
Fine-Mapping the Genetic Association of the Major
Histocompatibility Complex in Multiple Sclerosis: HLA
and Non-HLA Effects
Nikolaos A. Patsopoulos1,2,3,4, Lisa F. Barcellos5,6, Rogier Q. Hintzen7, Catherine Schaefer6,

Cornelia M. van Duijn8, Janelle A. Noble9, Towfique Raj1,3,4, IMSGC", ANZgene",

Pierre-Antoine Gourraud10, Barbara E. Stranger11,12, Jorge Oksenberg10, Tomas Olsson13,

Bruce V. Taylor14, Stephen Sawcer15, David A. Hafler4,16, Mary Carrington17,18, Philip L. De Jager1,3,4.*,

Paul I. W. de Bakker2,3,4,19,20.*

1 Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Department of Neurology, Brigham & Women’s Hospital, Boston, Massachusetts,

United States of America, 2 Division of Genetics, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of

America, 3 Harvard Medical School, Boston, Massachusetts, United States of America, 4 Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge,

Massachusetts, United States of America, 5 Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California,

Berkeley, Berkeley, California, United States of America, 6 Kaiser Permanente Division of Research, Oakland, California, United States of America, 7 Department of

Neurology, MS Centre ErasMS, Erasmus MC, Rotterdam, The Netherlands, 8 Genetic Epidemiology Unit, Department of Epidemiology and Biostatistics and Clinical

Genetics, Erasmus MC, Rotterdam, The Netherlands, 9 Children’s Hospital Oakland Research Institute, Oakland, California, United States of America, 10 Department of

Neurology, University, of California at San Francisco, San Francisco, California, United States of America, 11 Section of Genetic Medicine, Department of Medicine,

University of Chicago, Chicago, Illinois, United States of America, 12 Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of

America, 13 Department of Clinical Neuroscience CMM, Karolinska Institutet, Stockholm, Sweden, 14 Menzies Research Institute Tasmania, University of Tasmania, Hobart,

Australia, 15 University of Cambridge, Department of Clinical Neuroscience, Addenbrooke’s Hospital, Cambridge, United Kingdom, 16 Department of Neurology and

Department of Immunobiology, Yale University, School of Medicine, New Haven, Connecticut, United States of America, 17 Cancer and Inflammation Program, Laboratory

of Experimental Immunology, SAIC Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America, 18 Ragon Institute of

MGH, MIT, and Harvard, Charlestown, Massachusetts, United States of America, 19 Department of Medical Genetics, Division of Biomedical Genetics, University Medical

Center, Utrecht, The Netherlands, 20 Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands

Abstract

The major histocompatibility complex (MHC) region is strongly associated with multiple sclerosis (MS) susceptibility. HLA-
DRB1*15:01 has the strongest effect, and several other alleles have been reported at different levels of validation. Using SNP
data from genome-wide studies, we imputed and tested classical alleles and amino acid polymorphisms in 8 classical human
leukocyte antigen (HLA) genes in 5,091 cases and 9,595 controls. We identified 11 statistically independent effects overall: 6
HLA-DRB1 and one DPB1 alleles in class II, one HLA-A and two B alleles in class I, and one signal in a region spanning from
MICB to LST1. This genomic segment does not contain any HLA class I or II genes and provides robust evidence for the
involvement of a non-HLA risk allele within the MHC. Interestingly, this region contains the TNF gene, the cognate ligand of
the well-validated TNFRSF1A MS susceptibility gene. The classical HLA effects can be explained to some extent by
polymorphic amino acid positions in the peptide-binding grooves. This study dissects the independent effects in the MHC, a
critical region for MS susceptibility that harbors multiple risk alleles.
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Introduction

Across the entire human genome, the major histocompatibility

complex (MHC) on chromosome 6 makes the single largest

contribution to multiple sclerosis (MS) susceptibility. The classical

HLA-DRB1*15:01 allele has been documented as the strongest

association to MS risk, and its role has been studied and replicated

extensively [1]. Numerous other HLA alleles have been suggested

to be associated with MS susceptibility, but the complex structure

of the MHC has made it challenging to unequivocally pinpoint

variants that play a causal role in MS [1,2]. For example, it has

been suggested that DQB1*06:02, an MHC class II allele in strong

linkage disequilibrium (LD) with DRB1*15:01, either has no

independent effect [3] or acts in an extended haplotype with

DRB1*15:01, the DRB1*15:01—DQB1*06:02 haplotype, or the

DRB1*15:01—DQA1*0102—DQB1*06:02 haplotype [4,5]. The

ambiguity and the lack of replication for many of the MHC

associations can be attributed to the extended LD structure of the

MHC [6], the limited number of HLA loci analyzed, and the

relatively small sample size of previous studies.

Thanks to a large sample size and a novel procedure to impute

classical HLA alleles from SNP data, a recent study described

independent MHC effects for DRB1*15:01, *03:01 and *13:03 as

well as HLA-A*02:01 and rs9277535 [7]. In the present study we

sought to test not only the role of classical HLA alleles but also of

potentially functional variation within the HLA genes. To this end,

we imputed classical alleles as well as their corresponding amino

acid sequences in 8 HLA genes in a large population of 5,091 MS

cases and 9,595 healthy controls, with genome-wide data (GWAS),

following a recently described imputation protocol [8]. Both the

samples and the imputation method used were independent of

recent efforts exploring MHC associations to MS susceptibility [7].

