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Background. Cellular hypoxia, if severe enough, results usually in injury or cell death. Our research in this area has focused on
the molecular mechanisms underlying hypoxic tissue injury to explore strategies to prevent injury or enhance tolerance. The
current experiments were designed to determine the genetic basis for adaptation to long term low O2 environments.
Methodology/Principal Findings. With long term experimental selection over many generations, we obtained a Drosophila
melanogaster strain that can live perpetually in extremely low, normally lethal, O2 condition (as low as 4% O2). This strain
shows a dramatic phenotypic divergence from controls, including a decreased recovery time from anoxic stupor, a higher rate
of O2 consumption in hypoxic conditions, and a decreased body size and mass due to decreased cell number and size.
Expression arrays showed that about 4% of the Drosophila genome altered in expression and about half of the alteration was
down-regulation. The contribution of some altered transcripts to hypoxia tolerance was examined by testing the survival of
available corresponding P-element insertions (and their excisions) under extremely low O2 conditions. We found that down-
regulation of several candidate genes including Best1, broad, CG7102, dunce, lin19-like and sec6 conferred severe hypoxia
tolerance in Drosophila. Conclusions/Significance. We have identified a number of genes that play an important role in the
survival of a selected Drosophila strain in extremely low O2 conditions, selected by decreasing O2 availability over many
generations. Because of conservation of pathways, we believe that such genes are critical in hypoxia adaptation in
physiological or pathological conditions not only in Drosophila but also in mammals.
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INTRODUCTION
Hypoxia, as a result of disease or high altitude, can have

devastating effects. Over the past decade, research in this area

has begun to focus on the molecular and genetic mechanisms

underlying hypoxic tissue injury or tolerance using different

animal models. Some of these studies have also explored strategies

by which injury could be either prevented or alleviated and

tolerance enhanced [1]. The discovery of the hypoxia-inducible-

factor (HIF) and its regulation under low O2 conditions in

vertebrates and invertebrates has opened major avenues for

investigating mechanisms of adaptation and potential strategies for

therapy [2]. However, there are mechanisms of hypoxia resistance

or adaptation that may not be related to HIF function [3,4], and

the underlying genes are, by and large, unknown.

Our previous studies have demonstrated that Drosophila

melanogaster is very resistant to acute anoxia (no O2 in environment

for a few hours) and does not suffer tissue injury under such severe

conditions [5,6]. By using different molecular and genetic

approaches, including a mutagenesis screen, several genes have

been identified that regulate the response of this organism to acute

anoxia (i.e., tps1 [7], ADAR [6,8], and fau [9]). However, these

previous approaches and experiments were not designed to

determine the genetic basis for adaptation to long term (i.e., over

many generations) low O2 environment, such as occurs when

organisms live at high altitude. In the current study, we selected for

flies (AF) that can complete all life cycle stages and live perpetually

in extremely low O2 conditions, levels which are prohibitive and

lethal for naı̈ve flies (NF). We then used gene expression profiling

to identify the genes whose expression levels were significantly

different in the NF versus AF. Previous studies have shown that

genes underlying experimentally selected multigenic traits (e.g.,

geotaxis) can be identified by using expression profiling approaches

[10]. Here, we employed this approach to study hypoxia tolerance

in Drosophila and identified genes that play an important role in this

selected phenotype.

METHODS

Parental Drosophila melanogaster isogenic lines
In order to provide allelic variation for laboratory selection, we

crossed 27 isogenic Drosophila melanogaster lines (kindly provided by

Dr. Andrew Davis) which have different recovery times in acute

anoxia test [8] as well as different elcosion rates when cultured
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under hypoxic conditions (Figure S1 and S2). Male and virgin

female flies (n = 20) from each of the 27 lines were collected and

pooled in a chamber and maintained at room temperature with

standard food medium. Embryos from this pooled fly population

were collected as F1 and subjected to either long term (over many

generations) hypoxia (selection experiment) or normoxia (control

experiment). In order to determine the starting O2 concentration

for hypoxia selection, we tested first the feasibility and tolerance of

the F1 progenies of the parental cross to different O2 concentra-

tions (i.e., 8, 6, or 4% O2). In addition, the tolerance of each

parental line to hypoxia was measured by testing survival for each

individual line in the hypoxic environments. Percentage eclosion

was determined by calculating the ratio of the number of empty

pupae to the number of total pupae in each culture vial. The

selection was started therefore at 8% O2 and this concentration

was gradually decreased by 1% each 3 to 5 generations to keep the

selection pressure. Six separate populations of F1 were cultured in

6 individual chambers, 3 of them were used for hypoxia selection

and 3 others for the control experiments. Embryos, 3rd instar

larvae and adult flies were collected from each generation and

stored at 280uC for subsequent DNA- or RNA-based analyses.

The results presented in the current study were derived from

RNA-based expression arrays of the 18th generation in adult fly

samples.

