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A B S T R A C T

In this paper, we consider a wide class of time-varying multivariate causal processes that nests
many classical and new examples as special cases. We first show the existence of a weakly
dependent stationary approximation to initiate our theoretical investigation. We then consider
a quasi-maximum likelihood estimation (QMLE), and provide both point-wise and uniform
inferences to coefficient functions of interest. The theoretical findings are further examined
through extensive simulations. Finally, we show empirical relevance of our study by evaluating
both temporal and contemporaneous connectedness between the stock markets of China and
U.S.

1. Introduction

Multivariate time series models have been extensively studied and applied over the past a few decades. For example, the
family of vector autoregressive (VAR) models is widely used for forecasting macro variables (e.g., Schorfheide and Song, 2015;
Berger et al., 2023), modeling policy transmission mechanism (e.g., Miranda-Agrippino and Ricco, 2021; Inoue and Kilian, 2022),
measuring connectedness between financial agents (e.g., Diebold and Yilmaz, 2014; Geraci and Gnabo, 2018), etc. Of equivalent
importance, the family of multivariate (G)ARCH models has been favored for understanding and predicting temporal dependence
of the conditional second moments to facilitate better decision making, so much so that it is heavily used in the literature of asset
pricing (e.g., Bollerslev et al., 2020), hedging (e.g., Augustyniak et al., 2023), risk management (e.g., Engle and Siriwardane, 2018),
and so forth. To put it in a nutshell, the VAR family usually captures the dynamics by imposing structures on the time series itself,
while the (G)ARCH family imposes restrictions on the conditional second moments. Therefore, both the first and second moments
of multivariate time series are important from modeling and practical perspectives.

It should be noted that most of the aforementioned studies rely on the stationarity assumption. As Dahlhaus (1997) puts it,
the assumption of stationarity guarantees that the increase of the sample size leads to more and more information of the same
kind which is basic for an asymptotic theory to make sense. However, stationarity may not always be fulfilled in practice (Preuss
et al., 2015; Chen et al., 2022). For example, economic and financial time series data often include different macro shocks and, as
a consequence, the behavior may be quite volatile; the climate data may contain certain time trend which recently has attracted
considerable attention due to greenhouse emission; etc. In the literature, one maintained assumption is that the coefficients of
interest are constant over time, that is, parameter instability is not allowed. Failure to take into account parameter changes, given
their presence, always leads to incorrect policy implications and predictions (Bai, 1997).
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That said, in order to better capture dynamics of multivariate time series as well as allow for certain nonstationarity,1 it is
easonable to marry the VAR family and the (G)ARCH family while accounting for parameter instability. In practice, a time-varying
AR setting can be used to study time-variations in policy transmission mechanism or construct a continuously evolving network
f spillover effects between financial institutions (Geraci and Gnabo, 2018), while a time-varying GARCH setting can help answer
esearch questions such as: (i) Whether the correlations between asset returns change over time? (ii). Do they increase in the long
un, perhaps because of the globalization of financial markets? These questions are of importance for both investors and policymakers
Bauwens et al., 2006; Diebold and Yilmaz, 2009). Despite the large number of potential applications, the statistical tools with the
ssociated asymptotic properties for multivariate time-varying dynamic models are still underdeveloped. In this paper, we aim to
ontribute along this line, and start by presenting our model below.

Specifically, we consider a class of multivariate causal processes as follows:

𝐱𝑡 =
{

𝝁
(

𝐱𝑡−1, 𝐱𝑡−2,…;𝜽(𝜏𝑡)
)

+𝐇
(

𝐱𝑡−1, 𝐱𝑡−2,…;𝜽(𝜏𝑡)
)

𝜺𝑡, for 𝑡 = 1,… , 𝑇 ,

𝝁
(

𝐱𝑡−1, 𝐱𝑡−2,…;𝜽(0)
)

+𝐇
(

𝐱𝑡−1, 𝐱𝑡−2,…;𝜽(0)
)

𝜺𝑡, for 𝑡 ≤ 0,
(1.1)

where 𝜏𝑡 = 𝑡∕𝑇 , 𝝁
(

𝐱𝑡−1, 𝐱𝑡−2,…;𝜽(𝜏𝑡)
)

is an 𝑚-dimensional vector, 𝐇
(

𝐱𝑡−1, 𝐱𝑡−2,…;𝜽(𝜏𝑡)
)

is an 𝑚 × 𝑚 matrix, 𝜽(𝜏) is 𝑑 × 1 with each
lement belonging to 𝐶3[0, 1], and {𝜺𝑡} is a sequence of independent and identically distributed (i.i.d.) random vectors. Both 𝑚 and
are assumed to be fixed throughout the paper. Notably, both 𝝁(⋅) and 𝐇(⋅) are measurable and have known functional forms.

he setup for 𝑡 ≤ 0 essentially requires 𝐱0 to be stationary, which is commonly adopted in the literature of locally stationary time
eries analysis (e.g., Section 3.1 of Vogt, 2012). In Section 2.4, we show that models, such as time-varying VARMA/multivariate
ARCH/VARMA-GARCH, all admit a multivariate causal representation given by (1.1).

Up to this point, it is worth briefly reviewing the relevant literature. In the regression context, time-varying models of the form,
𝑡 = 𝐳⊤𝑡 𝜷(𝜏𝑡) + 𝑒𝑡, have been extensively discussed over the past two decade, e.g., Chen and Hong (2012), Zhang and Wu (2012) and
hillips et al. (2017), just to name a few. Since 𝐳𝑡 does not involve any lagged value of 𝑦𝑡, 𝐳𝑡 can be generated by its own structure with
tationarity, local stationarity or unit-root depending on the research question. However, for time-varying dynamic models such as
1.1), the process is generated by iterated time-varying random functions, which complicates the development of asymptotic theory.
lso, it is difficult to justify that a time-varying dynamic model satisfies widely used (locally) stationary mixing conditions. Indeed,
ven some stationary AR(1) processes are not necessarily mixing (Doukhan, 2012, Section 2.3.1), unless conditions are imposed on
he densities of error terms (Withers, 1981). A common treatment from the literature of locally stationary processes is the so-called
‘stationary approximation’’, which usually starts by finding a weakly dependent stationary approximation (e.g., Dahlhaus, 1996
nd Zhang and Wu, 2012 on time-varying AR models; Dahlhaus and Polonik, 2009 on time-varying ARMA models; Dahlhaus and
ao, 2006 and Truquet, 2017 on time-varying ARCH models; Karmakar et al., 2022 on time-varying AR-ARCH models). However,

his approach relies on the autoregressive representation, and cannot be naturally extended to processes having a more general
ecursion with infinity memory. This line of research basically focuses on univariate time series.

In view of the aforementioned literature, our first contribution is proposing a wide class of time-varying multivariate causal
rocesses that nests many classical and new examples as special cases. We then show the existence of a weakly dependent stationary
pproximation for a general class of time-varying multivariate causal processes with infinity memory at any given time of interest
i.e., ∀𝜏 ∈ [0, 1]), which facilitates asymptotic analyses. Second, we establish uniform inference, which can be used to test specific
arametric forms. More discussions on the usefulness of uniform inference can also be found in Chen and Christensen (2018), Li
nd Liao (2020) and Li et al. (2023). In an empirical illustration, we evaluate the time-varying temporal and contemporaneous
onnectedness between the stock markets of China and U.S. using a time-varying VAR-GARCH model. We find that (1) the
ontemporaneous interdependence between the two stock markets is statistically significant and is increasing over time, and (2)
he temporal return spillovers from U.S. stock market to Chinese stock market significantly vary over time and can be only detected
t some local times.

The rest of the paper is organized as follows. Section 2 presents the theoretical findings, while Section 3 provides extensive
imulation studies to examine these results. Section 4 investigates the time-varying return/volatility spillovers, as well as time-
arying conditional correlations between the Chinese and U.S. stock market. Section 5 concludes. The proofs together with some
xtra results are given in the online appendices of the paper.

Before proceeding further, it is convenient to introduce some notation: the symbol | ⋅ | denotes the Euclidean norm of a vector
r the spectral norm for a matrix; ‖𝐯‖𝑞 ∶=

(

𝐸|𝐯|𝑞
)1∕𝑞 for any 𝑞 > 0 and ‖ ⋅ ‖ ∶= ‖ ⋅ ‖2 for short; ⊗ denotes the Kronecker product; ⊙

enotes the Hadamard product; 𝐈𝑎 stands for an 𝑎×𝑎 identity matrix; 𝟎𝑎×𝑏 stands for an 𝑎×𝑏 matrix of zeros, and we write 𝟎𝑎 for short
hen 𝑎 = 𝑏; for a function 𝑔(𝑤), let 𝑔(𝑗)(𝑤) denote the 𝑗th derivative of 𝑔(𝑤), where 𝑗 ≥ 0 and 𝑔(0)(𝑤) ≡ 𝑔(𝑤); 𝐾ℎ(⋅) = 𝐾(⋅∕ℎ)∕ℎ, where
(⋅) and ℎ stand for a nonparametric kernel function and a bandwidth respectively; let 𝑐𝑘 = ∫ 1

−1 𝑢
𝑘𝐾(𝑢)d𝑢 and �̃�𝑘 = ∫ 1

−1 𝑢
𝑘𝐾2(𝑢)d𝑢 for

nteger 𝑘 ≥ 0; diag(𝐚) is a diagonal matrix with the vector 𝐚 on its main diagonal, while diag(𝐀) creates a vector from the diagonal
f matrix 𝐀; finally, let →𝑃 and →𝐷 denote convergence in probability and convergence in distribution, respectively.

1 Here, we specifically refer to locally stationary type of nonstationarity as in Dahlhaus (1997), in which the author explains why even the simplest AR(1)
2

odel with a time-varying parameter is not stationary in length.
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2. Estimation and asymptotics

In this section, we first show the existence of a weakly dependent stationary approximation for the model (1.1) in Section 2.1;
e then provide the estimation approach using the local linear quasi-maximum-likelihood estimation method and establish the
symptotic properties in Section 2.2; Section 2.3 provides asymptotic properties for both point-wise and uniform inferences; and
ection 2.4 gives some detailed examples to showcase our study.

