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Abstract

Context: Establishing the long-term benefit of therapy in chronic diseases has been challenging. Long-term studies require
non-randomized designs and, thus, are often confounded by biases. For example, although disease-modifying therapy in
MS has a convincing benefit on several short-term outcome-measures in randomized trials, its impact on long-term function
remains uncertain.

Objective: Data from the 16-year Long-Term Follow-up study of interferon-beta-1b is used to assess the relationship
between drug-exposure and long-term disability in MS patients.

Design/Setting: To mitigate the bias of outcome-dependent exposure variation in non-randomized long-term studies,
drug-exposure was measured as the medication-possession-ratio, adjusted up or down according to multiple different
weighting-schemes based on MS severity and MS duration at treatment initiation. A recursive-partitioning algorithm
assessed whether exposure (using any weighing scheme) affected long-term outcome. The optimal cut-point that was used
to define ‘‘high’’ or ‘‘low’’ exposure-groups was chosen by the algorithm. Subsequent to verification of an exposure-impact
that included all predictor variables, the two groups were compared using a weighted propensity-stratified analysis in order
to mitigate any treatment-selection bias that may have been present. Finally, multiple sensitivity-analyses were undertaken
using different definitions of long-term outcome and different assumptions about the data.

Main Outcome Measure: Long-Term Disability.

Results: In these analyses, the same weighting-scheme was consistently selected by the recursive-partitioning algorithm.
This scheme reduced (down-weighted) the effectiveness of drug exposure as either disease duration or disability at
treatment-onset increased. Applying this scheme and using propensity-stratification to further mitigate bias, high-exposure
had a consistently better clinical outcome compared to low-exposure (Cox proportional hazard ratio = 0.30–0.42; p,0.0001).

Conclusions: Early initiation and sustained use of interferon-beta-1b has a beneficial impact on long-term outcome in MS.
Our analysis strategy provides a methodological framework for bias-mitigation in the analysis of non-randomized clinical
data.
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Introduction

In general randomized controlled trials (RCTs) in many chronic

diseases such as multiple sclerosis (MS) only establish the short-

term efficacy of our current interventions [1]. Despite this, the

main medical, social, and economic impacts of these diseases are

typically caused by unremitting disability, which evolves slowly

over many years. However, establishing whether a therapy alters

long-term outcome of chronic disease is difficult because, in

general, RCT designs are ill-equipped for this purpose. It is not

realistic to continue a placebo arm after a drug has been

demonstrated to alter short-term outcomes that are believed to

be clinically relevant, especially after the therapy has been

approved. In this circumstance, many patients will not consent

to a prolonged placebo-exposure. Moreover, many clinicians are

already prepared to accept such short-term outcome information

as the basis for treatment decisions and, thus, would not

recommend their patient’s participation in a long-term placebo-

controlled trial. Inevitably, therefore, establishing long-term

efficacy for therapies of chronic diseases requires non-randomized

observational study-designs. The pivotal-trial of interferon-beta-1b

(IFNb-1b; BetaseronH), begun in 1988, was the first successful trial

of disease modifying therapy (DMT) in MS [2,3]. The patient-

cohort from this trial, which has now been followed out to 16

years, therefore, offers a unique opportunity to evaluate the

efficacy of long-term DMT use in MS.

Despite this potential value, however, any such assessment faces

several challenges. For example, when patients entered the RCT,

they did so at very different points along the continuum of the MS

disease course, with respect to both the disease-duration (i.e., the

time since their first clinical symptom) and its severity (i.e., their

disability status). If patient-characteristics such as these influence

either the likelihood of responding to treatment or the likelihood of

reaching a particular long-term outcome, baseline differences in

these factors could potentially confound any assessment of long-

term efficacy. Indeed, the RCT population had considerable

variability on these measures (Table 1) and there are several pieces

of evidence that suggest patients respond better to therapy earlier

in their disease course [4–12].

Following the trial, the decision to start, to continue, or to switch

therapy may also have been influenced by patient characteristics,

thereby, leading to an imbalance (bias) between treated and non-

treated patient-groups. Because such decisions are often based, in

part, on the perceived response to treatment, such outcome-

dependent variations in exposure (i.e., informed censoring) will

also confound assessment of long-term efficacy. Patients doing well

Table 1. Baseline and on-RCT clinical characteristics of the patients included (and those not included) in the detailed LTF
evaluation after 16 years*.

