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The competition–colonization (CC) trade-off is a well-studied coexistence mechanism
for metacommunities. In this setting, it is believed that the coexistence of all species
requires their traits to satisfy restrictive conditions limiting their similarity. To
investigate whether diverse metacommunities can assemble in a CC trade-off model,
we study their assembly from a probabilistic perspective. From a pool of species with
parameters (corresponding to traits) sampled at random, we compute the probability
that any number of species coexist and characterize the set of species that emerges
through assembly. Remarkably, almost exactly half of the species in a large pool
typically coexist, with no saturation as the size of the pool grows, and with little
dependence on the underlying distribution of traits. Through a mix of analytical results
and simulations, we show that this unlimited niche packing emerges as assembly actively
moves communities toward overdispersed configurations in niche space. Our findings
also apply to a realistic assembly scenario where species invade one at a time from a
fixed regional pool. When diversity arises de novo in the metacommunity, richness
still grows without bound, but more slowly. Together, our results suggest that the
CC trade-off can support the robust emergence of diverse communities, even when
coexistence of the full species pool is exceedingly unlikely.

competition–colonization trade-off | coexistence theory | community assembly | metacommunities |
probabilistic analysis

All organisms face physical and evolutionary constraints that limit simultaneous
optimization of different fitness components (1). These constraints create trade-offs,
which can foster coexistence by making multiple distinct trait combinations ecologically
viable (2, 3). A number of trade-offs are thought to contribute to maintaining the
incredible diversity of natural communities (4–9). Perhaps the best-known of these is the
competition–colonization (CC) trade-off, wherein dominant competitors are constrained
to be relatively poor colonizers of available habitat, due to lower fecundity, dispersal, or
growth rates (10–12). Weaker competitors may then persist by rapidly reaching and
reproducing in open habitat patches, staying one step ahead of competitive exclusion at
the landscape scale (3, 13).

The essential dynamics of this scenario can be captured in a simple patch-occupancy
model (14–16). Tilman (17) showed that this minimal model can potentially explain the
coexistence of arbitrarily many species along a single trade-off axis. Independently, May
and Nowak (18, 19) obtained similar results, using an identical mathematical model,
in an epidemiological context. These results are somewhat surprising because the model
assumes a strict competitive hierarchy; in a spatially well-mixed setting, only the single
best competitor would persist.

Despite this theoretical proof of concept, the extent to which the CC trade-off
can explain natural biodiversity remains murky. Empirical tests have yielded mixed
results (13, 20–23), although evidence for this trade-off—and its role in maintaining
coexistence—has been found in many taxa, including plants (5, 24–26), bacteria (27, 28),
fungi (29, 30), birds (31), insects (32), and taxonomically mixed communities (33, 34).
From a theoretical perspective, there has been significant debate over the specific
assumptions underlying CC trade-off models and how these assumptions affect predicted
coexistence (12, 13, 35, 36).

An even more fundamental question, though, is whether diverse communities can
emerge robustly under the CC trade-off through ecological assembly (37). In the basic
patch-occupancy model developed by Tilman, each species excludes inferior competitors
within a range of colonization rates similar to its own (17, 18). This limiting similarity
might seem to suggest that the trade-off axis could quickly become saturated, especially
when there is an upper limit to species’ colonization abilities (17). However, the degree
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of limiting similarity is an emergent property of this model,
making it difficult to predict whether or how niche space
saturates.

Tilman (17) demonstrated that a sufficiently good colonizer
can invade any metacommunity, and later work showed that ar-
bitrarily many coexisting species can in fact be packed into a finite
range of colonization rates (38). However, this requires precisely
spaced colonization rates, and even small perturbations to such a
fine-tuned packing cause the loss of many species (38). Indeed,
from a probabilistic viewpoint, the likelihood that a given set of
species will coexist decreases exponentially with its size (12, 39),
reminiscent of the classic complexity-stability paradox (40, 41).

To clarify the typical behavior of the CC trade-off, we
adopt a community assembly perspective. Rather than asking
whether a particular set of species can coexist, we examine
metacommunities that emerge through the model dynamics from
an initial random pool (41–43). This probabilistic approach is
a powerful way to identify characteristic outcomes in complex
models (44–46). Such outcomes are robust, in the sense that
they do not depend on specific parameter choices. To determine
whether high diversity emerges robustly, we investigate the
number of species that coexist from a pool of n species. We
characterize the distribution of this quantity, known as the species
richness distribution (47), along with other typical features of
self-assembled metacommunities. We find that on average half
of the species coexist, and these persistent communities become
predictably overdispersed in niche space. These properties show
remarkably universal behaviors for a range of possible trait
distributions in the species pool. Finally, we consider how these
results might change when metacommunities are assembled one
species at a time from a persistent regional pool or through the
sequential invasion of unique species.