.1. Stationary approximation

To study (1.1), the first challenge lies in the fact that the process, which is expressed in terms of iterated random functions, may
ot be stationary. Therefore, we initiate our analysis by finding a stationary approximation of {𝐱𝑡} for ∀𝜏 ∈ [0, 1]. We are then able

to measure the weak dependence of {𝐱𝑡} using the nonlinear system of Wu (2005), which further enables us to derive the asymptotic
properties.

Before proceeding further, we briefly introduce the nonlinear system of Wu (2005). Consider an example in which 𝐞𝑡 is a
stationary process, and admits a causal representation 𝐞𝑡 = 𝐉(𝜺𝑡, 𝜺𝑡−1,…) with 𝐉(⋅) being a measurable function. See Tong (1990,
p. 204) for nonlinear time series of this kind. For 𝑘 ≥ 0, we define the following dependence measure:

𝛿𝐞𝑟 (𝑘) =
‖

‖

‖

𝐉(𝜺𝑘, 𝜺𝑘−1,… 𝜺1, 𝜺0, 𝜺−1,…) − 𝐉(𝜺𝑘,… , 𝜺1, 𝜺∗0 , 𝜺−1,…)‖‖
‖𝑟

, (2.1)

where 𝜺∗0 is an independent copy of {𝜺𝑗}, and 𝛿𝐞𝑟 (𝑘) quantifies the dependence of 𝐞𝑡 on 𝜺0.
We now introduce some basic assumptions.

Assumption 1.

1. {𝜺𝑡} is a sequence of i.i.d. random vectors with 𝐸(𝜺1) = 𝟎, 𝐸(𝜺1𝜺⊤1 ) = 𝐈𝑚, and ‖𝜺1‖𝑟 < ∞ for some 𝑟 ≥ 2.
2. For ∀𝐳, 𝐳′ ∈ (R𝑚)∞ and ∀𝝑 ∈ R𝑑 , there exist nonnegative sequences {𝛼𝑗 (𝝑)}∞𝑗=1 and {𝛽𝑗 (𝝑)}∞𝑗=1 such that

|𝝁(𝐳;𝝑) − 𝝁(𝐳′;𝝑)| ≤
∞
∑

𝑗=1
𝛼𝑗 (𝝑)|𝐳𝑗 − 𝐳′𝑗 |,

|𝐇(𝐳;𝝑) −𝐇(𝐳′;𝝑)| ≤
∞
∑

𝑗=1
𝛽𝑗 (𝝑)|𝐳𝑗 − 𝐳′𝑗 |,

where 𝐳𝑗 and 𝐳′𝑗 are the 𝑗th columns of 𝐳 and 𝐳′, respectively.
3. For ∀𝜏 ∈ [0, 1], 𝜽(𝜏) lies in the interior of 𝜣𝑟, where

𝜣𝑟 ∶=

{

𝝑 ∈ 𝜣 ∣
∞
∑

𝑗=1
𝛼𝑗 (𝝑) + ‖

‖

𝜺1‖‖𝑟
∞
∑

𝑗=1
𝛽𝑗 (𝝑) < 1

}

,

𝜣 is a compact set of R𝑑 , and 𝑟 is the same as that of Assumption 1.1.

Assumption 1.1 is standard when studying dynamic time series model (Lütkepohl, 2005, p. 563). Assumption 1.2 imposes
Lipschitz-type conditions on 𝝁(⋅) and 𝐇(⋅), which are rather minor, and can be easily fulfilled by a variety of models such as those
to be studied in Section 2.4. Assumption 1.3 guarantees a weakly dependent stationary approximation of 𝐱𝑡 for ∀𝜏 ∈ [0, 1], and can
be considered as a nonparametric extension to that adopted in Bardet and Wintenberger (2009). Assumption 1 ensures that we can
study many multivariate dynamic models in a unified framework.

We now present the following proposition which facilitates the development.

Proposition 2.1. Let Assumption 1 hold. For any 𝜏 ∈ [0, 1], there exists a stationary process

�̃�𝑡(𝜏) = 𝝁
(

�̃�𝑡−1(𝜏), �̃�𝑡−2(𝜏),…;𝜽(𝜏)
)

+𝐇
(

�̃�𝑡−1(𝜏), �̃�𝑡−2(𝜏),…;𝜽(𝜏)
)

𝜺𝑡

such that

1. �̃�𝑡(𝜏) admits a causal representation �̃�𝑡(𝜏) = 𝐉(𝜏, 𝜺𝑡, 𝜺𝑡−1,…) with 𝐉(⋅) being a measurable function, and sup𝜏∈[0,1] ‖�̃�𝑡(𝜏)‖𝑟 < ∞,
2. 𝛿�̃�(𝜏)𝑟 (𝑘) ≤ 𝑂(1) inf1≤𝑝≤𝑘{𝜌(𝜏)𝑘∕𝑝 +

∑∞
𝑗=𝑝+1

[

𝛼𝑗 (𝜽(𝜏)) + 𝛽𝑗 (𝜽(𝜏))
]

} → 0 as 𝑘 → ∞,

where ‖ ⋅ ‖𝑟 is defined in the end of Section 1, and 𝜌(𝜏) ∶=
∑∞

𝑗=1 𝛼𝑗 (𝜽(𝜏)) + ‖

‖

𝜺1‖‖𝑟
∑∞

𝑗=1 𝛽𝑗 (𝜽(𝜏)).

For a univariate 𝑝-Markov process of the form

𝑥𝑝,𝑡(𝜏) =
𝑝
∑

𝑖=1
𝛼𝑖(𝜏)𝑚𝑖(𝑥𝑡−𝑖(𝜏)) +

( 𝑝
∑

𝑖=0
𝛽𝑖(𝜏)𝑣𝑖(𝑥𝑡−𝑖(𝜏))

)1∕2

𝜀𝑡

with some known functions {𝑚𝑖(⋅)} and {𝑣𝑖(⋅)}, Karmakar et al. (2022) show that there exists 0 < 𝜌 < 1 such that sup𝜏∈[0,1] 𝛿
𝑥𝑝(𝜏)
𝑟 (𝑘) =

𝑂(𝜌𝑘) based on the development of Wu and Shao (2004). Their paper rules out the time-varying versions of some widely used models
3

(e.g., ARMA, GARCH, ARMA-GARCH).
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From a methodological viewpoint, we give a set of new proofs which allows us to measure the dependence of multivariate causal
rocesses with infinite memory. Here, the concept of infinite memory refers to the idea that the future state of the process depends
n an infinite history of its past states. Thus, the dependence 𝛿�̃�(𝜏)𝑟 (𝑘) relies on the choice of 𝑝 and the decay rates of the coefficients

𝛼𝑗 (𝜽(𝜏)) and 𝛽𝑗 (𝜽(𝜏)).
To ensure that �̃�𝑡(𝜏) can approximate 𝐱𝑡 reasonably well, we impose more structure.

ssumption 2.

1. There exists a nonnegative sequence {𝜒𝑗} with ∑∞
𝑗=1 𝜒𝑗 < ∞ such that for ∀𝐳 ∈ (R𝑚)∞ and ∀𝝑,𝝑′ ∈ 𝜣𝑟

|𝝁(𝐳;𝝑) − 𝝁(𝐳;𝝑′)| + |𝐇(𝐳;𝝑) −𝐇(𝐳;𝝑′)| ≤ |𝝑 − 𝝑′
|

∞
∑

𝑗=1
𝜒𝑗 |𝐳𝑗 |.

2. Let sup𝜏∈[0,1] 𝛼𝑗 (𝜽(𝜏)) = 𝑂(𝑗−(2+𝑠)) and sup𝜏∈[0,1] 𝛽𝑗 (𝜽(𝜏)) = 𝑂(𝑗−(2+𝑠)) for some 𝑠 > 0 as 𝑗 → ∞.

Assumption 2.1 imposes another Lipschitz-type condition with respect to the parameter space. Assumption 2.2 further regulates
the decay rates of 𝛼𝑗 (𝜽(𝜏)) and 𝛽𝑗 (𝜽(𝜏)).

Using Assumptions 1 and 2, we may quantify the distance between �̃�𝑡(𝜏) and 𝐱𝑡 as follows.

Proposition 2.2. Suppose Assumptions 1 and 2 hold. Then

1. ‖�̃�1(𝜏) − �̃�1(𝜏′)‖𝑟 = 𝑂(|𝜏 − 𝜏′|) for ∀𝜏, 𝜏′ ∈ [0, 1],
2. max𝑡≥1 ‖𝐱𝑡 − �̃�𝑡(𝜏𝑡)‖𝑟 = 𝑂(𝑇 −1),

where ‖ ⋅ ‖𝑟 is defined in the end of Section 1.

Proposition 2.2 can be considered as the stochastic version of the Hölder continuity. We are now ready to investigate the
estimation theory in the next subsection.

2.2. Estimation

Since 𝜺𝑡 may not be normally distributed, we consider the local linear quasi-maximum-likelihood estimation (QMLE) method
(Fan and Gijbels, 1996, p. 194). The main idea is to pretend 𝜺𝑡 is normally distributed, so we can have the conditional likelihood
as follows:

1
𝑇

𝑇
∑

𝑡=1
l(𝐱𝑡, 𝐳𝑡−1;𝜽(𝜏𝑡)),

where 𝐳𝑡 = (𝐱𝑡, 𝐱𝑡−1,…), and

l(𝐱𝑡, 𝐳𝑡−1;𝝑)

= −1
2
(𝐱𝑡 − 𝝁(𝐳𝑡−1;𝝑))⊤

(

𝐇(𝐳𝑡−1;𝜽(𝜏𝑡))𝐇(𝐳𝑡−1;𝝑)⊤
)−1 (𝐱𝑡 − 𝝁(𝐳𝑡−1;𝝑))

− 1
2
log det

(

𝐇(𝐳𝑡−1;𝜽(𝜏𝑡))𝐇(𝐳𝑡−1;𝝑)⊤
)

.

