2021 T1W Brain Self-supervised IRN

Jiang et al.36 2022 T1W Brain Supervised CNN with real 0.35T vs 3T scans

Molahasani et al.37 2022 T2W Prostate Supervised GAN

Mahaptra et al.38 2022 PD, T1 and T2 Brain Supervised CNN and vision transformers

Guo et al.39 2023 DWI Brain Semi-supervised GAN

This work 2023 DWI Prostate Self-supervised INR

Abbreviations: CNN, convolutional neural networks; DWI, diffusion-weighted image; GAN, generative adversarial Networks; INR, implicit neural
representation.

realistic assumption. It posits that the high-resolution
image is a continuous function mapping the continuous
domain of x-space to the range of signal intensities, and
the low-resolution voxels are merely samples of this con-
tinuous function. Therefore, the objective is to learn this
continuous function via the INR network, using the sparse
samples (voxels) from the low-resolution image in the
training set. In other words, this framework uses the voxel
locations as input, and the acquired signal intensities
within these voxels as the output.

While the INR framework was initially not designed
for super-resolution, Wu et al. showed that using INR is
an effective means of super-resolution on single-contrast
T1W brain images.35 We introduce two novelties to the
INR approach and extend its application to DWI of the
prostate: Firstly, we incorporate multiple degrees of diffu-
sion weighting (quantified by the b-value) along with the
standard three-dimensional spatial inputs. This modifi-
cation transforms the INR into a multicontrast solution,
thereby broadening its scope of application. Second, we
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4 GUNDOGDU et al.

introduce the input Perturbation Network (PN) to cor-
rect voxel mismatches observed between different signal
acquisitions and potentially to harvest important morpho-
logical details that might exist in individual acquisitions
but can be lost within the large voxel sizes and during
aggregation of different acquisitions. This PN learns to
move the input voxel locations slightly for each acquisition
while minimizing the reconstruction loss of the INR.

An analysis of the literature in Table 1 reveals that most
super-resolution research focuses on brain imaging, with
prostate MRI studies being relatively scarce, even though
prostate cancer is the second deadliest cancer in men.41

Moreover, the majority of super-resolution applications
in MRI have been conducted using T1- or T2-weighted
images. However, applying super-resolution to DWI which
typically has lower resolution, could be more impactful. To
our knowledge, existing super-resolution studies in DWI
are limited to brain imaging, and the few prostate studies
focus exclusively on T2-weighted images, with no attempts
made on prostate DWI. Our study underscores the signif-
icance of high-resolution prostate DWI in (1) identifying
extra-prostatic tumor extension, (2) pinpointing precise
tumor locations, and (3) generating accurate coronal DWI
views for enhanced cancer localization.

2 METHODS

The foundational assumption of our model is that a
full-resolution analog image can be represented as a con-
tinuous function, with low-resolution acquisitions being
just discrete and noisy samples from this function. An INR
network is used to approximate this continuous function.
As previously mentioned, DWI are typically acquired at
various b-values, including multiple acquisitions at high
b-values. Each acquisition can be represented as a discrete
three-dimensional volume:

Sk(b) ∈ R
Mx×My×Mz k = 1 … K, (1)

where b is the diffusion-weighting value, Mx, My, and Mz
denote the number of voxels along the x, y and z directions,
respectively, with K representing the number of indepen-
dent acquisitions. In standard practice, these acquisitions,
denoted Sk are averaged to produce a single mean image
for radiological examination:

Smean(b) =
1
K

K∑

k=1
Sk(b). (2)

The INR network models the full-resolution image
as a function f ∶ R4 → R. This four-dimensional input
space comprises the continuous three-dimensional voxel

locations and the b-value, which serves as the fourth
dimension. The network’s output is the signal intensity
corresponding to a specific voxel location and b-value. The
INR is structured as a deep neural network with fully
connected layers and sinusoidal activation functions, fol-
lowing the initialization guidelines from Sitzmann et al.40

Training set inputs are quadruplets (mx,my,mz, b) repre-
senting the normalized voxel location and b-value, scaled
to range between −1 and 1 along each axis. The model’s
output labels are the intensity values of the image observed
at the input location. Thus, the INR is trained to minimize
the error between the predicted diffusion values at input
locations xi = (mx,my,mz) and the measured diffusion val-
ues Sk(xi, b):

 =
∑

i,k
||Sk(xi, b) − INR(xi, b)||2. (3)