Results

We have successfully imputed 3,613 SNPs, 202 amino acid

positions, 78 classical HLA alleles at two-digit resolution, and 99

classical HLA alleles at four-digit resolution (Figure S1). Given the

number of hypotheses that are tested in this analysis, we set, a

priori, p,161025 as the threshold for statistical significance. This

threshold accounts for 5,000 independent tests, assuming a study-

wide type 1 error rate (a) of 5%. Overall, we analyzed 5,091 MS

cases and 9,595 healthy controls from eight different GWAS data

sets (Table 1).

Multi-allelic nature of association at HLA-DRB1
The most statistically significant variant in the univariate

analysis (see Material and Methods for details) was HLA-

DRB1*15:01 (odds ratio [OR] = 2.92, p = 1.46102234,

Figure 1A). Looking at each category of variants (SNPs, two-digit

HLA alleles, four-digit HLA alleles and amino acid positions), the

amino acid position with the smallest p-value was position 25 in

the leader peptide of DQb1 (p = 7.66102231), and the most

statistically significant SNP was at position 32,742,280 (OR for the

A allele = 2.96, p = 5.16102229). An equivalent effect was

observed for HLA-DQB1*06:02 (OR = 2.96, p = 5.46102229). We

first tested whether the DRB1*15:01 effect could be explained by

DQB1. Adjusting for DQB1 variants, we observed that

DRB1*15:01 always had a residual effect (p,1026). Conversely,

adjusting for DRB1*15:01, the effect of DQB1 variants were

accounted for (p.0.8), suggesting that DRB1*15:01 had a non-

equivalent and more statistically significant effect than the DQB1

variants. Furthermore, the extended DRB1*15:01—DQB1*06:02

haplotype (p = 7.56102231) did not improve upon the association

of DRB1*15:01 alone. Similarly, the classical DQA1*01:02 allele—

that was suggested to contribute to the effect of the haplotype—

was strongly associated (p = 4.86102178), but its effect could be

entirely explained by DRB1*15:01. These observations strengthen

the hypothesis that the primary MHC effect in MS is mediated by

DRB1*15:01 and not by variants in the DQB1 or DQA1 loci.

The DRB1 locus (all four-digit alleles in one model) had a p-

value of 4.06102263 in the initial analysis (Figure 1B). After

adjusting for DRB1*15:01, the residual DRB1 locus effect (due to

all remaining DRB1 four-digit alleles) was still statistically

significant (p = 3.1610237), indicating the presence of multiple

independent DRB1 effects. Applying a forward stepwise strategy

(see Materials and Methods for details), we established statistical

independence for 5 additional DRB1 alleles: *03:01, *13:03,

*04:04, *04:01, and *14:01 (Table S1). After controlling for the

effects of all 6 significant DRB1 alleles (including *15:01), there was

no evidence for a residual signal (p = 1.5610205). We also applied

several other variant selection approaches to test the robustness of

these findings; all approaches identified the same six alleles (Table

S1).

HLA-A*02:01 has an independent protective effect
Having analyzed the effects at HLA-DRB1, we tested all other

variation across the MHC while correcting for the six statistically

independent DRB1 alleles, namely DRB1*15:01, DRB1*03:01,

Table 1. Descriptive characteristic of analyzed data sets.

GWAS Cases Controls %males

Genomic
inflation
factor

GeneMSA DU 219 225 39% 1.020

GeneMSA US 437 402 32% 1.021

GeneMSA SW 239 190 30% 1.018

IMSGC 790 1677 43% 1.030

BWH 821 2705 51% 1.058

ANZgene 1582 1949 33% 1.054

Rotterdam 459 1938 41% 1.030

Kaiser Permanente 544 513 19% 1.003

IMSGC: International Multiple Sclerosis Genetics Consortium; BWH: Brigham &
Women’s Hospital; ANZ: Australia and New Zealand genetic study; DU:
Netherlands; US: United States; SW: Switzerland.
doi:10.1371/journal.pgen.1003926.t001

Author Summary

Multiple sclerosis (MS) is an inflammatory and neurode-
generative disease with a heritable component. Although
it has been known for a long time that the strongest MS
risk factor maps to the major histocompatibility complex
(MHC) on chromosome 6, there are still many unresolved
questions as to the identity and the nature of the risk
variants within the MHC. Because the MHC has a complex
structure, systematic investigation across this region has
been challenging. In this study, we used state-of-the-art
imputation methods coupled to statistical regression to
query variants in the human leukocyte antigen (HLA) class I
and II genes for a role in MS risk. Starting from available
SNP genotype data, we replicated the strongest risk factor,
the HLA-DRB1*15:01 allele, and were able to identify 11
independent effects in total. Functional studies are now
needed to understand their mechanism in MS etiology.

MHC Effects in Multiple Sclerosis
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DRB1*13:03, DRB1*04:04, DRB1*04:01, and DRB1*14:01. The

most statistically significant variant was SNP rs2844821 near HLA-

A (OR for G allele = 0.70, p = 3.2610229, Figure 1C). Due to LD,

this SNP effect is statistically equivalent to the effect of HLA-

A*02:01 (OR = 0.70, p = 7.4610229) and amino acid Val at

position 95 in the peptide-binding groove of the HLA-A protein

(OR = 0.70, p = 9.6610229, Figure 2). Controlling for this effect,

there were no other HLA-A associations.