Culture chambers
Population chambers (26 cm616 cm616 cm) were specially

designed for the hypoxia selection experiments. These chambers

were connected to either O2 balanced with N2 at certain O2

concentration (for the hypoxia selection experiments) or to room

air (21% O2, for the control experiments). The humidity in the

chambers was maintained by passing the gas through water prior

to going into the chambers. The flow speed was monitored by 565

Glass Tube Flowmeter (Concoa, Virginia Beach, VA), and the O2

level within the chamber was monitored with Diamond General

733 Clark Style Electrode (Diamond General Development Corp.,

Ann Arbor, MI).

Phenotypic assays
Several phenotypic assays were used to determine the phenotypic

differences between AF and NF flies. 1) Response to acute
anoxia. Anoxia testing was performed as described previously

[8]. Briefly, groups of 10–15 adult flies (3–6 days old) were used in

each test. The time taken by each fly to recover after

reoxygenation from 5 minutes anoxic stupor was referred to as

recovery time. 2) O2 consumption. Oxygen consumption rates

were measured as previously described [5] in both normoxic and

hypoxic conditions with minor modifications. Briefly, flies were

acclimated for about 30 min before any baseline measurement was

taken in normoxia. Baseline O2 consumption rate was measured

over 30 to 60 min at 21% O2, and this was followed by a hypoxic

period of 30–60 min (3% O2). Six to eight hundred flies were used

in each O2 consumption measurement. 3) Body weight, wing
size and cell number measurements. Male flies (n = 100)

from each generation were collected and weighed. For wing size

and cell number measurements, the wings from male flies of each

group were collected, flattened on glass slides in a drop of xylene

and mounted with Permount. The images of the wings were

digitized using an Axiovert 200 M microscope (Carl Zeiss

MicroImaging, Inc., Thornwood, NY, USA) with an image

capturing Axiovision software program at a magnification of 106
(whole wing, 964 pixels/mm) and 636 (microchaetes, 6000 pix-

els/mm). The microchaetes from the whole field were overlaid by

dots in a new layer using Adobe Photoshop 7.0.1 and counted

using the Scion Image Beta 4.0.2 program. The surface area and

the total number of pixels in the defined area were calculated and

converted into area units (mm2). The wing length, width and the

pixel density per mm2 under each magnification were measured

using a Bright Line Hemacytometer Improved Neubauer 1/400

Square mm grid (Reichert, Buffalo, NY).

cDNA microarray analysis
cDNA microarrays containing 13,061 known or predicted genes of

the D. melanogaster genome were processed as described previously

[10,11,12]. These arrays were used to identify genes that were

differentially expressed in AF as compared to NF adult flies.

Twelve samples from AF flies and 12 samples from NF were

included in this analysis. Each sample contained a pool of 20 male

and 20 female flies from each culture chamber. Four samples from

each of these chambers were collected and analyzed. Total RNA

was extracted using TRIzol (Invitrogen, Carlsbad, CA) followed

by a clean-up with RNeasy kit (Qiagen, Valencia, CA). Three mg

of total RNA from each sample was amplified with an in vitro

transcription-based strategy using a one-round linear amplification

protocol [12,13]. A common reference design was applied for the

hybridizations, and the reference RNA sample was created by

total RNA extracted from a balanced pool of 20 male and 20

female flies from each parental line. Microarray images were

acquired by GenePix 4000 microarray scanner using GenePix Pro

3 microarray analysis software (Axon Instruments, Sunnyvale, CA,

USA). The differences in gene expression were calculated using

the ratio of intensity between hypoxia-selected flies and controls.

The statistical significance (false discover rate (FDR), q-value) and

the ratio of the changes in expression was calculated using

Significance Analysis of Microarray (SAM) software [14] following

LOWESS normalization. The expression fold changes were

presented as ratios, if up-regulated, or 21/ratio, if down-

regulated. The microarray analysis data can be retrieved using

access number GSE4972 in the Gene Expression Ominibus

database at http://www.ncbi.nlm.nih.gov/geo.

P-element mutant lines
P-element insertion stocks were obtained from Drosophila Stock

Centers (Bloomington, IN., USA, and Szeged, Hungary) [15]. The

presence and the position of P-elements was verified by inverse

PCR using primers complementary to P-element sequences and

the effect of the P-element insertion on specific gene transcript was

verified by using semi-quantitative RT-PCR with specific primers

of the target gene (Table S3). The relative expression level of target

genes was calculated by normalizing the level of a target amplicon

to the level of b-actin in the P-element line. The yw stock was used

as control. These P-element insertion lines were cultured at 5% O2

for about 21 days to determine whether specific genes, obtained

from the microarray analysis, were involved in the tolerance to the

severely low O2 level (5%), a level that is lethal to NF. The 27

parental lines and the yw stock used to generate P-element

insertion lines had an average eclosion rate of less than 10%

(Figure S1). A Chi-squared test was used to determine the

statistical significance of the percent survival between the P-

element lines and controls.

