
Text S1. Supplementary methods 

Microarray data preprocessing 

Expression arrays were analyzed using the Affymetrix Power Tools v.1.12.0 

(http://www.affymetrix.com/). The experimental probe masking workflow provided by the 

Affymetrix Power Tools was utilized to filter the probeset (exon-level) intensity files by 

removing probes that contain known SNPs in the dbSNP database (1) (v129). Overall, of the 

~1.4 million probesets on the exon array, ~350,000 probesets were found to contain at least one 

probe with a SNP (~600,000 probes) (2). The resulting probe signal intensities were quartile 

normalized over all 74 samples. Probeset expression signals were summarized with the robust 

multi-array average (RMA) algorithm (3) and log2 transformed with a median polish. We then 

generated the expression signals of the ~22,000 transcript clusters (gene-level) with the core set 

(i.e., with RefSeq-supported annotations) (4) of exons by taking averages of all annotated 

probesets for each transcript cluster. Adjustment for possible batch effect was conducted by 

COMBAT (http://jlab.byu.edu//ComBat/) (5). We consider a transcript cluster to be reliably 

expressed in these samples if the Affymetrix implemented DABG (detection above ground) (6) 

p-value was less than 0.01 in at least 67% of the samples in each test group (healthy controls, 

patients with complicated sarcoidosis, patients with uncomplicated sarcoidosis) in each 

population, respectively. We further limited our analysis set to the genes with unique annotations 

(i.e., transcripts corresponding to unique genes) from the Affymetrix NetAffy website 

(https://www.affymetrix.com/analysis/netaffx/, accessed on Dec. 1, 2010). Totally, 11,412 and 

11,592 transcript clusters in the AA and EA samples, respectively, met these criteria and were 

further analyzed.  

http://www.affymetrix.com/
http://jlab.byu.edu/ComBat/)
https://www.affymetrix.com/analysis/netaffx/


Principal component analysis 

Principal component analysis (PCA) was used to investigate the major trend in gene expression 

variation among patients. In this study, the expression values of genes in each patient were 

plotted in a multidimensional space. PCA identified a series of new orthogonal axes accounting 

for the greatest variation among patients. The analysis yielded the coordinate of each patient on 

each new axis, and the fraction of the total variation was accounted for by each axis.  

Support vector machine 

Support vector machine (SVM) is a machine learning technique based on statistical theory. The 

principle of SVM is to find a maximum margin hyperplane for classification. The instances are 

mapped to a higher dimensional space using the kernel function. Kernel function allows one to 

work in a higher dimensional space without computing all elements. SVM will then choose a 

maximum soft margin separating hyperplane in this higher dimensional space, which separates 

the training instances by their classes. The classification of a test sample will then be determined 

by a sign function which is defined by the parameters of the hyperplane. The instances closest to 

the hyperplane are called support vectors and are vital for training (7). 

Predictive model to identify signature genes 

To identify gene signatures useful in the diagnosis and classification of sarcoidosis, SVM using a 

linear kernel (7), was applied in combination with recursive feature elimination (RFE) for 

generating a predictive model. The decision function of a linear SVM is 

   bsignf  xwx)(   bsignf  xwx)(



where x is the gene expression vector of a sample, w is the vector of weights of the features, and 

b is a scalar offset (8-10). The RFE approach recursively reduces the number of genes used in the 

predictor function by removing those genes with lowest weights and re-fitting the SVM 

algorithm using the remaining genes. In the first step, all differentially expressed genes (at the 

above-mentioned significance level) between cases with complicated sarcoidosis and healthy AA 

or EA controls are ranked by SVM according to their weights. In each of the following steps of 

the RFE procedure, 50% of  genes were eliminated from the predictor model until the gene 

number was less than 20. A five-fold cross-validation (repeated 1,000 times) of the predictive 

models based on differently sized subsets of genes, as selected by RFE, was performed. After the 

recursive feature selection steps on each subset, the frequency of selected features were counted 

at each level among all rounds of cross-validation experiments. The most frequently selected 

features were reported as signature genes (10).  

Performance measurement of predictive model 

The performance of the predictive model was evaluated by five-fold cross-validation accuracy, 

sensitivity, and specificity. These indices are determined thus: 

                               

                       

                       

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives and 

false negatives, respectively. 



Generation of a T cell receptor TCR/JAK-STAT/cytokine-cytokine receptor 

signaling pathway gene signature 

T cell receptor (TCR) signaling pathway genes, as annotated by the KEGG (11), are comprised 

of the TCR and co-stimulatory molecules such as CD28 and IL7R, a gene highly expressed in 

both naïve and memory T cells and implicated in sarcoidosis susceptibility (12-14). Because the 

JAK-STAT (JS) and cytokine-cytokine receptor (CCR) signaling pathways are implicated in 

sarcoidosis pathogenesis, genes within these two pathways were also collected from KEGG (11). 

TCR/JS/CCR signaling pathway genes differentially expressed between EA or AA patients with 

complicated sarcoidosis and normal controls were estimated for their power to classify 

sarcoidosis cases and normal controls, as well as complicated and uncomplicated sarcoidosis in 

our combined (EA and AA), EA, and AA samples, separately. Using linear SVM, a five-fold 

cross-validation (repeated for 1,000 times) of the predictive models based on TCR/JS/CCR 

signaling pathway genes was performed. The means of the predictive accuracy of the 

TCR/JS/CCR signaling pathway genes were compared with those of a 20-gene signature by 

standard t test (P < 0.05 as the cutoff for significance). 

Genotypic data on SNPs residing within sarcoidosis signature genes 

We obtained genotypic data for signature gene SNPs via analysis of a sarcoidosis GWAS 

(genome-wide association study) with current SNP and gene annotations obtained from the 

Affymetrix NetAffy website (accessed on Dec. 1, 2010). The sarcoidosis GWAS dataset was 

comprised of 195 (46 complicated) EA cases and 212 (68 complicated) AA cases with SNPs 

genotyped using the Affymetrix 6.0 SNP Array. Briefly, the SNPRMA and CRLMM packages of 

the Bioconductor Project (15) were used to preprocess the scanned intensities and genotype 



calling. Genotypic data were checked for genotyping rate and Hardy-Weinberg Equilibrium (P < 

10
-6

) and publicly available dbGaP (http://www.ncbi.nlm.nih.gov/gap) data for the GAIN 

Genome-wide Association Study of Schizophrenia (v3, October, 2010) utilized as healthy 

normal controls. Specifically, 1-1 matched dbGaP samples were selected based on general 

genetic background (i.e., according to the weighted distance between each case and controls 

from a principal component analysis on common SNPs with minor allele frequency (MAF) 

greater than 0.05 in normal individuals) and gender for each population. The allele frequencies of 

common SNPs (MAF>0.05) in signature genes and genes in candidate pathways were compared 

using PLINK (16) between patients and normal controls, as well as between complicated and 

uncomplicated sarcoidosis patients in each population, separately. Since this is a targeted 

analysis on a small number of signature and candidate genes, a cutoff of nominal p-value<0.01 

was chosen to call significant relationships.  
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