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Abstract

Environmental parameters drive phenotypic and genotypic frequency variations in microbial communities and thus control
the extent and structure of microbial diversity. We tested the extent to which microbial community composition changes
are controlled by shifting physiochemical properties within a hypersaline lagoon. We sequenced four sediment
metagenomes from the Coorong, South Australia from samples which varied in salinity by 99 Practical Salinity Units
(PSU), an order of magnitude in ammonia concentration and two orders of magnitude in microbial abundance. Despite the
marked divergence in environmental parameters observed between samples, hierarchical clustering of taxonomic and
metabolic profiles of these metagenomes showed striking similarity between the samples (.89%). Comparison of these
profiles to those derived from a wide variety of publically available datasets demonstrated that the Coorong sediment
metagenomes were similar to other sediment, soil, biofilm and microbial mat samples regardless of salinity (.85%
similarity). Overall, clustering of solid substrate and water metagenomes into discrete similarity groups based on functional
potential indicated that the dichotomy between water and solid matrices is a fundamental determinant of community
microbial metabolism that is not masked by salinity, nutrient concentration or microbial abundance.
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Introduction

Microbes numerically dominate the biosphere and play crucial roles

in maintaining ecosystem function by driving chemical cycles and

primary productivity [1,2]. They represent the largest reservoir of

genetic diversity on Earth, with the number of microbial species

inhabiting terrestrial and aquatic environments estimated to be at least

in the millions [3]. However, the factors determining the spatiotem-

poral distributions of microbial species and genes in the environment

are only vaguely understood, but are likely to include micro-scale to

global-scale phenomena with different controlling elements.

Microbial community structure is determined on varying scales

by a complex combination of historical factors (e.g. dispersal

limitation and past environmental conditions) [4], the overall

habitat characteristics [5], the physical structure of the habitat (e.g.

fluid or sediment) and by changes in current environmental

parameters (e.g. salinity and pH) [6–9]. Understanding the relative

importance of these different effectors is central to understanding

the role of microbes in ecosystem function, and therefore to

predicting how resident microbial communities will adapt to, for

example, increasing salinity levels due to localized climate driven

evaporation and reduced rainfall [10].

Physicochemical gradients provide natural model systems for

investigating the influence of environmental variables on microbial

community structure. In aquatic systems, salinity is a core factor

influencing microbial distribution [6,11] and has been identified as

the primary factor influencing the global spatial distribution of

microbial taxa [6]. Salinity gradients occur in estuaries, solar

salterns and ocean depth profiles. Evidence exists for increases in

abundance and decreases in the diversity of microbial communi-

ties spanning salinity gradients [9,11–14]. This change is wrought

by variance in the halo-tolerance of different taxa and the

influence of salinity on nutrient concentrations [15].

We examined the resident microbial communities inhabiting

sediment at four points along a continuous natural salinity

gradient in the Coorong, a temperate coastal lagoon located at

the mouth of the Murray River, South Australia. To determine

the relative importance of salinity, nutrient status and

microbial abundance in structuring microbial community

composition and function, we used shotgun metagenomics to

compare the taxonomic and metabolic profiles of our samples

to representative metagenomes in public databases. Our results

demonstrate that the taxonomic composition and metabolic

potential of our metagenomes show a conserved signature,

despite the microbes existing in disparate chemical environ-

ments. Comparison to other metagenomes indicates that this

signature is determined by the substrate type (i.e. sediment) of

the samples.
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Results

Biogeochemical environment
Dramatic shifts in physiochemical conditions occurred across the

Coorong lagoon, with salinity notably varying from 37 to 136 practical

salinity units (PSU) and inorganic nutrient levels changing by over an

order of magnitude between sampling locations (Table 1). Practical

Salinity Units (PSU) are the standard measurement of salinity in

oceanography and represent a ratio of the conductivity of a solution

relative to a standard, and is approximately convertible to parts per

thousand of salt. For context seawater has an average salinity of 35

PSU [16]. Additionally, the abundance of heterotrophic bacteria and

viruses, as determined by flow cytometry [17,18], increased along the

salinity gradient by 31 fold and 28 fold respectively. The microbial

community inhabiting this environmental gradient was explored using

metagenomics, where microbial DNA was extracted and sequenced

from each sampling site using a 454 GS-FLX platform (Roche). The

sampling yielded between 16 Mbp and 27 Mbp of sequence

information per library (Table 1). Approximately 30% of the sequences

from each library had significant (BLASTX E-value,1025) matches to

the SEED non-redundant database [19] as determined using the

MetaGenomics Rapid Annotation using Subsystem Technology (MG-

RAST) pipeline [20].