From a nonparametric modeling perspective, it suffices to consider the data points in the neighborhood around the given time
point 𝜏 (i.e., |𝜏𝑡 − 𝜏| ≤ ℎ) when estimating 𝜽(𝜏), as we have

𝜽(𝜏𝑡) ≃ 𝜽(𝜏) + ℎ𝜽(1)(𝜏) ⋅
𝜏𝑡 − 𝜏
ℎ

.

herefore, we are able to parameterize 𝜽(𝜏𝑡). Also, in practice, we only observe 𝐱𝑡 for 𝑡 ≥ 1, so we have to work with the truncated
version of 𝐳𝑡 for each 𝑡 ≥ 1:

𝐳𝑐𝑡 = (𝐱𝑡,… , 𝐱1, 𝟎,…).

Finally, our likelihood function is specified as follows:

L𝜏 (𝜼1, 𝜼2) =
1
𝑇

𝑇
∑

𝑡=1
l(𝐱𝑡, 𝐳𝑐𝑡−1; 𝜼1 + 𝜼2 ⋅ (𝜏𝑡 − 𝜏)∕ℎ)𝐾ℎ(𝜏𝑡 − 𝜏). (2.2)

Accordingly, for ∀𝜏, (𝜽(𝜏), ℎ𝜽(1)(𝜏)) are estimated by

(�̂�(𝜏), �̂�
⋆
(𝜏)) = argmax

(𝜼1 ,𝜼2)∈𝐄𝑇 (𝑟)
L𝜏 (𝜼1, 𝜼2), (2.3)

where 𝐄𝑇 (𝑟) = 𝜣𝑟 × (ℎ ⋅𝜣(1)), 𝜣(1) is a compact set and �̂�
⋆
(𝜏) denotes the estimator of ℎ𝜽(1)(𝜏).
4

We impose more assumptions in order to derive the asymptotic distribution.
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Assumption 3.

1. inf𝝑∈𝜣𝑟 ,𝐳∈(R𝑚)∞ 𝜆min
(

𝐇(𝐳;𝝑)𝐇(𝐳;𝝑)⊤
)

≥ 𝑐 for some 𝑐 > 0, where 𝜆min(⋅) denotes the smallest eigenvalue of a square matrix.
2. For any 𝝑 ∈ 𝜣𝑟, 𝝁(̃𝐳𝑡(𝜏);𝜽(𝜏)) = 𝝁(̃𝐳𝑡(𝜏);𝝑) and 𝐇(̃𝐳𝑡(𝜏);𝜽(𝜏)) = 𝐇(̃𝐳𝑡(𝜏);𝝑) a.s. imply 𝝑 = 𝜽(𝜏) for some 𝜏, where �̃�𝑡(𝜏) =

(

�̃�𝑡(𝜏), �̃�𝑡−1(𝜏),…
)

.

ssumption 4.

1. 𝝁(⋅;𝝑) and 𝐇(⋅;𝝑) are twice continuously differentiable with respect to 𝝑.
2. There exists a nonnegative sequence {𝜒𝑗}∞𝑗=1 with 𝜒𝑗 = 𝑂(𝑗−(2+𝑠)) and some 𝑠 > 0 such that for any 𝐳, 𝐳′ ∈ (R𝑚)∞ and any

𝝑,𝝑′ ∈ 𝜣𝑟:

|𝛁𝑘
𝝑𝝁(𝐳;𝝑) − 𝛁𝑘

𝝑𝝁(𝐳;𝝑
′)| + |𝛁𝑘

𝝑𝐇(𝐳;𝝑) − 𝛁𝑘
𝝑𝐇(𝐳;𝝑′)| ≤ |𝝑 − 𝝑′

|

∞
∑

𝑗=1
𝜒𝑗 |𝐳𝑗 |,

|𝛁𝑘
𝝑𝝁(𝐳;𝝑) − 𝛁𝑘

𝝑𝝁(𝐳
′;𝝑)| + |𝛁𝑘

𝝑𝐇(𝐳;𝝑) − 𝛁𝑘
𝝑𝐇(𝐳′;𝝑)| ≤

∞
∑

𝑗=1
𝜒𝑗 |𝐳𝑗 − 𝐳′𝑗 |,

where 𝛁𝝑 =
(

𝜕
𝜕𝜗1

,… , 𝜕
𝜕𝜗𝑑

)⊤
, and 𝑘 = 1, 2.

Assumption 5. Let 𝐾(⋅) be a symmetric and positive kernel function defined on [−1, 1] with ∫ 1
−1 𝐾(𝑢)d𝑢 = 1. Moreover, 𝐾(⋅) is

Lipschitz continuous on [−1, 1]. As (𝑇 , ℎ) → (∞, 0), 𝑇ℎ → ∞.

Assumption 3.1 ensures the positive definiteness of the covariance matrix of the likelihood function, and is widely adopted when
studying multivariate time series (e.g., Bardet and Wintenberger, 2009, p. 2736). In fact, the validity of this assumption is easy to
justify in view of (2.8), (2.12) and (2.15) for Examples 1–3 to be studied in Section 2.4 below. Assumption 3.2 imposes a standard
identification condition in the literature of M-estimation (e.g., Proposition 3.4 of Jeantheau, 1998). It is noteworthy that the current
form of Assumption 3 accommodates the flexibility of Model (1.1), which in fact may be unnecessary if we have a detailed model
in practice. See Section 2.4 for example.

Assumption 4 imposes Lipschitz-type conditions on the first and second order derivatives of 𝝁(⋅) and 𝐇(⋅) to ensure the smoothness
of their functional components.

Assumption 5 is a set of mild conditions on the kernel function and the bandwidth.
With these conditions in hand, we summarize the first theorem below.

Theorem 2.1. Suppose Assumption 1 with 𝑟 ≥ 6 and Assumptions 2–5 hold.
(1). If 𝑇ℎ7 → 0, then for any 𝜏 ∈ (0, 1)

√

𝑇ℎ
(

�̂�(𝜏) − 𝜽(𝜏) − 1
2
ℎ2𝑐2𝜽(2)(𝜏)

)

→𝐷 𝑁
(

𝟎, 𝑣0𝜮𝜽(𝜏)
)

,

where 𝜮𝜽(𝜏) = 𝜮−1(𝜏)𝜴(𝜏)𝜮−1(𝜏), 𝜮(𝜏) = 𝐸
(

𝛁2
𝝑l(�̃�1(𝜏), �̃�0(𝜏);𝜽(𝜏))

)

and

𝜴(𝜏) = 𝐸
(

𝛁𝝑l(�̃�1(𝜏), �̃�0(𝜏);𝜽(𝜏)) ⋅ 𝛁𝝑l(�̃�1(𝜏), �̃�0(𝜏);𝜽(𝜏))⊤
)

.

(2). In addition, if 𝜺𝑡 is normally distributed, we have 𝜴(𝜏) = −𝜮(𝜏) and thus 𝜮𝜽(𝜏) = 𝜴−1(𝜏).

Note that the condition 𝑇ℎ7 → 0 is less restrictive than 𝑇ℎ5 → 0, so 𝑇ℎ7 → 0 does not indicate the bias term will vanish in
eneral. If 𝑇ℎ5 → 0, there is no bias term involved in the asymptotic distribution of Theorem 2.1, which then falls in the usual
ndersmoothing scenario (Li and Racine, 2007, p. 15). In general, in order to establish valid inferences, both 𝜽(2)(𝜏) and 𝜮𝜽(𝜏) have
o be accounted for (cf., Xia, 1998). In the following subsection, we shall establish both point-wise inference and uniform inference
fter dealing with the bias term.

Based on Theorem 2.1, we can give the rate of forecast error of 𝑘-step ahead predictions for (1.1), which is one of the most
mportant tasks of time series analysis (cf., Stock and Watson, 2001). For any fixed integer 𝑘 ≥ 1, define the forecasts of the
onditional mean and conditional variance of (1.1) by

�̂�𝑇+𝑘|𝑇 = 𝝁
(

�̂�𝑇+𝑘−1|𝑇 , �̂�𝑇+𝑘−2|𝑇 ,…; �̂�(1)
)

nd

�̂�𝑇+𝑘|𝑇 = 𝐌
(

�̂�𝑇+𝑘−1|𝑇 , �̂�𝑇+𝑘−2|𝑇 ,…; �̂�(1)
)

,

here �̂�𝑡|𝑇 = 𝐱𝑡 for 1 ≤ 𝑡 ≤ 𝑇 , �̂�𝑡|𝑇 = 𝟎 for 𝑡 ≤ 0 and 𝐌 (𝐳;𝝑) = 𝐇(𝐳;𝝑)𝐇⊤(𝐳;𝝑). We then have the following corollary.

orollary 2.1. Under the conditions of Theorem 2.1.1, and assume 𝜽(𝜏) to be Lipschitz continuous for 𝜏 ≥ 1, then for any fixed integer
≥ 1

�̂� − 𝐱 = 𝑂
(

ℎ2 + 1∕
√

𝑇ℎ
)

5

𝑇+𝑘|𝑇 𝑇+𝑘|𝑇 𝑃
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and

�̂�𝑇+𝑘|𝑇 −𝐌𝑇+𝑘|𝑇 = 𝑂𝑃

(

ℎ2 + 1∕
√

𝑇ℎ
)

,

here 𝐱𝑇+𝑘|𝑇 is recursively defined as 𝐱𝑇+𝑘|𝑇 = 𝝁
(

𝐱𝑇+𝑘−1|𝑇 , 𝐱𝑇+𝑘−2|𝑇 ,…;𝜽(𝜏𝑇+𝑘)
)

for 𝑘 ≥ 1, 𝐱𝑡|𝑇 = 𝐱𝑡 for 𝑡 ≤ 𝑇 , and

𝐌𝑇+𝑘|𝑇 = 𝐇
(

𝐱𝑇+𝑘−1|𝑇 , 𝐱𝑇+𝑘−2|𝑇 ,…;𝜽(𝜏𝑇+𝑘)
)

𝐇⊤ (

𝐱𝑇+𝑘−1|𝑇 , 𝐱𝑇+𝑘−2|𝑇 ,…;𝜽(𝜏𝑇+𝑘)
)

.