The DPB1 association with MS susceptibility
Controlling for the 6 DRB1 alleles and the HLA-A effect, the

next most statistically significant variant was rs9277489 (OR for

C = 1.31, p = 2.6610218). This SNP is in the intronic region of

HLA-DPB1 gene and in perfect LD (r2 = 1, based on HapMap

Phase II) with rs9277535 that was previously associated with MS

susceptibility [7,9]. The most statistically significant HLA allele

was DPB1*03:01 (p = 3.6610215), but the effect of rs9277489

cannot be explained by DPB1*03:01 alone (p = 1.7610206 for

rs9277489 in the presence of DPB1*03:01). The most statistically

significant amino acid mapped to position 65 of HLA-DPb1 (OR

for Leu vs. Ile = 1.37, p = 3.7610218), which explained the effect

of rs9277489 (p = 0.003 for rs9277489 in the presence of Leu65 in

HLA-DPb1). This amino acid is also located in the peptide-

binding groove of HLA-DPb1 (Figure 2). After controlling for

rs9277489, there was no residual effect at the DPB1 locus

(p.1.061025).

A non-classical MHC association in MICB-LST1
Adjusting also for the DPB1 effect, we identified rs2516489 as

the next most statistically significant variant (OR for T = 1.31,

Figure 1. Association plots for the analyzed variants and HLA genes. Panels on the left are regional association plots for all variants in the
MHC region; each diamond is a polymorphism evaluated in the analysis (SNP, HLA type, amino acid). The index variant that best captures the effect of
each locus is highlighted with a larger diamond. Variants that are in LD with the index variant are colored, with the intensity of the color being
proportional to the extent of LD. The panels on the right plot the 2log10(p-value) of the eight analyzed HLA genes. The order of the genes is based
on their position on chromosome 6. The rows represent univariate analysis (A, B), conditioning on six HLA-DRB1 alleles (*15:01, *03:01, *13:03, *04:04,
*04:01, and *14:01) (C, D), conditioning on the above and HLA-A*02:01 (E, F), conditioning on the above and the DPB1 effect (G, H), conditioning on
the above and rs2516489 (I, J), conditioning on the above and B*37:01 (K, L), conditioning on the above and B*38:01 (M, N). In panels M and N the
solid black line marks the threshold of statistical significance in the study.
doi:10.1371/journal.pgen.1003926.g001

MHC Effects in Multiple Sclerosis
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p = 6.7610213, Figure 1G, Figure S2B). This SNP tags a region of

extended LD containing several non-classical MHC class I, class

III and cytokine genes, i.e. MICB, DDX39B (BAT1), NFKBIL1,

TNF, LTA, LTB, and LST1 (Figure 3). We note that this region

had no substantial effect in the univariate analysis (Figure 1A,

Figure S2A), but it became genome-wide significant once the

DRB1*15:01 effect was accounted for (Table S2). There was no

evidence of interaction either with DRB1*1501 (Table S2) or any

other of the identified effects. To explore this phenomenon

further, we stratified the samples according to the presence of

DRB1*15:01 into carriers (heterozygous and homozygous) and

non-carriers. Univariate analysis in these two strata revealed a

consistent but modest effect (OR ,1.2) for the associated SNP in

both DRB1*15:01 carriers and non-carriers (Table S2, Figure S3).

This phenomenon can likely be explained by Simpson’s paradox,

where two subgroups share the same association but the overall

population shows no association (or even a reversed one) [10].

This analysis therefore returns, for the first time, robust evidence

supporting the role of non-HLA genes within the MHC.

To explore any functional consequences of the SNPs in the

MICB-LST1 region we tested these SNPs for cis-eQTL (expression

quantitative trait loci) effects in peripheral blood mononuclear cells

(PBMCs) of 213 MS subjects [11] as well as CD4+ T cells and

CD14+ monocytes of 211 healthy controls (Table S3). None of the

associated SNPs had a strong cis-eQTL effect (p.161025): the

strongest effect in this region is the relation of rs2516489 to LST1

expression (p = 1.9161025) in the CD4+ T cells of healthy

individuals. The next strongest effect also involved rs2516489 but

was seen in relation to HCG18 (p = 3.1961025) in the PBMCs of

MS subjects. None of the SNPs had a statistically significant cis-

eQTL effect on any of the class I or II classical HLA genes (Table

S3). Leveraging the publicly available Encyclopedia of DNA

Elements (ENCODE) [12] and NIH Epigenomics Roadmap [13]

for immune cells and cell lines it is evident that the region has an

abundance of functional elements (Figure 3). Of specific interest is

the non-coding naturally occurring read-through transcription

between the neighboring ATP6V1G2 (ATPase, H+ transporting,

lysosomal 13 kDa, V1 subunit G2) and DDX39B (DEAD box

polypeptide 39B) genes. Two SNPs, rs2523512 and rs2251824, tag

this element that has a strong signal in the DNase hypersensitivity

assay in all immune cell types, suggesting that it is an active cis-

regulatory region. The histone markers for promoters, enhancers

and active elongation also support these data, while this region is

identified as an active transcription start site using chromatin states

[14]. Other candidates are the TNF and LTB genes. Rs2516489,

the SNP with the best (but not statistically significant) cis-eQTL

effects, lies within a region of heterochromatin, with no indication

of regulatory potential in the available data.