Taxonomic and metabolic profiling of metagenomes
along an environmental gradient

All metagenomic libraries were dominated by bacteria (94% of hits

to the SEED database) with sequences also matching the archaea

(4%), eukarya (1.5%) and viruses (0.2%). The bacterial phylum,

Proteobacteria, dominated all four metagenomic libraries, representing

over 50% of taxonomic matches for SEED taxonomy (Fig. 1) and

over 40% of ribosomal DNA matches (Table S1). Other prominent

phyla included the Bacteroidetes/Chlorobi group (approx. 8–14%),

Firmicutes (approx. 6–8%), and Planctomycetes (approx. 4–7%). In the

metagenome from the 136 PSU environment, Cyanobacteria were the

second most represented phylum, representing approximately 12% of

the community, in the metagenomic datasets (Fig. 1) but were less

prominent in the other samples, representing approximately 4%. In

the ribosomal DNA profiles generated from BLAST matches of

metagenome sequences against the Ribosomal Database Project [21]

(Table S1), Cyanobacteria were the second most abundant classified

phylum in both the 132 PSU and 136 PSU metagenomes. At the

phylum level, profiles were highly conserved between the four

samples (Fig. 1). At level 3 within the MG-RAST hierarchical

classification scheme, which includes orders and classes [20], the most

abundant taxa in all four metagenomes were the classes c-proteobacteria

and a-proteobacteria which represented approximately 20% of sequence

matches. Cyanobacteria in the 136 PSU metagenome were predom-

inantly represented by the orders Nostocales (order) and Chroococcales,

which each comprised approximately 40% of cyanobacterial hits

(Table S2).

All Coorong metagenomes were dominated by the core

metabolic functions of carbohydrate, amino acid and protein

metabolism. Metabolisms indicative of a functionally diverse

community were represented with heterotrophic nutrition, photo-

synthesis, nitrogen metabolism and sulfur metabolism contributing

to the profile (Fig. 2). Paralleling the pattern observed for the

taxonomic profiles, metabolic profiles were conserved between the

four samples in terms of broadly defined metabolic processes,

classified at the coarsest level of functional hierarchy within the

MG-RAST database (Fig. 2). Metagenomic profiles remained

highly conserved at the genome level, which we used to compare

the Coorong metagenomes to each other and to other metagen-

omes from diverse habitats (Fig. 3), and at the level of individual

cellular processes, termed subsystems, which is the finest level of

metabolic hierarchy within the MG-RAST database [20] (Fig. 4).

Comparison to metagenomic profiles from other habitats
We compared the taxonomic and metabolic structures of our

metagenomes to those from a wide variety of habitats, including

other hypersaline and marine sediment environments (Table 2,

Table S3), using high resolution profiles derived at the genome

and metabolic subsystem [19] level. For both taxonomic and

metabolic profiles (Figs. 3 & 4), Coorong metagenomes showed a

high degree of statistical similarity (Bray-Curtis) to each other,

despite the strong habitat gradients from which they were derived.

Taxonomically, our metagenomes were all .89% similar with the

136 PSU sample diverging at 92% similarity from the 109 PSU

and 132 PSU profiles which were 94% similar. In terms of

metabolic potential, they were .89.5% similar with the 136 PSU

Table 1. Sequencing data and environmental metadata for metagenomic sampling sites.