.3. Inference

In this section, we first discuss how to conduct point-wise inference, and then move on to derive the asymptotic results associated
ith the uniform inference. Specifically, for ∀𝛼 ∈ (0, 1), we shall construct a 100(1−𝛼)% asymptotic uniform confidence band (UCB)
𝛶 (𝜏), 0 ≤ 𝜏 ≤ 1} for 𝜽(⋅) in the sense that

lim
𝑇→∞

Pr (𝜽(𝜏) ∈ 𝛶 (𝜏), 0 ≤ 𝜏 ≤ 1) = 1 − 𝛼.

otably, the uniform inference nests the traditional constancy test as a special case. It does not only allow one to examine whether
time-varying model should be preferred to its parametric counterpart, but also allows one to test any particular functional form

f interest. For example, if a horizontal line can be embedded in the UCB {𝛶 (𝜏)}, then we accept the hypothesis that some elements
f 𝜽(𝜏) are constant.

oint-wise Inference — First, we construct a jackknife bias-corrected estimator in order to remove the asymptotic bias of
heorem 2.1. Specifically, we let

�̃�(𝜏) = 2�̂�ℎ∕
√

2(𝜏) − �̂�(𝜏), (2.4)

here �̂�ℎ∕
√

2(𝜏) is defined in the same way as �̂�(𝜏) but using the bandwidth ℎ∕
√

2.
After some tedious development (Lemma B.7 of Appendix B), we have uniformly over 𝜏 ∈ [ℎ, 1 − ℎ]

�̃�(𝜏) − 𝜽(𝜏) = −𝜮−1(𝜏) 1
𝑇ℎ

𝑇
∑

𝑡=1
𝐾((𝜏𝑡 − 𝜏)∕ℎ)𝛁𝝑l(�̃�𝑡(𝜏𝑡), �̃�𝑡−1(𝜏𝑡);𝜽(𝜏𝑡))

+𝑂𝑃 ((𝑇ℎ)−1∕2ℎ3∕2(log 𝑇 )1∕2) + 𝑜(ℎ3),

where 𝐾(𝑥) = 2
√

2𝐾(
√

2𝑥) −𝐾(𝑥) that is essentially a fourth-order kernel. It then infers that under the conditions of Theorem 2.1,
√

𝑇ℎ(�̃�(𝜏) − 𝜽(𝜏)) →𝐷 𝑁
(

𝟎, 𝑣0𝜮𝜽(𝜏)
)

,

where 𝑣0 = ∫ 1
−1 𝐾

2(𝑢)d𝑢.
It is noteworthy that the construction of (2.4) is different from directly using the fourth-order kernel in the regression. In terms

of bandwidth selection, the traditional methods (e.g., cross-validation) still remain valid for (2.4) (Richter and Dahlhaus, 2019).
However, if one directly employs the fourth-order kernel in the regression, it remains unclear how to select the optimal bandwidth
in practice.

Now we discuss how to estimate 𝜮𝜽(𝜏) which is constructed by 𝜮(𝜏) and 𝜴(𝜏). Intuitively, we consider the following estimator

�̂�𝜽(𝜏) = �̂�
−1
(𝜏)�̂�(𝜏)�̂�

−1
(𝜏), (2.5)

here

�̂�(𝜏) = 𝐴𝑇 (𝜏)−1
𝑇
∑

𝑡=1
𝛁2
𝝑l(𝐱𝑡, 𝐳

𝑐
𝑡−1; �̂�(𝜏))𝐾ℎ(𝜏𝑡 − 𝜏),

�̂�(𝜏) = 𝐴𝑇 (𝜏)−1
𝑇
∑

𝑡=1
𝛁𝝑l(𝐱𝑡, 𝐳𝑐𝑡−1; �̂�(𝜏)) ⋅ 𝛁𝝑l(𝐱𝑡, 𝐳𝑐𝑡−1; �̂�(𝜏))

⊤𝐾ℎ(𝜏𝑡 − 𝜏),

𝐴𝑇 (𝜏) =
𝑇
∑

𝑡=1
𝐾ℎ(𝜏𝑡 − 𝜏).

The following corollary summarizes the asymptotic property of (2.5).

orollary 2.2. Under the conditions of Theorem 2.1.1, suppose further that

sup
𝜏∈[0,1]

[𝛼𝑗 (𝜽(𝜏)) + 𝛽𝑗 (𝜽(𝜏))] = 𝑂(𝑗−(5∕2+𝑠))

or some 𝑠 > 0. In addition, let ℎ(log 𝑇 )2 → 0 and 𝑇 1−6∕𝑟ℎ → ∞. Then

sup |�̂�𝜽(𝜏) −𝜮𝜽(𝜏)| = 𝑜𝑃 (1).
6

𝜏∈[0,1]
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Uniform Inference — We now consider the uniform inference. To allow for flexibility, we first introduce a selection matrix 𝐂 with
full row rank, which selects the parameters of interest as follows:

𝜽𝐂(𝜏) ∶= 𝐂𝜽(𝜏).

Accordingly, the estimator and the corresponding asymptotic covariance matrix become

�̂�𝐂(𝜏) ∶= 𝐂�̂�(𝜏) and 𝜮𝐂(𝜏) = 𝐂𝜮𝜽(𝜏)𝐂⊤.

Theorem 2.2. Under the conditions of Theorem 2.1.1, suppose further that

sup
𝜏∈[0,1]

[𝛼𝑗 (𝜽(𝜏)) + 𝛽𝑗 (𝜽(𝜏))] = 𝑂(𝑗−(3+𝑠))

for some 𝑠 > 0. In addition, let (log 𝑇 )4∕(𝑇 𝜈ℎ) → 0 with 𝜈 = 1
2 − 𝑟−6

4𝑟𝑠∕3+2𝑟−4 and 𝑇ℎ7 log 𝑇 → 0. Then for all 𝑢 ∈ R

lim𝑇→∞Pr

(√

𝑇ℎ
𝑣0

sup
𝜏∈[ℎ,1−ℎ]

|

|

|

|

𝜮−1∕2
𝐂 (𝜏)

{

�̂�𝐂(𝜏) − 𝜽𝐂(𝜏) −
1
2
ℎ2𝑐2𝜽

(2)
𝐂 (𝜏)

}

|

|

|

|

−𝐵(1∕ℎ) ≤ 𝑢
√

2 log (1∕ℎ)

)

= exp(−2 exp(−𝑢)),

where

𝐵(1∕ℎ) =
√

2 log (1∕ℎ) +
log (𝐶𝐾 ) + (𝑘∕2 − 1∕2) log (log (1∕ℎ)) − log (2)

√

2 log (1∕ℎ)
,

𝐶𝐾 =
{∫ 1

−1 |𝐾
(1)(𝑢)|2d𝑢∕𝑣0𝜋}1∕2

𝛤 (𝑘∕2)
,

nd 𝛤 (⋅) is the Gamma function.

In Theorem 2.2, 𝜈 is slightly smaller than 1∕2 as we only require 𝑟 to be slightly larger than 6. Hence, the usual optimal bandwidth
ℎ𝑜𝑝𝑡 = 𝑂(𝑇 −1∕5) satisfies the conditions (log 𝑇 )4∕(𝑇 𝜈ℎ) → 0 and 𝑇ℎ7 log 𝑇 → 0. Theorem 2.2 states that the maximum deviation of
̂(𝜏) − 𝜽(𝜏) converges to a Gumbel distribution after suitable normalization. To provide more insights on Theorem 2.2, we briefly
utline its proof strategy. By Lemma B.7 in Appendix B, we have the Bahadur representation uniformly over 𝜏 ∈ [ℎ, 1 − ℎ]:

�̂�(𝜏) − 𝜽(𝜏) − 1
2
ℎ2𝑐2𝜽(2)(𝜏) = −𝜮−1(𝜏) 1

𝑇

𝑇
∑

𝑡=1
𝛁𝝑l(�̃�𝑡(𝜏𝑡), �̃�𝑡−1(𝜏𝑡);𝜽(𝜏𝑡))𝐾ℎ(𝜏𝑡 − 𝜏)

+ 𝑜𝑃
(

(𝑇ℎ log 𝑇 )−1∕2
)

.

Furthermore, by using Gaussian approximation technique in Lemma B.10, we have

sup
𝜏∈[0,1]

|

|

|

|

|

|

−𝜮−1(𝜏) 1
𝑇

𝑇
∑

𝑡=1
𝛁𝝑l(�̃�𝑡(𝜏𝑡), �̃�𝑡−1(𝜏𝑡);𝜽(𝜏𝑡))𝐾ℎ(𝜏𝑡 − 𝜏) −𝜮1∕2

𝜽 (𝜏) 1
𝑇

𝑇
∑

𝑡=1
𝐯𝑡𝐾ℎ(𝜏𝑡 − 𝜏)

|

|

|

|

|

|

= 𝑜𝑃
(

(𝑇ℎ log 𝑇 )−1∕2
)

,

here {𝐯𝑡} is a sequence of i.i.d. standard normal vectors. Then, Theorem 2.2 follows from the fact that the maximum of i.i.d.
tandard normal variables converges to the standard Gumbel distribution according to the extreme value theory of Gaussian
rocesses.

Note that the approximation rate of Gumbel distribution for the maximum of i.i.d. normal variables is 1∕ log 𝑇 (cf., Hall (1980)),
and thus the convergence rate of the UCB for 𝜽𝐂(⋅) is extremely slow. Based on the Gaussian approximation results as stated above,
it is possible improve the approximation rate of Gumbel distribution when constructing UCB of 𝜽(⋅). Here, we consider a bootstrap
method to improve the finite sample performance. We summarize the result in the following corollary.