Patients in the
LTF population

Patients not in
LTF population p-value{

Basleine Variables

Number of Patients 260** 112** –

% women 69% 71% 0.7125

Age at disease onset; (years) 27.3 (6.8) 27.7 (7.3) 0.5361

Age at start of RCT; (years) 35.4 (7.4) 35.8 (6.7) 0.5220

EDSS 2.9 (1.3) 2.9 (1.3) 0.8373

EDSS $3; (% of population) 138 (53%) 62 (55%) 0.7343

Disease Duration; (yrs) 8.0 (6.2) 8.1 (6.3) 0.9950

Baseline MSSS 4.3 (2.3) 4.4 (2.2) 0.7118

Baseline, MRI T2 BOD; (cm2) 1.96 (2.0) 2.31 (2.4) 0.0699

Baseline, 3rd ventricular width (mm) 4.86 (2.27) 5.19 (2.42) 0.1893

Annualized Relapse-rate (2 yrs prior to RCT) 1.68 (0.77) 1.67 (0.85) 0.5964

On-Study (RCT) Variables

Annualized Relapse-rate 1.2 (1.2) 1.6 (2) 0.0849

Change, EDSS (actual) 0.0 (1.3) 0.3 (1.6) 0.2415

Number of new T2 CAL 2.4 (3.3) 3.0 (4.0) 0.1613

Change, MRI T2 BOD (cm2) 0.13 (0.6) 0.22 (1.0) 0.0729

Change, 3rd ventricular width (mm) 0.62 (0.99) 0.63 (1.14) 0.7321

On IFNb-1b (250 mg) during RCT (%) 37% 25% 0.0178

*Means are listed without parenthesis. Standard deviations are shown in parentheses.
**7 deceased patients included in the LTF population; 28 deceased patients not included in LTF population.
{P-value derived from Fisher’s exact test for rates, z-score for percentages, and Wilcoxon’s rank-sum test for all others.
LTF = long-term follow-up; EDSS = Expanded Disability Status Scale score; MSSS = Multiple Sclerosis Severity Score; BOD = burden of disease; CAL = Combined Active
Lesions (New + Enlarging T2 Lesions).
doi:10.1371/journal.pone.0022444.t001
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will stay on therapy, whereas patients doing poorly will stop or

switch. Similarly, physician or patient preference for certain

DMTs in certain circumstances may also lead to in an imbalance

in baseline or other characteristics between groups. Because of

these multiple potential sources of bias (Supplemental Material;

Appendix S1; Table S1), assessment of long-term efficacy, of

necessity, requires statistical methods that can mitigate these

effects.

Methods

Patients
Data were collected from patients who agreed to participate in

the 16-year long-term follow-up (LTF) of the IFNb-1b pivotal trial

[2,3]. The design of the LTF study is described elsewhere [13]

Briefly, patients from the original RCT [2,3] were asked to

participate in the LTF (see Protocol S1). Of the 372 patients in the

RCT, 328 (88.2%) were identified and provided some informa-

tion. Of these, 260 (70.0%; including the records from 7 who had

died) underwent a detailed assessment of their treatment history

and interim disease course (obtained through clinical evaluation

and medical record review), and a determination of their outcome

on a variety of long-term measures [13–16]. The extended

disability status scale (EDSS) scores at treatment-onset ranged

from 0 to 5.5, and treatment-exposure ranged from none (placebo-

treated patients who did not initiate therapy) to 16 years (patients

in the high-dose arm who continued therapy until the LTF

evaluation).

Comparison of baseline characteristics between those who did

and did not participate in the LTF indicated that both groups were

substantially similar by all measures (Table 1). During the RCT,

however, patients not participating in the LTF tended to have a

slightly more aggressive disease course compared to those who

participated (Table 1). Despite this tendency, a significantly greater

percentage of patients participating in the LTF were from the

group on IFNb-1b (250 mg) during the RCT compared to those

not participating (Table 1). Approval for the LTF study was

obtained from institutional review boards of all participating

centers. All patients gave written informed consent.

Therapy
During the RCT, patients received placebo (n = 123), IFNb-1b

50 mg (n = 125), or IFNb-1b 250 mg (n = 124) subcutaneously

every-other-day for 104 weeks [2,3]. For our analysis, only the

high-dose (250 mg) group was considered to have received optimal

therapy at the time of randomization. This decision was made

both because low-dose IFNb-1b was less effective than the higher

dose [2,3] and because, on the basis of the evidence, the FDA

declined to approve its use in MS patients.

After completion of the RCT, all patients were offered the

opportunity of being treated with IFNb-1b (250 mg) until FDA

approval in 1993. No specific therapy was administered as part of

the LTF although, until the 1996 approval of IFNb-1a (AvonexH)

and glatiramer acetate (GA, CopaoxoneH), no other DMT was

available. Nevertheless, over the 16 years, many patients received

alternative DMTs [13]. However, IFNb-1b accounted for the vast

majority (.90%) of the overall time of DMT-exposure in the LTF.

Consequently, our principal analysis only considered IFNb-1b-

exposure.

Negative-outcome
‘‘Hard’’ negative-outcomes were defined as reaching

EDSS$6.0, wheelchair use, conversion to secondary progressive

(SP) MS, death, or the combined ‘‘any negative’’ outcome

consisting of one or more of these other outcomes. These hard

outcome measures are both clinically important and more reliable

than scores in the lower EDSS range. For our principal analysis,

the time to reaching EDSS$6 required confirmation $3 months

later. In addition to meeting this definition of confirmed

progression, however, the patient was also required still to be

EDSS$6 at all subsequent evaluations including at the LTF

evaluation. The purpose of this definition was to define the time at

which a person reached ‘‘unremitting’’ EDSS$6. SPMS was

defined as progressive disability evolving over $12 months and, in

the opinion of the investigator, not caused by relapses. Moreover,

EDSS must have increased by $1 point over the previous 2 years.

In addition, to be identified as SPMS, patients could not have

reverted to RRMS subsequent to meeting these criteria.