Sampling Site 37 PSU 109 PSU 132 PSU 136 PSU

Number of reads 68888 101003 114335 108257

Average read length (bp) 232 234 232 232

% Sequences matching SEED subsystems 27 30 26 29

Salinity (PSU) 37 109 132 136

pH 8.25 7.85 7.79 8.05

Temperature (uC) 21 25 27 24

Ammonia concentration (mgN/L) 0.23 (60.15) 0.21 (60.09) 0.96 (60.31) 3.10 (60.84)

Phosphate concentration (mgP/L) 0.05 (60.01) 0.11 (60.02) 0.12 (60.03) 0.27 (60.09)

Porewater bacteria concentration (per mL) 4.86106 (66.36105) 7.46107 (68.46106) 7.26107 (64.26106) 1.56108 (61.46107)

Porewater virus concentration (per mL) 1.56107 (65.86106) 2.36108 (63.16107) 1.86108 (61.56107) 4.26108 (63.16107)

Turbidity of water column (NTU) 7 16 16 10

Dissolved Oxygen in water column (%) 93 140 134 89

Percentage of sequences matching SEED subsystems were determined with an E-value cutoff of E,161025. All metadata was measured in sediment interstitial
porewater with the exception of turbidity and dissolved oxygen which were measured in the overlying water column. 6 indicates Standard error of the mean (n = 3 for
nutrient measures, n = 5 for microbial abundances). N = nitrogen, P = phosphate, PSU = practical salinity units, NTU = Nephelometric Turbidity Units.
doi:10.1371/journal.pone.0025173.t001
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sample diverging at 93% similarity from the 109 PSU and 132

PSU profiles which were 93.5% similar.

The metagenomes which exhibited the greatest taxonomic

similarity to the Coorong samples were from a hypersaline

microbial mat, farm soil, hypersaline sediment and a freshwater

stromatolite. These samples formed a discrete cluster of .82%

similarity in our hierarchical tree (Fig. 3). Those with the greatest

metabolic similarity to the Coorong samples were from marine

sediment, farm soil, phosphorous removing sludge and a whalefall

microbial mat. These samples formed a discrete cluster of .85%

similarity in our hierarchical tree (Fig. 4). Notably, these

metagenomes were all derived from sediment, soil, biofilm or

mat samples (termed ‘solid substrate’ in this study) and particle

rich bioreactor sludge, but varied in salinity from non-saline to

hypersaline. Hypersaline water samples from the Coorong lagoon

(Newton et al, in prep), with similar salinities to our data, did not

cluster with the Coorong sediment metagenomes in terms of

taxonomy or metabolism, but rather clustered with water samples

from a variety of other habitats. Marine sediment samples

however, clustered with the Coorong sediment metagenomes for

metabolic but not taxonomic profiles. Overall, solid substrate and

water metagenomes clustered into discrete metabolic similarity

groups with nodes of 85% similarity.

Discussion

Despite the strong environmental heterogeneity along the

gradient studied here (Table 1), taxonomic and metabolic profiles

were conserved at the phyla and SEED hierarchy 1 level (Figs. 1 &

2). This similarity was even more striking at finer levels of

resolution. Coorong metagenome profiles were .89% and 89.5%

similar in taxonomic and metabolic composition at the genome

and subsystem level respectively (Figs. 3 & 4). This indicates that

the four microbial communities had similar structure, despite the

intense environmental variability that occurred along the gradient.

While the strong similarity between these samples, relative to other

samples of comparable salinity, may to some extent be attributable

to identical DNA extraction and sequencing procedures, bioge-

ography and a shared environmental history between the samples,

the clustering of our metagenomes with other solid substrate

metagenomes for both taxonomic and metabolic profiles at .82%

and .85% respectively, indicates that the signature of our profiles

is largely determined by the substrate type of the samples (i.e.

sediment). The metagenomes which show a high degree of

similarity to our profiles are derived from a wide range of salinities,

indicating that salinity is not the major structuring factor.

Particularly evident is the close metabolic clustering of the four

Coorong sediment metagenomes with other examples of marine

sediment (Fig. 4) despite these samples coming from a lower

salinity than the Coorong sediment samples. This principle is

highlighted by the observation that Coorong water samples of a

similar salinity and identical geographic location (Table S3) do not

cluster with Coorong sediment samples in terms of taxonomy or

metabolic potential, but rather cluster with other water samples.