Independent HLA-B effects
Adjusting for 6 classical DRB1 alleles, HLA-A*02:01, rs9277489

(HLA-DPB1 effect) and rs2516489, we observed another novel signal

emerging from the HLA-B locus (p = 7.9610211). The most

statistically significant variants were HLA-B*37, HLA-B*37:01, amino

acid Ser at position 99 in HLA-B (Figure 2) and a SNP in position

31,431,006 (hg18) (Figure 1I, J). All of these variants had statistically

equivalent effects (OR = 1.75, p = 2.2610208). Accounting for the

effect of HLA-B*37:01, no other variant in HLA-B exceeded our a

Figure 2. 3D ribbon models for HLA DR, HLA A, HLA DP and HLA B. All structures are positioned to accommodate the view of the peptide-
binding groove and the associated amino acid residues. The Protein Data Bank entries 3pdo, 1a1m, 3lqz, and 2bvp were used to produce the 3D
structures, respectively, using UCSF Chimera [49].
doi:10.1371/journal.pgen.1003926.g002

MHC Effects in Multiple Sclerosis
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priori defined threshold, although the residual effect at the HLA-B

locus due to all remaining classical HLA-B alleles was still statistically

significant in our analysis (p = 6.5610206, Figure 1L). This residual

association could be accounted for by HLA-B*38:01 (OR = 0.55;

p = 4.1610205). After adding HLA-B*38:01 to the model, there was

no longer evidence for a residual effect of classical HLA-B alleles

(p.0.002) or elsewhere across the MHC. No amino acid position in

HLA-B could explain the HLA-B*38:01 effect.

Amino acid residues in DRb1
Next, we set out to assess whether a specific set of amino acids

within the HLA-DR molecule could explain the collective effect of

the six classical DRB1 alleles identified above. To this end, we tested

each polymorphic amino acid position using an omnibus test (a

regression model with all but one amino acids carried by a given

position), adding all amino acids (but one) of the most statistically

significant position to the model in a forward stepwise fashion. The

most significant amino acid position in DRb1 mapped to position

71 (p = 1.26102227, Figure S4A), which carries 4 possible alleles:

Ala, Arg, Glu, and Lys. Controlling for the alleles at position 71

(df = 3), there was still a strong residual signal for DRB1*15:01

(p = 5.8610213), indicating that amino acid position 71 alone does

not explain the DRB1*15:01 effect. Adjusting for the alleles at

position 71, position 74 was the next most statistically significant

(p = 1.2610216, Figure S4B). This position harbors five possible

alleles: Arg, Leu, Glu, Ala and Gln. Controlling for positions 71 and

74, position 57 (with four alleles: Asp, Ser, Val or Ala) was the next

most statistically significant association (p = 4.9610211, Figure

S4C). Controlling for positions 71, 74 and 57, we found position

86 as the most statistically significant association (OR = 1.35 for Val

vs. Gly, p = 1.0610206, Figure S4D). After controlling for these four

positions, no other amino acid position exceeded our significance

threshold (Figure S4E), although HLA-DRB1*15:01 still showed a

residual association signal (p = 10205). The model with the four

DRb1 amino acid positions could explain the data better than a

model with only DRB1*15:01 (p = 2.6610226 in favor of the DRb1

amino acid positions), but it was slightly worse than the model with

the six DRB1 alleles (p = 0.001 in favor of the 6 DRB1 alleles). All

four amino acid positions reside in the peptide-binding groove of the

HLA-DR molecule (Figure 2; Table S4 lists the correspondence

between the amino acids at these positions and the six associated

classical DRB1 alleles).

Variance explained
Integrating all of the results, HLA-DRB1*15:01 accounted for

10% of the phenotypic variance in the data, whereas all 6

independent HLA-DRB1 alleles explained 11.6%. A model with all

identified statistically independent effects (HLA-DRB1*15:01,

HLA-DRB1*03:01, HLA-DRB1*13:03, HLA-DRB1*04:04, HLA-

DRB1*04:01, HLA-DRB1*14:01, HLA-A*02:01, rs9277489/Leu65

in HLA-DPb1, rs2516489, HLA-B*37:01, and HLA-B*38:01)

accounted for 14.2% of the total variance in MS susceptibility.

Discussion

We have imputed classical alleles of HLA genes, their

corresponding amino acids and SNPs across the MHC, and

tested all variants for association in a large case-control collection.

Figure 3. Functional annotation of the MICB-LST1. The first 6 rows are H3K4me3 (green) data for CD4 memory primary cells, CD4 naı̈ve primary
cells, CD8 memory primary cells, CD8 naı̈ve primary cells, Treg primary cells, and GM12878 cell line (B-lymphocyte, lymphoblastoid, International
HapMap Project - CEPH/Utah - European Caucasion, Epstein-Barr Virus). The next 5 rows display H3K27ac (blue) data for CD4 memory primary cells,
CD4 naı̈ve primary cells, CD8 memory primary cells, CD8 naı̈ve primary cells, and GM12878 cell line, respectively. Then there are the H3K36me3
(green) data for CD4 memory primary cells, CD4 naı̈ve primary cells, CD8 memory primary cells, CD8 naı̈ve primary cells, Treg primary cells, and
GM12878 cell line. The chomatin states displayed are for CD4 memory primary cells, CD4 naı̈ve primary cells, CD8 memory primary cells, CD8 naı̈ve
primary cells, and GM12878 cell line. The DNase hypersensitivity sites are for CD4 primary cells, CD8 primary cells, CD14+ monocytes, Treg, Th1, Th2,
Th17 and GM12878 cell line, respectively. The detailed colorscheme of the chromatin states is listed in the Supplementary material. Briefly, red
corresponds to transcription start sites (TSSs) and/or active promoters, orange/yellow to enhancers, green to transcription, and white/grey to
heterochromain. All data are publicly available data from ENCODE and NIH Roadmap. The last row displays the 2log10(p) of the SNPs in the LD block
after adjustment with the HLA-DRB1*15:01 effect.
doi:10.1371/journal.pgen.1003926.g003