Essentially, INR’s objective is to estimate the signal for
any given input location, even for those not included in
the training set, that is, “intermediate voxels” with higher
resolution. Take, for instance, our practically discrete
input space: while input samples like x1 = (0, 0, 0, 0) and
x2 =

( 1
Mx∕2

, 0, 0, 0
)

are part of the training set, an interme-

diate sample along the first axis, such as x3 =
( 1

Mx
, 0, 0, 0

)
,

is not.†Once trained with x1, x2 and other location indices,
the INR is capable of predicting diffusion values for the
“intermediate voxel locations,” like x3. Importantly, it
should be emphasized that the INR functions beyond the
capabilities of a simple sinc interpolator. This distinction
arises for three reasons: (1) INR integrates information
across various b-values within shared layers (Equation 3),
(2) the PN applies nonlinear motion correction across
acquisitions and b-values (Section 2.1), and (3) the train-
ing process incorporates data-driven learning weights
for each voxel’s acquisitions, addressing inter-acquisition
variability (Section 2.2).

2.1 Input PN for motion correction

The motion-induced intra- and inter-acquisition variabil-
ities are often nonlinear due to B0 inhomogeneities and
bowel-enclosed gas. We represent the warping effect of
millimetric motion as a perturbation to the INR input.
We assume that the reason Sk1(x, b) ≠ Sk2(x, b) is the mil-
limetric motion between acquisitions k1 and k2 and that
Sk1(x, b) = Sk2(x + 𝝐, b). This implies that when an acqui-
sition’s signal value differs from the network output, the
method considers whether the discrepancy is due to the
acquisition originating not from the designated voxel loca-
tion but from a nearby subvoxel location, affected by small
inter-acquisition motions. A one-dimensional example
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GUNDOGDU et al. 5

F I G U R E 1 A one-dimensional example of the zero-shot super-resolution methodology. The supervised block uses the low-resolution
voxel intensities as labels, hence effectively there is no need for high-resolution ground truth labels.

of the idea behind the proposed methodology is visual-
ized in Figure 1. In this example, when the point spread
function is applied on each voxel, very small motions that
occur between acquisitions cause the sharp edge to be lost
even when it is sampled at the Nyquist rate. In the pro-
posed approach, the discrete input space is generalized as
a continuous domain, and the input PN is trained in an
unsupervised fashion to estimate a warping function for
each acquisition to minimize the reconstruction loss at
the output.

We propose that this perturbation value can be learned
jointly with the INR parameters, on a separate neural net-
work. The error that the signal for such an acquisition
creates at the output is backpropagated to assign this value
to a better location near the center of the input voxel such
that the total loss is minimized for all voxels and all acqui-
sitions. This warping is done via the PN which is modeled
as another fully connected neural network that takes the
acquisition number and the b-value as input, in addition to
the voxel location x. The network then estimates a pertur-
bation value 𝝐 via a scaled tanh activation function such
that the perturbation is constrained to vary within physi-
cally feasible motion limits by enforcing the following cost:

 =
∑

i,k
||Sk(xi, b) − INR(xi + 𝜖maxtanh(PN(xi, b, k)), b)||2.

(4)
The perturbation upper-bound (𝜖max) was set as half a

voxel size along each direction, that is, 𝜖max =
( 1

Mx
,

1
My
,

1
Mz

)
.

Note that the acquisition number k and the b-value used
as inputs to the PN take discriminative roles, and no tem-
poral order along acquisitions is assumed. This creates an
opportunity to capture sharp edges within the image, even
if the voxel size is too large to capture it, and this edge is
captured in different acquisitions for the same voxel due
to the motion. The flowchart of the proposed network and
the role of the PN is demonstrated in Figure 2.

2.2 Weighted learning for suppressing
anomalously low signals

Besides the inter-acquisition bulk motion of the prostate
as discussed in Section 2.1, the disparity in Sk1(x, b) and
Sk2(x, b) for k1 ≠ k2 may also stem from the molecular
motion of water or the fluctuation in local magnetic field
during application of the diffusion-sensitizing gradients.
These factors lead to variations that are too large to be
explained by thermal Rician noise.42 This type of variation
is commonly referred to as physiological noise. Physiolog-
ical noise typically leads to an anomalous reduction in sig-
nal intensity, resulting in a right-skewed per-voxel signal
intensity distribution. This aspect is crucial, as conven-
tional signal averaging tends to yield ADC values signifi-
cantly higher than the actual ADC values, which are key
for evaluating tissue composition and diagnosing cancers.