Results
We focus on the well-known CC trade-off model (17)

dpi
dt

= cipi

1−
i∑

j=1
pj

− mpi −
i−1∑
j=1

cjpjpi, [1]

describing the fraction of patches (pi ≥ 0) occupied by species
i = 1, . . . , n in a metacommunity (

∑
i pi ≤ 1). Here, m > 0 is

the rate at which patches become vacant due to local extinctions,
(i.e., the disturbance rate (12, 15), also called the local extinction
(14) or mortality rate (17, 38)) which we assume to be equal
for all species, and ci > 0 is the colonization rate of species i.
Species are ordered by their competitive rank, and each species i
only experiences negative interactions from superior competitors
(species 1 . . . i − 1). We study the behavior of this model
when colonization rates are independent samples from a fixed
distribution, ordered such that ci < cj for all i < j. This
distribution defines how colonization ability tends to increase
with decreasing competitive rank (see SI Appendix, Fig. S2 for
examples). Given a pool of species defined by their colonization
rates, we then ask which species coexist through the dynamics
(Fig. 1).

First, we consider the mechanics of coexistence. Every non-
negative equilibrium is stable in this model, and thus, coexistence
is determined solely by which species are excluded (i.e., driven
to zero occupancy at equilibrium) by superior competitors
(17, 39). Proceeding down the competitive hierarchy, each
species i excludes inferior competitors with colonization rates
that are not sufficiently greater than the colonization rate of

species i. There is a colonization rate threshold, `i, that species
j > i must exceed to persist (Fig. 1B). This threshold expresses
a limit to similarity for inferior competitors. The exclusion
interval (ci, `i) is called the “niche shadow” of species i (12, 38).
Its length depends recursively on the preceding shadow—as ci
approaches its own lower bound (that is, `i−1), the shadow cast
by species i shrinks (38). In ecological terms, when species i
has more similar colonization ability to superior competitors,
it experiences stronger competitive suppression, and is less able
to suppress its own inferior competitors. As a result, its niche
shadow shrinks, providing more opportunity for coexistence of
species that are slightly worse competitors but better colonizers.
Thus, as the species pool grows, there are two opposing forces
that shape the potential for coexistence: i) Each species adds a
new niche shadow along the trade-off axis, reducing space for
coexistence, but ii) as colonization rates become more densely
packed, the typical niche shadow shrinks, increasing space for
coexistence (38).

Surprisingly, we find that these two forces tend to balance out
precisely. For a wide range of colonization rate distributions, we
observe that niche shadows shrink as 1

n , so that each coexisting
species excludes one competitor on average (see SI Appendix,
section 2A for details). As a result, the number of species that
persist in the assembled metacommunity, which we denote by

A

B

C

Fig. 1. Example species pool and metacommunity dynamics. (A) A set of
six species with colonization rates sampled independently from a fixed
distribution (here, an exponential distribution with rate 1, truncated atm = 1).
(B) Proceeding from lowest to highest colonization rate (equivalently, highest
to lowest competitive ability), each species excludes inferior competitors
within a “niche shadow” (shaded regions). The length of each niche shadow
depends on the distance from the species casting it to the previous niche
shadow. Species that fall within the niche shadow of a superior competitor
will be excluded (indicated by an X). (C) Consistent with this prediction, the
blue and orange species go extinct in a simulation of the model dynamics,
while the other four stably coexist.

2 of 9 https://doi.org/10.1073/pnas.2314215121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 K
ir

st
en

 V
al

le
e 

on
 J

an
ua

ry
 2

6,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

99
.7

.2
.4

8.

https://www.pnas.org/lookup/doi/10.1073/pnas.2314215121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2314215121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2314215121#supplementary-materials


S, is typically half of the initial pool (see SI Appendix, Fig. S2
for example realizations of the assembly process). Fig. 2 shows
this proportional scaling for species pools ranging from two to
more than one thousand species. We present results for four pos-
sible distributions of colonization rates—Uniform, Exponential,
Pareto (power-law), and Triangular (see SI Appendix, sections 2
and 6 for details and alternative distributions). We select these
distributions to highlight scenarios with very different qualitative
features, such as the presence or absence of a maximal colonization
rate, and left- or right-skew. Notably, the number of coexisting
species scales as E[S | n] = n

2 without saturation in all cases,
regardless of whether the distribution of colonization rates is
unbounded (Exponential and Pareto) or bounded (Uniform and
Triangular).