We interpret this as an indication that the substrate type (e.g. water

vs solid substrate) is an important determinant of microbial

functional composition that supersedes bulk environmental

parameters (e.g. salinity) as the dominant structuring factor. This

Figure 1. Taxonomic composition (Phyla level) of four metagenomic libraries derived from Coorong lagoon sediment. Relative
representation in the metagenome was calculated by dividing the number of hits to each category by the total number of hits to all categories, thus
normalizing by sequencing effort. Hits were generated by BLASTing sequences to the SEED database with an E-value cut-off of 161025 and a
minimum alignment of 50 bp.
doi:10.1371/journal.pone.0025173.g001
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is further supported by the observation that the majority of

metagenomes analyzed for metabolic potential cluster into two

groups: a water group and a solid substrate group (Fig. 4),

regardless of salinity or geographic location. Whilst it has been

shown that metagenomic profiles cluster into defined biome

groups [5,22], this is the first observation of such a clear dichotomy

between water and solid substrate habitats which is not masked by

salinity.

Salinity has previously been identified as the primary factor

governing the global distribution of prokaryotic 16S rRNA

sequences [6,23,24,25]. Whilst Lozupone & Knight [6] identified

substrate type (water vs sediment) as the second most important

factor structuring microbial diversity after salinity, Tamames et al

[24] concluded that salinity is more relevant than substrate type as

sediment/soil and water from similar salinities clustered together

in their analysis. These findings contradict the patterns apparent in

our metabolic profile clustering (Fig. 4) and indicate that the

phylogenetic and metabolic aspects of microbial community

diversity may be driven by different dominant factors. This also

implies that accessing genetic information from the entire length of

the genome as opposed to a specific taxonomic marker gene can

yield different interpretations. This is potentially due to the

influence of lateral gene transfer and a wider representation of

taxa in 16S rDNA databases as opposed to genomic databases

[26,27]. Whilst Coorong metagenomes clustered taxonomically

with other solid substrate metagenomes (Fig. 3), there was not a

clear dichotomy between samples from water and solid substrate

types as was observed for the metabolic profiles. This indicates that

the substrate type may not be as important a controlling factor for

taxonomy as it is for metabolism. That substrate type is a more

important determinant of metabolic composition indicates that

some genes, important for living in different substrate types, are

shared by varying taxa adapted to different salinities.

The samples that did not metabolically cluster within the two

larger branches of ‘solid substrate’ and water (Fig. 4) were typically

derived from more extreme hypersaline environments, such as

solar salterns [28] and a hypersaline mat [29]. This indicates that

in some cases, salinity can be the major factor driving the

metabolic profile grouping, probably in instances where salinity

reaches a critical level, whereby it selects for less diversity and

more dominant taxa. This is consistent with the salinity driven

clustering of the saltern metagenomes when ordinated using di-

nucleotide signatures [22].

The characteristics of particular substrate types that can select

the metabolic content of the microbial community could be

related to the differing degree of chemical heterogeneity in fluid

and solid substrate habitats. Water is mixed to a higher degree

than soil/sediment thus resulting in less physiochemical heteroge-

neity. Soil, sediment and biofilms are extremely heterogeneous

resulting in the high degree of diversity commonly observed in

these habitats compared to water substrates [3,6]. This differing

division of resources and niches likely explains the dichotomous

clustering of water and solid substrate metagenomes observed in

our data. Additionally, in aquatic systems, sediment and benthic

habitats are generally more anoxic than the overlying water

suggesting that reduction and oxidation (REDOX) status is also a

Figure 2. Metabolic composition of four metagenomic libraries derived from Coorong lagoon sediment. Relative representation in the
metagenome was calculated by dividing the number of hits to each category by the total number of hits to all categories, thus normalizing by
sequencing effort. Hits were generated by BLASTing sequences to the SEED database with an E-value cut-off of 161025 and a minimum alignment of
50 bp.
doi:10.1371/journal.pone.0025173.g002
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potentially important factor driving this split. Indeed, initial

investigations indicate that a prevalence of virulence, motility and

anaerobic respiration genes in solid substrate habitats drive the

water versus solid substrate split (Jeffries et al, in prep).

Our interpretation that the matrix from which the sample is

derived is more important in determining the functional

community structure than bulk physicochemical conditions has

important implications for how we predict changes in microbial

community function in the context of climate change driven

increases in salinity levels or eutrophication associated with

anthropogenic inputs. For example, the Coorong is currently

undergoing a period of increasing salinity levels and eutrophica-

tion [30], reflected in the gradient examined here. Our results

suggest that, whilst small scale changes in gene abundance occur

across this salinity gradient (for example regulation/signaling and

metabolism of aromatic compounds; Fig. 2), the overall functional

potential of the microbial community remains similar between

salinities and demonstrates a high degree of similarity to lower

salinity marine sediment at the subsystem level (Fig. 4). This

indicates that while shifts in the composition of the microbial

community may occur following further shifts in salinity, the

overall biogeochemical potential of the community may remain

relatively unchanged. Of course, extreme increases in salinity will

potentially result in the emergence of dominant specialist species,

decreasing diversity and potentially influencing function.