Corollary 2.3. Under the conditions of Theorem 2.2. Suppose that ℎ = 𝑂(𝑇 −𝜅 ) with 1∕7 < 𝜅 < 𝜈. Then, on a richer probability space,
there exists i.i.d. 𝑘-dimensional standard normal variables 𝐯1,… , 𝐯𝑇 such that

sup
𝜏∈[0,1]

|�̂�𝐂(𝜏) − 𝜽𝐂(𝜏) −
1
2
ℎ2𝑏ℎ(𝜏)𝜽

(2)
𝐂 (𝜏) −𝜮1∕2

𝐂 (𝜏)𝐕∗
ℎ(𝜏)| = 𝑂𝑃

(

𝑇 −𝛼
√

𝑇ℎ log 𝑇

)

,

where 𝛼 = min{(𝜈 − 𝜅)∕2, (7𝜅 − 1)∕2, 𝜅∕2}, 𝑐𝑘,ℎ(𝜏) = ∫ (1−𝜏)∕ℎ
−𝜏∕ℎ 𝑢𝑘𝐾(𝑢)d𝑢, 𝐕∗

ℎ(𝜏) = 𝑇 −1 ∑𝑇
𝑡=1 𝐯𝑡𝜔𝑡,ℎ(𝜏),

𝑏ℎ(𝜏) =
𝑐22,ℎ(𝜏) − 𝑐1,ℎ(𝜏)𝑐3,ℎ(𝜏)

𝑐0,ℎ(𝜏)𝑐2,ℎ(𝜏) − 𝑐21,ℎ(𝜏)
and 𝜔𝑡,ℎ(𝜏) = 𝐾ℎ(𝜏𝑡 − 𝜏)

𝑐2,ℎ(𝜏) −
𝜏𝑡−𝜏
ℎ 𝑐1,ℎ(𝜏)

𝑐0,ℎ(𝜏)𝑐2,ℎ(𝜏) − 𝑐21,ℎ(𝜏)
.

By Corollary 2.3, we propose the following numerical procedure to construct the UCB of 𝜽 (𝜏):
7

𝐂
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Step 1 Use the sample {𝐱𝑡}𝑇𝑡=1 to estimate �̂�𝐂(𝜏) by (2.3), and compute �̃�𝐂(𝜏) based on (2.4).
Step 2 Generate i.i.d. 𝑘-dimensional standard normal variables {𝐯∗𝑡 } and calculate the quantity sup𝜏∈[0,1] |𝐕∗

ℎ(𝜏)|, in which 𝐕∗
ℎ(𝜏) =

𝑇 −1 ∑𝑇
𝑡=1 𝐯

∗
𝑡 (2𝜔𝑡,ℎ∕

√

2(𝜏) − 𝜔𝑡,ℎ(𝜏)).
Step 3 Repeat Step 2 𝑅 times to obtain the empirical (1 − 𝛼)th quantile 𝑞1−𝛼 of sup𝜏∈[0,1] |𝐕∗

ℎ(𝜏)|.
Step 4 Calculate �̂�𝐂(𝜏) using (2.5), and construct the UCB of 𝜽𝐂(𝜏) by �̃�𝐂(𝜏) + �̂�

1∕2
𝐂 (𝜏)𝑞1−𝛼B𝑘, where B𝑘 = {𝐮 ∈ R𝑘 ∶ |𝐮| ≤ 1} is the

unit ball, and 𝑘 is the rank of 𝐂.

Note that for 𝜏 ∈ [ℎ, 1−ℎ] and 𝜏 ∈ {0, 1} we have 𝑏ℎ∕
√

2(𝜏)−𝑏ℎ(𝜏) = 0, and thus the bias term disappears. But for 𝜏 ∈ (0, ℎ)∪(1−ℎ, 1),
we have 𝑏ℎ∕

√

2(𝜏) − 𝑏ℎ(𝜏) ≠ 0 but |𝑏ℎ∕
√

2(𝜏) − 𝑏ℎ(𝜏)| < |𝑏ℎ(𝜏)|, that is, the jack-knife estimator can only reduce the bias to some extent

at the boundary points. Even this is the case, we can still establish UCB as in Corollary 2.3.

2.4. Examples

Below, we demonstrate the usefulness of the aforementioned results by considering Examples 1–3 below. We refer interested
readers to Ling (2003), Ling and McAleer (2003) and Bardet and Wintenberger (2009) for extensive investigations on the parametric
counterparts of these examples.

Example 1. Consider a time-varying VARMA(𝑝, 𝑞) model

𝐱𝑡 = 𝐚(𝜏𝑡) +
𝑝
∑

𝑗=1
𝐀𝑗 (𝜏𝑡)𝐱𝑡−𝑗 + 𝜼𝑡 +

𝑞
∑

𝑗=1
𝐁𝑗 (𝜏𝑡)𝜼𝑡−𝑗 , 𝜼𝑡 = 𝜴1∕2(𝜏𝑡)𝜺𝑡, 𝑡 = 1, 2,… , 𝑇 . (2.6)

For ∀𝜏 ∈ [0, 1], simple algebra shows that

�̃�𝑡(𝜏) = 𝝁
(

�̃�𝑡−1(𝜏), �̃�𝑡−2(𝜏),…;𝜽(𝜏)
)

+𝐇
(

�̃�𝑡−1(𝜏), �̃�𝑡−2(𝜏),…;𝜽(𝜏)
)

𝜺𝑡, (2.7)

where

𝜽(𝜏) = [vec(𝐚(𝜏),𝐀1(𝜏),… ,𝐀𝑝(𝜏),𝐁1(𝜏),… ,𝐁𝑞(𝜏)); vech(𝜴(𝜏))],

𝝁
(

�̃�𝑡−1(𝜏), �̃�𝑡−2(𝜏),…;𝜽(𝜏)
)

= 𝐁−1
𝜏 (1)𝐚(𝜏) +

∞
∑

𝑗=1
𝜞 𝑗 (𝜏)�̃�𝑡−𝑗 (𝜏),

𝐇
(

�̃�𝑡−1(𝜏), �̃�𝑡−2(𝜏),…;𝜽(𝜏)
)

= 𝜴1∕2(𝜏). (2.8)

Additionally, in (2.8), 𝜞 𝑗 (𝜏) is yielded as follows:

𝐈𝑚 −
∞
∑

𝑗=1
𝜞 𝑗 (𝜏)𝐿𝑗 ∶= 𝐁−1

𝜏 (𝐿)𝐀𝜏 (𝐿),

where 𝐀𝜏 (𝐿) ∶= 𝐈𝑚 − 𝐀1(𝜏)𝐿 −⋯ − 𝐀𝑝(𝜏)𝐿𝑝 and 𝐁𝜏 (𝐿) ∶= 𝐈𝑚 + 𝐁1(𝜏)𝐿 +⋯ + 𝐁𝑞(𝜏)𝐿𝑞 .

Then we are able to present the following proposition.

Proposition 2.3. Let ‖𝜺𝑡‖𝑟 < ∞ for some 𝑟 > 4. Suppose that there is a compact set

𝜣 = {𝝑 = [vec(𝐚,𝐀1,… ,𝐀𝑝,𝐁1,… ,𝐁𝑞); vech(𝜴)] ∣ 𝝑 ∈ R𝑑}

such that (1). for ∀𝜏 ∈ [0, 1], 𝜽(𝜏) lies in the interior of 𝜣, (2). det(𝐀(𝐿)𝐁(𝐿)) ≠ 0 for all |𝐿| ≤ 1, where 𝐀(𝐿) ∶= 𝐈𝑚 − 𝐀1𝐿 −⋯ − 𝐀𝑝𝐿𝑝

and 𝐁(𝐿) ∶= 𝐈𝑚 + 𝐁1𝐿 + ⋯ + 𝐁𝑞𝐿𝑞 are coprime and satisfy some necessary identification conditions, (3). 𝜴 > 0. Then, the results of
Theorems 2.1 and 2.2 hold for the model (2.6).

We note that the detailed identification conditions required for VARMA processes (e.g., the final equations form or echelon form)
can be found in Lütkepohl (2005, p. 452), so we no longer discuss them here in order not to deviate from our main goal.

Due to the specific structure of VARMA processes, we are able to provide the estimation and inferential methods for time-
varying structural impulse response, which are of interest in macroeconometrics. Here, we study the impulse response subject to
both short-run timing and long-run restrictions. The economic interpretations of the two types of identification conditions can be
found in Kilian and Lütkepohl (2017, p. 213 and p. 265). Our results extend their methods by allowing for time-variations in these
impulse responses. The results are summarized in Appendix A.2 of the online supplementary document.