Besides weighted treatment-exposure, several other variables

potentially predictive of outcome were incorporated into the

analysis, including age, gender, treatment assignment during the

RCT, relapse-rate, EDSS, MS severity score (MSSS) [17],

baseline T2-weighted MRI lesion count and volume, 3rd

ventricular width (a measure of atrophy), and neutralizing

antibody (NAb) status during the first 3 years of therapy

(Table 2). NAb-titers were measured in neutralizing-units per

milliliter (NU/ml). NAb-status was divided into 7 categories, each

of which could be combined with any (or several) of the other

categories. These categories were defined as: 1) always negative

(,20 NU/ml); 2) low titer (20–99 NU/ml); and 3) high-titer (one

or more assays with $100 NU/ml but not consecutive); and 4)

persistent high-titer (at least two consecutive titers $100 NU/ml

during the pivotal trial). Each of these subcategories was further

subdivided into titers that either reverted to NAb-negative status

(at some time during the RCT) or remained persistently positive

throughout the RCT.

Because complete MRI data was available for only about 75%

of the sample, the entire analysis was run twice. In the first, each of

the MRI variables (Table 1) were included. However, because

none of these variables were selected as predictors of outcome, for

the final analysis, these variables were omitted from consideration

so that the sample size could be as large as possible. Nevertheless,

importantly, the results of the analysis incorporating these MRI

variables were not substantively different from that excluding

them.

Cross-sectional cognitive data was obtained at the LTF

examination. However, because a time-to-event analysis with bias

mitigation was not possible for cognitive outcome, and because

baseline testing was available in only a few patients, the cognitive

data is presented elsewhere [15] and the impact of therapy on

cognitive outcome could not be determined [16].

Medication Possession Ratio (MPR) and Exposure
Weighting

Data analysis was undertaken as a step-wise process. The first

step (Supplemental Material; Appendix S1; Table S2; Step 1, A)

was to measure treatment-exposure, not as years of IFNb-1b

250 mg therapy, but to transform this variable into the so-called

‘‘medication possession ratio’’ or MPR [18,19]. The purpose of

this transformation was to compensate for the bias introduced by

physicians or patients making treatment decisions based on

perceived efficacy (i.e., outcome-dependent censoring of exposure)

[20]. Thus, the MPR was defined individually as:

MPR~(Actual-time of IFNb-1b exposure)=

(Total-time possible for IFNb-1b exposure)

Impact of IFNb-1b on Long-Term Outcome in MS
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This is called the ‘‘raw’’ or ‘‘unweighted’’ MPR. The efficiency of

the ‘‘raw’’ MPR the mitigating the bias of informative censoring

(Supplemental Material; Appendix S1; Table S1) is amply

demonstrated by comparison of an analysis using the actual

(unweighted) years of IFNb-1b-exposure to the same analysis

following ‘‘unweighted’’ MPR transformation (Figure 1). Using

‘‘unweighted’’ treatment exposure, the significance of the

treatment effect was (p,10216). By contrast, using ‘‘unwieghted’’

MPR exposures, this apparent treatment effect is completely

mitigated, indicating that the initial observation was due to bias. It

was only after the possibility of exposure-weighting was intro-

duced, that treatment re-emerged as significant factor associated

with outcome (Figures 1 and 2).

Thus, these ‘‘raw’’ MPRs were weighted to account optimally

for the possibility that a patient’s response to therapy might be

different based on how long they had had their illness and how

Figure 1. The effect of MPR transformation on the bias introduced by informative-censoring of exposure (see text). In panel A are the
results of the RP analysis incorporating all of the baseline variables and the unweighted raw exposures (measured in years). In this analysis the
exposure variable (in years) dominates all other variables with a p-value of 10216. However, in panel B, where the same analysis is conducted using
the unweighted-MPRs (in place of the unweighted ‘‘raw’’ exposures), the entire ‘‘spurious’’ treatment-effect disappears and the resulting tree is
identical to that found when all predictor variables (but not treatment) are included in the RP-analysis. In both Panels, the Kaplan-Meier survival
estimates are displayed below each of the identified subgroups (splits). X-axis is time in years. Y-axis is survival in % (1 = 100%).
doi:10.1371/journal.pone.0022444.g001

Table 2. Recursive Partitioning associating each predictor variable independently with ‘‘any negative-outcome’’ (p,0.20 to split).

Parameter explored Optimal split value p-value Interpretation

Age at 1st symptom No split - No relationship found

Age at entry to RCT .37 years 0.11 Worse outcome with older age

Gender No split - No relationship found

Time from 1st symptom to RCT start 2.35 years ,0.001 Worse outcome with longer duration

Treatment during RCT No split - No relationship found

Pre-RCT relapse-rate No split - No relationship found

Baseline EDSS Splits at .1,
.2,
.4

0.01
,0.001
,0.001

Worse outcome with higher baseline EDSS

Baseline MSSS .2.93 ,0.001 Worse outcome with higher baseline MSSS

Baseline MRI burden of disease (BOD) .2005.5 ,0.001 Worse outcome with higher baseline BOD

Baseline 3rd ventricular width (atrophy) .3.947 0.002 Worse outcome with greater 3rd ventricular width

NAbs; any titer and any persistence during RCT No split - No relationship found

doi:10.1371/journal.pone.0022444.t002
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disabled they were when therapy was started (see Supplemental

Material; Appendix S1 for details).