To better understand this lack of saturation, we examine
the full distribution of the number of persisting species. The
probability that exactly s species coexist from a pool of size n,
denoted P(S = s | n), can be approximated rigorously for
the Uniform and Exponential distributions, and heuristically
for a much broader class of distributions. We find that, as
n becomes large, P(S = s | n) becomes very close to the
binomial distribution B(n, 1

2 ). More precisely, because the best
competitor always persists in the final metacommunity, the
number of persistent species among the remaining n − 1 is
distributed as B(n − 1, 1

2 ). Fig. 3 shows this convergence for
all four example distributions. The binomial distribution is
tightly peaked around its mean. This implies that coexistence
of all n species is extremely unlikely, in agreement with existing
theoretical predictions (12, 39)—but so too is the exclusion of
many species. Instead, the number of persistent species is nearly
always about one half of the pool.

Fig. 2. The mean number of coexisting species, E[S|n], from a random
pool of n species grows as n

2 for different distributions of colonization
rates. For large n, all four distributions converge; for small n, E[S|n] scales
approximately linearly with n, but different distributions fall slightly above
or below the n

2 prediction (dashed line), depending on the tail behavior
of the distribution (notice, in particular, that the Uniform and Triangular
distributions are bounded between m = 1 and 2, while the Exponential and
Pareto have no upper bound—see SI Appendix, sections 2 and 6 for complete
details on each example distribution). Note the log–log scale of the main
figure; the inset highlights small n results on a standard scale. Points are
averages over 105 random realizations for each distribution and value of n.

Fig. 3. Distributions of the number of persistent species, S, from a random
pool of n species. For large n, P(S = s|n) is well approximated by the binomial
distribution B(n, 1

2 ) (black curve) regardless of how colonization rates are
distributed in the pool. P(S = s|n) is nearly binomial even for moderate n, and
converges very rapidly for the Uniform distribution. Histograms represent
the outcomes of 105 random realizations for each distribution and value of
n. Note that the maximum density in each panel is rescaled to 1 to facilitate
comparison across different values of n.

Although our analytical results are asymptotic in nature, we
find that the binomial distribution provides a good approxima-
tion even for moderate n. Additionally, Fig. 2, Inset shows that
the mean number of coexisting species already grows linearly
(and with slope near 1

2 ) for n < 20. In SI Appendix, section 2,
we show that deviations from the predicted binomial behavior
at small n (e.g., in Fig. 3 for n = 16) can be explained
by specific features of the colonization rate distributions. In
particular, notice that the Triangular distribution, which has
low density near m, shows a bias toward fewer coexisting species,
while the Exponential and Pareto distributions, which have long
upper tails, show slightly increased coexistence. In general, excess
competitive exclusion arises in any lower tail of the colonization
rate distribution, while excess coexistence arises in any upper tails,
although these deviations typically have negligible effects on the
overall metacommunity richness for large n.

The appearance of the binomial distribution might suggest
that each species in the pool (aside from the best competitor)
persists independently with probability 1

2 , as if we flipped a fair
coin to determine the persistence of each species (47). Consistent
with this intuition, we find that the marginal distribution of
colonization rates in each assembled metacommunity is identical
to the distribution in the corresponding pool (Fig. 4A). In other
words, the ecological dynamics induce no significant bias toward
the persistence of better competitors or colonizers. However, for
all distributions, the spacing of coexisting species along the CC
trade-off axis shows a marked and consistent signature of the
dynamical pruning (Fig. 4B). Compared to a random subset of
species from the pool, the spacing between consecutive persisting
species (i.e., ci − ci−1 in the coexisting metacommunity) is
substantially more even, with fewer small or large gaps.

For Uniformly distributed pools, we can compute this dis-
tribution of niche spacings analytically, and indeed it differs
qualitatively from the naive expectation of independent sampling
from the pool (SI Appendix, section 3). Under independent
random sampling, the theoretical distribution of spacings has
a mode at zero, while the realized spacings in the coexisting
metacommunity have a nonzero mode; in fact, this distribution
has no density at all at zero, indicating substantial repulsion
between the assembled colonization rates. Furthermore, we find
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A B

Fig. 4. Comparing the distribution of colonization rates in assembled metacommunities vs. the random pool. (A) The marginal distribution of colonization
rates in assembled metacommunities (solid lines) closely matches the pool (dashed lines). For each distribution, we plot the empirical distribution function
of colonization rates for 103 random pools of n = 64 species. (B) The distribution of spacings between consecutive colonization rates is more peaked for
assembled metacommunities (solid lines) than for a random set of species of the same size from the corresponding pools (colored dashed lines). In particular,
assembled metacommunities are less likely to have very small spacings, compared to a random sample from the pool. Instead, the realized spacings closely
match the distribution of spacings between every other species in the pool (black dashed lines). Note spacings are shown on a log scale to highlight behavior
at small values.

that the distribution of spacings in the final metacommunity
is identical to the distribution of spacings between every other
colonization rate (i.e., ci − ci−2) in the species pool—the most
evenly spaced way to choose n

2 species from the pool on average.
Based on this analytical result, we conjecture that this is the
general behavior for any distribution of colonization rates. In
Fig. 4B, we show that our conjecture matches the simulation
results nearly perfectly. Thus, while assembly does not distort
the marginal distribution of colonization rates, it does induce
correlations between species at small scales along the trade-off
axis, moving the assembled metacommunity toward more evenly
spaced configurations, which make coexistence possible (38).