Excision of the P-elements KG08199 and EY10058
To excise the P-elements, females of y[1]; P{y[+] w[+]}KG08199/

CyO; ry[506] or y[1] w[67c23]; P{w[+mC] y[+mDint2] = EP-

gy2}Atg7[EY10058] were crossed to males that express D2–3

transposase. Male or female progenies possessing both the P-
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element and the transposase were then individually crossed to

females or males with the 2nd chromosome balancer, CyO. Several

independent excision lines for either P-element were established.

Precise excision was confirmed by sequencing the PCR product of

the genomic region around the P-element insertion site. Primers

used for PCR were: forward primer: 59-CTGAATTTTGGA-

GGCTTTGC-39; reverse primer: 59-CTCGAAGTGACGCTT-

TAGGG-39, and the primer used for sequencing was 59-CT-

CGATGGCGATAGACCAAT-39.

RESULTS AND DISCUSSION
To initiate the process of long term experimental selection, we first

generated a heterogeneous parental population of Drosophila

melanogaster by pooling 27 wild-type isogenic lines. The inter-

parental genetic variability of hypoxia tolerance was determined

by measuring 1) the eclosion rate in 5% O2, and 2) recovery time

from anoxic stupor of individual parental lines. We found

significant variation in their eclosion rates that ranged from 0 to

28 percent (4.7% in average) in 5% O2 (ANOVA, p,0.05, Figure

S1) and their recovery time from anoxic stupor ranged from 319 to

515 seconds (ANOVA, p,0.0001, Figure S2) which demonstrated

significant genetic diversity within the parental lines. In order to

determine the level of O2 at which we needed to start the selection

experiment, F1 embryos of this pooled population were collected

and cultured in 1 of 3 separate chambers under different levels of

hypoxia (8%, 6% or 4% O2). There was a dramatic decrease in the

percentage of embryos reaching adult flies in 6% O2 (,10%), and

no adult flies were actually obtained in 4% O2. Under 8% O2, the

majority of the embryos (.80%) completed their development and

reached the adult stage. Therefore, hypoxia selection was initiated

at 8% O2, and the O2 concentration was gradually decreased by

,1% every 3 to 5 generations to maintain selection pressure. The

hypoxia level was first reduced to 7% and then lowered further. By

the 13th generation, we obtained flies that were able to complete

their development and perpetually live at 5% O2. The AF flies

showed .50% survival rate during the first generation at 5% O2

(the 13th generation), and this survival rate increased to more than

80% in following generations in 5% O2. More recently, we have

obtained AF flies that can even tolerate 4% of O2 perpetually after

32 generations of selection. We hypothesized that this is, at least

partially, due to newly occurring mutations or recombination of

favorable alleles in the selected population. Our selection

paradigm allowed us, therefore, to obtain flies that can complete

their development and tolerate perpetually 5% and even 4% O2,

conditions that are lethal to NF.

To test the hypothesis that AF flies are a result of selection of

favorable genetic allelic variants, a subset of embryos obtained

from the AF flies at the 18th generation were collected and cul-

tured under normoxic condition for several consecutive generations.

After 8 generations cultured in normoxia, they were re-introduced

to a 5% or 4% O2 environment, and again, the majority (.80%)

of the flies completed their development and could be maintained

in this extreme condition perpetually. This result demonstrated

that the selection, indeed, resulted in a heritable trait.

In our experiments, we have pooled equal numbers of parental

males and virgin females to provide equal representative progenies

from the isogenic lines. It is interesting to note that there were

natural differences in the survival of the parental lines to low O2

(5%). Whether the inherited tolerance that we obtained in the

selected flies derived mostly from the genome of some parental

lines, such as DMN6, DMN12 or DMN20, which showed greater

hypoxia tolerance, is not known at the current stage.

Several significant phenotypic changes were observed in the AF

flies. First, AF flies have shortened recovery time from anoxia-

induced stupor. In this test, both AF and NF flies lost coordination

and fell to the bottom of the testing jar rapidly after inducing

anoxia (0% O2) [8]. After a period of 5 minutes of constant anoxia

during which flies were motionless, room air (21% O2) was bled in

the testing jar and both AF and NF recovered. However, the AF

flies aroused from anoxic stupor in a much shorter period of time

than the NF flies (Figure 1A, p,0.01). Second, both AF and NF

flies dramatically decreased their O2 consumption (,1/2 to 1/3)

in a low O2 environment as compared to room air. This is a well

known mechanism used by anoxia-tolerant animals to minimize

the mismatch between O2 supply (limited O2 in the environment)

and demands [16]. Interestingly, however, AF flies showed

a significantly (p,0.01) higher O2 consumption rate in hypoxia,

when compared to their NF counterparts (Figure 1B). These

results indicated that AF flies have become more resistant to

anoxia, and that this may be partly due to an increase in the

efficiency of O2 utilization. Interestingly, we have observed that

these AF flies were more active behaviorally during O2 consump-

tion measurements in hypoxia (3% O2). Third, there was

a significant reduction in body weight and size in the AF flies.