Creating Treatment Groups
The best MPR weighting-scheme was taken to be the one

associated most significantly with a particular negative-outcome

using a recursive-partitioning (RP) algorithm. The RP method is a

two-step process [21,22]. The first step (Supplemental Material;

Appendix S1; Table S2; Step 1, B) identified which variable (in this

case, which weighted-exposure) was most significantly associated

with the particular negative-outcome [23]. The second step

(Supplemental Material; Appendix S1; Table S2; Step 2, B) used

recursive methods to identify the optimal split-point for the data

(Supplemental Material; Appendix S1; Figure S1) [24–26]. Statistical

significance was based on survival curves and associated log-rank

tests for the subgroups being compared (Supplemental Material;

Appendix S1; Figure S1) and the final significance adjusted (using a

Bonferroni correction) for the number of variables and weighting

schemes considered (Supplemental Material; Appendix S1).

The selected split-point for optimal-exposure (Supplemental

Material; Appendix S1; Figure S1) defined the exposure-groups

used in the final, integrated analysis (Supplemental Material;

Appendix S1; Table S2; Step 2, D). In theory, the RP algorithm

could have identified several weighted-MPR-exposure subgroups

although, in the LTF dataset, evidence was found for only two.

Although the split was based on weighted-MPR values, the

difference between the two groups in unweighted-MPRs was

notable. Thus, the median MPR in the high-exposure-group was

71% compared to a median of 0% in the low-exposure-group.

The RP algorithm was also applied to each of the predictor

variables individually (Table 2) to explore preliminarily the

relationships of these predictors to outcome. A ‘‘no-split’’

condition is defined for a given variable when that all of the

possible splits were non-significant (p.0.2). As an interim

verification model (Supplemental Material; Appendix S1; Table

S2; Step 2, C), we re-ran the RP algorithm including all predictor

variables together with all 161 weighted-MPR schemes (Supple-

mental Material; Appendix S1). This was done both to control the

overall experiment-wise Type I error and to verify the homoge-

neity of the selected weighting-scheme and treatment effect after

taking these other predictor variables into account. Theoretically,

although it did not occur, the RP algorithm could have selected (at

this step) a different weighting-scheme than that which was

selected previously (Supplemental Material; Appendix S1; Table

S2: Step 2, A). Such an occurrence might indicate heterogeneity in

response-behavior between different subgroups of patients. If so,

the entire analysis would need to be re-run considering each

subgroup separately.

We also examined the stability and robustness of the model

using multiple sensitivity analyses including different definitions of

‘‘hard’’ negative-outcome (i.e., EDSS$6, SPMS, wheelchair use,

death, either EDSS$6 or SPMS, and ‘‘any negative-outcome’’),

different assumptions about the underlying data, different

modeling approaches, and a variety of bootstrap methods

(Supplemental material; Appendix S1). Each of these demonstrat-

ed that the model was quite stable and robust (Figures 3,

Supplemental Material; Appendix S1; Figures S4 and S5; Table

S3).

Integrated Analysis
Final data analysis was done using a Cox proportional hazard

model to estimate the risk of a negative-outcome based on

exposure-group. To mitigate treatment-selection bias, a propensity

scoring approach was used [27–32]. Logistic regression was used

to estimate the likelihood that a patient would be in the ‘‘high’’ or

‘‘low’’ exposure-group using all available baseline characteristics

(Supplemental Material; Appendix S1; Table S2; Step 2, D). The

resulting likelihood estimates were then ranked to create bins in

which patients were equally likely to be in either exposure-group.

The Cox Regression model then used the propensity bin as a

stratification variable and strata pooled to estimate the overall

treatment-effect (Supplemental Material; Appendix S1; Table S2;

Step 3, A). Multiple sensitivity analyses were also undertaken to

assess the stability of the relationship between exposure-group and

negative-outcome and to assess the stability of the derived

relationships (Supplemental Material; Appendix S1) [33].

Statistical tests of significance
The significance of differences between subgroups for all RP

analyses was determined by the log-rank test and all reported p-

values, including the verification model with all variables

simultaneously considered (Supplemental Material; Appendix S1;

Table S2; Step 2, C), were adjusted for the multiple comparisons

Figure 2. Optimal split determined by the recursive partition-
ing algorithm considering all predictor variables (Table 2)
together with all possible weighted-MPR exposures to IFNb-1b.
Two highly significant split-levels were identified by the algorithm
based on EDSS at the start of therapy and weighted IFNb-1b exposure
during the LTF. The first split (as in the Supplemental Material;
Appendix S1; Figure S6) occurred at EDSS = 2, whereas a second level
split occurred only for the EDSS.2 branch and was based on DMT
exposure. Importantly, the algorithm for this analysis selected precisely
the same weighting-scheme (bTN4SN2) that was selected in the
Supplemental Material (Appendix S1; Figure S7). Survival curves are
displayed below the identified subgroups and survival is best in the
EDSS#2 and the high-exposure groups. The split-point for DMT
exposure is slightly different than that identified in the Supplemental
Material (Appendix S1; Figure S7) because, in this instance, the split-
point was determined only from the subgroup of patients with an
EDSS.2. Note: the number (0.028) cannot be interpreted in time units
because it represents a mathematical transformation from the raw
exposure in years. In both Panels, the Kaplan-Meier survival estimates
are displayed below each of the identified subgroups (splits). X-axis is
time in years. Y-axis is survival in % (1 = 100%).
doi:10.1371/journal.pone.0022444.g002
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(i.e., multiple potential predictor variables and multiple weighting

schemes) using a Bonferroni correction. If the treatment effect was

still significant after this analytic step (Supplemental Material;