All of our results so far are obtained under the assumption
that the full species pool is introduced simultaneously in the
landscape. While this kind of assumption is typical for theoretical
studies of coexistence (17, 41, 44, 45), it is unlikely to reflect
community assembly in most natural systems (43, 48). This
motivates us to ask whether the ecosystem dynamics behave
differently under more realistic assembly scenarios, where the
metacommunity is assembled through sequential species in-
vasions (42, 49). At one extreme, we consider a case where
species enter the local landscape one at a time from a fixed
regional pool, with re-invasion of the same species possible
at different points in time. In more mathematical terms, this
corresponds to sampling with replacement from a finite species
pool. In this scenario, we can prove that the metacommunity
will eventually reach a noninvasible composition identical to
the coexisting metacommunity under our previous all-at-once
assembly assumption (48) (see SI Appendix, section 4A for
details). For example, in Fig. 5A, we show that when species
from the pool illustrated in Fig. 1 are introduced one at a time—
rather than all-at-once—the final outcome is the same (compare
Fig. 1C and Fig. 5A after t = 1,000). This implies that, given
sufficient time for assembly to occur, all of our results linking the
regional pool and local metacommunity will still apply.

In another limiting case, new species enter the ecosystem
through de novo invasion. We assume that invasion events are

rare, so that the metacommunity dynamics reach equilibrium
between each invasion, and in this scenario, each new species
is sampled independently from a fixed, underlying distribution
of colonization rates (i.e., sampling from an infinite pool). A
similar scenario was previously studied by Nowak and May in
the context of pathogen evolution (18, 19). In agreement with
their analysis, we find that the expected number of coexisting
species increases logarithmically with the number of invasion
events (18). This richness–accumulation relationship is shown in
Fig. 5B for different colonization rate distributions. To more
rigorously characterize this relationship, we derive the lower
bound log(�/2 + 1) for the mean richness after � invasion
attempts, regardless of the distribution of colonization rates (SI
Appendix, section 4B). Our simulations substantially exceed this
bound but grow at the same pace asymptotically.

This unbounded increase in diversity is qualitatively consistent
with our central finding that the CC trade-off does not saturate.
However, as noted by Nowak and May, the logarithmic growth
can be extremely slow once diversity is high, making it difficult to
distinguish from saturation in practice. This assembly scenario
behaves somewhat differently from our previous cases because
the strong hierarchical interactions in this model create historical
contingency. While there are no true priority effects under this
model (i.e., there is a unique equilibrium corresponding to any
fixed set of species, regardless of their order of arrival), whether a
particular invader can enter the community depends on which set
of species has previously invaded. We assume that unsuccessful
invaders decline to extinction and never re-invade, so many
species are lost from the metacommunity through the course
of assembly.

Interestingly, in the de novo invasion scenario, the distribution
of colonization rates has a substantial effect on the rate of diversity
accumulation. Fig. 5B shows that the absolute difference in
mean richness between different distributions grows with the
number of invasion attempts (SI Appendix, Fig. S10). While
the shape and asymptotic behavior of these curves is similar, after
300 invasion attempts metacommunities with Pareto-distributed
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A B

Fig. 5. Two different one-at-a-time assembly scenarios. (A) When species invade one at a time from a fixed pool, the metacommunity eventually converges
to the same non-invasible equilibrium as if all species were introduced simultaneously. Here, one species is chosen to invade every 150 time units (black dots)
from the pool in Fig. 1. As in Fig. 1, the blue and orange species eventually go extinct, and the four others coexist at the same equilibrium occupancies as in
Fig. 1C. Note that species present in the final metacommunity may be transiently excluded during the assembly process, only to re-invade later (e.g., yellow
species). (B) Accumulation of species richness in the de novo invasion scenario. Colored lines show the mean number of coexisting species as a function of the
number of invasion attempts. Shading indicates ±1 SD. Mean diversity accumulates faster than a logarithmic lower bound (dashed line), but asymptotically
these curves grow logarithmically (SI Appendix, section 4B). Curves represent statistical summaries of 105 random assembly trajectories.

colonization rates have nearly twice as many species as Triangular-
distributed metacommunities, on average. As we found for the
convergence of P(S = s | n) in the all-at-once assembly scenario,
this difference arises from the tail behaviors of the colonization
rate distributions. Distributions with long upper tails (here the
Pareto and Exponential) support faster accumulation of species
through de novo invasion than do the distributions with lower
tails (Triangular) and bounded support (Uniform).