Representing a DWI S, derived from multiple acqui-
sitions Sk, as a single INR (as proposed in this study),
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6 GUNDOGDU et al.

F I G U R E 2 The flowchart of the implicit neural representation learning, augmented by the input perturbation network.

effectively addresses such signal mismatches. The INR
framework’s operation within continuous spaces for both
domain and range grants it an awareness of proximal vox-
els. This characteristic allows the INR to potentially favor
intensity values of the acquisitions that are more consis-
tent with the neighboring voxels, while naïve-averaging
merely calculates the mean of different signal intensities
for each voxel.

The proposed methodology also presents an opportu-
nity to assign weight values to each acquisition such that
the motion-corrupted signals can be automatically sup-
pressed during training. For this, we follow the recipe that
was recently proposed by Gundogdu et al.42 Accordingly,
we alter the loss function in Equation (3) to incorporate
learning weights (wk) as thus:

 =
∑

i,k
wk(xi, b)||Sk(xi) − INR(xi + 𝜖maxtanh(PN(xi, b, k)))||2.

(5)

Detailed derivation and further interpretation of the learn-
ing weights are provided in Appendix S1.

2.3 Evaluation of super-resolution
performance and accuracy

In the inference phase, to generate the super-resolution
image, the INR network employs a finer input grid
than the resolution of the voxels used in training. This
approach yields an image with enhanced detail and

improved resolution. However, to be able to assert that
the new details introduced by the network correspond to
actual anatomical features, it is crucial to establish reli-
able ground truth images for evaluation. In the case of
super-resolution examples in digital photography, such
datasets are readily available.43 On the other hand, for
MRI, especially DWI, acquiring high-resolution images
to this degree is not feasible. In vivo acquisitions with
higher resolution would result in unacceptably low SNR.
Furthermore, the long acquisition times would increase
vulnerability to motion artifacts. Therefore, in addition
to the in vivo prostate scans, we employed a biological
phantom to evaluate our model’s performance.

2.3.1 Evaluation on phantom

This specifically designed phantom experiment aimed to
test the unsupervised motion-correction efficacy of the PN.
In this experiment, we emulated both the presence and
absence of inter-acquisition motion in MRI scans of a bio-
logical phantom. Kiwifruit was selected as the biological
phantom, as various studies have demonstrated its effec-
tiveness as a proxy for prostate MRI, DWI included.44,45

DWIs of kiwifruit were acquired under three distinct
settings. Firstly, we acquired images with a resolution
of 1.5 mm × 1.5 mm × 3.0 mm in nine repetitions. To
simulate rigid motion in the axial plane, we simulated
transitive motion to each repetition by shifting the center
of the field-of-view in-plane by −0.5, 0.0, or +0.5 mm in
the readout or phase-encoding directions. In some cases,
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GUNDOGDU et al. 7

the shifting of the center of the field-of-view is achieved
in postprocessing by the scanner, rather than by changing
the sequence parameters, and thus the underlying k-space
data may not have changed due to the shift. However, our
algorithm operates on the produced magnitude images
without relying on the complex k-space information and
the main objective was to assess if the PN corrects this
motion with unsupervised training, thus this was deemed
acceptable.

The second image was acquired as a ground truth with
the same resolution and the same number of acquisitions
as the first one, but with no motion. We recognize that
the synthetically introduced motion is rigid and might not
fully replicate the nonrigid warping often encountered in
prostate diffusion imaging. However, we opted to apply
motion during the MR scan rather than inducing artifacts
in postprocessing, to more accurately mirror real-world
conditions.

Additionally, we acquired a third image with a
high-resolution of 0.75 mm × 0.75 mm × 3 mm, serv-
ing as a reference to evaluate the detail captured in the
INR output and the first two images (with and without
motion). All scans were conducted on a dStream Philips
3T Ingenia scanner with digital coil technology, a 70-cm
bore, dual RF transmission, and maximum gradient
strength of 45 mT/m, and a maximum slew rate of 200
T/m/s. DWI images were acquired at b = 1000 s∕mm2,
with TR/TE= 4000/90 ms, four EPI segments, in-plane
resolution of 1.5 × 1.5 mm2 (acquired) and 1.4 × 1.4 mm2

(reconstructed), and slice thickness of 3 mm. The phase
encoding direction is along the main axis of the kiwi fruit,
parallel to its striated structural pattern.