In the hypoxia chambers, at 6% and certainly at 5% O2 levels,

adult flies had significantly decreased body weight and size: the

decrease in male body weight was about 25% (Figure 1C and 1D).

The size, cell number and density were measured in AF and NF

flies to determine if the decrease in body size and weight were due

Figure 1. Phenotypic changes following long term hypoxia selection.
(A): Shortened recovery time of AF flies from anoxic stupor. Groups of
10 to 15 NF or AF flies were subjected to pure N2 for 5 min (anoxia) at
room temperature. Recovery time of each fly from the time of anoxic
stupor to that of arousal following reintroduction of room air was
recorded. A significantly shortened recovery time was found in AF flies
(p,0.01; NF: n = 166, AF: n = 114). (B): Increased O2 consumption rate of
AF flies in hypoxic condition. O2 consumption rate was measured in
a sealed testing jar at room temperature under normoxia (21% O2,
Baseline) and hypoxia (3% O2, Hypoxia), respectively. Groups of 600 to
800 NF or AF flies were used in each test. Although both AF and NF
decreased their O2 consumption when switched to hypoxic condition,
AF flies reduced less than NF (p,0.01, n = 5). (C and D): Decreased body
size and weight in AF flies. AF flies had decreased body weight and size.
Body weight of a group of 100 NF or AF male flies were measured at
16th and 17th generation (n = 6) following hypoxia selection. A
significant decrease at body weight was found in AF flies (lower panel,
p,0.01). Data were presented as mean 6 SEM, and the statistical
significance was analyzed by student’s t-test.
doi:10.1371/journal.pone.0000490.g001
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to reduced cell number or/and cell size. As shown in Figure 2A

and 2B, the decrease in wing area (as an index of body size) was

about 20% in the AF as compared to the NF flies. Further analysis

revealed that both cell size and estimated cell number had been

significantly reduced by about 15% and 10% respectively (p,0.01,

Figure 2C and 2D), demonstrating that hypoxia affected both cell

proliferation and growth.

The decrease in body and wing size is interesting from several

points of view. First, our previous studies have shown that low O2

leads to an arrest in cell cycle activity in Drosophila embryos and

can have an effect on cell proliferation and embryonic growth

[17]. Hence, low O2 has a potent impact on a fundamental process

that can lead to an important phenotype such as the size of the

adult fly. One question that can be raised is whether this decreased

size in the AF flies is related to genetic mechanisms that underlie

survival at 5% or 4% O2. We do not believe that this is the case

because the decreased body size immediately reverted to normal

size within one generation when AF flies were cultured in

normoxia (data not shown), which is very different from the trait of

hypoxia tolerance that was shown to be heritable in the AF flies.

Regardless of the mechanism, we believe that the AF flies

minimize the overall energy demand by reducing their total body

mass. In addition, since previous studies have demonstrated that

the tracheae increase in diameter after hypoxic exposure over

several generations [18], we speculate that the decrease in body

size and increase in tracheal diameter would enhance O2 delivery.

Clearly, this decrease in body size could also be the effect of lower

metabolism in low O2 conditions. Second, hypoxia not only alters

size in invertebrates but also stunts growth in mammals. This

decrease in size in mammals has been observed in rodents [19], in

humans at high altitude [20,21], in patients with congenital heart

disease with right to left cardiac shunt [22], and in infants with

chronic lung disease with insufficient inspired O2 concentration

[23].

The differentially expressed genes in AF samples were identified

by comparison of 24 arrays containing 12 replicates of the AF or

the NF chambers respectively at the 18th generation (Figure 3).

The rationale for using F18 for the microarray analysis is that this

generation displayed a phenotypic breakthrough whereby flies had

been surviving an O2 level for more than 4 generations that was

lethal to naı̈ve flies. Direct comparison of the hybridizations

between AF and NF samples revealed that 498 genes (,4.0% of

the tested genes) had significantly altered their levels of expression

(q,0.05, Table S1), with 279 genes being up-regulated and 219

genes down-regulated. Besides, several gene families were found to

Figure 3. Distinct expression clusters between AF and NF samples
revealed by microarrays. cDNA Microarray results were clustered
according to the levels of expression of the hypoxia selected and the
control cross adult fly samples using GeneCluster [42]. Differentially
expressed genes were sharply distinguished between NF and AF flies.
Upper panel: a representative subgroup of up-regulated genes. Lower
panel: a representative subgroup of down-regulated genes. Yellow
color represents relative high levels of expression while blue represents
low levels of expression. The brightest color is 1.5-fold or greater
differential from the reference black.
doi:10.1371/journal.pone.0000490.g003