Discussion
We asked whether species-rich metacommunities can emerge
and coexist under the CC trade-off through ecological assembly.
Despite intuitive arguments for the saturation of the trade-off
axis (12, 17), we showed that arbitrarily large sets of species can
coexist through the model dynamics. No fine-tuning is necessary
to produce highly diverse metacommunities, given a large enough
species pool. These results hold for a wide range of colonization
rate distributions, including cases where there is an upper limit
to colonization ability. In these cases, the trade-off axis simply
becomes more and more finely partitioned as the metacommunity
grows.

Remarkably, species richness at the metacommunity scale
is not only generically nonsaturating, but also exhibits nearly
universal properties when diversity is high (large n). For quite
different colonization rate distributions, the size of the coexisting
metacommunity becomes binomially distributed, implying that
in nearly all cases a constant fraction (near one half) of species will
coexist. Our numerical simulations highlight that this behavior
becomes typical for ecologically relevant pool sizes on the order
of tens of species.

We also showed that assembly shapes coexisting metacom-
munities in consistent ways. These effects are somewhat subtle,
highlighting the value of theoretical models for clarifying the
signatures of assembly processes in nature. For example, the
marginal distribution of colonization rates in the assembled
metacommunities is indistinguishable from the distribution in
the pool, an apparently “neutral” pattern (50, 51). However,

colonization rates in the coexisting metacommunities show fine-
scale repulsion, a clear statistical fingerprint of competition driv-
ing community assembly (42, 51, 52). Notably, for Uniformly
distributed colonization rates, this repulsion phenomenon can be
characterized analytically, providing a uniquely tractable model
for the self-organization of assembling communities in niche
space. In SI Appendix, section 5, we examine another interesting
contrast by comparing probability of persistence and average
occupancy in the coexisting metacommunity, both as a function
of competitive rank. Except for small deviations at the upper and
lower extremes of the competitive hierarchy, all species are equally
likely to be found in the coexisting metacommunity; however,
when stronger competitors persist, they tend to have higher occu-
pancy (38). Moreover, the species occupancy distribution in the
coexisting metacommunity strongly depends on the distribution
of colonization rates, while the probability of persistence does
not. Our probabilistic approach is instrumental for dissecting
these unintuitive patterns.

Our basic conclusions are robust across distinct assembly
scenarios, although we find that diversity accumulates much
more slowly when species cannot re-invade. Further exploration
of detailed one at a time assembly processes remains an important
avenue for connecting our theoretical results to natural systems,
where multiple timescales and sources of species invasions will
usually be at play. However, the overarching result that niche
packing does not fundamentally limit coexistence in this model
suggests it may be important to consider the mechanisms
that supply diversity (evolution, immigration, and regional
pools) in order to understand what sets observed levels of
biodiversity(37, 42, 43, 53, 54). Interestingly, Lehman and
Tilman (55) previously showed that high diversity can develop
in an evolutionary version of this model, again consistent with
our results.

It will also be important to ask whether these results hold,
at least qualitatively, for more general versions of the trade-off
model. The basic CC trade-off model that we consider has been
critiqued for relying on overly simplistic assumptions (35, 36). In
particular, this model assumes that worse colonizers always out-
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compete better ones, regardless of how similar their colonization
rates are (perfectly asymmetric competition); that propagules of
superior competitors can displace inferior competitors (displace-
ment competition); and that patches lack spatial structure (global
dispersal). Calcagno et al. (12) studied a more complex CC trade-
off model relaxing the first two assumptions, and found that the
effects of these changes were nuanced, but did not fundamentally
alter the capacity of the trade-off to maintain coexistence.
Moreover, (nearly) perfectly asymmetric competition is not
unknown in the empirical literature (36, 56, 57). However,
the assumption of asymmetric competition does constrain the
possible dynamics, for example precluding the emergence of
“nearly neutral” trait clusters, as found in other theoretical
studies of assembly (58). Regarding displacement competition,
Calcagno et al. showed that relaxing this assumption can
actually favor coexistence. This outcome is especially likely when
competition is not perfectly asymmetric, suggesting that these
assumptions might “cancel out” to some extent. And while
considering explicit spatial structure would undoubtedly affect
our quantitative results, theory generally indicates that this would
only increase the potential for coexistence, strengthening our
qualitative conclusions (59).