To see the correcting impact of the PN, we trained
one INR by setting 𝜖max = 0 and another by setting 𝜖max
to be half a voxel size. We used the scans with the
motion as input to the network and compared the out-
put to the no-motion ground truth, as well as the very
high-resolution ground truth.

2.3.2 Evaluations on in vivo prostate images

We evaluated the performance of the proposed method
on diffusion-weighted prostate images of patients with
biopsy-verified prostate cancers. This was conducted fol-
lowing the approval of the Institutional Review Board
(IRB) (Approval number: IRB17-1694). We ran both qual-
itative and quantitative experiments. To evaluate the
resolution improvement, we created a training set of
low-resolution prostate images by applying low-pass fil-
tering and subsampling to the original images. Another
approach could have involved acquiring a separate set
of low-resolution images with larger voxel sizes during

a second scan of the patient. However, this would have
introduced a different SNR, rendering the original images
suboptimal as ground truth. No additional noise was intro-
duced to the training set. The network was trained with
DWIs with four b-values: 0, 150, 1000, and 1500 s∕mm2,
so that it can yield a super-resolved and motion-corrected
ADC map. Orthogonal gradients were in the readout,
phase encoding, and slice directions. At high b-values mul-
tiple acquisitions at each orthogonal direction were used
as independent acquisitions to train INR. The INR frame-
work addresses the inter-acquisition motion directly via
the PN, and intra-acquisition motion indirectly by sup-
pressing the resulting low signals via weighted learning.

The network was trained with the voxels of the sub-
sampled low-resolution image. Then the trained network
was used to generate the 2× super-resolution images. It
is noteworthy that the network has the potential to pro-
duce outputs at multiple resolutions, not limited to the 2×
factor. Two fellowship-trained and board-certified attend-
ing radiologists, with 12+ and 6+ years of experience
in prostate MRI (NCO and GL respectively), evaluated
the 2× super-resolution images, 2× bicubic-interpolated
images (serving as an approximation to sinc interpola-
tion), and ground truth (GT) images. They were tasked
with ranking these three sets of images—super-resolution,
bicubic-interpolated, and GT—based on their perceptual
quality. This experiment involved 65 cases with high-b
images, and the order of presentation for the three test
images was randomized for each subject during evalua-
tion. Hence, the radiologists were unaware of the identity
of the specific image they were evaluating.

The same set of 65 cases was utilized for a quan-
titative analysis, comparing the super-resolution and
bicubic-interpolated images against their respective
ground truth counterparts. For this analysis, we used
established quantitative image similarity metrics com-
mon in digital image analysis, such as the Structural
Similarity Index Measure (SSIM), Multiscale SSIM
(MS-SSIM), Feature Similarity Index Measure (FSIM),
and Spectral Residual-based Similarity Index Measure
(SR-SIM).46–48 Each metric was used to compare the 2×
super-resolution and 2× bicubic-interpolated images with
their corresponding high-resolution ground truth images.
Statistical significance was evaluated using paired t-tests
with N = 65.

3 RESULTS

Model training was carried out utilizing the PyTorch
software package on a workstation equipped with Intel(R)
Xeon(R) Gold 6130 CPU @ 2.10GHz, Tesla V100 GPU with
32 GB memory.
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8 GUNDOGDU et al.

F I G U R E 3 Proposed network on kiwifruit diffusion-weighted images (DWI). (A) image acquired without simulated motion, (B) image
acquired with simulated motion, (C) model output with 𝜖max is set to zero, that is, Perturbation Network (PN) is not in effect, (D) model
output with Perturbation Network turned on and (E) very high-resolution “ground truth” image used for visual validation. The vertical detail
enclosed in the red circle is lost as a result of motion as seen in (B). The model output at (D) does not only address the effects of motion, but it
also provides a better image than the “no-motion” image shown in (A), as can be verified from the very high-res image in (E). (A) Image
without motion; (B) Image with simulated motion: (C) INR output when the PN turned off (𝜖max = 0); (D) INR output when the PN turned
on (𝜖max = 0.7 mm); (E) Very high-resolution scan.

F I G U R E 4 Comparison between the in silica image with no motion corruption (left), the motion-corrupted average image (middle),
and the output of the implicit neural representation (INR) (right). The input to the INR model was the middle image.