Example 2. Consider a time-varying multivariate GARCH(𝑝, 𝑞) model

𝐱𝑡 = diag(ℎ1∕21,𝑡 ,… , ℎ1∕2𝑚,𝑡 )𝜼𝑡, 𝜼𝑡 = 𝜴1∕2(𝜏𝑡)𝜺𝑡, 𝑡 = 1, 2,… , 𝑇 ,

𝐡𝑡 = 𝐜0(𝜏𝑡) +
𝑝
∑

𝐂𝑗 (𝜏𝑡)
(

𝐱𝑡−𝑗 ⊙ 𝐱𝑡−𝑗
)

+
𝑞
∑

𝐃𝑗 (𝜏𝑡)𝐡𝑡−𝑗 , (2.9)
8

𝑗=1 𝑗=1
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where ℎ𝑗,𝑡 stands for the 𝑗th element of 𝐡𝑡, ⊙ denotes the Hadamard product and

𝜴(𝜏) =

⎡

⎢

⎢

⎢

⎢

⎣

1 𝜌1,2(𝜏) ⋯ 𝜌1,𝑚(𝜏)
𝜌1,2(𝜏) 1 ⋱ ⋮

⋮ ⋱ ⋱ 𝜌𝑚−1,𝑚(𝜏)
𝜌1,𝑚(𝜏) 𝜌𝑚−1,𝑚(𝜏) ⋱ 1

⎤

⎥

⎥

⎥

⎥

⎦

. (2.10)

For ∀𝜏 ∈ [0, 1],

�̃�𝑡(𝜏) = 𝐇
(

�̃�𝑡−1(𝜏), �̃�𝑡−2(𝜏),…;𝜽(𝜏)
)

𝜺𝑡, (2.11)

where 𝜽(𝜏) = [vec(𝐜0(𝜏),𝐂1(𝜏),… ,𝐂𝑝(𝜏),𝐃1(𝜏),… ,𝐃𝑞(𝜏)); vechl(𝜴(𝜏))], the operator vechl(⋅) stacks the lower triangular part of a matrix
excluding the diagonal and

𝐇
(

�̃�𝑡−1(𝜏), �̃�𝑡−2(𝜏),…;𝜽(𝜏)
)

= diag1∕2
(

𝐃−1
𝜏 (1)𝐜0(𝜏) +

∞
∑

𝑗=1
Ψ𝑗 (𝜏)

(

�̃�𝑡−𝑗 (𝜏)⊙ �̃�𝑡−𝑗 (𝜏)
)

)

𝜴1∕2(𝜏). (2.12)

Note that Ψ𝑗 (𝜏) is generated as follows:

𝜳 𝜏 (𝐿) ∶= 𝐈𝑚 −
∞
∑

𝑗=1
𝜳 𝑗 (𝜏)𝐿𝑗 = 𝐃−1

𝜏 (𝐿)𝐂𝜏 (𝐿),

where 𝐂𝜏 (𝐿) ∶= 𝐂1(𝜏)𝐿 +⋯ + 𝐂𝑝(𝜏)𝐿𝑝 and 𝐃𝜏 (𝐿) ∶= 𝐈𝑚 − 𝐃1(𝜏)𝐿 −⋯ − 𝐃𝑞(𝜏)𝐿𝑞 .

Consequently, we can present the following proposition.

Proposition 2.4. Suppose that there is a compact set

𝜣 = {𝝑 = [vec(𝐜0,𝐂1,… ,𝐂𝑝,𝐃1,… ,𝐃𝑞); vechl(𝜴)] ∣ 𝝑 ∈ R𝑑}

such that (1). for ∀𝜏 ∈ [0, 1], 𝜽(𝜏) lies in the interior of 𝜣, (2). 𝜴 > 0 and ‖𝜴1∕2𝜺𝑡‖2𝑟
∑∞

𝑗=1 |Ψ𝑗 | < 1 for some 𝑟 > 6, (3). all the roots of
|𝐈𝑚 −

∑𝑝
𝑗=1 𝐂𝑗 −

∑𝑞
𝑗=1 𝐃𝑗 | are outside the unit circle with 𝐂𝑗 ’s and 𝐃𝑗 ’s being squared matrices of nonnegative elements, (4). 𝐜0 is a vector

of positive elements, (5). 𝐂(𝐿) and 𝐃(𝐿) are coprime and the formulation of the GARCH part is minimal, where 𝐂(𝐿) ∶= 𝐂1𝐿+⋯+𝐂𝑝𝐿𝑝

and 𝐃(𝐿) ∶= 𝐈𝑚 − 𝐃1𝐿 −⋯ − 𝐃𝑞𝐿𝑞 . Then the results Theorems 2.1 and 2.2 hold for the model (2.9).

For the identification conditions of GARCH processes, we refer readers to Proposition 3.4 of Jeantheau (1998) that shows the
minimal representation is enough to ensue Assumption 3 holds.

Example 3. Consider a time-varying VARMA-GARCH model

𝐱𝑡 = 𝐚(𝜏𝑡) +
𝑝
∑

𝑗=1
𝐀𝑗 (𝜏𝑡)𝐱𝑡−𝑗 + 𝐯𝑡 +

𝑞
∑

𝑗=1
𝐁𝑗 (𝜏𝑡)𝐯𝑡−𝑗 , 𝐯𝑡 = diag

(

ℎ1∕21,𝑡 ,… , ℎ1∕2𝑚,𝑡

)

𝜼𝑡, 𝑡 = 1,… , 𝑇 ,

𝐡𝑡 = 𝐜0(𝜏𝑡) +
𝑝′
∑

𝑗=1
𝐂𝑗 (𝜏𝑡)

(

𝐯𝑡−𝑗 ⊙ 𝐯𝑡−𝑗
)

+
𝑞′
∑

𝑗=1
𝐃𝑗 (𝜏𝑡)𝐡𝑡−𝑗 , 𝜼𝑡 = 𝜴1∕2(𝜏𝑡)𝜺𝑡, (2.13)

where ℎ𝑗,𝑡 stands for the 𝑗th element of 𝐡𝑡 and

𝜴(𝜏) =

⎡

⎢

⎢

⎢

⎢

⎣

1 𝜌1,2(𝜏) ⋯ 𝜌1,𝑚(𝜏)
𝜌1,2(𝜏) 1 ⋱ ⋮

⋮ ⋱ ⋱ 𝜌𝑚−1,𝑚(𝜏)
𝜌1,𝑚(𝜏) 𝜌𝑚−1,𝑚(𝜏) ⋱ 1

⎤

⎥

⎥

⎥

⎥

⎦

.

For ∀𝜏 ∈ [0, 1], we obtain that

�̃�𝑡(𝜏) = 𝝁
(

�̃�𝑡−1(𝜏), �̃�𝑡−2(𝜏),…;𝜽(𝜏)
)

+ 𝐯𝑡(𝜏), (2.14)

where 𝝁
(

�̃�𝑡−1(𝜏), �̃�𝑡−2(𝜏),…;𝜽(𝜏)
)

= 𝐁−1
𝜏 (1)𝐚(𝜏) +

∑∞
𝑗=1 𝜞 𝑗 (𝜏)�̃�𝑡−𝑗 (𝜏),

𝜽(𝜏) =
[

vec(𝐚(𝜏),𝐀1(𝜏),… ,𝐀𝑝(𝜏),𝐁1(𝜏),… ,𝐁𝑞(𝜏), 𝐜0(𝜏),𝐂1(𝜏),… ,𝐂𝑝′ (𝜏),

𝐃1(𝜏),… ,𝐃𝑞′ (𝜏)); vechl(Ω(𝜏))
]

,

𝐇
(

�̃�𝑡−1(𝜏), �̃�𝑡−2(𝜏),…;𝜽(𝜏)
)

,

= diag1∕2
(

𝐃−1
𝜏 (1)𝐜0(𝜏) +

∞
∑

𝑗=1
Ψ𝑗 (𝜏)

(

𝐯𝑡−𝑗 (𝜏)⊙ 𝐯𝑡−𝑗 (𝜏)
)

)

𝜴1∕2(𝜏),

̃
(

̃ ̃
)

9

𝐯𝑡(𝜏) = 𝐇 𝐱𝑡−1(𝜏), 𝐱𝑡−2(𝜏),…;𝜽(𝜏) 𝜺𝑡. (2.15)
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Note that 𝜞 𝑗 (𝜏) and Ψ𝑗 (𝜏) are generated as follows:

𝐈𝑚 −
∞
∑

𝑗=1
𝜞 𝑗 (𝜏)𝐿𝑗 ∶= 𝐁−1

𝜏 (𝐿)𝐀𝜏 (𝐿),

𝜳 𝜏 (𝐿) ∶= 𝐈𝑚 −
∞
∑

𝑗=1
𝜳 𝑗 (𝜏)𝐿𝑗 = 𝐃−1

𝜏 (𝐿)𝐂𝜏 (𝐿), (2.16)

where 𝐀𝜏 (𝐿) ∶= 𝐈𝑚 − 𝐀1(𝜏)𝐿 − ⋯ − 𝐀𝑝(𝜏)𝐿𝑝, 𝐁𝜏 (𝐿) ∶= 𝐈𝑚 + 𝐁1(𝜏)𝐿 + ⋯ + 𝐁𝑞(𝜏)𝐿𝑞 𝐂𝜏 (𝐿) ∶= 𝐂1(𝜏)𝐿 + ⋯ + 𝐂𝑝′ (𝜏)𝐿𝑝′ and
𝐃𝜏 (𝐿) ∶= 𝐈𝑚 − 𝐃1(𝜏)𝐿 −⋯ − 𝐃𝑞′ (𝜏)𝐿𝑞′ .

We then have the following proposition.

Proposition 2.5. Suppose that there is a compact set

𝜣 = {𝝑 = [vec(𝐚,𝐀1,… ,𝐀𝑝,𝐁1,… ,𝐁𝑞 , 𝐜0,𝐂1,… ,𝐂𝑝′ ,𝐃1,… ,𝐃𝑞′ ); vechl(𝜴)] ∣ 𝝑 ∈ R𝑑}

such that (1). for ∀𝜏 ∈ [0, 1], 𝜽(𝜏) lies in the interior of 𝜣, (2). det(𝐀(𝐿)𝐁(𝐿)) ≠ 0 for all |𝐿| ≤ 1, where 𝐀(𝐿) ∶= 𝐈𝑚−𝐀1𝐿−⋯−𝐀𝑝𝐿𝑝 and
𝐁(𝐿) ∶= 𝐈𝑚 + 𝐁1𝐿 +⋯ + 𝐁𝑞𝐿𝑞 are coprime and satisfy some necessary identification conditions, (3). 𝜴 > 0 and ‖𝜴1∕2𝜺𝑡‖2𝑟

∑∞
𝑗=1 |Ψ𝑗 | < 1

for some 𝑟 > 6, (4). all the roots of |𝐈𝑚 −
∑𝑝′

𝑗=1 𝐂𝑗 −
∑𝑞′

𝑗=1 𝐃𝑗 | are outside the unit circle with 𝐂𝑗 ’s and 𝐃𝑗 ’s being squared matrices of
nonnegative elements, (5). 𝐜0 is a vector of positive elements, (6). 𝐂(𝐿) and 𝐃(𝐿) are coprime and the formulation of the GARCH part is
minimal, where 𝐂(𝐿) ∶= 𝐂1𝐿+⋯+𝐂𝑝′𝐿𝑝′ and 𝐃(𝐿) ∶= 𝐈𝑚 −𝐃1𝐿−⋯−𝐃𝑞′𝐿𝑞′ . Then the results Theorems 2.1 and 2.2 hold for the model
(2.13).