Although our analysis reveals outcomes that are quite robust
to different colonization rate distributions (and different quali-
tative features such as the presence or absence of a maximum
colonization rate), it does rely fundamentally on the existence of
a strict CC trade-off. Whether this is generally the case in natural
metacommunities is a question that can only be answered by
systematic empirical study. However, our results suggest that
when a strong trade-off is present, coexistence of many species is
not only possible but typical. Some authors have suggested that
other trade-offs, such as competition-defense or colonization-
persistence tradeoffs, are more likely to influence coexistence in
natural ecosystems (3, 8, 9, 36, 60). It would be interesting to
apply a probabilistic assembly perspective, as we showcase here,
to study the typical behavior of other types of trade-offs. We
hypothesize that trade-offs between other trait combinations,
by equalizing fitness across a trait axis, may similarly permit
nonsaturating niche packing. In fact, a recent theoretical analysis
found strikingly similar outcomes in forest dynamics models
featuring trade-offs in competition for light (61).

This last, admittedly speculative, suggestion is bolstered not
only by the analysis of other trade-off models, but also by the
surprising similarity between our results and quite different
models of community assembly. A binomial species richness
distribution, as we found here, is expected under null and neutral
models of assembly, where species do not interact (47). It is
also found for a class of Lotka–Volterra models with random
interactions. Servan et al. (41) showed that when growth rates and
interaction coefficients are sampled from symmetric distributions
with mean zero, the number of coexisting species from a pool
of size n is distributed as B(n, 1

2 ). This result holds assuming
species are strongly self-limited, such that any biologically feasible
equilibrium is stable, as in the CC trade-off model. However,
these cases are otherwise very dissimilar. Servan et al. considered
a scenario where interactions are essentially unstructured and all
species are statistically equivalent—as in simple models without
interactions (47)—while we consider metacommunities with
strongly hierarchical interactions, and therefore clear differences
between species at opposite ends of the trade-off axis. That
species richness distributions are identical in these dissimilar
cases suggests the intriguing possibility that this is a more general
outcome of ecological dynamics where species possess some kind

of symmetry, either imposed by assumption, or emerging from
ecologically relevant mechanisms, as we demonstrate here.

Materials and Methods

Model and Probabilistic Approach. We study a classic metacommunity
model, often called the Hastings–Tilman model (15, 17), representing a set
of species competing for a large number of habitat patches. This model assumes
there is a trade-off between colonization and competitive ability, and that
competition is strictly hierarchical; thus, each species i is characterized only
by its colonization rate (ci) and a disturbance rate (mi). The general form of this
model was introduced by Tilman (17):

dpi(t)
dt

= cipi(t)

1−
i∑

j=1

pj(t)

− mipi(t)−
i−1∑
j=1

cjpj(t)pi(t), [2]

with i = 1, . . . , n. Here, pi(t) ∈ [0, 1] tracks the fraction of patches occupied by
species i at a given time t (the occupancy of species i), mi > 0 is the disturbance
rate for species i, and ci > 0 is the colonization rate of species i, where species
are arranged in increasing order of c, such that c1 < · · · < cn. In other words,
c1 is the colonization rate of the best competitor and cn is the colonization rate
of the weakest.

The first term of Eq.2 represents the colonization of empty patches by species
i, the second term represents local extinction or mortality (due to frequency-
independent factors) in patches where species i is currently present, and the
last term represents loss of patches due to colonization by superior competitors
(i.e., displacement). Each species i is always outcompeted (displaced) by species
j < i, following the competitive hierarchy between species. In this study, we
focus on a simplified version of this model where the disturbance rate, m, is
the same for all species. This assumption can be motivated by regarding m as a
rate of environmental disturbance that affects all species equally (15). We also
note that this model is a special case of the more general CC trade-off model
introduced by Calcagno et al. (12), where they assume that competition is not
perfectly asymmetric.

We investigate the metacommunities that emerge through the dynamics
of Eq. 2 when the model parameters (c values) are sampled at random. More
precisely, we take the colonization rates to be a sorted, independent, identically
distributed (iid) random sample from a continuous distribution. Sorting, in this
context, reflects our assumption of a CC trade-off. In the language of probability
theory, these random colonization rates are order statistics (62).

Treating species’ traits as random samples is a way to uncover model outcomes
that are typical and robust, and therefore most likely to be relevant in natural
systems. Since this approach was introduced in ecology by the seminal work of
May (40), it has proven to be a productive way to characterize ecological models
with many species and parameters, leading to general insights where neither
precise empirical determination of parameters nor systematic exploration of
parameter space are tractable options (39, 45, 63). Additionally, we go beyond
classic applications of this random-interaction approach, which focused on
computing properties of a particular equilibrium (e.g., the equilibrium with
all n species), to study the set of persistent species that are actually assembled
through the dynamics of Eq.2, possibly following the extinction of some species
from the pool (41, 44–46).