3.1 Unsupervised motion correction
with the PN

Figure 3 displays representative images from the phantom
experiment. Since MRI is a Fourier technique, the calcu-
lated shifts resulted in a linear phase change in k-space
without contributing to increased resolution. The purpose
of this experiment was to demonstrate that MRI scans can
be modeled using an INR and that the PN can effectively
mitigate motion effects. The PN successfully inferred the
direction and magnitude of voxel movements (𝝐) for each
acquisition and applied the necessary corrections.

In the kiwifruit experiment, the perturbation vector
𝝐 remained consistent across all voxels but varied for
each acquisition. To assess the PN’s ability to decipher
completely random perturbations for all voxels, we cre-
ated a motion-corrupted image by slightly displacing each
voxel in random directions. This was achieved by slightly

perturbing the location of each voxel in each acquisition
towards a random direction. This in silica experiment sim-
ulated a scenario significantly more severe than the actual
motion effects typically observed in DWI scans. We con-
ducted this test to determine whether the PN could learn
such nonlinear motion effects despite being trained in
an unsupervised manner. Figure 4 provides a compari-
son between the image without motion corruption, the
motion-corrupted average image, and the INR output.

3.2 Results on in vivo prostate images

In the observer study, 96.1% of the super-resolution images
were rated as having superior perceptual quality com-
pared to the interpolated images. Moreover, 40.7% of the
super-resolution images were voted to have better quality
than the ground truth images, despite the ground truth
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GUNDOGDU et al. 9

images having double the resolution and quadruple the
voxel count of the model’s input. This latter finding is
particularly noteworthy as it indicates that the PN signif-
icantly contributes to the improvement in image quality
in these cases. The most likely reason for this outcome is
that the model is trained by K = 12 individual acquisitions
despite seeing only a quarter of the number of voxels as
input (compared to ground truth). It is worth noting that
the interpolated and ground truth images were also gener-
ated using the mean of the same number of acquisitions,
implying no expected SNR gain with the algorithm. When
the PN is not in effect, the main INR learns to average these
acquisitions for the observed locations in the training set
and attempts to predict the intermediate voxels based on
the continuity of the INR function. However, considering
that the model can produce outputs that visually outper-
form the high-resolution ground truth, we can argue that
the PN learns to reposition certain features away from the
voxel center, thereby providing higher resolution informa-
tion and accounting for subvoxel motion. This effect is
most prominent when dealing with sharp features that
exhibit relatively high SNR.

In quantitative analyses, super-resolution INR outputs
exhibited significantly higher similarity to the ground
truth images compared to the bicubic-interpolated images
(p < 0.005) across all quantitative similarity metrics
(SSIM, MS-SSIM, FSIM, and SR-SIM). Naturally, image
areas are smooth regions and consist of low-resolution
components that are similar in super-resolution,
bicubic-interpolated and ground truth images. Conse-
quently, these measurements yield very high similarity
values in the aforementioned measurements. How-
ever, our primary focus is on determining whether the
high-resolution details introduced by the super-resolution
model are present in the ground truth images. To
investigate this, we applied a high-pass filter to all
super-resolution, ground truth, and bicubic images, effec-
tively removing the low spatial frequency components,
and focused solely on the high spatial frequency details.
This analysis revealed that most of the gain obtained by

super resolution is in high spatial resolution components,
for example, edges etc. Table 2 presents the similarity
scores of the super-resolution and bicubic-interpolated
mean images (baseline) relative to the high-resolution
ground truth. Figure 5 showcases examples from this eval-
uation set. Additional details on the similarity scores and
further image examples can be found in the Appendix S1.

3.3 Super-resolution performance
along slice-select direction

The proposed methodology treats the DWI as
three-dimensional volumetric objects, aiming to enhance
super-resolution not only in the axial view but also along
the slice select direction. Typically, the z-axis slices are
taken thicker than the axial resolution to improve SNR
gain. Consequently, the coronal or sagittal views of DWI,
despite their potential significance, are often overlooked
in clinical practice. Reconstructing INR with finer details
along the slice-select direction enables the visualization
of coronal or sagittal DWI views, derived from axial slices.
Figure 6 demonstrates the super-resolution reconstructed
coronal view of a sample DWI alongside the corresponding
slice of the T2W coronal image.