There is the potential that the discrete clustering of our

samples may be related to technical bias, because of the

different strategies for sample collection, sequencing and

analysis of metagenomes from other locations. However, when

we compared our data with metagenomes generated using

different DNA extraction techniques and sequencing platforms,

no discernible pattern emerged that can link the relatedness of

metagenomes to elements of methodology (Figs. 3 & 4). DNA

extraction and sequencing techniques have also been shown not

to significantly influence metagenomic profile discrimination by

habitat [31]. Additionally, marine sediment samples extracted in

the same lab using identical techniques did not cluster

taxonomically with the Coorong samples (Fig. 3) and Coorong

water samples extracted using the same lab and techniques did

not cluster with the Coorong sediment samples (Figs. 3 & 4),

indicating methodology is not obscuring environmental cluster-

ing. One caveat that should be considered when interpreting

our data is the use of annotated data to compare metagenomes.

Our data is reflective of the genomes and metabolic subsystems

present in the MG-RAST database [20] and should be

interpreted as patterns observed in the context of this diversity.

Metagenomic databases are composed of taxa for which whole

genome sequences exist, which represent a biased subsection of

microbial diversity heavily skewed towards cultured organisms

chosen because of ease of growth or interesting phenotypes

[26,27]. Thus the databases tend to be skewed towards the

phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes [26].

Whilst genome based databases represent a valid reference point

for relative comparison of the taxonomic affiliation of subsys-

tems observed in the data, which has been routinely applied for

metagenomes [20] a much broader view of the taxonomic

variability can be provided by the 16S rDNA gene [26]. Further

analysis using clustering algorithms [32] and di-nucleotide

Figure 3. Comparison of taxonomic profiles derived from selected metagenomes publicly available on the MG-RAST database. The
hierarchical agglomerative cluster plot (group average) is derived from a Bray-Curtis similarity matrix calculated from the square root transformed
abundance of DNA fragments matching taxa in the SEED database (BLASTX E-value,0.001, genome level taxonomy).
doi:10.1371/journal.pone.0025173.g003
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frequencies [22] will shed light on how our un-annotated data is

similar to other metagenomes.

This study focused on the balance between taxonomic and

metabolic identifiers to determine the dominant controlling

environmental factor. We found substrate type is the dominant

controller of gene abundance. To date, the majority of community

scale microbial biogeography studies have considered the presence

or absence of particular taxonomic units. In many cases however,

microbial biogeography is not binary, with most taxa being

present but at a low abundance in the so called ‘rare biosphere’

[33]. Additionally, functional genes may be passed between

different taxa via lateral gene transfer [34,35] indicating that

taxonomy alone is not a determinant of community function.

More sophisticated approaches which consider complex patterns

in the metagenomic structure of communities and the complex

interactions between different drivers acting on different scales are

necessary to understand the spatial distribution of microbial

diversity. High throughput sequencing allows profiling of both

taxonomic and metabolic diversity and when coupled to statistical

techniques [5,36–39] and standardized records of metadata [40]

patterns in the composition of microbial metagenomes begin to

emerge. One such pattern in our data is the high degree of

taxonomic and functional similarity between metagenomes

derived across a strong salinity, nutrient and abundance gradient

and between metagenomes derived from sediment/soil/mat

metagenomes regardless of salinity. Another pattern is the

dichotomous clustering of solid substrate metagenomes and water

metagenomes into discrete similarity groups which are not masked

by differences in salinity. Overall our results suggest that substrate

type (water or solid substrate) plays a fundamental role in

determining the composition of the metagenome and that, in

addition to extant physiochemical parameters, needs to be

considered when interpreting patterns in microbial community

diversity.