MHC Effects in Multiple Sclerosis
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Our analysis corroborates the effects of DRB1 alleles other than

the well-known DRB1*15:01 association. Classical alleles

DRB1*03:01, *13:03, *04:04, *04:01, and *14:01 display robust,

independent associations in our data. The DQB1 and DQA1 genes

have been suggested to form extended haplotypes with DRB1

alleles, mostly *15:01 [4]. In our hands, the effect of DQB1*06:02

does not explain the effect of DRB1*15:01. Furthermore, the

DRB1*15:01—DQB1*06:02 haplotype does not appear to explain

the data as well as the effect of DRB1*15:01 alone. Based on these

results, DRB1*15:01 and the remaining DRB1 alleles are better

candidates than DQB1 variants for a causal role in MS

susceptibility, a hypothesis that agrees with the MHC analysis of

MS subjects with African origin [3]. We note that this

interpretation counters evidence in favor of DQB1 from certain

murine models that capture elements of human inflammatory

demyelination by triggering experimental autoimmune encepha-

lomyelitis induced with myelin-associated oligodendrocytic basic

protein [15] or proteolipid protein [16].

A number of studies have highlighted the importance of class I

HLA alleles in MS susceptibility, with HLA-A*02:01 being the

most prominent allele [17–20]. Here, we replicated the HLA-

A*02:01 association and attributed it to an amino acid polymor-

phism at position 95 in the peptide-binding groove of the HLA-A

molecule. We also replicated the recently proposed DPB1*03:01

association, and identified a more statistically significant effect at

amino acid position 65 in the peptide binding groove of HLA-

DPb1 [7,9]. Although our study has overlapping samples with the

first study to identify an independent HLA-DPB1 effect [9], these

account for only 24% of the present sample set. The evidence of

an HLA-DPB1 effect is strengthened by the fact that the second

study reporting such a signal [7] has no overlapping samples with

our study. Furthermore, we confirmed the presence of statistically

independent HLA-B effects [21,22]. Our analysis fine-mapped

these to B*37:01 and B*38:01. Of these, B*37:01 can be explained

by amino acid Ser99 of the HLA-B protein, which is also in this

molecule’s peptide-binding groove. The HLA-C locus demonstrat-

ed no convincing evidence for a statistically independent effect,

suggesting that previous results may have tagged untested HLA-A

or HLA-B effects across the class I region [23]. Although some of

the above associations could be explained by specific amino acid

polymorphisms in the corresponding HLA proteins, the picture at

HLA-DRB1 however appears to be more complex as there was no

single model based on amino acids that could explain the entire

locus effect (including the specific effect due to DRB1*15:01). At

this stage, our conservative interpretation of these results is that the

implicated amino acids allow new hypotheses to be formulated for

future functional studies.

An interesting finding in our analysis was the association of the

region spanning from MICB to LST1, which contains several

important class I, class III and cytokine-related genes. Although the

identified SNPs were not significant in the initial (univariate)

analysis, we established that these reached significance after

adjusting for the strong DRB1*15:01 effect. One small study

previously examined MICB along with DRB1*15 and had found

evidence for an independent association [24]. Another study

reported that variation in TNF can modify the effect of

DRB1*15:01 [25]. We did not obtain evidence for statistical

interaction between this locus and the other MHC variants,

indicating that the MHC susceptibility variants we have catalogued

likely act independently and additively in terms of MS susceptibility.

Overall, we offer robust evidence for the role of a specific MS

susceptibility haplotype in this region of the MHC. This region

harbors evidence for association with several other diseases, e.g.

Crohn’s disease and ulcerative colitis [26], rheumatoid arthritis

[27], Sjogren’s syndrome [28], and hepatitis C virus-associated

dilated cardiomyopathy [29]. However, the identity of the causal

gene(s) within this associated region remains unclear at this time, but

it is intriguing that three of the genes (TNF, LTA and LTB) are

ligands for one of the validated MS susceptibility genes, TNFRSF1A

[30]. We did not observe any evidence of statistical interaction

(p.0.5) with this non-MHC locus in our data. Our preliminary

analysis using cis-eQTL data in healthy individuals and MS subjects

as well as the publicly available genomic data from the ENCODE

and NIH Epigenomics Roadmap did not identify a single variant/

gene as the likely causal one. From this information it seems that

several genes have functional potential, but more detailed functional

studies will be needed to unravel the causal variants and genes.