Figure 2. Decreased cell number and size in AF flies. The wing was used as a model organ to determine whether the weight and size reduction in
AF flies could be due to either a reduction in cell number, a reduction in cell size (i.e. increase in cell density) or both. Panel A is representative
pictures of wings from an AF (blue) and a NF (red) fly (bar = 250 mm). There was more than 20% reduction in wing area in AF (B; n = 16, p,0.01), that
is not able to be fully compensated by a corresponding increase in cell density (C and D; n = 16, p,0.01). Further estimation of the total number of
cells in the wing by multiplying the area by the cell density resulted in a total 10.2% cell loss in AF flies. Therefore, the reduction of the fly size is due
to decrease of both cell size and cell number. Data were presented as mean 6 SEM. The statistical significance was calculated by student’s t-test.
doi:10.1371/journal.pone.0000490.g002
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be significantly altered in the AF flies (p,0.05) [24]. For example,

antibacterial peptides (12 genes), cytochrome P450 (e.g., cyto-

chrome P450-6 sub-family, 8 genes), and protein kinase C (2

genes) were up-regulated, and proteases (26 genes), phosphatases

(5 genes), and triacylglycerol lipases (6 genes) were down-regulated

families.

Although hypoxia tolerance is likely to be a complex trait which

involves coordinated action of many genes, individual gene

expression profiling can provide clues about genes that control

multigenic traits [10,25]. However, it is likely that not all of these

differentially expressed individual genes are directly responsible for

hypoxia tolerance in the selected AF flies. For example, some of

these genes might have changed their mRNA levels as a result of

‘hitchhiking’ through genetic linkage, through inadvertent selec-

tion for traits other than hypoxia tolerance, or through drift. Thus,

only some of these differentially expressed genes are likely to play

a role in hypoxia tolerance. To further identify the genes that

functionally contributed to the tolerance of the lethal level of

hypoxia (5% O2), a mutagenesis screen strategy was applied. We

first focused on those genes for which single P-element insertion D.

melanogaster lines were available from common Drosophila stock

centers. One hundred and forty six lines with single P-element

insertion within or around 82 down-regulated genes and 21 lines

with P-element insertion within or around 10 up-regulated genes

were obtained from Drosophila Stock Centers (Table S2). Embryos

from each P-element line were collected and cultured directly in

5% O2 (no adaptation) to examine the role of each gene in hypoxia

tolerance of D. melanogaster. Of interest, most (,75%) available P-

element insertion lines representing the up-regulated genes (e.g.

CG1600, CG30492, GstE1, Hph, and th; Table S2) did not survive

this severe hypoxic condition. This suggests that most of the up-

regulated genes tested by P-elements seem to be important for

hypoxia tolerance. Out of the 82 down-regulated genes tested, 26

had more than one P-element allele available. We then focused

mostly on these down-regulated genes and their P-elements and

performed a series of experiments on them. Six of these 26 genes

had multiple P-element alleles that showed a remarkably greater

survival (3–10 fold increase) as compared to yw or any of the

parental lines (Figure 4; Table S2). As showed in Figure 5, the

transcripts of all alleles were, indeed, down-regulated. In addition,

to further confirm that survival in these severe O2 conditions was

related to the P-element insertion in these particular genes, we

excised the P-element alleles of one gene, namely sec6, and found

that the precise excision lines had less than 10% of eclosion in 5%

O2 (Figure 6), a level that is similar to yw and naive controls.

Therefore, the precise excision of these P-elements reversed the

hypoxia tolerance phenotype. The sec6 gene encodes a protein

that is homologous to a mammalian sec6 protein, and it is

predicted to be involved in synaptic vesicle recycling [26]. This

presents the first evidence that this gene is involved in conferring

hypoxia tolerance in Drosophila, possibly through regulation of

neurotransmitter release.

These gene families obtained from the microarrays are

interesting with respect to the phenotype of hypoxia tolerance

and selection since some genes would not have been necessarily

predicted. That anti-bacterial peptides were up-regulated in AF is

remarkable as such genes are not generally associated with

a hypoxia phenotype. On the other hand, protein phosphorylation

and dephosphorylation are so ubiquitous and so fundamental to

many cellular processes that it is not surprising that kinases or

phosphatases are observed to be up- or down-regulated in our

microarrays. Previous data have indeed implicated such enzymes

in tissue protection during hypoxia [27,28,29,30,31,32]. Further-

more, metabolic enzymes such as lipases were down-regulated and

it is interesting to speculate that, since this down-regulation has

also been found in hypoxia in mammals, the lipase has an

important role to play in the accumulation of triglycerides, which,

in turn, help in the hypoxia tolerant phenotype [33,34,35].