Materials and Methods

Site selection and sediment sampling
Sampling was conducted along the 100 km long, shallow

temperate coastal lagoon comprising the Coorong, in South

Australia (35u3393.050S, 138u52958.800E), which is characterized

by a strong continuous gradient from estuarine to hypersaline

salinities. Samples were collected from four sites along the salinity

gradient. The sites were characterized by differing salinities and

nutrient status (Table 1). Sediment for DNA extraction was

sampled using a new 1.5 cm diameter sterile corer at each site, and

included the upper 10 cm of sediment. Sample cores were

transferred to a sterile 50 mL centrifuge tube, stored and

transported on ice in the dark following collection, and DNA

extraction was undertaken within six hours of sampling.

For each site, nutrient levels in porewater and overlying water

were determined using a Lachat QuikChem 8500 nutrient

analyzer and pH, dissolved oxygen and salinity were measured

using a 90FL-T (TPS) multi-parameter probe. Abundance of

heterotrophic bacteria and viruses in sediment porewater was

assessed using a Becton Dickinson FACScanto flow cytometer and

previously described protocols [17,18]. In line with previous

studies (e.g. [41]), porewater microbial abundance was used to

Figure 4. Comparison of metabolic profiles derived from selected metagenomes publicly available on the MG-RAST database. The
hierarchical agglomerative cluster plot (group average) is derived from a Bray-Curtis similarity matrix calculated from the square root transformed
abundance of DNA fragments matching subsystems in the SEED database (BLASTX E-value,0.001).
doi:10.1371/journal.pone.0025173.g004
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compare sediment samples using flow cytometry, potentially

representing a lower estimate of the entire sediment abundance

[42], which includes particle-attached bacteria and viruses.

Sampling was conducted under a Government of South Australia

Department of Environment and Heritage Permit to Undertake

Scientific Research.

Metagenomic sequencing
Microbial community DNA was extracted from c.a.10 g of

homogenized sediment, using the entire volume of the sediment

core, using a bead beating and chemical lysis extraction kit

(MoBio, Solano Beach, CA.) and further concentrated using

ethanol precipitation. DNA quality and concentration was

determined by agarose gel electrophoresis and spectrophotometry

and .5 mg of high molecular weight DNA was sequenced at the

Australian Genome Research Facility. Sequencing was conducted

on a GS-FLX pyrosequencing platform (Roche) using a multiplex

barcoding approach to distinguish between the four libraries on a

single plate. Sequencing yielded between 16 Mbp and 27 Mbp of

sequence information per library, with an average read length of

232.5 bp (Table 1).

Bioinformatics and statistical analysis
Unassembled sequences (environmental gene tags) were anno-

tated using the MetaGenomics Rapid Annotation using Subsystem

Technology (MG-RAST) pipeline version 2.0 (http://metage

nomics.nmpdr.org/) [20], with a BLASTX E-value cut-off of

E,161025 and a minimum alignment length of 50 bp. The

abundance of individual sequences matching a particular SEED

subsystem (groups of genes involved in a particular metabolic

function) [19] were normalized by sequencing effort and used to

generate a metabolic profile of the metagenome. Taxonomic

profiles were generated within MG-RAST using the normalized

abundance of the phylogenetic identity of sequence matches to the

SEED database [19] and Ribosomal Database Project (Table S1)

both with a BLAST E-value cut-off of E,161025 and a minimum

alignment length of 50 bp [21]. The MG-RAST pipeline [20]

implements the automated BLASTX annotation of metagenomic

sequencing reads against the SEED non-redundant database [19],

a manually curated collection of genome project derived genes

grouped into specific metabolic processes termed ‘subsystems’.

The SEED matches of Protein Encoding Genes (PEGs) derived

from the sampled metagenome may be reconstructed either in

terms of metabolic function or taxonomic identity at varying

hierarchical levels of organization. For taxonomy, there are five

levels from domain to genome level and for metabolism there are

three sequential nested groupings termed level 1, level 2 and

subsystem. In our data, metabolic information was derived at the

coarsest level of organization, the generalized cellular functions,

termed level 1 (Fig. 2), and the finest, individual subsystems (Fig. 4).