Leveraging genome-wide genotype data, the collection of

analyses presented here provides a well-powered investigation of

thousands of genotyped and imputed SNPs, classical alleles of 8

class I and II HLA genes and amino acid sequence variation of

these HLA proteins. The combination of the large sample size

with additional variation types allowed us to present an enhanced

dissection of the critical role of the MHC in MS susceptibility. Our

results highlight a possible role for certain residues in the peptide-

binding groove of HLA molecules associated with peptide antigen

recognition. In HLA-DRb1 we identified a set of four amino acids

in positions 71, 74, 57 and 86 that capture most (but not all) of the

DRB1 association. Of these, Val86 has been associated previously

with MS [31–33], and this residue appears to be important for the

presentation of peptides from a putative target antigen in MS,

myelin basic protein [34], and for the stability of the DRab dimer

[35]. Another study suggested an association at position 60 [36]

and another one at position 13 [37], although these were not

replicated in the present study. Interestingly, the HLA-DRb1

amino acids in positions 71 and 74 were recently also associated

with susceptibility to rheumatoid arthritis [38]. Overall, consistent

with the known biology of MS, it appears that disease-associated

variants in HLA-DRB1 primarily influence the structural charac-

teristics of the peptide-binding groove and presumably lead to

alterations of the T cell repertoire that enhance the likelihood of

an inflammatory demyelinating process. However, the MHC also

harbors at least one other risk allele that does not directly affect an

antigen-presenting molecule: the robust evidence supporting a risk

haplotype in the vicinity of MICB will have a different mechanism,

one that is likely to affect the function of one or perhaps several

cytokines.

This study displays an effective strategy for in-depth character-

ization of this complex region of the human genome. Increasing

study sample sizes and more complete reference panels are likely

to continue to provide a more detailed perspective on the

architecture of genetic susceptibility in this region. The identified

amino acid residues may help prioritize the identification of

binding peptides and investigations of other potential roles that

these susceptibility alleles might have in the biology of MS

susceptibility aside from antigen presentation.

Materials and Methods

Samples
We used data from 8 genome-wide association studies (GWAS)

of European ancestry (Table 1): (a) three GWAS of the GeneMSA

[30,39] with samples from the Netherlands (GeneMSA DU),

Switzerland (GeneMSA SW), and the United States (GeneMSA

US); (b) an early GWAS from the IMSGC [30,39,40] with samples

from the United States (ISMGC US) and the United Kingdom

(IMSGC UK), that was collapsed in one stratum removing the UK

cases; (c) a GWAS with cases from the Brigham and Women’s
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Hospital and controls from the MIGEN study (BWH) [30,39]; (d)

the Australia and New Zealand Multiple Sclerosis Genetics

Consortium (ANZgene) [41]; (e) an unpublished GWAS set from

Erasmus Medical Center in Rotterdam, the Netherlands; and (f)

an unpublished GWAS collection from the Kaiser Permanente

MS Research Program (Kaiser Permanente). All the above GWAS

data sets were filtered with the same quality control criteria as part

of an ongoing meta-analysis of Multiple Sclerosis GWAS. In each

of these data sets we performed principal components analysis

(PCA) to identify population outliers and to calculate covariates to

control for population stratification between cases and controls.

Imputation of classical HLA type I and II alleles and
respective amino acid sequences

From each GWAS we extracted SNPs within the extended MHC

region (chr6:29,299,390 to 33,883,424; hg18) to impute classical

alleles for class I HLA genes (HLA-A, HLA-B, and HLA-C) and class

II HLA genes (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1,

and HLA-DRB1), their corresponding amino acid sequences and

SNPs not captured in the genotypic platforms used. The imputation

was performed with the software BEAGLE [42] using a collection of

2,767 individuals of the Type 1 Diabetes Genetics Consortium

(T1DGC) with 4-digit classical allele genotyping for the above HLA

genes as the reference panel. This method and reference panel have

been used for fine-mapping MHC associations in HIV control [8]

and seropositive rheumatoid arthritis [38]. Cases and controls from

each GWAS dataset were imputed together. All variants in the

reference panel were coded as biallelic markers (presence vs.

absence), allowing us to use BEAGLE for the imputation. Post-

imputation we excluded variants with minor allele frequency less

than 1% from the analysis. Table S5 lists the imputation quality for

the identified variants.

Statistical analysis
We analyzed each variant using a logistic regression model,

assuming alleles have an additive effect on the log-odds scale. We

also assumed the genetic effects were fixed across all eight GWAS.

In each model we included the top 5 principal components to

control for within-GWAS population stratification and 7 dummy

variables to account for between-GWAS specific effects. Through-

out the text we refer to such a model as univariate (Mu), even if

several covariates were included in the model, reflecting the fact

that only one MHC-specific variant is included in the model. This

is the representation of the univariate model:

y~b0,iz
Xp{1

j~1

bi,jxi,jz
X5

l~1

bl,ixlz
Xn{1

k~1

bk,ixk ð1Þ

Mu, Univariate logistic regression model

where y is the log(odds) for the case-control status, b0 is the

logistic regression intercept and bi,j is the log-additive effect for the

allele j of the variant i with p alleles. In this paper, the term variant

is used for any type of SNP (biallelic, triallelic, etc), two-digit HLA

allele, four-digit HLA allele and amino acid position. In any case

we included p-1 alleles, with the one excluded being the reference

allele. Where possible we tried to select the most frequent variant

in the controls as the reference allele. The five included principal

components are represented in the model as l and the last block in

the model represents the dummy variables included for the n

studies (n-1 parameters added in the model).

To calculate an omnibus p-value for the variant, regardless of

the number of alleles included in the univariate model, we used

using a log-likelihood ratio test (2) comparing the likelihood L0 of

the null model (3) against the likelihood L1 of the fitted model:

D~{2 ln
L0

L1
,D*x2 kð Þ ð2Þ

Log-likelihood ratio test

where D is the log-likelihood test value, also known as deviance.