Although the exact molecular mechanisms underlying hypoxia

tolerance are currently unknown, it seems that the experimental

Figure 4. Survival of P-element insertion alleles of candidate genes in severe O2 environment. Survival of single P-element insertion lines for
specific candidate genes. Embryos from each P-element insertion line were collected and cultured at 5% O2 condition. Total and eclosed pupae were
counted and the ratio of eclosion for each allele was compared to that of yw and NF controls. Each bar represents the average of at least three tests of
individual P-element insertion lines. The total number of scored pupae was indicated over each bar. The statistical significance was obtained when p
values were ,0.001 (Chi-squared test).
doi:10.1371/journal.pone.0000490.g004
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selection has favored the genetic inheritance of pathways that are

important in cell signaling, cell cycle and cell fate determination.

For example, gene lin19 encodes a protein component of SCF

ubiquitin ligase complex that is involved in regulating cell cycle

and cell proliferation [36]. Interestingly, Cul1, the mammalian

homologue of lin19, encodes a protein that belongs to the Skp1-

Cdc53/Cul1-F-box (SCF)-like protein complex which targets

specific proteins for ubiquitination and proteolysis under the

regulation of pVHL, and the pVHL targeted proteins include

transcription factor regulators such as IkB [37].

It is important to emphasize that the disparity in the functions of

these genes likely reflects the complex physiological regulation of

hypoxic responses in tissues. From our results and the function of

the characterized genes obtained (i.e., Best1, br, CG7102, dnc, lin19

and sec6), we found that these genes encode proteins that play a role

not only in ubiquitination (e.g. lin19) [36,37] but also in

transcriptional regulation (e.g. broad) [38,39], in signal transduction

pathways (e.g. dunce) [40] and membrane transport of ions or

neurotransmitters (e.g. sec6 and Best1) [26,41]. However, what is

remarkable to note is that our data provide evidence, in spite of the

complexity of the phenotype of hypoxia tolerance, that single genes

make a sizeable difference in this phenotype. It is completely

possible, however, that such single genes, as has been shown for

the HIF-1 transcription factor [2], are master switches. Whether

one or more of the genes obtained in this study is another ‘‘switch’’

that can activate or inactivate a large number of genes that are

relevant to the hypoxia tolerance is unknown at present.

In summary, we have succeeded in selecting for flies that can

live perpetually at extremely low O2 (5% and 4% O2), levels that

are lethal in naı̈ve flies. These O2 levels exist in atmospheric

environments of ,2,000 and ,4,000 meters higher than Mt.

Everest, respectively, and indeed represent severe conditions. This

ability to survive at this extreme ‘‘altitude’’ has now become an

inherited trait in the AF flies, a result of a long term experimental

selection. The down-regulation of the six genes, Best1, br, CG7102,

dnc, lin19 and sec6, seem to play a crucial role in hypoxia tolerance

and survival in extreme low O2 conditions. In spite of the fact that

we elicited the importance of these genes using an experimental

selection protocol over generations, these genes may also be

critical in hypoxia tolerance in physiological or pathological

conditions that are characterized by low O2 over shorter periods of

time. The fact that inhibition of gene activity in this model system

leads to a remarkably higher tolerance to extreme low O2

environments implies that inhibition of the mammalian homolog

Figure 5. Alteration of target gene expression by P-element
insertion. (A–F): Genomic localization of P-element insertions within
or around gene Best1, broad, CG7102, dunce, lin19 and sec6. (G): Effect of
P-element insertion on target gene expression was determined by sq-
RT-PCR. Each open-bar represents the mean value of sqRT-PCR of a P-
element allele for the target gene.
doi:10.1371/journal.pone.0000490.g005

Figure 6. Precise-excision of P-elements in
genomic region of gene sec6 reverses hypoxia
tolerance. Survival of precise excision lines for P-
element insertion targeting gene sec6 was de-
termined in hypoxic condition. Embryos from each
precise excision line were collected and cultured in
5% O2. Total and eclosed pupae were counted and
the ratio of eclosion for each allele was compared
to that of yw, NF controls and original P-element
alleles. Each bar represents the average of at least
three tests of individual excision line. The total
number of scored pupae was indicated over each
bar. The statistical significance was obtained when
p values were ,0.001 (Chi-squared test).
doi:10.1371/journal.pone.0000490.g006
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of the candidate genes in mammals may also be an avenue toward

ameliorating the effects of hypoxia.

SUPPORTING INFORMATION

Table S1 List of Significantly Altered Genes

Found at: doi:10.1371/journal.pone.0000490.s001 (0.08 MB

XLS)

Table S2 Eclosion rate of P-element alleles in hypoxic condition

Found at: doi:10.1371/journal.pone.0000490.s002 (0.04 MB

XLS)

Table S3 List of Specific Primers for sqRT-PCR

Found at: doi:10.1371/journal.pone.0000490.s003 (0.03 MB

DOC)

Figure S1 The eclosion rate of individual parental lines under

5% of O2. The measured eclosion rates ranged from 0 to 28

percent (4.7% in average) demonstrating significant levels of

functional variability among these lines with respect to the ability

to survive hypoxic condition (ANOVA, p = 0.022).