Appendix S1; Table S2; Step 2, C), then the final propensity-

adjusted model (Supplemental Material; Appendix S1; Table S2;

Step 3, A) was generated via Cox regression and the p-value for

this final analysis was unadjusted for prior analysis steps.

Results

Each predictor variable was evaluated by the RP algorithm

independently and EDSS was the variable most strongly associated

with negative-outcome (Table 2). When EDSS was evaluated

alone, the RP algorithm identified four subgroups (Supplemental

Material; Appendix S1; Figure S6). When all predictor variables

were included (Table 2), the RP algorithm split only on EDSS and

the tree was identical, except that the EDSS = 1 split (Figure S6;

Supplemental Material; Appendix S1) was eliminated by Bonfer-

roni adjustment (i.e., as in Figure 1-B). Baseline EDSS was also a

highly significant predictor of outcome using standard logistic-

regression analysis [14] In both analyses, the EDSS out-performed

the MSSS.

Survival curves for ‘‘high’’ and ‘‘low’’ exposure to IFNb-1b,

demonstrate a significant benefit to ‘‘high’’ exposure (Supplemen-

tal Material; Appendix S1; Figure S7). The results of our initial

validation (Supplemental Material; Appendix S1; Table S2; Step

2, C), when all predictor variables (Table 2) and all the weighted-

MPR exposure variables are included together in the same

analysis, indicate that only baseline EDSS and weighted

treatment-exposure remain as significant factors in determining

long-term outcome (Figure 2). Although Figure 2 might seem to

indicate that only patients with an EDSS.2.0 derived benefit

from therapy, there are two reasons to doubt this conclusion. First,

because of the weighting scheme selected, those patients who

entered the RCT with an EDSS.2.0, would have had a better

response if they were treated earlier. Second, this analysis

represents only an interim step to establish the independent

contribution of therapy to outcome. The principal, and intended

final, analysis was the propensity adjusted Cox model (see below).

Regardless of this nuance, however, it is of note that, despite

treatment having a very significant impact on outcome in this

analysis, the presence or absence of NAbs in the high-dose arm of

the RCT (at any titer level or any degree of persistence or in any

combination) did not mitigate this therapeutic effect. Also, when

all of the variables are considered simultaneously, the same

weighting-scheme is selected. As anticipated, there is a strong

correlation between treatment assignment during the RCT and

the weighted MPR. This is because the patients in the high-dosage

arm had a 100% MPR for the first 2–5 years whereas the patients

in the other arms had a 0% MPR for this same interval.

Nevertheless, despite this correlation, there was no discernable

association between treatment assignment and long-term outcome

(Table 2).

The results of our final analysis (Supplemental Material;

Appendix S1; Table S2; Step 3, A) showed very similar results.

Thus, the propensity-adjusted analysis using the optimal weight-

ing-scheme, found that the high-exposure-group much less likely

to experience ‘‘any negative-outcome’’ compared with the low-

exposure-group (HR = 0.423; 95% CI; 0.275, 0.651; p,0.0001). A

similar result was found for every hard-outcome considered in this

trial (Figure 3) and was confirmed by each of the sensitivity

analyses performed (Supplemental Material; Appendix S1).

One of the underlying assumption of the Cox model is that of

proportionate hazard. We, therefore, considered the potential

impact of a violation of proportionate hazard and, indeed, this

assumption only holds until approximately 10 years after RCT

onset (Supplemental material; Appendix S1; Figure S8). After this

point point, the patients with EDSS.2 and more exposure begin

to fail at a greater rate than patients with EDSS.2 and less

exposure (Supplemental material; Appendix S1; Figure S8;). The

only way to satisfy the proportional hazards assumption is to

truncate the data at 10 years. However, censoring the data at this

point actually leads to a more extreme hazard ratio and a more

significant difference between the two groups. Such an outcome is

anticipated because any violation of the proportionate hazard

assumption should be biased toward the null hypothesis.

Discussion

The results of this study provide several pieces of important

evidence about the relationship between the use of IFNb-1b

therapy and long-term outcome in MS. First, therapy seemed to

have a consistent benefit on several measures of disability or

progression including EDSS, use of a wheel chair, or progression

to SPMS, and the combined measure of ‘‘any negative-outcome’’.