We note that while drawing traits at random allows us to study outcomes that
are independent of the exact values of the model parameters, our conclusions
might still depend on the distribution of these parameters, an issue previously
discussed by Adler (64) and Calcagno et al. (65). To maintain generality, we
consider an arbitrary continuous distribution with density f(x), subject only
to the assumption that f(c) = 0 for c < m. Species with c < m would
go extinct even in isolation, so this assumption narrows our focus to a pool of
potentially coexisting species—thus, we concentrate on metacommunities where
coexistence is determined by biotic interactions, not environmental filtering. For
analytical tractability, we consider specific choices of f(x) for some of our results,
although we treat more general cases in SI Appendix, section 2 and we explore
a range of possible distributions using numerical simulations.
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Equilibria and Global Stability. Many properties of Eq. 2 can be found
by noticing that this model is a special case of the well-known generalized
Lotka–Volterra (GLV) model. In particular, we can re-write Eq. 2 in the GLV form

dpi
dt

= pi

ri −
n∑

j=1

Aijpj

 ,

with ri = ci − mi and Aij =


ci + cj if j < i,
ci if i = j,
0 otherwise.

[3]

This is a highly structured GLV system where the matrix of interactions, A, is
lower triangular, corresponding to hierarchical competition, and growth rates,
r = (r1, . . . , rn), are tied to interaction strengths through the colonization rate
parameters. Due to our assumption that ci > mi for all species, all growth rates
are positive.

To study the behavior of p(t) = (p1(t), . . . , pn(t)) as t → ∞, we
characterize the fixed points of the system Eq. 3. Assuming that no two species
have identical colonization rates, A is an invertible matrix, and a potential fixed
point p? can be explicitly determined by p? = A−1r. However, this point
will only be a fixed point of the dynamics if p?

i > 0 for all i. More generally,
we are interested in finding subsystems where some species may vanish (i.e.,
pi(t) −−−→

t→∞
0forsome i)andall thosethatremaincoexistatpositiveoccupancy.

For GLV models, there is one potential fixed point corresponding to each unique
combination of persisting/extinct species. Moreover, using standard results for
the GLV model, it is straightforward to prove that exactly one of these fixed points
is globally stable, meaning that for every p0 > 0, the solution to Eq. 3 which
starts at p(0) = p0 approaches this fixed point as t → ∞. The proof of this
result, which we present in SI Appendix, section 1, relies on the triangularity and
nonnegativity of A.

This unique globally stable equilibrium can be found using a simple
algorithm,whichalsotakesadvantageof thetriangularstructureofA.Becausethe
dynamics of species i only depend on species j ≤ i, the relevant fixed point can be
found by setting p?

1 at its equilibrium value, and then computing the equilibrium
occupancy for species 2. If this value is positive, it is added to the fixed point; if it is
negative, p?

2 is set to zero. This is repeated for species 3, and so on. This procedure
ensures that the resulting equilibrium is both feasible, meaning that all species
have nonnegative occupancy, and noninvasible, meaning that extinct species
would not be able to re-invade (i.e., they have negative invasion growth rates).
We use this algorithm (SI Appendix, section 1) to efficiently find the persisting
set of species in our simulations, bypassing the need to numerically integrate
the model dynamics. Simulations were conducted in R (version 3.6.3); all code is
available at https://github.com/zacharyrmiller/coexistence_random_tradeoff.

Approximating the Persistent Set When n Is Large. For a pool of n species
with colonization rates sampled from some distribution with density f(x), we
aim to calculate the probability that any particular set of species constitutes the
unique equilibrium metacommunity, which we denote byS . It is then possible
to derive the distribution of key quantities, such as the richness of the final
coexisting metacommunity (S = |S|).

To calculate these probabilities, we analyze the iterative process described
above mathematically. Tilman (17) derived a formula for the niche shadow
associated with species i; that is, a range ci < cj < `i within which any inferior
competitor j is excluded. Thus, rather than computing p?

j to determine whether
species j is in the coexisting metacommunity (using the algorithm outlined
above), one can equivalently compute `i for each coexisting species and then
check whether cj falls within this niche shadow. This alternative perspective is
convenient, because it can be reduced to a recurrence formula. We show (SI
Appendix, section 1) that the thresholds `i satisfy

`i =
c2

i
`i−1

, [4]

with `0 = m, reflecting the fact that c1 must exceed m for the first species to
persist. From Eq.4, it is easy to see that the length of each niche shadow, `i− ci,

decreases as ci approaches `i−1. This shrinking is crucial for the unlimited niche
packing we observe.

Now we introduce the random variable Xi describing the amount by which
ci exceeds its threshold (i.e., Xi = ci − `i−1). If n is sufficiently large, Xi will
typically be small. We can then use the following approximation for Eq. 4

`i =
(`i−1 + Xi)

2

`i−1
≈ `i−1 + 2Xi, [5]

where we neglect the small quadratic term X2
i /`i−1. We use this approximation

to calculate the probability that a given number of species fall in the interval
(ci, `i) ≈ (ci, 2ci − `i−1).