Found at: doi:10.1371/journal.pone.0000490.s004 (1.46 MB TIF)

Figure S2 The recovery time of individual parental lines from

anoxic stupor. Recovery time from anoxic stupor of each

individual parental line was measured using 5 to 6 days old male

adult flies, the recovery time ranged from 319 to 515 seconds

demonstrating a significant genetic variation among these lines

(ANOVA, p,0.0001).

Found at: doi:10.1371/journal.pone.0000490.s005 (1.84 MB TIF)

ACKNOWLEDGMENTS
We thank Ms. Nuny Morgan, Ms. Orit Gavrialov, Ms. Ying Lu-Bo, Ms.

Jenna Lau, and Ms. Juan Wang for technical assistance.

Author Contributions

Conceived and designed the experiments: KW DZ GH. Performed the

experiments: JC DZ JX PM. Analyzed the data: JL JC DZ JX PM.

Contributed reagents/materials/analysis tools: KW DZ. Wrote the paper:

KW DZ GH JX.

REFERENCES
1. Pachori AS, Melo LG, Hart ML, Noiseux N, Zhang L, et al. (2004) Hypoxia-

regulated therapeutic gene as a preemptive treatment strategy against ischemia/

reperfusion tissue injury. Proc Natl Acad Sci U S A 101: 12282–12287.

2. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo

protein synthesis binds to the human erythropoietin gene enhancer at a site

required for transcriptional activation. Mol Cell Biol 12: 5447–5454.

3. Dong Z, Venkatachalam MA, Wang J, Patel Y, Saikumar P, et al. (2001) Up-

regulation of apoptosis inhibitory protein IAP-2 by hypoxia. Hif-1-independent

mechanisms. J Biol Chem 276: 18702–18709.

4. Erler JT, Cawthorne CJ, Williams KJ, Koritzinsky M, Wouters BG, et al. (2004)

Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via

hypoxia-inducible factor 1-dependent and -independent mechanisms and

contributes to drug resistance. Mol Cell Biol 24: 2875–2889.

5. Haddad GG, Wyman RJ, Mohsenin A, Sun Y, Krishnan SN (1997) Behavioral

and Electrophysiologic Responses of Drosophila melanogaster to Prolonged Periods

of Anoxia. J Insect Physiol 43: 203–210.

6. Haddad GG, Sun Y, Wyman RJ, Xu T (1997) Genetic basis of tolerance to O2

deprivation in Drosophila melanogaster. Proc Natl Acad Sci U S A 94:

10809–10812.

7. Chen Q, Ma E, Behar KL, Xu T, Haddad GG (2002) Role of trehalose

phosphate synthase in anoxia tolerance and development in Drosophila

melanogaster. J Biol Chem 277: 3274–3279.

8. Ma E, Gu XQ, Wu X, Xu T, Haddad GG (2001) Mutation in pre-mRNA

adenosine deaminase markedly attenuates neuronal tolerance to O2 deprivation

in Drosophila melanogaster. J Clin Invest 107: 685–693.

9. Ma E, Xu T, Haddad GG (1999) Gene regulation by O2 deprivation: an anoxia-

regulated novel gene in Drosophila melanogaster. Brain Res Mol Brain Res 63:

217–224.

10. Toma DP, White KP, Hirsch J, Greenspan RJ (2002) Identification of genes

involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nat Genet

31: 349–353.

11. White KP, Rifkin SA, Hurban P, Hogness DS (1999) Microarray analysis of

Drosophila development during metamorphosis. Science 286: 2179–2184.

12. Li TR, White KP (2003) Tissue-specific gene expression and ecdysone-regulated

genomic networks in Drosophila. Dev Cell 5: 59–72.

13. Baugh LR, Hill AA, Brown EL, Hunter CP (2001) Quantitative analysis of

mRNA amplification by in vitro transcription. Nucleic Acids Res 29: E29.

14. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays

applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:

5116–5121.

15. Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, et al. (2004) The BDGP gene

disruption project: single transposon insertions associated with 40% of Drosophila

genes. Genetics 167: 761–781.

16. Haddad GG, Jiang C (1993) O2 deprivation in the central nervous system: on

mechanisms of neuronal response, differential sensitivity and injury. Prog

Neurobiol 40: 277–318.

17. Douglas RM, Haddad GG (2003) Genetic models in applied physiology: invited

review: effect of oxygen deprivation on cell cycle activity: a profile of delay and

arrest. J Appl Physiol 94: 2068–2084.

18. Henry JR, Harrison JF (2004) Plastic and evolved responses of larval tracheae

and mass to varying atmospheric oxygen content in Drosophila melanogaster. J Exp

Biol 207: 3559–3567.

19. Monge C, Leon-Velarde F (1991) Physiological adaptation to high altitude:

oxygen transport in mammals and birds. Physiol Rev 71: 1135–1172.