In this respect, our findings are similar to those reported previously

by Trojano and colleagues [31] which, after propensity adjust-

ment, demonstrated that 7 years of IFNb therapy reduced disease

progression as determined by the time to reach EDSS = 4,

EDSS = 6, and SPMS. Second, not only did every such analysis

(except death) show a statistically convincing and very similar

effect (Figure 3; Supplemental Material; Appendix S1; Table S3),

the magnitude of the benefit was also quite striking (Figures 2 and

3) with hazard ratios between 0.30 and 0.42. These two

observations provide evidence that the use of IFNb-1b results in

a significant and clinically meaningful impact on long-term

function in MS patients. Importantly, although there is a strong

Figure 3. Propensity adjusted Cox proportional hazard esti-
mates for the effect of treatment on each of the ‘‘hard’’
negative-outcomes examined in the study. The results for our
principal analysis (i.e., for ‘‘any negative-outcome’’) are shown on the far
left. For each of these outcomes, there is approximately a 60% to 70%
long-term benefit to therapy. Error bars indicate the 95% CI for each the
different outcomes.
doi:10.1371/journal.pone.0022444.g003
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(and expected) correlation between treatment assignment during

the RCT and the weighted MPR, there was no discernable

association of this variable with outcome (Table 2). This indicates

that the observed benefit of therapy is not merely a reflection of

this early DMT experience. Importantly, also, our study provides

no information about the value of other DMTs because over 90%

of both the actual and the weighted-MPR exposure was from

treatment with IFNb-1b. This circumstance is due to two factors.

First, IFNb-1b was the only therapy available for the initial 6–8

years of the LTF. Second, the effect of any late DMT-exposure

was considerably down-weighted as a result of the selected

response curves (Supplemental Material; Appendix S1; Figure

S3). Therefore, our sensitivity-analysis of ‘‘any DMT-exposure’’,

in reality, merely recapitulates our analysis using IFNb-1b-

exposure alone.

Third, the weighting-schemes chosen by every one of the

different analyses were very consistent (Supplemental Material;

Appendix S1; Table S3), suggesting that this scheme is probably

accurate about when and how IFNb-1b is most effective. The

selected response curves (Supplemental Material; Appendix S1;

Figure S3) resulted heavy down-weighting with increasing EDSS

score and longer disease duration at therapy-onset. This suggests

that therapy is more effective when given early in the disease

course and is consistent with RCTs of both early MS (where the

effect size seems greater) and SPMS (where the effect size seems

less) compared to RCTs of relapsing-remitting MS [2,3,6–

8,11,34–45]. It is also consistent with the observation that the

on-therapy event-rates have fallen precipitously (even for the same

medications) in the last 5 years compared to the first 10 years of

the DMT era (Supplemental Material; Appendix S1; Figure S9).

There is little question that less advanced patients are now being

recruited into current randomized trials compared to earlier trials

and this marked change in event-rate suggests that patients treated

earlier in their disease course are responding much better to DMT

medication, just as one would expect from the selected response

curves shown in the Supplemental Material (Appendix S1; Figure

S3). In sum then, this analysis consistently supports the value of

early therapy. Moreover, this result seems unlikely to be due to

ascertainment bias (Supplemental Material; Appendix S1; Table

S1). Thus, despite a tendency to include, in the LTF, patients who

had somewhat less aggressive disease during the RCT (Table 1), a

greater percentage of the LTF patients were from the group on

IFNb-1b (250 mg) during the RCT compared to those not

participating (Table 1). Thus, the anticipated bias produced by

this imbalance should underestimate the benefit of treatment

because untreated patients (doing poorly during the RCT) seem

selectively less likely to have participated in the LTF.

This analysis also provides evidence for the utility of a

methodological framework that mitigates bias in the estimation

of long-term efficacy from non-randomized, observational, clinical

trials. This framework is outlined in the Supplemental Material

(Appendix S1; Table S2) and consists of several analytic steps,

which are also referenced throughout the description of our

analytic methods. The first step consists of data preparation and

the transformation of absolute exposures into raw-MPR exposures.

This step is critical because it converts the raw data, which are

heavily biased by informative-censoring of exposure due to a

patient’s perception of their own response, into data that are

corrected for this bias [20]. The second step consists of applying

weighting-schemes to allow flexibility in defining the exposure-

response relationship. This step is also critical because, by making

no adjustment to the raw-MPR data, the relationship between

exposure and outcome is forced to follow the bP0 (or eP0)

weighting-scheme (Supplemental Material; Appendix S1; Figure

S2). The third step is to use the RP algorithm to select the optimal

weighting-scheme, to define the exposure-groups, and to run

preliminary validation of the model. At the third step, the analysis

can fail and the process terminated. Thus, if no significant split-

point is found in the data during the selection of the optimal

weighting-scheme, this suggests that there is no relationship

between exposure and outcome. In this case, however, it is still

worthwhile repeating the analysis in the validation step (Supple-

mental Material; Appendix S1; Table S2; Step 2, C) to be sure that

a sub-group of patients is not responding. In this case, the analysis

should be repeated including only the identified sub-group. If

neither the initial RP nor the validation RP demonstrates a

significant treatment-effect, the analysis is terminated. Similarly, if

a significant split-point is initially found for treatment-exposure but

this relationship disappears when other predictor variables are

included in the RP algorithm, the analysis is terminated. If none of

these termination-events occurs, however, then logistic regression

is used to create propensity bins (based on the treatment groups

identified in step 3) and a propensity-stratified survival analysis

using a Cox proportional hazard model is undertaken to give an

estimate for the size of the treatment effect. This step is also critical

because propensity adjustment will mitigate any treatment-

selection bias, provided that the baseline variables (on which

treatment decisions were made) have been captured [27–32].