3.4 Contrast enhancement via
weighted training

To assess the contrast enhancement due to weighted train-
ing, we trained the network with the high-resolution GT
image and applied the learning weights as detailed in
the Appendix S1. ADC maps calculated using the model
output are compared to the ADC maps of GT images.
The analyses were done on a cohort of 12 patients with
biopsy-verified cancers by measuring both the SNR on
cancer and the cancer-to-healthy-prostate contrast ratio.
Statistical analysis was conducted using paired t-tests. The
contrast ratio significantly improved on average from 1.9 to

T A B L E 2 Image similarity measures of super-resolution compared to bicubic interpolation.

All bands High-frequency bands

Metric
Bicubic
versus GT

SR
versus GT

Gain
(%) p-Value

Bicubic
versus GT

SR
versus GT

Gain
(%) p-Value

SSIM 88.5 89.3 0.9 <0.001 52.5 56.3 7.5 <0.001

MS-SSIM 88.6 90.1 1.8 <0.001 72.0 75.8 5.4 <0.001

SR-SIM 87.8 89.0 1.5 <0.005 87.6 89.1 1.8 <0.005

FSIM 90.2 91.9 1.9 <0.001 88.5 90.5 2.3 <0.001

Abbreviations: FSIM, feature similarity index measure; GT, ground truth; MS-SSIM, multiscale SSIM; SR, super-resolution; SSIM, similarity index measure.
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10 GUNDOGDU et al.

F I G U R E 5 Performance of the proposed method on two cases: (A) LR image, (B) 2× bi-cubic interpolated image, (C) the output of the
model with 2× super-resolution, and (D) the HR ground truth image. The red arrows show anatomic details that implicit neural
representation enhances. Arrow 1 shows the enhancement in the border of the cancer along the margin of the prostate, arrow 2 shows the
rectal wall, and arrow 3 shows that the boundaries of the urethra and an adjacent suspicious lesion can be seen better in the super-resolution
image. (A) LR; (B) Bi-cubic interpolation; (C) INR output; (D) HR ground truth.

F I G U R E 6 Super-resolution reconstructed coronal view of one sample image compared to the interpolated image. T2W coronal image
that corresponds to the same slice is given on the right for reference. Arrow 1 shows the boundaries and extent of the cancer whereas
Arrow 2 shows the prostatic urethra which was not visible in interpolation but visible in super-resolution image. (A) DWI coronal view:
(B) Interpolation along z-axis; (C) INR output; (D) T2W coronal image.

2.4 (p < 0.01) when comparing the model output with the
input image. Similarly, the SNR showed a significant aver-
age increase from 1.87 to 1.92 (p < 0.01), despite no noise
suppression being applied.

4 DISCUSSION AND
CONCLUSIONS

This study validates the feasibility of zero-shot super-
resolution in diffusion-weighted prostate imaging and

underscores the potential of using individual acquisitions
for self-supervised motion mitigation to some extent.
Although introducing synthetic shifts and obtaining
super-resolution is a well-established implementation,
we provided a novel unsupervised method to utilize the
underlying nonrigid motion to obtain super-resolution.
We showed this by comparing the model output with
the motion-free ground truth, using the settings with the
PN turned on and off. The new detail introduced by the
network was also compared with a very-high-resolution
image, which was acquired in an idealistic setting obtained
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GUNDOGDU et al. 11

solely for this experiment and would not have been
practically possible in actual patient scans.

As discussed earlier, precalculated linear shifts dur-
ing imaging provide negligible gains in spatial resolution.
However, the “shifting” observed between subsequent in
vivo acquisitions is nonrigid.49 Moreover, local B0 inhomo-
geneities, arising from poor shimming, tissue boundaries,
or proximity to bowel-enclosed gas, contribute additional
nonlinear alterations to the MRI signal. Thus, we argue
that additional information may, in fact, be present in the
repeated acquisitions of the same image. Much of the exist-
ing literature on super-resolution to DWI focuses on brain
imaging, where motion is typically minimal compared to
prostate imaging, thus not leading to significant non-linear
changes in the MRI signal.