D follows an approximate chi-square distribution with k degrees of

freedom, where k is the difference of the regressed parameters

between the two models. Representation of the null model:

y~b0,iz
X5

l~1

bl,ixlz
Xn{1

k~1

bk,ixk ð3Þ

M0, Null logistic regression model

Besides testing variants for association, i.e. SNPs, HLA alleles and

amino acids, we also fitted models that estimated the overall effect of

the each of the eight HLA genes. We did so, by fitting all respective

four-digit alleles of a given HLA gene in the same model. The

respective p-values reflect the overall significance of the gene.

Framework for identification of statistically independent
effects

In order to identify the statistically independent effects, we first

tested all variants under a univariate logistic regression model and

ranked them based on the p-value of the log-likelihood test. Next, in

a forward stepwise fashion, we included in the logistic regression

model the most statistically significant variant as a covariate,

analyzed all remaining variants and ranked them based on the new

p-value of the respective log-likelihood test. The models that

included at least one variant as covariate are referred to as conditional

throughout the text. In each iteration the null model used in the log-

likelihood test was the original null model (3) with the variants that

were used as covariates. We repeated the same steps until no variant

or no HLA gene reached the level of statistical significance, which

we a priori set to be 1025. This statistical significance threshold

accounts of 5,000 independent tests using Bonferroni correction.

Although most of the variants analyzed are correlated, we chose this

threshold to account also for the multiple stepwise fitted models. If

no variant reached the level of significance but an HLA gene did, we

kept adding variants in the overall model until the HLA gene p-

value was larger than 1025.

To compare the effects of two (or more variants), e.g. A and B,

we fitted the following models: MA model with variant A, MB

model with variant B, and MAB model with both variants A and B.

All three model included the same other covariates. Then we used

the log-likelihood test to compare MAB vs. MB and MAB vs. MA.

These two comparisons represent the effects of variants A and B,

respectively, in the presence of the other variant, i.e. B and A. For

these comparisons we used the nominal (a= 0.05) level of

statistical significance.

Statistically independent effects in the DRB1 locus
After adjusting for the most statistically significant variant,

DRB1*15:01, the residual effect of the DRB1 locus, i.e. the effect

of all alleles besides *15:01, was still the most statistically significant

of any of the remaining variants. This led us to the hypothesis that

several other DRB1 alleles could explain the overall DRB1 locus

effect, already conditioning on DRB1*15:01. To identify such

effects inside the DRB1 locus, we applied the above forward
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stepwise logistic regression approach to the four-digit DRB1

alleles. , To test the robustness of the results from the forward

stepwise regression, we also applied four other statistical methods

for variant selection: i) lasso, [43] ii) elastic net, [44] iii) least angle

regression, [45] and iv) forward Stagewise regression. [46] For the

lasso and elastic net we selected the largest value of lambda (l1)

after 10-fold cross-validation, such that error was within 1

standard error of the minimum mean cross-validated error. In

the respective results section, we illustrate that all methods reached

the same conclusion independently.

DRB1*15:01:DQB1*06:02 extended haplotypes
(diplotypes)

It has been proposed that extended DRB1*15:01–DQB1*06:02

haplotypes confer the risk for MS rather than individual HLA

alleles. To test this hypothesis, we used the post-imputation phased

data to estimate the DRB1*15:01–DQB1*06:02 diplotypes. Then

we fitted a logistic regression that estimated the effect of the

diplotype under a per-allelic model. Since this approach used

phased data, rather than post-imputation probabilities, the

imputation uncertainty is not properly accounted for. Thus, we

expect the respective p-values to be slightly inflated.

Functional analysis of the MICB-LST1 region
To investigate the functional potential of the MICB-LST1 region

we queried:

a) in-house cis-eQTL (expression quantitative trait loci) in

PBMCs of 213 MS subjects [11] and CD4+ T cells and

CD14+ monocytes of 211 healthy individuals. The PBMCs

gene expression levels were quantified with mRNA derived

from of 213 subjects of European ancestry with relapsing

remitting (RR) multiple sclerosis (MS) via an Affymetrix

Human Genome U133 Plus 2.0 Array. The expression levels

were adjusted for confounding factors, such as subject’s use of

immunomodulatory drugs, age, gender, and batch effects via

principle components analysis. Associations between SNP

genotypes and adjusted expression residual traits were

conducted by Spearman rank correlation (SRC). For the cis

analysis, we considered only SNPs within a 2 Mbps window

from the transcript start site (TSS) of genes. Furthermore, we

also explored any possible effect to the expression of class I

and II HLA classical genes, regardless of their physical

distance. Significance of the nominal p-values was deter-

mined by comparing the distribution of the most significant p

values generated by permuting expression phenotypes 10,000

times independently for each gene. We call a cis-eQTL

significant if the nominal association p-value is greater than

the 0.05 tail of the minimal p-value distribution resulting

from the permuted associations, which corresponds to a p-

value of 1610205. Similar methods were used to evaluate the

cis-regulatory effects in CD4+ T lymphocytes and CD14+
monocytes data sets consisting of 211 healthy individuals of

European ancestry. These analyses were conducted under the

auspices of a protocol approved by the institutional review

board of Partners Healthcare.

b) publicly available data from the ENOCDE [12] and NIH

Epigenomics Roadmap [13]. Specifically we perused data for

functional potential from CD4 memory primary cells

(H3K4me3, H3K27ac, H3K36me3, chromatin states), CD4

naı̈ve primary cells (H3K4me3, H3K27ac, H3K36me3,

chromatin states), CD8 memory primary cells (H3K4me3,

H3K27ac, H3K36me3, chromatin states), CD8 naı̈ve

primary cells (H3K4me3, H3K27ac, H3K36me3, chromatin

states), CD4 primary cells (DNase hypersensitivity sites), CD8

primary cells (DNase hypersensitivity sites), Treg primary

cells (H3K4me3, H3K36me3, DNase hypersensitivity sites),

Th1 (DNase hypersensitivity sites), Th2 (DNase hypersensi-

tivity sites), Th17 (DNase hypersensitivity sites) and

GM12878 cell line (B-lymphocyte, lymphoblastoid, Interna-

tional HapMap Project - CEPH/Utah - European Cauca-

sion, Epstein-Barr Virus; H3K4me3, H3K27ac, H3K36me3,

chromatin states, DNase hypersensitivity sites).