Distribution of S: Elements of the Proof. As a first step toward calculating
the probability that a given set of species forms the equilibrium metacommunity
(and the rest go extinct), we calculate the probability that species 1 excludes the
subsequent k species in the pool. We define the random variable K1 to be the
number of species excluded by species 1.

Supposing that c1 ∈ (x, x + dx), which occurs with probability f(x) dx,
the (approximate) niche shadow cast by species 1 extends from x to 2x − m.
Conditioning on this value for c1, the probability that there are exactly k species
with colonization rates in (x, 2x − m) and n − k − 1 with colonization rates
greater than 2x − m is given by(

n− 1
k

)
(F(2x − m)− F(x))k(1− F(2x − m))n−k−1 [6]

using the assumption that colonization rates are sampled independently. Here,
F(x) is the cumulative distribution function associated with f(x) (i.e., F′(x) =
f(x)). The combinatorial factor counts the number of ways to choose k excluded
species from among the n− 1 that are not the first.

Multiplying these (independent) probabilities together and integrating over
possible values of x, we can compute the marginal probability that the first
species excludes exactly k others:

P(K1 = k) =

n
(

n− 1
k

)∫ U

m
(F(2x − m)− F(x))k(1− F(2x − m))n−k−1f(x)dx.

[7]

Another combinatorial factor n appears because any of the n species might be
selected as the best competitor (species 1). The integral runs from m to U, an
upper limit that depends on the support of f(x) and value of k. If the distribution
of colonization rates is restricted to a finite interval (m, b) and k < n − 1,
then U = b+m

2 , ensuring that the niche shadow does not exceed b. Otherwise,
U = b or U =∞, depending on whether the distribution is bounded or not.

In SI Appendix, section 2E, we discuss a large n approximation for Eq.7when
the distribution is arbitrary. Here, for simplicity, we restrict our attention to the
Uniform distribution U[m, b]. Applying the corresponding definitions for f and
F, and using the change of variables y = 2

b−m (x − m), Eq. 7 reduces to

P(K1 = k) = n
(

n− 1
k

)
1

2k+1

∫ 1

0
yk(1− y)n−k−1dy =

1

2k+1
. [8]

This last equality comes from recognizing the integral as a beta function (see SI
Appendix, section 2B for details). We have assumed here that k < n− 1 (and
set U = b + m

2 accordingly). In the case k = n − 1, we show (SI Appendix,

section 2B) that the value is 1
2n−1 instead.

This result immediately allows us to compute the probability of observing an
entire equilibrium configuration. Using the Markov property of order statistics
(62), once we condition on the first k + 1 species falling below a certain point
(the threshold value `1 = 2x − m), and the remaining species above, the
distribution of these n− k − 1 remaining colonization rates is independent of
the first k + 1, and iid from the original distribution truncated at `1. For the
Uniform distribution, this truncated distribution is again Uniform. Thus, with very
minor modifications, the probability that the second persistent species excludes
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exactly k2 species is calculated exactly as above. Continuing this process, and
relying on the Markov property to guarantee conditional independence at each
step, we can calculate the probability of any particular set of persistent species,
specified by the number of excluded species between them(k1, k2, . . . ), simply
by multiplying. Extending our earlier notation, we define Ki as the number of
species excluded by the ith persisting species. For example, from a pool of seven
species, the coexisting set {1, 2, 5} would correspond to K1 = 0, K2 = 2, and
K3 = 2. The probability of a particular final set of species thus specified is

P (K1 = k1, K2 = k2, . . . ) =

s∏
i=1

P(Ki = ki),

=

s−1∏
i=1

1

2ki+1
×

1

2ks
,

=
1

2
∑s

i=1 ki+s−1
,

=
1

2n−1
,

where s is the number of persisting species. The final equality follows from the
fact that s = n−

∑s
i=1 ki by definition. Remarkably, the final probability does

not depend on the particular set of persistent species, or even on s. It is equally
probable to observe any set of species, so the probability of finding s species in
the assembled metacommunity is directly proportional to the number of sets of
size s. More precisely, since the first species always persists, we have

P(S = s | n) =

(
n− 1
s− 1

)
1

2n−1
, [9]

which is the binomial distribution B(n − 1, 1
2 ) for the number of persisting

species in addition to the first (i.e., the random variable S − 1 is binomially
distributed). From this fact, we can immediately conclude that the average
number of persisting species is n+1

2 , very close to half of the pool.

Data, Materials, and Software Availability. Simulation code data have been
deposited in Zenodo (https://doi.org/10.5281/zenodo.7786661) (66).
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