Indeed, using the method of propensity score adjustment, other

authors have also reported a beneficial impact of therapy on

outcome [31]. The last step is to perform multiple sensitivity-

analyses utilizing different definitions of negative-outcome,

different assumptions about the underlying data, and different

modeling approaches to ensure that the findings are both

consistent and robust. In summary, and, as exemplified by our

analysis of the LTF data from the IFNb-1b pivotal trial, utilization

of this analytic strategy can provide a useful method for the

minimization of bias in the analysis of non-randomized long-term

data.

Supporting Information

Figure S1 Derivation of split-points by the RP algorithm after

selection of the optimum baseline variable (Panel A) and the

optimum weighting-scheme (Panel B). In the case of the EDSS

there are only 10 possible split-points from which to choose

because the EDSS has only 10 possible split points from 0 to 5.5.

Panel B has many more data points because weighted MPR could

potentially be divided at many split-points. In both cases, however,

the algorithm picks the maximum value of the test statistic for

group-comparisons (in this case the log-rank test) to define the best

split-point. In Panel A the split could have been at either at

EDSS = 2 or EDSS = 3, as the test statistic was very similar at these

two points. In Panel B the choice is more clear-cut. Also note that

the actual of the ‘‘weighted’’ MPR is not meaningful because it

represents a mathematical transformation of the raw exposure

data in years into something that can’t be interpreted in unit of

time (see Figure S3).

(TIF)

Figure S2 The theoretical diffusion curves used for selecting

weighting-schemes by the recursive partitioning algorithm. Both

Bass diffusion curves (b) and exponential curves (e) were used (see

text). Curves that represent increasing effectiveness of therapy with

a increasing disease duration or EDSS score are called positive (P).

By contrast, those that represent decreasing therapeutic effective-

ness with increasing disease duration or EDSS are called negative

(N). From these 17 curves, it can be appreciated that this collection

(and selecting them in pairs) provides considerable flexibility to the
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RP algorithm such that essentially any exposure-weighting can be

selected. Pairs of curves that could be selected include cases in

which the MPR was decreased for one parameter (e.g., time since

first symptom) and increased for the other (e.g., EDSS at therapy

initiation) in addition to cases in which the MPR was increased (or

decreased) for both parameters.

(TIF)

Figure S3 Calculation of the weighted-MPR for an individual

beginning therapy after 2 years of disease and at an EDSS of 3.0.

Panel A shows the selected (bTN4SN2) weighting scheme (i.e. the

bN4 and bN2 curves – Figure S2). On the x-axis the term

(EDSS?2) represents twice the EDSS score in order to simplify the

graph. The designation (T) means that the time (disease duration)

criteria is following bN4 curve whereas the designation (S) means

that the severity (EDSS) criteria is following the bN2 curve

(Figure 3). The table below the graph shows the calculation for the

average weight. Panel B shows a two-dimensional graph of the

same weighting-scheme as in Panel A for any combination of

EDSS (Severity) and Duration (Time) at the onset of therapy, with

100% weighting (in dark blue) at the origin transitioning to 0% at

the upper right corner (in red). The black square indicates this

particular patient’s location on this graph. Panel C shows how this

weighting-scheme affects the MPR given this person’s individual

treatment history. The times that different outcomes were reached

are indicated on the top line. A color-code for outcomes and

treatments is at the bottom. Just prior to reaching EDSS = 6, this

patient was switched to IFNb-1a (AvonexH). Because the Avonex is

started within 3 months of discontinuing to IFNb-1b (BetaseronH),

the weighting for the two drugs is the same. Because the other

therapy was started more than 3 months after discontinuing to

IFNb-1a (AvonexH) and because it was started at such a long

disease duration (,10 yrs + the disease duration at the RCT start),

it has been down-weighted to almost zero.

(TIF)

Figure S4 Percentage of the time that different weighting

schemes were selected in the 2,000 samples selected using

bootstrap methods (see text for details). The ‘‘optimal’’ weighting

scheme (bTN4SN2) was chosen in 52% of the time. However, the

next most commonly selected weighting schemes (bTN4SN3,

eTN4SN3, eTN4SN4, and bTN1SN3) are similar to the

bTN4SN2 scheme (Figures S2 and S3), with each markedly

down-weighting the value of exposure both for an increased

disease duration and for a greater EDSS at the start of therapy (see

Figures S2 and S3). The solid black line shows the cumulative

probability for the selected weighting schemes, with the first 5

schemes being selected more than 90% of the time. See Figure

legends S2 and S3 for the definitions of b, e, P, N, T, and S.