Variance explained
We used Nagelkerke’s pseudo-R [47] to estimate the variance

explained

R2~

1{
L0

L1

� �2=N

1{L
2=N
0

, ð4Þ

Nagelkerke’s pseudo-R2

where L0 and L1 are the likelihoods of the null model and fitted

model respectively, and N is the number of individuals.

Software
We used PLINK for the initial analysis of the data and to

estimate minor allele frequencies and imputation quality metrics,

i.e. INFO score. [48] We fitted all models in R using the glm

function and package lars and glmnet.

Ethics statement
This investigation has been approved by the Institutional

Review Board of Partners Healthcare; the reference number is

2002p000434.

Supporting Information

Figure S1 Scatter plots of minor allele frequency (MAF) and

INFO score for the imputed variants. INFO score is an imputation

quality metric and is defined as the ratio of the variance observed

over the variance expected. On average genotyped SNPs have a

value ,1.

(PDF)

Figure S2 Regional associational plots for the non-classical HLA

region spanning MICB-LST1. The figure displays the minus

logarithmic p-values (2log10P) for the SNPs in the MHC region

that includes class I and class III non-classical MHC genes. Panel

A has the 2log10P for the univariate analysis, and panel B the

2log10P adjusting for DRB1*15:01 in the model. Shades of red

represent the r2 between the SNPs and the best marker, i.e.

rs2516489.

(PDF)

Figure S3 DRB1*15:01-stratified analysis for the SNPs tagging

the non-classical HLA LD haplotype. The y-axis lists the SNPs in

positional order. The x-axis displays the respective Odds Ratios

and 95% confidence intervals of these SNPs while analyzing with a

univariate model: a) all individuals [cases: 5,091; controls: 9,595]

(black color), b) DRB1*15:01 carriers [cases: 2,794; controls:

2,392] (green color), and c) non-carriers of DRB1*15:01 [cases:

2,367; controls: 7,204] (red color). Asterisks indicate associations

with a p-value less than 1610205.

(PDF)
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Figure S4 Analysis of amino acid residues in DRb1. The

univariate analysis results are in the first row. Each next one plots

the 2log10(p-value) of the amino acid positions conditioning on

the amino acid residues if the previous rows. The solid black line

marks the threshold of statistical significance in the study. The

rows represent univariate analysis (A), conditioning on position 71

(B), conditioning on the above and position 74 (C), conditioning on

the above and position 57 (D), conditioning on the above and

position 86 (E).

(PDF)

Table S1 Statistically independent effects of the DRB1 locus

considering four digit resolution alleles. In all cells Odds Ratios are

listed. P-values are listed in parentheses for the forward stepwise

regression. The order of the DRB1 alleles is according to the

forward stepwise regression (primary analysis). The stopping rule

was the residual DRB1 locus effect to have a p-value.1.0e205. * For

the regression-based methods the step number in which the allele

was included in the model is displayed. Effect sizes (and p-values)

per variants are for the respective step in the forward stepwise

regression and for the final model in the least angle and forward

stagewise regressions. $ For the lasso and elastic net the Odds Ratios

are displayed, since both methods provide the best solution. The

largest value of l1 regularization parameter such that error is within

1 standard error of the minimum l1 regularization parameter was

used to identify the best solution. Both the lasso and elastic net also

identified *01:01 in their best solution, with OR of 0.99 and 0.97,

respectively. This allele comes up in step 7 in all regression methods.

(DOC)

Table S2 Proof of statistical independence of rs2516489 and

HLA-DRB1*15:01. The interaction term of the two variants

cannot explain either of the two effects. Especially in the saturated

model (both variants and the interaction term) the interaction term

is not statistically significant, even at the nominal level. The

stratification of the samples, based on HLA-DRB1*15:01 carrier

status, reveals the effect of rs2516489 in both strata. The numbers

listed are the Odds Ratio (OR), followed by the p-value. In all

models principal components and dummy variable for studies

were used as covariates.

(DOC)

Table S3 Cis-eQTL effects (p-value,0.05) of the SNPs in MICB-

LST1 in PBMCs of MS subjects, CD4+ T cells of healthy individuals

and CD14+ monocytes of healthy individuals. This table is included

in the accompanied xls entitled ‘‘Supplementary_Table_3.xls’’. None

of the cis-eQTLs reached statistical significance (p-value,161025).

(XLS)

Table S4 Association of the six identified DRB1 alleles and the

amino acid changes in the four associated DRb1 positions. Amino

acids that predispose to MS susceptibility are indicated with bold.

The rest are either protective or neutral. DRB1 alleles in bold

predispose to MS and the rest are protective.

(DOC)

Table S5 Imputation quality scores for the identified variants.

(DOC)

Text S1 Supplementary text explaining the chromatin states

coloring scheme.

(DOC)
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