Taxonomy was profiled at the phylum (Fig. 1) and genome (Fig. 3)

level. In order to statistically investigate the similarity of the four

Coorong metagenomes, as well as the metagenomic profiles

publicly available on the MG-RAST server and in our own

database (Table 2, Table S3), we generated a heatmap of the

frequency of MG-RAST hits to each individual taxa (genome

level) or subsystem for each metagenome, which had been

normalized by dividing by the total number of hits to remove

bias in sequencing effort or differences in read length. These hits

were identified using an E-value cut-off of E,0.001. Statistical

analyses were conducted on square root transformed frequency

data using Primer 6 for Windows (Version 6.1.6, Primer-E Ltd.

Table 2. Summary of metagenomes used in this study.

MG-RAST ID Description/Reference MG-RAST ID Description/Reference

4440984.3 Coorong sediment (37 PSU) 4440971.3 Hypersaline mat (22–34 mm) [29]

4441020.3 Coorong sediment (109 PSU) 4441584.3 GS012 (Estuary) [45]

4441021.3 Coorong sediment (132 PSU) 4441590.3 GS020 (freshwater) [45]

4441022.3 Coorong sediment (136 PSU) 4441595.3 GS027 (Marine) [45]

4446406.3 Coorong water 1 4441598.3 GS032 (mangrove) [45]

4446412.3 Coorong water 2 4441599.3 GS033 (hypersaline) [45]

4446411.3 Coorong water 3 4441606.3 GS108a (marine) [45]

4446341.3 Marine sediment 1 4441610.3 GS113 (marine) [45]

4446342.3 Marine sediment 2 4441613.3 GS117a (marine) [45]

4440329.3 Hypersaline sediment 4443688.3 Botany Bay (marine)

4440324.3 Saltern 1 (low) [5,28] 4443689.3 Botany Bay 2 (marine)

4440435.3 Saltern 2 (medium) [5,28] 4440041.3 Line Islands (marine) [46]

4440438.3 Saltern 3 (high) [5,28] 4440212.3 Arctic (marine) [47]

4440437.3 Saltern 4 (low) [5,28] 4440440.3 Aquaculture pond [5]

4440426.3 Saltern 5 (low) [5,28] 4440281.3 Soudan mine [48]

4440429.3 Saltern 6 (high) [5,28] 4441656.4 Whalefall mat [49]

4440067.3 Stromatolite 1 [50] 4441093.3 EBPR (USA) [51]

4440060.4 Stromatolite 2 [50] 4441092.3 EBPR (Australia) [51]

4440061.3 Stromatolite 3 [5] 4441091.3 Farm soil [49]

4440964.3 Hypersaline mat (0–1 mm) [29]

All metagenomes are publicly available on the MG-RAST server (http://metagenomics.nmpdr.org/) [20]. Number of database hits (BLASTX) are determined using an E-
value cut-off of 0.001. A more detailed table is provided in supporting information Table S3. Bold = this study.
doi:10.1371/journal.pone.0025173.t002
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Plymouth) [43]. Hierarchical agglomerative clustering (CLUS-

TER) [44] was used to display the Bray-Curtis similarity

relationships between our profiles and those of the publicly

available metagenomes with the results displayed as a group

average dendogram. Specific Bray-Curtis similarities for individual

clusters were taken from the Primer 6 CLUSTER output, which

displays the stepwise construction of the dendogram.

Supporting Information

Table S1 Percentage of Ribosomal DNA matches to
bacterial phyla. Relative representation in the metagenome was

calculated by dividing the number of hits to each category by the

total number of hits to all categories. Hits were generated by

BLASTing sequences to the Ribosomal Database Project [21], via

MG-RAST [20], with an E-value cut-off of 161025 and a

minimum alignment of 50 bp. Due to inconsistencies in 16S

rDNA copy number, these relative abundances represent estimates

of overall ribosomal DNA composition at phyla level only.

(DOC)

Table S2 Relative proportion of matches to the SEED
taxonomic hierarchy. Relative representation in the metagen-

ome was calculated by dividing the number of hits to each

category by the total number of hits to all categories. Hits were

generated by BLASTing sequences to the SEED database with an

E-value cut-off of 161025 and a minimum alignment of 50 bp.

(XLS)

Table S3 Detailed summary of metagenomes used in
this study. All metagenomes are publicly available on the MG-

RAST server (http://metagenomics.nmpdr.org/) [20]. Number of

database hits (BLASTX) are determined using an E-value cut-off

of 0.001. References are provided in Table 2 of the manuscript.

Bold = this study.

(XLS)
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