In the following section, we conduct numerical studies using both simulated and real data to evaluate the finite-sample
performance of the proposed estimation and inferential methods.

3. Simulation studies

In this section, we first present the details of the numerical implementations in Section 3.1, and then conduct extensive
simulations in Section 3.2.

3.1. Numerical implementation

Throughout the numerical studies, the Epanechnikov kernel 𝐾(𝑢) = 0.75(1 − 𝑢2)𝐼(|𝑢| ≤ 1) is adopted. Following Zhou and Wu
(2010), we use ℎ̃ = 2ℎ̂ for the biased corrected estimator, where ℎ̂ is the bandwidth selected by the cross-validation method of Richter
and Dahlhaus (2019).

Specifically, define the leave-one-out local linear QMLE

(�̂�ℎ,−𝑡(𝜏), ℎ�̂�
(1)
ℎ,−𝑡(𝜏)) = argmax

(𝜼1 ,𝜼2)∈𝐄𝑇 (𝑟)
L𝑐

𝑇 ,−𝑡(𝜏, 𝜼1, 𝜼2), (3.1)

where

L𝑐
𝑇 ,−𝑡(𝜏, 𝜼1, 𝜼2) =

1
𝑇

𝑇
∑

𝑠=1,≠𝑡
l(𝐱𝑠, 𝐳𝑐𝑠−1; 𝜼1 + 𝜼2 ⋅ (𝜏𝑠 − 𝜏)∕ℎ)𝐾ℎ(𝜏𝑠 − 𝜏).

Then, the bandwidth is chosen by

ℎ̂ = argmax
ℎ

𝑇 −1
𝑇
∑

𝑡=1
l(𝐱𝑡, 𝐳𝑐𝑡−1; �̂�ℎ,−𝑡(𝜏𝑡)). (3.2)

As shown in Richter and Dahlhaus (2019), the cross validation method works well as long as 𝛁l is uncorrelated, which implies
that the desirable property should hold in our case. It should be pointed out that the cross-validation bandwidth is optimal for
parameter estimation in the sense of mean squared errors, which may not be optimal for constructing uniform confidence bands.
However, it is unclear how to select the optimal bandwidth for uniform inference and our simulation results below show that the
behavior of the estimated UCB is not sensitive to the choices of bandwidths. For simplicity, we can use the estimation-based optimal
bandwidth when constructing UCB.

Notably, when considering some specific models, the implementation may be further simplified. We provide more discussions
along this line in Appendix B.4.
10
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Table 1
Empirical coverage probabilities of the UCB for DGP 1.

ℎ̃ 𝛼1(⋅) 𝛼2(⋅) 𝐁1(⋅) 𝜴(⋅)

𝑇 = 500

0.35 0.905 0.915 0.889 0.905
0.4 0.912 0.930 0.897 0.909
0.45 0.915 0.930 0.898 0.919
0.5 0.905 0.945 0.901 0.920

𝑇 = 1000

0.3 0.960 0.960 0.947 0.947
0.35 0.940 0.967 0.940 0.930
0.4 0.947 0.959 0.948 0.939
0.45 0.957 0.957 0.947 0.937

3.2. Simulation results

In the simulation studies, we examine the empirical coverage probabilities of UCB for the 95% nominal level. We consider the
ime-varying VARMA(2,1) and time-varying VAR(1)-GARCH(1,1) model as follows:

1. DGP 1 ∶ 𝐱𝑡 = 𝑎1(𝜏𝑡)𝐱𝑡−1 + 𝑎2(𝜏𝑡)𝐱𝑡−2 + 𝜼𝑡 + 𝐁1(𝜏𝑡)𝜼𝑡−1, 𝜼𝑡 = 𝝎(𝜏𝑡)𝜺𝑡, where {𝜺𝑡} are i.i.d. draws from 𝑁(𝟎2×1, 𝐈2), 𝑎1(𝜏) =
0.6 exp(𝜏 − 1), 𝑎2(𝜏) = −0.3 exp(𝜏 − 1),

𝐁1(𝜏) =
[

0.5 exp{𝜏 − 0.5} −0.8(𝜏 − 0.5)2

−0.8(𝜏 − 0.5)2 0.5 + 0.3 sin(𝜋𝜏)

]

,

𝝎(𝜏) =
[

1.5 + 0.2 exp{0.5 − 𝜏} 0
0.2 exp{0.5 − 𝜏} 1.5 + 0.5(𝜏 − 0.5)2

]

.

Here we use the final equations form to ensure the uniqueness of the VARMA representation, while the order of VARMA is set
to be (2, 1). The choices of 𝑎1(𝜏), 𝑎2(𝜏) and 𝐁1(𝜏) correspond to moderate persistence in the VARMA dynamics. These settings
are common in the VARMA literature and are consistent with some stylized facts of macro variables (cf., Athanasopoulos and
Vahid (2008)).

2. DGP 2 ∶ 𝐱𝑡 = 𝐀1(𝜏𝑡)𝐱𝑡−1 + 𝐯𝑡 and 𝐯𝑡 = diag(ℎ1∕21,𝑡 ,… , ℎ1∕2𝑚,𝑡 )𝜼𝑡, where 𝜼𝑡 = 𝜴1∕2(𝜏𝑡)𝜺𝑡, 𝐡𝑡 = 𝐜0(𝜏𝑡) + 𝐂1(𝜏𝑡)
(

𝐯𝑡−1 ⊙ 𝐯𝑡−1
)

+ 𝐃1(𝜏𝑡)𝐡𝑡−1,
{𝜺𝑡} are i.i.d. draws from 𝑁(𝟎2×1, 𝐈2), 𝐜0(𝜏) = [2 exp{0.5𝜏 − 0.5}, 3 + 0.2 cos(𝜏)]⊤,

𝐀1(𝜏) =
[

0.5 exp{𝜏 − 0.5} −0.2 exp{𝜏 − 1}
−0.2 cos(𝜋𝜏) 0.6 exp{−𝜏 − 0.5}

]

,

𝐂1(𝜏) =
[

0.4 + 0.05 cos(𝜏) 0.05(𝜏 − 0.5)2

0.05(𝜏 − 0.5)2 0.4 + 0.05 sin(𝜏)

]

,

𝐃1(𝜏) =
[

0.4 − 0.1 cos(𝜏) 0
0 0.3 − 0.1 sin(𝜏)

]

,

𝜴(𝜏) =
[

1 0.3 sin(𝜏)
0.3 sin(𝜏) 1

]

.

This model specification is the same as the one that we used in our empirical section. We set the order of GARCH process to be
(1, 1) since GARCH(1, 1) models are typically used in practice and higher order GARCH models are unnecessary (cf., Andreou
and Werker (2015)). In addition, the time-varying functions 𝐂1(𝜏), 𝐃1(𝜏) and 𝜴(𝜏) are set to be roughly the same as our
estimates for the stocks returns we analyze in the next section.

Let the sample size be 𝑇 ∈ {500, 1000} (𝑇 ∈ {1000, 2000, 4000}) for the VARMA model (the VAR-GARCH model). We conduct
000 replications for each choice of 𝑇 . Several different bandwidths close to ℎ̃ are reported to check the sensitivity of bandwidth
election.

We present the empirical coverage probabilities associated with the UCB in Tables 1–2. For the vector- or matrix-valued unknown
oefficients, we take an average across the elements. A few facts emerge from the tables. First, the finite sample coverage probabilities
re smaller than their nominal level when 𝑇 = 500 (𝑇 = 1000, 2000) for the VARMA model (the GARCH/VAR-GARCH model), but
re fairly close to their nominal level as 𝑇 = 1000 (𝑇 = 4000) for the VARMA model (the VAR-GARCH model). Second, the behavior
f the estimated uniform confidence bands is not sensitive to the choices of bandwidths. The leave-one-out cross-validation method
ends to select a larger bandwidth for the conditional variance model compared to that of the conditional mean model. Third, the
onditional variance model requires more data than the conditional mean model to achieve a reasonable finite sample performance.
his point is also illustrated by the simulation results of GARCH models, which are reported in Appendix B.5 due to space constraints.

. A real data example

In this section, we investigate both temporal and contemporaneous connectedness between the Chinese and U.S. stock markets us-
ng a time-varying VAR-GARCH model. Our framework facilitates the study of connectedness in both temporal and contemporaneous
evels, as well as time-variations in these spillovers. These are of great importance in practice.
11
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Table 2
Empirical coverage probabilities of the UCB for DGP 2.

ℎ̃ 𝐀1(⋅) 𝐜0(⋅) 𝐂1(⋅) 𝐃1(⋅) 𝜴(⋅)

𝑇 = 1000

0.60 0.953 0.833 0.829 0.751 0.947
0.65 0.945 0.841 0.837 0.749 0.940
0.70 0.955 0.864 0.847 0.787 0.950
0.75 0.949 0.847 0.854 0.779 0.945

𝑇 = 2000

0.55 0.968 0.905 0.866 0.852 0.922
0.60 0.957 0.883 0.878 0.847 0.927
0.65 0.955 0.889 0.884 0.857 0.912
0.70 0.965 0.907 0.891 0.902 0.950

𝑇 = 4000

0.50 0.963 0.920 0.903 0.897 0.940
0.55 0.967 0.907 0.917 0.904 0.925
0.60 0.960 0.917 0.934 0.927 0.929
0.65 0.963 0.942 0.918 0.914 0.959

4.1. A brief literature review

Researchers recently have applied several statistical measures of association (e.g., Granger causality) to asset returns to analyze
he spillovers between financial agents (e.g., Hong, 2001; Diebold and Yilmaz, 2009, 2014; Geraci and Gnabo, 2018). For
xample, Geraci and Gnabo (2018) apply a Bayesian time-varying VAR(1) model to estimate the dynamic network of return spillover
ffects at U.S. institutional levels, in which the time-varying cross-autoregressive coefficients are interpreted as the strength of
emporal and directed connectedness between financial institutions over time.