20. Greksa LP, Spielvogel H, Paz-Zamora M, Caceres E, Paredes-Fernández L

(1988) Effect of altitude on the lung function of high altitude residents of

European ancestry. Am J Phys Anthropol 75: 77–85.

21. Greksa L, Spielvogel H, Caceres E (1985) Effect of altitude on the physical

growth of upper-class children of European ancestry. Ann Hum Biol 12:

225–232.

22. Jacobs EG, Leung MP, Karlberg JP (2000) Postnatal growth in southern Chinese

children with symptomatic congenital heart disease. J Pediatr Endocrinol Metab

13: 387–401.

23. Groothuis JR, Rosenberg AA (1987) Home oxygen promotes weight gain in

infants with bronchopulmonary dysplasia. Am J Dis Child 141: 992–995.

24. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR (2002)

GenMAPP, a new tool for viewing and analyzing microarray data on biological

pathways. Nat Genet 31: 19–20.

25. White KP (2001) Functional genomics and the study of development, variation

and evolution. Nat Rev Genet 2: 528–537.

26. Lloyd TE, Verstreken P, Ostrin EJ, Phillippi A, Lichtarge O, et al. (2000) A

genome-wide search for synaptic vesicle cycle proteins in Drosophila. Neuron 26:

45–50.

27. Greenway SC, Storey KB (2000) Mitogen-activated protein kinases and anoxia

tolerance in turtles. J Exp Zool 287: 477–484.

28. Vartiainen N, Keksa-Goldsteine V, Goldsteins G, Koistinaho J (2002) Aspirin

provides cyclin-dependent kinase 5-dependent protection against subsequent

hypoxia/reoxygenation damage in culture. J Neurochem 82: 329–335.

29. Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA (2003)

Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-

mediated preconditioning in the organotypic hippocampal slice. J Neurosci 23:

384–391.

30. Jones NM, Bergeron M (2004) Hypoxia-induced ischemic tolerance in neonatal

rat brain involves enhanced ERK1/2 signaling. J Neurochem 89: 157–167.

31. Carini R, Grazia De Cesaris M, Splendore R, Baldanzi G, Nitti MP, et al. (2004)

Role of phosphatidylinositol 3-kinase in the development of hepatocyte

preconditioning. Gastroenterology 127: 914–923.

32. Neckar J, Markova I, Novak F, Novakova O, Szarszoi O, et al. (2005) Increased

expression and altered subcellular distribution of PKC-delta in chronically

hypoxic rat myocardium: involvement in cardioprotection. Am J Physiol Heart

Circ Physiol 288: H1566–H1572.

33. Xi L, Ghosh S, Wang X, Das A, Anderson FP, et al. (2006) Hypercholester-

olemia enhances tolerance to lethal systemic hypoxia in middle-aged mice:

possible role of VEGF downregulation in brain. Mol Cell Biochem 291:

205–211.

34. Bruder ED, Lee PC, Raff H (2004) Metabolic consequences of hypoxia from

birth and dexamethasone treatment in the neonatal rat: comprehensive hepatic

lipid and fatty acid profiling. Endocrinology 145: 5364–5372.

35. Alberghina M, Viola M, Giuffrida AM (1982) Changes in enzyme activities of

glycerolipid metabolism of guinea-pig cerebral hemispheres during experimental

hypoxia. J Neurosci Res 7: 147–154.

36. Filippov V, Filippova M, Sehnal F, Gill SS (2000) Temporal and spatial

expression of the cell-cycle regulator cul-1 in Drosophila and its stimulation by

radiation-induced apoptosis. J Exp Biol 203: 2747–2756.

Drosophila Hypoxia Tolerance

PLoS ONE | www.plosone.org 7 May 2007 | Issue 5 | e490



37. Hatakeyama S, Kitagawa M, Nakayama K, Shirane M, Matsumoto M, et al.

(1999) Ubiquitin-dependent degradation of IkappaBalpha is mediated by
a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1. Proc Natl Acad Sci U S A

96: 3859–3863.

38. Kiss I, Beaton AH, Tardiff J, Fristrom D, Fristrom JW (1988) Interactions and
developmental effects of mutations in the Broad-Complex of Drosophila

melanogaster. Genetics 118: 247–259.
39. Bayer CA, von Kalm L, Fristrom JW (1997) Relationships between protein

isoforms and genetic functions demonstrate functional redundancy at the Broad-

Complex during Drosophila metamorphosis. Dev Biol 187: 267–282.

40. Davis RL, Kiger JA (1981) Dunce mutants of Drosophila melanogaster: mutants

defective in the cyclic AMP phosphodiesterase enzyme system. J Cell Biol 90:

101–107.

41. Sun H, Tsunenari T, Yau KW, Nathans J (2002) The vitelliform macular

dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci

USA 99: 4008–4013.

42. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and

display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:

14863–14868.

Drosophila Hypoxia Tolerance

PLoS ONE | www.plosone.org 8 May 2007 | Issue 5 | e490