It’s important to note that phantom experiments
(Figures 3 and 4) and in vivo experiments (Figures 5 and 6)
are designed to showcase two distinct features of the pro-
posed model. All kiwifruit images in Figure 3A–D share
the same resolution and voxel count. This figure effec-
tively demonstrates the motion-correction capability of
our model, especially the role of the PN. The PN aims not
only to correct signal mismatches in different acquisitions
of inter- and intra-b-value scans but also to recover details
potentially lost in naive averaging. Conversely, Figures 5
and 6 showcase the super-resolution capability of the
proposed method highlighting how the model, trained
exclusively with LR image voxels, compares with the HR
image. The model’s estimation of “intermediate voxels” is
noticeably superior to bi-cubic interpolation, a difference
attributed to our method functioning globally, in contrast
to interpolation’s local operation. The quantitative struc-
tural similarity results in Table 2 further substantiate this
observation.

Naturally, this study has certain constraints and lim-
itations that should be acknowledged. For example, we
selected bi-cubic interpolation as a competitor for eval-
uation, whereas other studies employing synthetically
generated low-resolution inputs could compare their
approaches directly. However, it is important to note that
the challenge we undertook in the context of “real image
super-resolution” does not allow for a uniform or univer-
sally accepted ground truth. If we had acquired images
with smaller voxel sizes, it would have resulted in lower
SNR, or longer acquisition times at lower voxel sizes
would have introduced variations in motion exposure.
As a result, direct comparisons or supervised training
with other CNN-based super-resolution methods would
not have been feasible. In essence, we intentionally
adopted this self-supervised setting to address these chal-
lenges. Key advantages of the proposed model over the
supervised deep learning-based methods are enumerated
below:

1. Input/Output: Supervised methods rely on process-
ing low-resolution images as input, utilizing local ker-
nel operations. At the output, these models expect the
high-resolution versions of the images. In contrast, the
INR method takes only the voxel locations (x,y,z) as
input and emit the voxel intensity that corresponds to
the input location.

2. Resolution factor: Supervised models are trained with
predesigned low-/high-resolution pairs and learn to
increase the resolution by the factor dictated in the dif-
ference of high- and low-resolution training images.
INR models the continuous space and can provide
improvement for any factor, even noninteger ones.

3. Training set: Supervised models typically require a
large training set of input/output pairs. Deep models
that are trained with fewer images than required pos-
sess the risk of hallucination, that is, carrying some
information/detail seen on the training set to a test
image. INR does not need a training set of images from
other patients. It merely uses the existing voxel inten-
sities for each scan to infer a motion-corrected and
higher-resolution image.

4. Risk of artifacts: Acquiring low-/high-resolution
training pairs for medical imaging is impractical, often
leading to the synthetic generation of low-resolution
samples. However, INR bypasses such complexities, as
each image individually trains its own model, elimi-
nating the risk of artifact generation due to incorrect
modeling.

5. Practicality: Supervised models, trained for specific
imaging settings (TE, TR, b-value, etc.), or data from a
certain vendor (Phillips, GE, Siemens etc.) or images
from a certain modality (T2W, T1W, DWI, etc.), require
fine-tuning for new settings, posing challenges for
inter-institutional operation and clinical practice. Con-
versely, INR is free from such constraints; it can train
and super-resolve a new scan within minutes without a
pre-existing model for inference.

A particularly promising implication of this study
is the potential for reduced scan times, which is espe-
cially beneficial for patients experiencing claustrophobia
or those with Parkinson’s disease. By employing the pro-
posed model for super-resolution, it becomes possible to
obtain high-quality images from lower-resolution inputs,
thus mitigating the need for a large number of averages
needed for obtaining high-resolution images with ade-
quate SNR. This has significant benefits in terms of patient
comfort and convenience. In addition, shortened echo
train durations will help reduce the spatial distortion often
present in EPI-based images.

From the clinical perspective, reconstructed coronal
DWI images of the prostate, as we proposed in this paper,
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12 GUNDOGDU et al.

could be helpful in more accurate localization of the tumor
to the appropriate level of apex, midgland, or base; and
distinguishing a lesion location in the peripheral zone
of the prostate from normal periprostatic tissue such as
the surgical capsule or the periprostatic plexus by lesion
location confirmation with an additional view, or distin-
guishing lesion location in the central gland, where BPH
nodules could mimic cancer, from the peripheral zone,
where malignant lesions are more prevalent.

CONFLICT OF INTEREST STATEMENT
Drs. Oto, Karczmar, and Chatterjee hold equity in QMIS
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ENDNOTES

∗https://github.com/batuhan-gundogdu/INR.
†Without loss of generality, this example assumes that Mx is an even
number, which is in fact fair since FFT in DWI reconstruction
typically calls for sizes with powers of 2.
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