(TIF)

Figure S5 Various tests of the stability of the Model. All panels

A–D follow a similar structure. The leftmost, filled, black circle

represents the original estimate observed using all 260 observa-

tions exactly once and the 5-bin propensity score adjustment

method. For instance, the relative risk of any negative event was

estimated to be 0.44 for the ‘‘more’’ treatment group compared to

the low treatment group (p,0.001). After the ‘‘Original’’ estimate

3 sets of 3 other estimates are provided. The estimates are grouped

first based on the weighting scheme that was selected. Immediately

next to the ‘‘Original’’ estimate is the estimate that is observed

only including the bootstrap samples where weighting scheme

bTN4SN2 was selected, followed by bTN4SN3 and eTN4SN3

(the 2nd and 3rd ranked weighting schemes). Within each weighting

scheme block, three modeling strategies are tested: (1) 5 bin

propensity score adjustment, (2) stepwise selection with all terms

included as covariates in the Cox Model, and (3) no adjustment

(e.g., treatment effect is the only term entered into the model). A

horizontal line extends from the ‘‘Original’’ point estimate for easy

comparison. Vertical lines from each point estimate provide 95%

confidence intervals based on the bootstrap sample and employing

the empirical percentile confidence interval approach. In Panel A

the effect size for treatment in the ‘‘high-exposure’ group is shown.

The horizontal dotted lines represent the 95% CI for the original

analysis (including all of the 260 original observations). Panel B

shows the levels of statistical significance for each analysis method

and weighting scheme. The lower two panels (C and D) shows the

predictive accuracy of the model (i,e, the area under the Receiver-

Operator curve or the C-Index) for the bootstrap sample (’’In

Bag’’) and for the observations not in the bootstrap sample (‘‘Out

of Bag’’ or OoB).

(TIF)

Figure S6 Optimal split determined by the RP algorithm

considering only EDSS at the start of therapy. Two highly

significant split-levels were identified by the algorithm based on

EDSS at the trial entry. The first split occurred at EDSS = 2 and

subsequent splits were found for both branches. Survival curves

are displayed below each of the identified subgroups with survival

markedly deteriorating with higher EDSS scores at trial entry.

After including all predictor variables (except treatment) into the

model, the secondary split-point at EDSS = 1 becomes non-

significant after controlling for Type 1 error with a Bonferroni

adjustment. Below the splits, the survival curves are plotted. X-axis

is time in years. Y-axis is survival in % (1 = 100%).

(TIF)

Figure S7 Optimal split determined by the recursive partition-

ing algorithm considering only weighted-MPR exposure to IFNb-

1b. In this analysis, the RP algorithm was presented with all

weighting-schemes (161) and selected the bTN4SN2 weighting-

scheme as the one most closely associated with a negative-

outcome. This is the one used in this analysis and the survival

curves for the optimally split data are shown. The left-hand panel

shows survival in the low-exposure group whereas the right-hand

panel shows much better survival in the high-exposure group.

Note: the number (0.034) cannot be interpreted in time units

because it represents a mathematical transformation from the raw

exposure in years. Below the splits, the survival curves are plotted.

X-axis is time in years. Y-axis is survival in % (1 = 100%).

(TIF)

Figure S8 Superimposed survival curves for the same three

groups presented previously in Figure 2 (Main paper). As can be

appreciated from the Figure, the proportional hazard assumption

only holds out to approximately 10 years. After that point, the

patients with EDSS.2 and more exposure (blue line) begin to fail

at a greater rate than patients with EDSS.2 and less exposure

(red line). The only way to satisfy the proportional hazards

assumption is to truncate the data at 10 years. Censoring the data

at this point, however, actually leads to a more extreme hazard

ratio and a more significant difference between the two groups.

Such an outcome is anticipated because any violation of the

proportionate hazard assumption should be biased toward the null

hypothesis.

(TIF)

Figure S9 The on-therapy event-rate (annualized attack-rate) in

clinical trials since the completion of the original IFNb-1b

(BetaseronH) trial2, 3 in 1992. Other trials include COP-1 (GA,

CopaxoneH)33; MSCRG (IFNb-1a, AvonexH)34; PRISMS (IFNb-

1a, RebifH)35; OWIMS (IFNb-1a, RebifH)36; EVIDENCE (RebifH
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vs. AvonexH)37; INCOMIN (BetaseronH vs. AvonexH)38; AFFIRM

(natalizumab, TysabriH)39; SENTINEL (AvonexH vs. AvonexH
plus TysabriH)34; CamMS (alemtuzamab, CampathH vs. Re-

bifH)41; REGARD (RebifH vs. CopaxoneH)9; BEYOND (Betaser-

onH 500 mg vs. BetaseronH 250 mg vs. CopaxoneH)10; CLARITY

(Cladribine)43; TRANSFORMS (Fingolimod)44; and FREE-

DOMS (Fingolomid).45 These event-rates, even for the same

study medications (BetaseronH, RebifH, and CopaxoneH), have

fallen precipitously in the past 5 years, at least in part, because

current trials tend to recruit patients with more mild disease (i.e.,

more patients with short disease courses and more patients with

lower EDSS scores) compared to trials undertaken when no

proven DMTs were available.

(TIF)

Table S1 Sources of Bias and Corrective Strategies.

(DOC)

Table S2 Strategy for bias-minimization in the analysis of non-

randomized observational data.

(DOC)

Table S3 Sensitivity analyses using alternative definitions of

outcome and exposure.

(DOC)

Protocol S1

(PDF)

Appendix S1

(DOC)
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