In addition, there is a growing literature to study the relationship of Chinese and U.S. stock markets (e.g., Zhang and Li, 2014;
an et al., 2022), as the Chinese stock market has become the world’s second largest stock market after 2009. Understanding
he interactions among different financial markets is important for investors and policymakers (BenSaïda, 2019). For instance,
igh equity market interdependence implies poor diversification benefits from portfolios, but highlights the possibility of better
edging benefits. Previous research documents a strong positive link between the degree of globalization and equity market
nterdependence (Baele, 2005). Along this line of research, one important question is that whether the interdependence between
hinese and U.S. stock markets has increased over time due to globalization so that estimates from historical data are unreliable for
odern policy analysis, asset pricing and risk management. The existing results present many discrepancies, which may be due to

he fact that the relationship evolves with time. Apparently, the results also indicate that one should use a time-varying VAR-GARCH
odel to accommodate potential nonstationarity inherited in these financial variables. In what follows, we address these issues using

he newly proposed approach.

.2. Empirical analysis

To study time-varying temporal and contemporaneous connectedness simultaneously, we consider the following time-varying
AR(1)-GARCH(1,1) model:

𝐱𝑡 = 𝐚(𝜏𝑡) + 𝐀(𝜏𝑡)𝐱𝑡−1 + 𝐯𝑡, 𝐯𝑡 = diag(ℎ1∕21,𝑡 , ℎ
1∕2
2,𝑡 )𝜼𝑡,

𝜼𝑡 = 𝜴1∕2(𝜏𝑡)𝜺𝑡, 𝐡𝑡 = 𝐜(𝜏𝑡) + 𝐂(𝜏𝑡)
(

𝐯𝑡−1 ⊙ 𝐯𝑡−1
)

+ 𝐃(𝜏𝑡)𝐡𝑡−1, (4.1)

where 𝐱𝑡 contains Chinese and U.S. index log-returns, which are calculated based on weekly Shanghai Stock Exchange (SSE)
Composite Index and S&P 500 Index as they are the most comprehensive and diversified stock indices.2 Note that the cross-
autoregressive coefficient 𝐴𝑖𝑗 (𝜏𝑡) represents the strength of the temporal (directed) spillover from individual 𝑗 to 𝑖 at period 𝑡, while
the off-diagonal elements of time-varying correlation matrix 𝜴(𝜏) capture time-varying conditional correlations between errors,
which can be interpreted as the contemporaneous (undirected) spillovers occurring between the stock markets.

The estimation is conducted in exactly the same way as in Section 3.1. Here, we set the lag lengths of both VAR and GARCH
settings to be 1 following Andreou and Werker (2015), in which they develop formal specification tests for univariate AR-GARCH
models and find that AR(1)-GARCH(1,1) process is enough to capture the dynamics of stock market weekly returns. The sample
employed in this study spanning from July 1997 to December 2021 provides 1239 observations.3 Fig. 1 plots the two weekly returns
as well as sample autocorrelation functions of squared data, which shows the typical ‘‘volatility clustering’’ phenomenon.

We now fit the data to a time-varying VAR(1)-GARCH(1,1) model and are particularly interested in whether the temporal
and contemporaneous spillovers vary over time. We first consider the time-varying contemporaneous correlations. Fig. 2 plots the

2 Weekly returns are commonly used in the literature on return spillover effects (e.g., Baele, 2005; Beirne et al., 2010) to avoid the non-synchronicity of daily
ata. The non-synchronicity of daily data arises from the fact that the national stock exchanges are subject to different national, religious, and other holidays,
nexpected events, and other occasions. In addition, we only use the available data, removing the missing period since this method is desirable particularly
hen a missing period is just a few time points (cf., Park (2004), p. 661).
3
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Fig. 1. S&P 500 and SSE Index returns as well as sample autocorrelation functions of squared data.

stimates of time-varying conditional correlations (black line), as well as the 95% uniform confidence bands (red dot-dashed line),
he 95% pointwise confidence intervals (black dashed line), the estimate of the parameter assuming constancy (blue line) and the
stimates of the dynamic conditional correlations (DCC) using a VAR-DCC-GARCH model (black dot line). Based on the uniform
onfidence bands and the estimates obtained from constant VAR-GARCH model, we can conclude that the conditional correlations
ary with respect to time at the 5% significance level. By examining the point-wise confidence intervals, we can conclude that
he two stock markets are not significantly correlated before 2005, but this relationship has been greatly enhanced in recent years.
nterestingly, as clearly presented in Fig. 2, the contemporaneous interdependence between the two stock markets is increasing over
ime regardless of the huge impact of major events such as the trade friction and COVID-19 pandemic. This result has important
mplications for investment and risk management. For example, it implies that Chinese and U.S. investors who use cross-country
ortfolio strategies to eliminate country specific risks may be benefit from hedging. Meanwhile, the hedge ratio should be adjusted
o account for the most recent information since the correlations between Chinese and U.S. stock markets are time-varying.

For comparison with the popular DCC-GARCH models, we also plot the estimates of dynamic conditional correlations obtained
rom a VAR-DCC-GARCH model in Fig. 2. It can be seen that the DCC estimates also exhibit an upward trend, roughly fluctuate
round our smooth time-varying estimates, and almost lie within the estimated UCB of time-varying conditional correlations.
owever, the DCC estimates are quite volatile, and it is unclear why the DCC estimates decline persistently from 2012 to 2015
iven the fact that the DCC estimates still exhibit an upward trend after 2015 regardless of the impact of the trade friction and
OVID-19 pandemic. It should be noted that DCC represents the dynamic conditional covariances of the standardized residuals,
nd thus does not yield dynamic conditional correlations. Also, DCC yields inconsistent two step estimators (Caporin and McAleer,
013).

We next investigate the time-varying temporal spillovers. Fig. 3 plots the estimates of time-varying cross-autoregressive
oefficients, as well as the 95% uniform confidence bands (red dot-dashed line), the 95% pointwise confidence intervals (black
ashed line) and the estimates of the parameters assuming constancy (blue line). The uniform confidence bands show that the
emporal return spillovers from the U.S. stock market to the Chinese stock market significantly vary over time, while the temporal
13
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Fig. 2. Time-varying conditional correlations between the Chinese and U.S. stock markets. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

Fig. 3. Time-varying cross-autoregressive coefficients. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

return spillovers from the Chinese stock market to the U.S. stock market is not significantly from zero. By examining the point-
wise confidence intervals, we find that the temporal return spillovers from the U.S. stock market to the Chinese stock market are
not significant before 2005. However, during some specific time periods from 2006–2018, the point-wise intervals display locally
significant return spillovers from the U.S. stock market to the Chinese stock market and this return spillover effect declines gradually
after 2015. These results are consistent with the consensus that there exist significant return spillovers from mature markets to
emerging markets but not vice versa (e.g., Beirne et al., 2010).

Finally, we plot the estimates of time-varying GARCH coefficients in Fig. 4 to examine whether the second-order dynamics of
hese two market returns vary over time. From this figure, we can see that the second-order dynamics of U.S. stock market is
dentified as time-varying since the uniform confidence bands do not contain the estimates of the parameter assuming constancy,
hile the dynamics of Chinese stock market seem to be time-invariant. Interestingly, we find that the dynamics of U.S. stock market

hange dramatically in 2001, which may be due to ‘‘the Internet bubble bursting’’ in stock market, while during this period Chinese
tock market is still isolated from the rest of the world. To provide more empirical evidence, we also evaluate the conditional
olatility implied by our time-varying model and its parametric counterpart. Fig. 5 plots the estimates of conditional volatility
multiplied by 2) obtained from our time-varying model (red line) and its parametric counterpart (blue line), as well as the absolute
alue of stock returns (black line). From Fig. 5, it can be seen that the estimates of conditional volatility from these two models are
oughly the same except for some specific periods. Specifically, for S&P 500 returns, the estimated conditional volatility obtained
rom our time-varying is more persistent (or smoother) than that obtained from a constant model during 1999–2003. This result
s consistent with Gallo and Otranto (2012), who find that the realized volatility of S&P 500 returns has regime-specific behavior
nd its persistence has declined after the period 1998–2003. In addition, for SSE index returns, the estimated conditional volatility
btained from our time-varying model is smaller than that obtained from a constant model after 2015 when the stock market is
uite calm or of low volatility, but these two estimates are roughly the same when the stock markets are of high volatility.
14



Journal of Econometrics 240 (2024) 105671J. Gao et al.

a

5

a
f
p
s
t
c
t
d

s

Fig. 4. Time-varying GARCH coefficients. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
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. Conclusions

In this paper, we consider a wide class of time-varying multivariate causal processes which nests many classic and new examples
s special cases. We first prove the existence of a weakly dependent stationary approximation for the model (1.1) which is the
oundation to establish the corresponding asymptotic properties. Afterwards, we consider the QMLE estimation, and provide both
oint-wise and uniform inferences on the coefficient functions. In addition, we demonstrate the theoretical findings through both
imulated and real data examples. In particular, we show the empirical relevance of our study using an application to evaluate the
emporal return/volatility spillovers and conditional correlations between the stock markets of China and U.S. We find that (1) the
ontemporaneous interdependence between the two stock markets is statistically significant and is increasing over time and (2) the
emporal return spillovers from the U.S. stock market to the Chinese stock market significantly vary over time and can be only
etected at some local times.

There are several directions for possible extensions. The first one is to consider quantile regression methods for such locally
tationary multivariate causal processes. The second one is to propose a more powerful 𝐿2 test based on the weighted integrated

squared errors for testing whether some coefficients are time-invariant. We wish to leave such issues for future study.
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